Computing the Best Policy That Survives a Vote

Andrei Constantinescu
Roger Wattenhofer

Distributed Computing Group

ETH Zürich
A Board of Directors
A Board of Directors
A Board of Directors

Issue 1: Increase salaries?
A Board of Directors

Issue 1: Increase salaries?

Issue 2: Start an advertising campaign?

Issue 3: Hire more researchers?

Assume

Binary Issues
A Board of Directors

Issue 1: Increase salaries?

Issue 2: Start an advertising campaign?

Issue 3: Hire more researchers?

Assume

Binary Issues
A Board of Directors

Issue 1: Increase salaries?

- [] Yes
- [x] No

Issue 2: Start an advertising campaign?

- [x] Yes

Issue 3: Hire more researchers?

- [] Yes

Assume Binary Issues
A Board of Directors

Issue 1: Increase salaries?

- []
- [x]
- [x]
- [x]
- [x]

Assume Independent Binary Issues
A Board of Directors

Issue 1: Increase salaries?

- Person 1: Yes
- Person 2: No
- Person 3: No
- Person 4: Yes

Assume Binary Issues
A Board of Directors

Issue 1: Increase salaries?

Assume

Binary Issues
A Board of Directors

Issue 1: Increase salaries?

- [] Yes
- [x] No
- [] No
- [] No
- [] Yes
- [] Yes
- [] Yes
- [] Yes

Assume Independent Binary Issues
A Board of Directors

Issue 1: Increase salaries?

- Person A: Yes
- Person B: No
- Person C: No
- Person D: No
- Person E: No
- Group: Yes
A Board of Directors

Issue 1: Increase salaries?
- **Checkmark**: Yes
- **X**: No

Issue 2: Start an advertising campaign?
- **Checkmark**: No
- **X**: No

Assume Binary Issues

Assume Checkmark: Yes
A Board of Directors

Issue 1: Increase salaries?

Issue 2: Start an advertising campaign?

Assume Independent Binary Issues
A Board of Directors

Issue 1: Increase salaries?
- [] Yes
- [] No

Issue 2: Start an advertising campaign?
- [] Yes
- [] No

Issue 3: Hire more researchers?
- [] Yes
- [] No

Assume Independent Binary Issues
A Board of Directors

Issue 1: Increase salaries?

- Assume
- Independent
- Binary

Issue 2: Start an advertising campaign?

- Assume
- Independent
- Binary

Issue 3: Hire more researchers?

- Assume
- Independent
- Binary
A Board of Directors

Issue 1: Increase salaries?
- [] Approve
- [x] Reject
- [x] Abstain

Issue 2: Start an advertising campaign?
- [] Approve
- [] Reject
- [x] Abstain

Issue 3: Hire more researchers?
- [x] Approve
- [x] Reject
- [x] Abstain

Assume Independent Binary Issues
A Board of Directors

Issue 1: Increase salaries?
Issue 2: Start an advertising campaign?
Issue 3: Hire more researchers?

Assume Independent Binary Issues

Issue-Wise-Majority (IWM)
A Board of Directors

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon 1]</td>
<td>![Green 1]</td>
<td>![Red 1]</td>
<td>![Red 1]</td>
<td>![Red 1]</td>
</tr>
<tr>
<td>![Icon 2]</td>
<td>![Red 1]</td>
<td>![Green 1]</td>
<td>![Red 1]</td>
<td>![Red 1]</td>
</tr>
<tr>
<td>![Icon 3]</td>
<td>![Red 1]</td>
<td>![Red 1]</td>
<td>![Green 1]</td>
<td>![Green 1]</td>
</tr>
<tr>
<td>![Icon 4]</td>
<td>![Green 1]</td>
<td>![Green 1]</td>
<td>![Green 1]</td>
<td>![Green 1]</td>
</tr>
<tr>
<td>![Icon 5]</td>
<td>![Green 1]</td>
<td>![Green 1]</td>
<td>![Green 1]</td>
<td>![Green 1]</td>
</tr>
</tbody>
</table>

Issue-Wise-Majority (IWM): ![Checkmark 1]

![Checkmark 2]

![Checkmark 3]

![Checkmark 4]
A Board of Directors

Issue-Wise-Majority (IWM)

3 issues agree
A Board of Directors

Issue-Wise-Majority (IWM)

1 issue agrees

3 issues agree

A Board of Directors

Issue-Wise-Majority (IWM)
A Board of Directors

How about?

