
Dynamic Analysis of the Arrow Distributed Protocol∗

Fabian Kuhn
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

kuhn@inf.ethz.ch

Roger Wattenhofer
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

wattenhofer@inf.ethz.ch

ABSTRACT
Arrow is a prominent distributed protocol which globally
orders requests initiated by the nodes in a distributed sys-
tem. In this paper we present a dynamic analysis of the Ar-
row protocol. We prove that Arrow is O(log D)-competitive,
where D is the diameter of the spanning tree on which Arrow
operates. In addition, we show that our analysis is almost
tight by proving that for all trees the competitive ratio of
Arrow is Ω(log D/ log log D).

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
Distributed Queuing, Distributed Ordering, Competitive Anal-
ysis, Distributed Algorithms

∗The work presented in this paper was supported (in part)
by Hasler Foundation, Berne, Switzerland.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04, June 27–30, 2004, Barcelona, Spain.
Copyright 2004 ACM 1-58113-840-7/04/0006 ...$5.00.

1. INTRODUCTION
Ordering events, messages, or processes is at the heart of

any distributed system, arising in a multiplicity of applica-
tions, such as distributed shared memory, caching, mobile
objects, or totally ordered multicast. The Arrow protocol
is a simple yet elegant ordering protocol which experimen-
tally outperforms conventional centralized (“home-based”)
schemes at high concurrency. In this paper, we present the
first dynamic analysis of the Arrow protocol. Besides the
immediate result (“How efficient is Arrow?”) we feel that
our paper introduces novel methods to dynamically analyze
distributed systems.

In the remainder of the introduction, we familiarize the
reader with the Arrow protocol, and compare our results to
related work.

1.1 Arrow
We are given a distributed system with n nodes. These

nodes are connected through a pre-computed spanning tree
T . A node can communicate solely with its direct neigh-
bors in the spanning tree T , by means of message passing.
The nodes initiate ordering requests at arbitrary times; an
ordering request r can be identified by the tuple r = (u, t)
where u is the node that initiates the ordering request, and
t is the time when the request is initiated.

For simplifying our analysis we assume our distributed
system being synchronous: All the nodes proceed in rounds;
in a round, each node might initiate new ordering requests,
and each node can exchange a message with each of its neigh-
bors.

The Arrow protocol will globally order all the requests
initiated over time and over all the nodes in the system. In
particular, each request will eventually find its predecessor
request, and each request will eventually be found by its
successor request in the total order; the very first request in
the total order will learn that it is first. More formally:

Definition 1.1. (Ordering Algorithm) An ordering
algorithm A is a distributed algorithm which defines a to-
tal order on all ordering requests R ⊂ V ×� such that in the
end each node v ∈ V knows the predecessors of all requests
in {v} × �.

A total ordering can easily be achieved by a central so-
lution, where each request is routed to a previously estab-
lished “central” node, which locally orders all the requests
and informs the requesting nodes about predecessors and/or

successors. Since a central solution does not scale well, dis-
tributed algorithms have been proposed – a most promising
algorithm is the Arrow protocol.

The Arrow protocol operates as follows: Each node v
holds a pointer pv which points to v itself or to one of v’s
neighbors in the spanning tree T . Initially there is a desig-
nated root node, such that all pointers in the system point
towards the root in the spanning tree T , that is, proot = root
and every other pointer points to the neighbor which is clos-
est to the root. In addition, the root initially stores a dummy
token (root, 0), while all other nodes initially store no token.
The Arrow protocol guarantees that pv = v if and only if
node v stores a token.

When initiating an ordering request r = (v, t), node v
checks whether pv = v. If so, the request r is ordered directly
after the request represented by the token stored at v, and
the token is replaced with the new token (v, t) (representing
the new request). If pv �= v, node v stores the token (v, t),
sends a message “find predecessor for (v, t)” to the neighbor
pv, and redirects pv to itself (pv = v).

A node u receiving a message “find predecessor for (v, t)”
from a neighbor w will do the following: If pu = u the
request (v, t) is ordered directly after the request represented
by the token stored at u; node u removes the token and
directs its pointer to the sending neighbor, that is pu = w.
If on the other hand pu �= u, node u will simply forward
the message “find predecessor for (v, t)” to neighbor pu and
then set pu = w.

Despite its simplicity the Arrow protocol produces a cor-
rect total order even in an asynchronous system. In this
paper we analyze a synchronous model: If several messages
(or requests) arrive at a node at the same time, these mes-
sages/requests are processed sequentially in arbitrary order.
As discussed in Section 4, our analysis extends to the asyn-
chronous model, making some necessary assumptions.

In this paper we study the two standard cost models in
distributed computing: time and message complexity. The
latency of a request is the time that elapses from initiation
of the request to its completion (i.e. when a token deter-
mining the predecessor is found); the time complexity is the
sum of latencies of all requests. The message complexity is
the total number of messages exchanged; in the synchronous
model the message complexity equals the time complexity.
Returning the predecessor information to the node that ini-
tiated the request costs not more than the “find” process
itself, and is therefore omitted in our analysis.