1 issue agrees

3 issues agree

Issue-Wise-Majority (IWM)
A Board of Directors

How about?

NO!

3 issues agree

1 issue agrees

Issue-Wise-Majority (IWM)
A Board of Directors

How about?

Yes

Yes

Yes

NO!

NO!

NO!

1 issue agrees

3 issues agree

Issue-Wise-Majority (IWM)
A Board of Directors

How about?

Yes

Yes

NO!

NO!

Yes

Yes

NO!

NO!

1 issue agrees

3 issues agree

Issue-Wise-Majority (IWM)
A Board of Directors

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>![Avatar]</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>![Avatar]</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>![Avatar]</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>![Avatar]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>![Avatar]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

[Image of a smaller board with four members: two with green checks, one with a red x, and one missing.]
A Board of Directors

2 issues agree with IWM
A Board of Directors

2 issues agree

2 issues agree
with IWM
A Board of Directors

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>![Person]</td>
<td>⚫</td>
<td>✓</td>
</tr>
<tr>
<td>![Person]</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

2 issues agree with IWM
A Board of Directors

- 0 issues agree with IWM
- 2 issues agree
A Board of Directors

How about?

0 issues agree

2 issues agree

2 issues agree with IWM
A Board of Directors

How about?

- Yes
- NO!
- NO!
- NO!

2 issues agree with IWM
A Board of Directors

How about?

0 issues agree

2 issues agree

2 issues agree with IWM
The Problem, Formally

- N voters, T issues (topics, motions, laws, etc.)
 - Issues are binary and independent.
 - In this talk: N and T are odd.
- Voters' preferences are T-bit vectors.
- Proposals are T-bit vectors.
 - e.g., Issue-Wise-Majority (IWM) proposal.
- A voter with preference vector v supports a proposal p iff v agrees with p in $> T/2$ bits.

Problem: Find proposal agreeing with IWM in as many bits such that $> N/2$ voters support it.

[Fritsch and Wattenhofer, AAMAS'22]
The Problem, Formally

- N voters

- T issues (topics, motions, laws, etc.)
 - Issues are binary and independent.
 - In this talk: N and T are odd.

- Voters' preferences are T-bit vectors.
- Proposals are T-bit vectors.
 - e.g., Issue-Wise-Majority (IWM) proposal.

- A voter with preference vector v supports a proposal p iff v agrees with p in $> T/2$ bits.

- Problem: Find proposal agreeing with IWM in as many bits such that $> N/2$ voters support it.

[Fritsch and Wattenhofer, AAMAS'22]
The Problem, Formally

- **N** voters, **T** issues (topics, motions, laws, etc.)

- Issues are binary and independent.
- In this talk: **N** and **T** are odd.
- Voters' preferences are **T**-bit vectors.
- Proposals are **T**-bit vectors. e.g., Issue-Wise-Majority (IWM) proposal.
- A voter with preference vector \(v \) supports a proposal \(p \) iff \(v \) agrees with \(p \) in \(> \frac{T}{2} \) bits.

Problem: Find proposal agreeing with IWM in as many bits such that \(> \frac{N}{2} \) voters support it.

[Fritsch and Wattenhofer, AAMAS'22]
The Problem, Formally

- **N voters, T issues** (topics, motions, laws, etc.)
 - Issues are **binary and independent**.

- Voters' preferences are **T-bit vectors**.
- Proposals are **T-bit vectors**.
 - e.g., Issue-Wise-Majority (IWM) proposal.
- A voter with preference vector v supports a proposal p iff v agrees with p in $> \frac{T}{2}$ bits.

- Problem: Find proposal agreeing with IWM in as many bits such that $> \frac{N}{2}$ voters support it.

[Fritsch and Wattenhofer, AAMAS'22]
The Problem, Formally

◎ N voters, T issues (topics, motions, laws, etc.)
 ○ Issues are binary and independent.
 ○ *In this talk:* N and T are odd.

◎ Voters' preferences are T-bit vectors.

◎ Proposals are T-bit vectors.
 ○ e.g., Issue-Wise-Majority (IWM) proposal.

◎ A voter with preference vector v supports a proposal p iff v agrees with p in $> \frac{T}{2}$ bits.

◎ Problem: Find proposal agreeing with IWM in as many bits such that $> \frac{N}{2}$ voters support it.

[Fritsch and Wattenhofer, AAMAS'22]
The Problem, Formally

- **N voters**, **T issues** (topics, motions, laws, etc.)
 - Issues are **binary** and **independent**.
 - *In this talk*: **N** and **T** are **odd**.