Unfortunately, no online ordering algorithm can be com-
petitive in either time or message complexity against an
optimal offline algorithm. For time complexity alone, con-
sider a scenario where nodes initiate requests well-spaced
in time. An optimal offline algorithm can always send the
predecessor information proactively to the next requesting
node, such that each request experiences zero latency, and
therefore zero cost.

For message complexity alone, consider a scenario where
only two nodes u, v initiate requests. An optimal offline
algorithm may order all requests of u before all requests of
v, such that a single message is enough to transport the
information of the last request of u to the first request of v
(who experiences a huge latency, for that matter). Again,
no reasonable online algorithm can compete against such a
powerful offline algorithm. To escape the problem of not
being able to compete with time or message complexity, we

aim for competing with time and message complexity. More
formally:

Definition 1.2. (Ordering Cost) The cost of an or-
dering algorithm is the sum of the communication complex-
ity (total number of messages) and the total time the nodes
have to wait until they know the predecessors after placing a
request (total latency).

Other cost metrics are asymptotically equivalent to the
sum of message and time complexity. Apart from other
functions of message and time (e.g. max), we could similarly
analyze the time complexity (latency) only for the problem
of finding the successor instead of the predecessor (or suc-
cessor and predecessor) in the total order.

1.2 Related Work
The Arrow protocol has originally been described in a

paper by Raymond [11] and independently by Demmer and
Herlihy [1]. The Arrow protocol has been implemented in
several systems, most notably in the Aleph Toolkit [4]. In
[8] it was experimentally demonstrated that Arrow performs
well at high load. In [1] and [10] it was revealed how to
implement mobile objects (e.g. shared variables, objects,
files) using Arrow, in [7] it was shown how Arrow can be
used to implement totally ordered multicast efficiently.

There have been several endeavors analyzing the Arrow
protocol. In [1] it was proved that find operations do not
backtrack, and therefore the time and message complexity of
a find operation is at most D, the diameter of the spanning
tree. In [5] it was shown that Arrow self-stabilizes well in
case of faults (e.g. lost messages or state). So far the only
analysis allowing concurrent requests was done by Herlihy
et al. [6]: In particular a special case is studied where all
requests are initiated at time 0. It was demonstrated that
most of these concurrent requests will find their predecessor
“close-by,” more precisely that the total message or time
complexity is only a factor log |R| off the optimal, where R
is the set of concurrent requests at time 0. In some sense the
analyses in [1] and [6] give results for both extremes of the
temporal spectrum, where requests are either well-spaced in
time [1] or all at exactly the same time [6].

In this paper we give the first analysis that allows nodes to
initiate requests at arbitrary times. We will show that in this
most general model the (online) Arrow protocol is at most a
O(log D) factor costlier than an optimal omnipotent offline
ordering algorithm, where D is the diameter of the spanning
tree. For spanning trees with logarithmic diameter, this
translates into a doubly-logarithmic competitive ratio.

Finding a good spanning tree is a thriving research prob-
lem that is (with respect to Arrow) complementary to this
paper. There is a recent breakthrough result by Emek and
Peleg [2] which manages to compute a O(log n) approxima-
tion, meaning that the maximum stretch of the computed
spanning tree is at most a logarithmic factor (in the number
of nodes) larger than the maximum stretch of an optimal
spanning tree (with minimum maximum stretch).

There are a variety of other distributed protocols for or-
dering. Most notably there is the dynamic distributed man-
ager protocol by Li and Hudak, as implemented in their Ivy
system [9]. As Arrow, Ivy uses pointers to give the way to
not-yet collected tokens of previous requests. In contrast
to Arrow, Ivy needs a complete graph to be operational.

A find message will then direct all visited pointers directly
towards the requesting node, in order to provide shortcuts
for future requests. However, despite this “path shorting”
optimization, Ginat et al. [3] proved that in the worst-case
the amortized cost of a single request is Θ(log n). This is
not better than Arrow for a tree with logarithmic diameter
[1].

Our analysis features an unforeseen connection with the
traveling salesperson problem (TSP); in order to establish
our main result we must prove a new approximation result
of the TSP nearest-neighbor heuristic [12].

The remainder of the paper is organized as follows. In
Section 2 we analyze the Arrow protocol; in particular we
show that the online Arrow protocol is only a O(log D) fac-
tor costlier than an optimal omnipotent offline ordering al-
gorithm, D being the diameter of the spanning tree in which
the protocol is executed. In Section 3 we show that for all
trees, there are requests such that the competitive ratio of
the Arrow protocol is at least Ω(log D/ log log D) and hence
our analysis is almost tight. We conclude the paper in Sec-
tion 4.