- Voters’ preferences are **T-bit vectors**.
The Problem, Formally

- **N voters, T issues** (topics, motions, laws, etc.)
 - Issues are **binary** and **independent**.
 - *In this talk:* N and T are odd.

- Voters’ preferences are **T-bit** vectors.
- Proposals are **T-bit** vectors.

[Fritsch and Wattenhofer, AAMAS'22]
The Problem, Formally

◎ **N** voters, **T** issues (topics, motions, laws, etc.)
 ○ Issues are **binary** and **independent**.
 ○ *In this talk:* **N** and **T** are odd.

◎ Voters’ preferences are **T**-bit vectors.
◎ Proposals are **T**-bit vectors.
 ○ e.g., Issue-Wise-Majority (IWM) proposal

[Fritsch and Wattenhofer, AAMAS’22]
The Problem, Formally

- **N** voters, **T** issues (topics, motions, laws, etc.)
 - Issues are *binary* and *independent*.
 - *In this talk:* **N** and **T** are *odd*.

- Voters’ preferences are **T**-bit vectors.
- Proposals are **T**-bit vectors.
 - e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).
The Problem, Formally

- **N voters, T issues** (topics, motions, laws, etc.)
 - Issues are **binary** and **independent**.
 - *In this talk*: **N** and **T** are **odd**.

- Voters’ preferences are **T-bit** vectors.
- Proposals are **T-bit** vectors.
 - e.g., Issue-Wise-Majority (IWM) proposal (**wlog 11...1**).

- A voter with preference vector **v** **supports** a proposal **p** iff
The Problem, Formally

- **N** voters, **T** issues (topics, motions, laws, etc.)
 - Issues are binary and independent.
 - *In this talk:* **N** and **T** are odd.

- Voters’ preferences are **T**-bit vectors.
- Proposals are **T**-bit vectors.
 - e.g., Issue-Wise-Majority (IWM) proposal (*wlog* 11…1).

- A voter with preference vector **v** supports a proposal **p** iff
 v agrees with **p** in > **T/2** bits

[Fritsch and Wattenhofer, AAMAS’22]
The Problem, Formally

◎ **N** voters, **T** issues (topics, motions, laws, etc.)
 ○ Issues are **binary** and **independent**.
 ○ *In this talk*: **N** and **T** are **odd**.

◎ Voters’ preferences are **T**-bit vectors.
◎ Proposals are **T**-bit vectors.
 ○ e.g., Issue-Wise-Majority (IWM) proposal (wlog 11…1).

◎ A voter with preference vector **v** supports a proposal **p** iff
 v agrees with **p** in > **T/2** bits (else they oppose it).

[Fritsch and Wattenhofer, AAMAS’22]
The Problem, Formally

- N voters, T issues (topics, motions, laws, etc.)
 - Issues are binary and independent.
 - *In this talk*: N and T are odd.

- Voters’ preferences are T-bit vectors.
- Proposals are T-bit vectors.
 - e.g., Issue-Wise-Majority (IWM) proposal (wlog 11...1).

- A voter with preference vector \(v \) supports a proposal \(p \) iff \(v \) agrees with \(p \) in > \(T/2 \) bits (else they oppose it).

\{supports \iff prefers \(p \) to opposite of \(p \}\}
The Problem, Formally

○ N voters, T issues (topics, motions, laws, etc.)
 ○ Issues are binary and independent.
 ○ In this talk: N and T are odd.

○ Voters’ preferences are T-bit vectors.

○ Proposals are T-bit vectors.
 ○ e.g., Issue-Wise-Majority (IWM) proposal (wlog 11…1).

○ A voter with preference vector v supports a proposal p iff v agrees with p in $> T/2$ bits (else they oppose it).
 \{	ext{supports} \iff \text{prefers} p \text{ to opposite of } p\}\}

○ Problem: Find proposal agreeing with IWM in as many bits as possible such that $> N/2$ voters support it.
The Problem, Formally

◎ **N** voters, **T** issues (topics, motions, laws, etc.)
 ○ Issues are binary and independent.
 ○ *In this talk*: **N** and **T** are odd.

◎ Voters’ preferences are **T**-bit vectors.
◎ Proposals are **T**-bit vectors.
 ○ e.g., Issue-Wise-Majority (IWM) proposal (*wlog* 11…1).