2. ANALYSIS
Our analysis is organized as follows. First we define the

costs of the Arrow protocol and an optimal algorithm. In
Subsection 2.2 we give an upper bound on the cost of the
Arrow protocol. This is followed by a subsection which
bounds the cost of an optimal algorithm with a Manhat-
tan TSP from below. Using a new analysis for the TSP
nearest neighbor heuristic in Subsection 2.4 we can finally
derive the competitive ratio in Subsection 2.5.

2.1 Cost Measures
Throughout the paper we index the requests R = {r0 =

(v0, t0), r1 = (v1, t1), . . . } in increasing order with respect to
ti with ties broken arbitrarily, i.e. i < j =⇒ ti < tj . (To
avoid notational clutter we often refer to the node and time
of a request ri directly as vi and ti, respectively.)

We first look at the cost of the Arrow algorithm. Let πA

be the order which is induced by Arrow, i.e. πA(i) denotes
the index of the ith request in Arrow’s order. We introduce
r0 = (root, 0) representing the “virtual” request (token) at
the root; since the initial root token is first in any order, we
have rπA(0) = r0.

As already proved in [1], in Arrow each request rj will
find its predecessor ri on the direct path in the spanning
tree. Therefore, the communication cost is given by the
distance in the spanning tree dT(vi, vj). As argued in the
introduction, the same cost holds for the latency. The cost
Arrow brings about for placing rj after ri therefore is

cA(ri, rj) := 2dT(ri, rj). (1)

For the ordering cost of the Arrow algorithm according to
Definition 1.2, we get

costArrow =

|R|�
i=1

cA(rπA(i), rπA(i−1))

= 2 ·
|R|�
i=1

dT(rπA(i), rπA(i−1)).

latency=

ti
m

e

dd

msg msg

ti + d − tj < 0

latency=0

ti + d − tj > 0

ri = (vi, ti) ri = (vi, ti)

rj = (vj, tj)

vi vj vi vj

rj = (vj, tj)

Figure 1: The latency cost of an optimal algorithm for

ordering rj after ri. Left: vj is informed about ri before

time tj , therefore the latency cost is zero. Right: vj has

to wait ti + d − tj time units where d = dT(vi, vj).

We now look at the cost of an optimal offline ordering
algorithm Opt that has complete knowledge about all the
requests R. Clearly, an optimal offline algorithm might or-
der the requests differently: Let πO be the order of Opt .
Because also in an optimal algorithm Opt a message has
to be sent between the nodes of each subsequent pair of
requests, the communication cost is bounded from below

by
�|R|

i=1 dT(rπO(i), rπO(i−1)). For latency, we have to take
into account the additional knowledge of Opt : For a request
ri = (vi, ti) the algorithm already knows the succeeding re-
quest rj = (vj , tj), thus at time ti the algorithm can imme-
diately send a message from vi to vj . The message reaches
vj at time ti + dT(vi, vj) and therefore, the latency at vj is
only max{0, ti + dT(vi, vj) − tj}. We therefore define the
cost cO(ri, rj) (see Figure 1) of ordering rj after ri in the
πO order as

cO(ri, rj) :=

dT(vi, vj) + max{0, ti − tj + dT(vi, vj)} . (2)

The ordering cost (Definition 1.2) of an optimal algorithm
then becomes

costOpt = min
π

��
�

|R|�
i=1

cO(rπ(i), rπ(i−1))

��
� . (3)

Note that πO is an order which minimizes the sum of
Equation (3).

The competitive ratio ρ achieved by the Arrow algorithm
is the ratio between the cost of Arrow and the cost of an
optimal offline ordering strategy:

ρ :=
costArrow

costOpt
. (4)

2.2 The Arrow Protocol in the Dynamic
Setting

In this subsection, we have a closer look at the order πA

produced by the Arrow algorithm. We will define an addi-
tional cost metric cT between requests, for which πA corre-
sponds to a nearest neighbor TSP on the set of requests R.
Using amortized analysis we will then show that this new
metric cT is comparable to the Arrow cost metric cA.

Definition 2.1. Let ri, rj be two requests such that Ar-
row orders ri before rj, i.e. πA(ri) ≤ πA(rj). Then the cost
metric cT(ri, rj) is defined as

cT(ri, rj) := tj − ti + dT(vi, vj).

If πA(ri) > πA(rj) then cT(ri, rj) := cT(rj , ri).

Lemma 2.2. The order of Arrow πA is defined by a near-
est neighbor TSP path on the metric cT, starting with the
dummy token/request r0 = (root, 0) that is initially stored
at the root. Further, cT(ri, rj) ≥ 0 for all pairs of requests
ri and rj.