◎ A voter with preference vector \(\mathbf{v} \) **supports** a proposal \(\mathbf{p} \) iff \(\mathbf{v} \) agrees with \(\mathbf{p} \) in \(> \frac{T}{2} \) bits (else they **oppose** it).

 \{ supports ⇔ prefers \(\mathbf{p} \) to opposite of \(\mathbf{p} \) \}

◎ **Problem**: Find proposal agreeing with IWM in as many bits as possible such that \(> \frac{N}{2} \) voters **support** it.

[Fritsch and Wattenhofer, AAMAS’22]
How Bad Can It Get?
<table>
<thead>
<tr>
<th>How Bad Can It Get?</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image of checkboxes with some checked and some not checked]</td>
</tr>
</tbody>
</table>
How Bad Can It Get?

\[\begin{array}{cccccc}
\textbf{v}_1 & \checkmark & \times & \times & \times & \times \\
\textbf{v}_2 & \times & \checkmark & \times & \times & \times \\
\textbf{v}_3 & \times & \times & \checkmark & \times & \times \\
\textbf{v}_4 & \times & \times & \times & \checkmark & \times \\
\textbf{v}_5 & \times & \times & \times & \times & \checkmark \\
\textbf{v}_6 & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\textbf{v}_7 & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\textbf{v}_8 & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\textbf{v}_9 & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\end{array} \]
How Bad Can It Get?

N = 9
T = 5
How Bad Can It Get?

N = 9
T = 5
How Bad Can It Get?

N = 9
T = 5

Prop. p

v_1
v_2
v_3
v_4
v_5
v_6
v_7
v_8
v_9
How Bad Can It Get?

N = 9
T = 5

Prop. p

\[\begin{array}{cccccc}
\text{v}_1 & \checkmark & \times & \times & \times & \times \\
\text{v}_2 & \times & \checkmark & \times & \times & \times \\
\text{v}_3 & \times & \times & \checkmark & \times & \times \\
\text{v}_4 & \times & \times & \times & \checkmark & \times \\
\text{v}_5 & \times & \times & \times & \times & \checkmark \\
\text{v}_6 & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\text{v}_7 & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\text{v}_8 & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\text{v}_9 & \checkmark & \checkmark & \checkmark & \checkmark & \checkmark \\
\end{array} \]
How Bad Can It Get?

\[N = 9 \]
\[T = 5 \]

<table>
<thead>
<tr>
<th>(v_1)</th>
<th>(v_2)</th>
<th>(v_3)</th>
<th>(v_4)</th>
<th>(v_5)</th>
<th>(v_6)</th>
<th>(v_7)</th>
<th>(v_8)</th>
<th>(v_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

\(\text{Prop. } p \) \[✓ \] \[✓ \] \[✓ \] \[✓ \] \[✓ \]
How Bad Can It Get?

N = 9
T = 5

Prop. p

Opp. p

Supp. p

v₁ ✅ ❌ ❌ ❌ ❌ ❌
v₂ ❌ ✅ ❌ ❌ ❌ ❌
v₃ ❌ ❌ ✅ ❌ ❌ ❌
v₄ ❌ ❌ ❌ ✅ ❌ ❌
v₅ ❌ ❌ ❌ ❌ ✅ ❌
v₆ ✅ ✅ ✅ ✅ ✅ ✅
v₇ ✅ ✅ ✅ ✅ ✅ ✅
v₈ ✅ ✅ ✅ ✅ ✅ ✅
v₉ ✅ ✅ ✅ ✅ ✅ ✅
<table>
<thead>
<tr>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
<th>V_6</th>
<th>V_7</th>
<th>V_8</th>
<th>V_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

How Bad Can It Get?

Opp. p

Supp. p

Prop. p

N = 9
T = 5
How Bad Can It Get?

\[N = 9 \]
\[T = 5 \]

V_1 \quad \checkmark \quad \times \quad \times \quad \times \quad \times \\
V_2 \quad \times \quad \checkmark \quad \times \quad \times \quad \times \\
V_3 \quad \times \quad \times \quad \checkmark \quad \times \quad \times \\
V_4 \quad \times \quad \times \quad \times \quad \checkmark \quad \times \\
V_5 \quad \times \quad \times \quad \times \quad \times \quad \checkmark \\
V_6 \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \\
V_7 \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \\
V_8 \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \\
V_9 \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \quad \checkmark \\