Proof. Remember that the spanning tree is initialized
with a dummy token r0 = (root, 0) stored at the root. Let
S be the set of requests which minimize cT(r0, s), for s ∈ S.
When initiated, the find messages of the requests of S start
moving towards the root (at each time, all already initiated
requests in S have the same distance from the root). If two
or more find requests of S meet at a node, one continues
towards the root, and the others are deflected (and dropped
from the set S). Thus at least one find request of S arrives
at the root. (If more than one find arrives at the root, all
but one are deflected.) By definition this is request rπA(1);
it arrives at the root at time tπA(1) + dT(vπA(1), root) =
cT(rπA(1), r0).

Because tπA(1) ≥ 0 and dT(vπA(1), root) ≥ 0 hold, we have
cT(r0, rπA(1)) ≥ 0.

Since request rπA(1) minimized cT(r0, rπA(1)) for all re-
maining requests r′ ∈ R − {r0, rπA(1)} we have

cT(r0, r
′) ≥ cT(r0, rπA(1)). (5)

We need the following helper lemma:

Lemma 2.3. Consider a starting configuration where the
root is node vπA(1), and where there was no request rπA(1);
call this configuration F1 and the original configuration F0.
Then no request but rπA(1) will be able to distinguish between
configurations F0 and F1 during the execution.

Proof. Configurations F0 and F1 are equivalent, except
that all pointers on the path P between the original root
and vπA(1) are pointing towards the root in F0 and towards
vπA(1) in F1. Since the request rπA(1) arrived first at every
node on the path P in configuration F0, it has turned all
the pointers towards vπA(1) before another request can see
the difference between configurations F0 and F1.

For the request rπA(2) we can therefore argue as if we were
in configuration F1, and apply the same techniques as we did
for request rπA(1).

To prove cT(rπA(1), rπA(2)) ≥ 0 we use inequality (5). (For
the sake of generality of the argument we write rπA(0) instead
of r0, vπA(0) instead of root, and tπA(0) instead of 0.)

0 ≤ cT(rπA(0), rπA(2)) − cT(rπA(0), rπA(1))

= tπA(2) − tπA(0) + dT(vπA(0), vπA(2))

− 	tπA(1) − tπA(0) + dT(vπA(0), vπA(1))

≤ tπA(2) − tπA(1) + dT(vπA(1), vπA(2))

= cT(rπA(1), rπA(2))

The last inequality is due to the triangle inequality dT(vi, vj)+
dT(vj , vk) ≥ dT(vi, vk). For all requests rπA(i) with i > 1 we
inductively do the same steps, and the lemma follows.

Lemma 2.4. Let ri = (vi, ti) ∈ R and rj = (vj , tj) ∈ R
be two requests. If tj − ti > dT(vi, vj), ri is ordered before
rj by Arrow.

Proof. Follows from the cT(ri, rj) ≥ 0 discussion in Lemma
2.2.

Lemma 2.5. Let CT be the cost of ordering all requests
in Arrow’s order πA with respect to cT. We have

CT =
1

2
costArrow + tπA(|R|),

where tπA(|R|) is the request time of the last request in πA.

Proof. We show the lemma by induction over the re-
quests in πA. Let cA(i) and cT (i) denote the costs of costArrow

and CT up to the ith request. We show that we have

cT (i) =
1

2
cA(i) + tπA(i) (6)

for all i ∈ {0, |R|}. Request r0 is again the “virtual” request
at time 0, and therefore, Equation (6) is clear for i = 0. For
the induction step, we have a look at cT(rπA(i), rπA(i+1)) for
two succeeding requests. We have

cT(rπA(i), rπA(i+1)) =

tπA(i+1) − tπA(i) +
cA(rπA(i), rπA(i+1))

2

and therefore

cT (i + 1) := cT (i) + cT(rπA(i), rπA(i+1))

=
cA(i)

2
+ tπA(i) + cT(rπA(i), rπA(i+1))

=
cA(i) + cA(rπA(i), rπA(i+1))

2
+ tπA(i+1)

which completes the proof.

Assume we are given a set of requests where times of high
activity alternate with times where no request is placed. In-
tuitively, it seems apparent that the foremost ordering dif-
ferences between Arrow and an optimal offline algorithm are
in the high activity regions. Neglecting the order inside high
activity regions, Arrow and the offline algorithm essentially
produce the same ordering. In Lemma 2.6, we show that
if after some request r no request occurs for a long enough
time, we can shift all requests occurring after r back in time
without changing the cost of both Arrow and the offline al-
gorithm.

Lemma 2.6. Let ri = (vi, ti) and ri+1 = (vi+1, ti+1) be
two consecutive requests w.r.t. time of occurrence. Further
choose two requests ra ∈ R≤ti and rb ∈ R≥ti+1 minimizing
δ := tb − ta − dT(va, vb). If δ > 0, all requests r = (v, t) ∈
R≥ti+1 can be replaced by r′ := (v, t−δ) without changing the
cost of Arrow and without increasing the cost of an optimal
offline algorithm.