\text{Opp. } p \\
\text{Supp. } p \\

\text{Prop. } p
<table>
<thead>
<tr>
<th></th>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
<th>V_6</th>
<th>V_7</th>
<th>V_8</th>
<th>V_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prop.</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Opp.</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Supp.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

N = 9
T = 5

3 issues agree with IWM
What Was Known
What Was Known

say $T = 2k + 1$
<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>...</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>...</th>
<th>2k + 1</th>
</tr>
</thead>
</table>

What Was Known

say $T = 2k + 1$
What Was Known

<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>...</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>...</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Was Known

Say \(T = 2k + 1 \)

<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>...</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>...</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

(by previous construction)
What Was Known

say $T = 2k + 1$

<table>
<thead>
<tr>
<th>Agree with IWM in \geq issues</th>
<th>0</th>
<th>…</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>…</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>…</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>…</td>
<td>No</td>
</tr>
</tbody>
</table>

(consider proposal with $k + 1$ ones, its opposite has k ones, one has more support)

(by previous construction)
What Was Known

<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>\ldots</th>
<th>$k - 1$</th>
<th>k</th>
<th>$k + 1$</th>
<th>$k + 2$</th>
<th>$k + 3$</th>
<th>\ldots</th>
<th>$2k + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>\ldots</td>
<td>Yes</td>
<td>Yes</td>
<td>?</td>
<td>No</td>
<td>No</td>
<td>\ldots</td>
<td>No</td>
</tr>
</tbody>
</table>

say $T = 2k + 1$
What Was Known

Say $T = 2k + 1$

<table>
<thead>
<tr>
<th>Agree with IWM in \geq issues</th>
<th>0</th>
<th>...</th>
<th>$k - 1$</th>
<th>k</th>
<th>$k + 1$</th>
<th>$k + 2$</th>
<th>$k + 3$</th>
<th>...</th>
<th>$2k + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>...</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td>No</td>
</tr>
</tbody>
</table>

[Fritsch and Wattenhofer, AAMAS’22]
What Was Known

\[T = 2k + 1 \]

<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>…</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>…</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>…</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>…</td>
<td>No</td>
</tr>
</tbody>
</table>

[Fritsch and Wattenhofer, AAMAS’22]
- nonconstructive
What Was Known

Say \(T = 2k + 1 \)

<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>...</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>...</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>...</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td>No</td>
</tr>
</tbody>
</table>

[Fritsch and Wattenhofer, AAMAS’22]
- nonconstructive (and a bit magic)
What Was Known

Lemma A.1. For $l = 0, \ldots, t$,

$$
\sum_{k=\lfloor t/2 \rfloor}^{t} (2k - t) s_{k,l} = t \binom{t-1}{\lfloor t/2 \rfloor}.
$$

Proof. Let

$$
f(l) = \sum_{k=\lfloor t/2 \rfloor}^{t} (2k - t) s_{k,l}.
$$

Note that we use the convention that $\binom{k}{n} = 0$ for $k > n$ and $k < 0$. Hence, the upper summation bound in the formula for $s_{k,l}$ from Lemma 4.4 can be omitted. Inserting this formula yields

$$
f(l) = \sum_{k=\lfloor t/2 \rfloor}^{t} \sum_{x=\lfloor (k+l-\lfloor t/2 \rfloor)/2 \rfloor}^{\infty} \binom{l}{x} \binom{t-l}{k-x} (2k - t)
$$

$$
= \sum_{x=\lfloor (l+1)/2 \rfloor}^{\infty} \binom{l}{x} \sum_{k=\lfloor t/2 \rfloor}^{\infty} \binom{t-l}{k-x} (2k - t)
$$

$$
= \sum_{x=\lfloor (l+1)/2 \rfloor}^{\infty} \binom{l}{x} \sum_{y=\lfloor t/2 \rfloor-x}^{\infty} \binom{t-1-([t/2]-x)}{y} (2y + 2x - t).
$$

We swapped summations in the second step and substituted $y = k - x$ in the third step. Note that

$$
\binom{t-l}{y} (2y + 2x - t) + \binom{t-l}{t-l-y} (2(t-l-y) + 2x - t) = 2 \binom{t-l}{t/2} (2x - t).
$$

Using this we further conclude

$$
f(l) = \sum_{x=\lfloor (l+1)/2 \rfloor}^{\infty} \binom{l}{x} \sum_{y=\lfloor t/2 \rfloor-x}^{\infty} \binom{t-1-([t/2]-x)}{y} (2x - l).
$$