Proof. By Lemma 2.4, the nodes in R≤ti are ordered
before the nodes in R≥ti+1 by Arrow. By the definition of
δ this does not change. The transformation therefore does
not change the ordering of the the nodes in R≤ti . Let r be
the last request of R≤ti in Arrow’s order. All costs cT(r, r′)
between r and requests r′ ∈ R≥ti+1 are decreased by δ.
Therefore, request r′0 minimizing cT(r, r′) among all r′ ∈
R≥ti+1 remains the same. Clearly, the order of the nodes
in R≥ti+1 is not changed as well and thus, Arrow’s order
remains unchanged under the transformation of the lemma.
Because the cost cA of Arrow only depends on the order (see
(1)), cA remains unchanged under the transformation.

For the optimal offline algorithm, we show that the cost
cO(r, r′) between any two consecutive requests r = (v, t) and
r′ = (v′, t′) cannot be increased by the transformation. If
both r and r′ are either in R≤ti or in R≥ti+1 , cO(r, r′) does
not change. If r ∈ R≥ti+1 and r′ ∈ R≤ti , the edge goes back
in time and therefore cO(r, r′) is reduced by δ. If r ∈ R≤ti

and r′ ∈ R≥ti+1 , by the definition of δ, the latency remains
zero and therefore cO(r, r′) does not change.

In the following we assume that all requests are already
transformed according to Lemma 2.6.

Lemma 2.7. Let ri = (vi, ti) and ri+1 = (vi+1, ti+1) be
two consecutive requests w.r.t. time of occurrence. Without
loss of generality, we can assume that there are requests ra ∈
R≤ti and rb ∈ R≥ti+1 for which dT(ra, rb) ≥ tb − ta

Proof. If it is not the case, we apply the transformation
of Lemma 2.6 as many times as necessary.

Lemma 2.8. The cost cT(ri, rj) of the longest edge (ri, rj)
on Arrow’s path is cT(ri, rj) ≤ 3D where D is the diameter
of the spanning tree T .

Proof. For the sake of contradiction, assume there is
an edge (ri, rj) with cost cT(ri, rj) > 3D on Arrow’s tour.
By Lemma 2.7, we can assume that the temporal difference
between two successive requests (w.r.t. time of occurrence) is
at most D. Consequently, in each time window of length D,
there is at least one request. We set ε := (cT(ri, rj)−3D)/2.
There is a request rk with tk ∈ [ti + D + ε, ti + 2D + ε]. We
have

tk − ti = D + ε > dT(vi, vk)

and therefore by Lemma 2.4, Arrow orders ri before rk.
Consequently, if cT(ri, rk) < cT(ri, rj), rj cannot be the
successor of ri and thus (ri, rj) cannot be an edge of the
Arrow tour. We have

cT(ri, rk) = tk − ti + dT(vi, vk)

≤ 2D + ε + D = cT(ri, rj) − ε.

2.3 Optimal Offline Ordering and the
Manhattan Metric TSP

In this subsection, we show that (up to a constant factor)
the real cost (using cO) of an optimal offline algorithm is the
same as the Manhattan cost cM for the same ordering.

Definition 2.9. (Manhattan Metric) The Manhattan
metric cM(ri, rj) is defined as

cM(ri, rj) := dT(vi, vj) + |ti − tj |.

Lemma 2.10. Let π be an ordering and CO and CM be
the costs for ordering all requests in order π with respect to
cO and cM. The Manhattan cost is bounded by

CM ≤ 2CO + tπ(|R|).

Proof. We can lower bound the optimal cost of (2) by

cO(ri, rj) ≥ dT(ri, rj) + max{0, ti − tj}. (7)

Let DT =
�|R|

i=1 dT(vπ(i−1), vπ(i)). Summing up all the
max{0, ti − tj} using an amortized argument yields

2CO ≥ DT + 2

|R|�
i=1

max{0, tπ(i−1) − tπ(i)}

= DT +

|R|�
i=1

|tπ(i) − tπ(i−1)| − tπ(|R|)

≥ CM − tπ(|R|).

The first and the last inequality follow from the definitions
of CO and CM , respectively.

Lemma 2.11. Let π be an order CM be the Manhattan
cost for ordering all requests in order π. We have

CM ≥ 3

2
t|R|

where t|R| is the largest time of any request in R.

Proof. Let p be the path connecting the requests R in
order π. We define α(t) to be the number of edges of p
crossing time t, i.e.

α(t) :=
��{(rπ(i), rπ(i+1)) ∈ p | t ∈ [tπ(i), tπ(i+1)]}

��.
Further, α(t′, t′′) denotes the maximum α(t) for any t ∈
[t′, t′′]. We partition R into subsets R1, . . . , Rk where the
Ri are maximal subsets of consecutive (w.r.t. time of occur-
rence) requests for which α(t) ≥ 2.