In the second step, we switched the summation again. Now let $x_0 = \max(\lfloor t/2 \rfloor - y, y + l - \lfloor t/2 \rfloor)$. Then

$$
\sum_{x=x_0}^{\infty} \binom{l}{x} (2x - l) = \sum_{x=x_0}^{\infty} x \binom{l}{x} - (l - x) \binom{l}{x}
$$

$$
= \sum_{x=x_0}^{\infty} x \binom{l-1}{x-1} - l \binom{l-1}{x} = l \binom{l-1}{x_0-1}.
$$

Furthermore, the definition of x_0 implies

$$
\binom{l-1}{\lfloor t/2 \rfloor - y} = \binom{l-1}{y + l - \lfloor t/2 \rfloor} = \binom{l-1}{x_0 - 1}.
$$

With the previous two properties, we establish

$$
f(l) = \sum_{y=\lfloor t/2 \rfloor-l}^{\lfloor t/2 \rfloor} \binom{t-l}{y} \binom{l-1}{\lfloor t/2 \rfloor - y}
$$

$$
= l \sum_{z=0}^{l-1} \binom{t-l}{l-1} \binom{l-1}{z} = l \binom{l-1}{\lfloor t/2 \rfloor}.
$$

Here we substituted $z = \lfloor t/2 \rfloor - y$, and the last step follows from the well-known combinatorial identity $\binom{n}{k} = \sum_{j=0}^{n} \binom{i}{j} \binom{n-i}{k-j}$. □
What Was Known

say $T = 2k + 1$

<table>
<thead>
<tr>
<th>Agree with IWM in \geq issues</th>
<th>0</th>
<th>...</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>...</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>...</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td>No</td>
</tr>
</tbody>
</table>

[Fritsch and Wattenhofer, AAMAS’22]
- nonconstructive
What Is New

say $T = 2k + 1$

<table>
<thead>
<tr>
<th>Agree with IWM in \geq issues</th>
<th>0</th>
<th>...</th>
<th>$k - 1$</th>
<th>k</th>
<th>$k + 1$</th>
<th>$k + 2$</th>
<th>$k + 3$</th>
<th>...</th>
<th>$2k + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>...</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td>No</td>
</tr>
</tbody>
</table>

This paper
- probabilistic \rightarrow derandomization
<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>...</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>...</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>...</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td>No</td>
</tr>
<tr>
<td>Compute (or report “none”)</td>
<td>Poly</td>
<td>...</td>
<td>Poly</td>
<td>Poly</td>
<td>Poly</td>
<td>...</td>
<td>...</td>
<td>Poly</td>
<td>Poly</td>
</tr>
</tbody>
</table>

say $T = 2k + 1$
What Is New

say $T = 2k + 1$

<table>
<thead>
<tr>
<th>Agree with IWM in \geq issues</th>
<th>0</th>
<th>…</th>
<th>$k - 1$</th>
<th>k</th>
<th>$k + 1$</th>
<th>$k + 2$</th>
<th>$k + 3$</th>
<th>…</th>
<th>$2k + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>…</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>…</td>
<td>No</td>
</tr>
<tr>
<td>Compute (or report "none")</td>
<td>Poly</td>
<td>…</td>
<td>Poly</td>
<td>Poly</td>
<td>Poly</td>
<td>NP-h</td>
<td></td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

This paper
What Is New

Say \(T = 2k + 1 \)

<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>…</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>…</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>…</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>…</td>
<td>No</td>
</tr>
<tr>
<td>Compute (or report “none”)</td>
<td>Poly</td>
<td>…</td>
<td>Poly</td>
<td>Poly</td>
<td>Poly</td>
<td>NP-h</td>
<td>Np-h</td>
<td>…</td>
<td></td>
</tr>
</tbody>
</table>

This paper
<table>
<thead>
<tr>
<th>Agree with IWM in ≥ issues</th>
<th>0</th>
<th>...</th>
<th>k - 1</th>
<th>k</th>
<th>k + 1</th>
<th>k + 2</th>
<th>k + 3</th>
<th>...</th>
<th>2k + 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Always possible?</td>
<td>Yes</td>
<td>...</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>...</td>
<td>No</td>
</tr>
<tr>
<td>Compute (or report “none”)</td>
<td>Poly</td>
<td>...</td>
<td>Poly</td>
<td>Poly</td>
<td>Poly</td>
<td>NP-h</td>
<td>Np-h</td>
<td>...</td>
<td>Poly</td>
</tr>
</tbody>
</table>

This paper | Trivial