Let Ri := {ri,1, . . . , ri,si} where the ri,j are ordered ac-
cording to ti,j , i.e. j′ > j → ti,j′ > ti,j . We have r1,1 := r0,
ri+1,1 is the request occurring next after ri,si , and ri,si is the
latest request in R>ti,1 for which α(ti,1, ti,si) ≥ 2. If there is
no request in R>ti,1 for which α(ti,1, ti,si) ≥ 2, ri,si := ri,1.

The Manhattan cost cM(ra, rb) consists of two separate
parts, the distance cost dT(va, vb) and the time cost |tb−ta|.
Let cMd and cMt denote the total distance and time costs
of cM, respectively, i.e. cM = cMd + cMt . To get a bound on

cMt , we define Δt
(1)
i and Δt

(2)
i as follows:

Δt
(2)
i := ti,si − ti,1 and Δt

(1)
i := ti+1,1 − ti,si .

By the definition of the Ri, we have

cMt ≥ 2
k�

i=1

Δt
(2)
i +

k−1�
i=1

Δt
(1)
i . (8)

We now show how to get a lower bound on cMd . First, we
observe that path p consists of the edges connecting requests

inside the Ri as well as one edge per pair Ri and Ri+1 con-
necting a request in Ri with a request in Ri+1. Thus, path
p first visits all nodes of R1, then all nodes of R2, and so on.

Let ra and rb be two requests for which tb−ta ≤ dT(va, vb).
Assume that ra ∈ Ri and rb ∈ Rj for j > i. Further
let cMd(i, j) be the total distance cost occurring between
requests of Ri ∪ · · · ∪ Rj . Because ra and rb have to be
connected by p we have

cMd(i, j) ≥ dT(va, vb) ≥
j−1�
�=i

Δt
(1)
� . (9)

By Lemma 2.7, we can assume for each i there are requests
ra ∈ R≤ti,si

and rb ∈ R≥ti+1,1 for which tb−ta ≤ dT(va, vb).

We can choose ra’s and rb’s such that all Δt
(1)
i s are covered

and such that each Ri is covered at most twice. We start by
choosing ra,1 and rb,1 such that ra,1 ∈ R1 and such that tb,1

is as large as possible. Assume that rb,i−1 is in Rj . ra,i and
rb,i are chosen such that ta,i ≤ tj,sj and such that tb,i is as
large as possible. We stop as soon as rb,i ∈ Rk. By Lemma
2.7, we make progress in each step and therefore, the last tb

will be in Rk.
Let Rj be the subset containing tb,i. By the way we choose

the ta,i and tb,i, it is guaranteed ra,i+2 is in a subset Rj′ for
which j′ > j. If this were not the case, ra,i+2 and rb,i+2

would have been chosen instead of ra,i+1 and rb,i+1. If we
sum up the estimates of Equation (9) for all pairs ra,i and
rb,i, each edge is at most counted twice and therefore

cMd ≥ 1

2

k−1�
i

Δt
(1)
i .

Combining this with Equation (8) concludes the proof.

Lemma 2.12. Let π be an order and CO and CM be the
costs for ordering all requests in order π with respect to cO

and cM. The Manhattan cost is bounded by

CM ≤ 6CO .

Proof. By the Lemmas 2.10 and 2.11, we have

3

2
t|R| ≤ 2C0 + t|R|

and therefore t|R| ≤ 4CO. (Note that t|R| ≥ tπ(|R|).) Apply-
ing this to Lemma 2.10 completes the proof.

2.4 The TSP Nearest Neighbor Heuristic
We have seen that the cost of the Arrow protocol is closely

related to the nearest neighbor heuristic for the TSP prob-
lem. In [12], it has been shown that a nearest neighbor tour
is only by a factor log N longer than an optimal tour on
a graph with N nodes. We cannot use this result for two
reasons. First, the number of requests |R| (the nodes of the
tour) is not bounded by any property of the tree T (e.g.
number of nodes n, diameter D). The number of requests
may grow to infinity even if there are no two requests which
are handled concurrently by Arrow. Second, and more im-
portant, the nearest neighbor tour of Arrow is with respect
to the cost cT for which the triangle inequality does not
hold. However, this is a necessary condition for the analysis
of [12]. Here, we give a stronger and more general approx-
imation ratio for the nearest neighbor heuristic, removing
both described problems.

Theorem 2.13. Let V be a set of N := |V | nodes and let
dn : V × V → � and do : V × V → � be distance functions
between nodes of V . For dn and do, the following conditions
hold:

do(u, v) = do(v, u), dn(u, v) = dn(v, u)

do(u, v) ≥ dn(u, v) ≥ 0, do(u, u) = 0

do(u, w) ≤ do(u, v) + do(v, w)

Let CN be the length of a nearest neighbor TSP tour with
respect to the distance function dn and let CO be the length
of an optimal TSP tour with respect to the distance function
do. Then

CN ≤ 3

2
�log2(DNN/dNN)� · CO

holds, where DNN and dNN are the lengths of the longest and
the shortest non-zero edge on the nearest neighbor tour with
respect to dn.

Proof. According to their lengths, we partition the edges
of non-zero length of the nearest neighbor (NN) tour in
log2(DNN/dNN) classes. Class Ci contains all edges (u, v)
of length 2i−1dNN ≤ dn(u, v) < 2idNN, i.e. the lengths of
all edges of a certain class differ by at most a factor 2. We
show that for each class the sum of the lengths of the edges
is at most 3/2 · CO. We therefore look at a single class C of
edges. Let d be the length of the shortest edge (w.r.t. dn)
of C. All other edges have at most length 2d.

Let VC be the set of nodes from which the NN tour tra-
verses the edges of C. We compare the total length of the
edges in C to the length (w.r.t. do) of an optimal TSP tour
t on the nodes of VC. Because of the triangle inequality the
length of such a tour is smaller than or equal to CO. Con-
sider an edge (u, v) of the tour t. W.l.o.g., assume that in
the NN order, u comes before v. Let u′ be the successor of
u on the NN tour. The edge (u, u′) is in C. During the NN
algorithm, at node u, v could have been chosen too. There-
fore, dn(u, u′) ≤ dn(u, v) ≤ do(u, v). Thus, for every edge e
on the optimal tour t, there is an edge e′ on the NN tour
whose length is smaller than or equal to the length of e. Be-
cause e and e′ have one end-point in common, the length of
tour t is at least twice the sum of the lengths of the �|C|/2�
smallest edges of C. Because the length of all edges in C is
at most 2d, the sum of the lengths of all edges in C is at
most 3 times the sum of the edges of the small half. This
completes the proof.

2.5 Complexity of Arrow
In this final subsection we put our individual parts to-

gether .

Theorem 2.14. Let costArrow be the total cost of the Ar-
row protocol and let costOpt be the total cost of an optimal
offline ordering algorithm. We have

ρ =
costArrow

costOpt
= O(log D) ,

where D is the diameter of the spanning tree T .

Proof. We show that

CT ≤
�

3

2
�log2(3D)� + 1

CM . (10)

The lemma then follows by the Lemmas 2.5 and 2.12.
Equation (10) can be derived from the TSP nearest neighbor
result of Theorem 2.13 as follows. cT and cM comply with
the conditions for dn(u, v) and do(u, v), respectively. By
Lemma 2.2, cT ≥ 0. Further, by the definition of cT, we
have

cT(ri, rj) = tj − ti + dT(vi, vj)

≤ |tj − ti| + dT(vi, vj) = cM(ri, rj).

Clearly, the triangle inequality holds for the Manhattan met-
ric cM. The only thing missing to apply Theorem 2.13 is a
bound on the ratio of the longest and the shortest edge on
Arrow’s NN path. By Lemma 2.8, the maximum cost of any
edge on Arrow’s path is 3D. The minimum non-zero cost
of an edge is 1 because time is an integer value (we have a
synchronous system). Lemma 2.13 is about TSP tours (i.e.
connecting request rπ(|R|) again with r0). Since the last edge
of a tour has at most the cost of the whole path, there is an
additional factor 2.

3. LOWER BOUND
In this section we prove that our analysis is almost tight

for any spanning tree.

Theorem 3.1. For any spanning tree T there is a set of
ordering requests R such that the cost of the Arrow proto-
col is a factor Ω(log D/ log log D) off the cost of an optimal
ordering, D being the diameter of the spanning tree T .

Proof. It is sufficient to concentrate on the nodes on the
path P that embody the diameter D of the spanning tree T .
Let v0, v1, . . . , vD be nodes of path P . We recursively con-
struct a set of ordering requests by the nodes of P ; nodes
outside P do not initiate any ordering requests. For simplic-
ity assume that the initial root is node v0 (if not, let node
v0 initiate an ordering request well before the other nodes);
for simplicity further assume that D is a power of two (if
not, drop the part of P outside the largest possible power of
two).

Let k be an even integer we specify later. We start the
recursion with an ordering request r by node vD at time
k. Request r is of “size” log D and “direction” (+1); we
write r = (vD, k, log D, +1) in short. In general a request
r = (vi, t, s, d) with t > 0 asks for s requests of the form

(vi−d·2j , t − 1, j,−d), for j = 0, . . . , s − 1.

In addition to these recursively defined requests there will
be requests at nodes v0 and vD at times all 0, 1, . . . ,
k − 1 (some of these requests are already covered by the
recursion). An example is given in Figure 2.

For this set of requests, from the definition of the recur-
sion and as shown in Figure 2, Arrow will order the requests
according to their time, i.e. a request with time ti will be
ordered earlier than a request with time tj if ti < tj . Re-
quests with the same time t are ordered “left to right” if t is
even, and “right to left” if t is odd. Then the cost of Arrow
is costArrow = 2kD.

The Minimum Spanning Tree (MST) of the requests with
the Manhattan Metric is given by a “comb”-shaped tree:
Connect all requests at time 0 by a “horizontal” chain, and
then connect all requests on the same node (but different
request times) by a “vertical” chain, for each node. The

Manhattan cost of the MST is D for the horizontal chain.
A vertical chain of node vi costs as much as the latest request
of node vi.

From the recursion we know that there is one request at
time k of size log D. Since the recursion only generates
requests of smaller size, we have log D requests at time k−1,
less than log2 D requests at time k−2, etc. The Manhattan
cost of the MST is therefore bounded from above by

CM (MST) ≤ D +
k�

t=0

(t · logk−t D)

< D +
logk+1 D

(log D − 1)2
.

Setting k = �log D/ log log D� we get CM (MST) = O(D)
for a sufficiently large D. Since an MST approximates an
optimal order πO within a factor of two, and using the fact
that costOpt is up to constants bounded from above by the
Manhattan cost (see (2) and Definition 2.9), we conclude
that costOpt = O(D). Then the competitive ratio is

ρ =
costArrow

costOpt
=

2kD

O(D)
= Ω(k).

4. CONCLUSIONS
In this paper we have shown that the Arrow protocol is

a distributed ordering algorithm with low overhead, at least
in a synchronous message passing model. Since Arrow is
an asynchronous protocol it is most natural to ask about
its asynchronous complexity. Unfortunately, our analysis
does not directly apply for the asynchronous setting. In
fact, in our model the trivial D-competitiveness of [1] is
already tight in the asynchronous setting. However, if we
adopt the model and count time complexity only for Ar-
row, whereas the optimal offline algorithm is charged time
and message complexity, the analysis can be done along the
same lines yielding a competitive ratio of O(log D) as in the
synchronous case.

ti
m

e

Figure 2: A problem instance with diameter D = 64 and k = 6. The path is depicted horizontally, the time advances

vertically. Each dot represents a request as computed by the recursion. The dots are connected by the Arrow order

πA, starting with the root “virtual” request (top-left). The connection between two successive requests illustrates how

the Arrow protocol operates: A request sends a message along the diagonal line until it finds the predecessor; the

latency and message complexity is represented by the length of the diagonal line, the (cost-free) time a token has to

wait for its successor by the length of the vertical line.

5. REFERENCES

[1] M. J. Demmer and M. Herlihy. The arrow distributed
directory protocol. In International Symposium on
Distributed Computing (DISC), pages 119–133, 1998.

[2] Y. Emek and D. Peleg. Approximating minimum
max-stretch spanning trees on unweighted graphs. In
Proceedings of 15th ACM-SIAM Sympos. Discrete
Algorithms (SODA), 2004.

[3] D. Ginat, D. Sleator, and R. Tarjan. A tight
amortized bound for path reversal. Information
Processing Letters, 31(1):3–5, 1989.

[4] M. Herlihy. The aleph toolkit: Support for scalable
distributed shared objects. In Workshop on
Communication, Architecture, and Applications for
Network-based Parallel Computing, Jan. 1999.

[5] M. Herlihy and S. Tirthapura. Self-stabilizing
distributed queueing. In Proceedings of 15th
International Symposium on Distributed Computing,
Oct. 2001.

[6] M. Herlihy, S. Tirthapura, and R. Wattenhofer.
Competitive Concurrent Distributed Queueing. In
Proc. of the 20th ACM Symposium on Principles of
Distributed Computing (PODC), pages 127–133, 2001.

[7] M. Herlihy, S. Tirthapura, and R. Wattenhofer.
Ordered multicast and distributed swap. Operating
Systems Review, 35(1):85–95, 2001. Also in the
Proceedings of the PODC Middleware Symposium,
Portland, Oregon, July 2000.

[8] M. Herlihy and M. P. Warres. A tale of two
directories: implementing distributed shared objects
in Java. Concurrency: Practice and Experience,
12(7):555–572, 2000.

[9] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Transactions on
Computer Systems, 7(4), 1989.

[10] D. Peleg and E. Reshef. A Variant of the Arrow
Distributed Directory Protocol With Low Average
Complexity. In Proc. of the 26th Int. Colloquium on
Automata Languages and Programming (ICALP),
pages 615–624, 1999.

[11] K. Raymond. A tree-based algorithm for distributed
mutual exclusion. ACM Transactions on Computer
Systems, 7(1), 1989.

[12] R. Rosenkrantz, R. Stearns, and P. Lewis. An
Analysis of Several Heuristics for the Traveling
Salesman Problem. SIAM Journal on Computing,
6(3):563–581, 1977.

