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Abstract. This paper studies to which extent the social welfare of a
game can be influenced by an interested third party within economic rea-
son, i.e., by taking the implementation cost into account. Besides consid-
ering classic, benevolent mechanism designers, we also analyze malicious
mechanism designers. For instance, this paper shows that a malicious
mechanism designer can often corrupt games and worsen the players’
situation to a larger extent than the amount of money invested. Surpris-
ingly, no money is needed at all in some cases. We provide algorithms
for finding the so-called leverage in games and show that for optimistic
mechanism designers, computing the leverage or approximations thereof
is NP-hard.

1 Introduction

Consider the following extension of the well-known prisoners’ dilemma where
two bank robbers, both members of the Al Capone clan, are arrested by the
police. The policemen have insufficient evidence for convicting them of robbing
a bank, but they could charge them with a minor crime. Cleverly, the policemen
interrogate each suspect separately and offer both of them the same deal. If one
testifies to the fact that his accomplice has participated in the bank robbery,
they do not charge him for the minor crime. If one robber testifies and the
other remains silent, the former goes free and the latter receives a three-year
sentence for robbing the bank and a one-year sentence for committing the minor
crime. If both betray the other, each of them will get three years for the bank
robbery. If both remain silent, the police can convict them for the minor crime
only and they get one year each. There is another option, of course, namely to
confess to the bank robbery and thus supply the police with evidence to convict
both criminals for a four-year sentence (cf. G in Fig. 1). A short game-theoretic
analysis shows that a player’s best strategy is to testify. Thus, the prisoners will
betray each other and both get charged a three-year sentence. Now assume that
Mr. Capone gets a chance to take influence on his employees’ decisions. Before
they take their decision, Mr. Capone calls each of them and promises that if they
both remain silent, they will receive money compensating for one year in jail,1
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Al Capone Police

Fig. 1. Extended prisoners’ dilemma: G shows the prisoners’ initial payoffs, where
payoff values equal saved years. The first strategy is to remain silent (s), the second
to testify (t) and the third to confess (c). Nash equilibria are colored gray, and non-
dominated strategy profiles have a bold border. The left bimatrix V shows Mr. Capone’s
offered payments which modify G to the game G(V ). By offering payments V ′, the
police implements the strategy profile (c, c). As V1(c, c) = V2(c, c) = 0, payments V ′

implement (c, c) for free.

and furthermore, if one remains silent and the other betrays him, Mr. Capone
will pay the former money worth two years in prison (cf. V in Fig. 1). Thus,
Mr. Capone creates a new situation for the two criminals where remaining silent
is the most rational behavior. Mr. Capone has saved his clan an accumulated
two years in jail.

Let us consider a slightly different scenario where after the police officers
have made their offer to the prisoners, their commander-in-chief devises an even
more promising plan. He offers each criminal to drop two years of the four-year
sentence in case he confesses the bank robbery and his accomplice betrays him.
Moreover, if he confesses and the accomplice remains silent they would let him go
free and even reward his honesty with a share of the booty (worth going to prison
for one year). However, if both suspects confess the robbery, they will spend four
years in jail. In this new situation, it is most rational for a prisoner to confess.
Consequently, the commander-in-chief implements the best outcome from his
point of view without dropping any sentence and he increases the accumulated
years in prison by two.

From Mr. Capone’s point of view, implementing the outcome where both
prisoners keep quiet results in four saved years for the robbers. By subtracting the
implementation cost, the equivalent to two years in prison, from the saved years,
we see that this implementation yields a benefit of two years for the Capone
clan. We say that the leverage of the strategy profile where both prisoners play
s is two. For the police however, the leverage of the strategy profile where both
prisoners play c is two, since the implementation costs nothing and increases the
years in prison by two. Since implementing c reduces the players’ gain, we say
the strategy profile where both play c has a malicious leverage of two.

In the described scenario, Mr. Capone and the commander-in-chief solve the
optimization problem of finding the game’s strategy profile(s) which bear the
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largest (malicious) leverage and therewith the problem of implementing the cor-
responding outcome at optimal cost. This paper analyzes these problems’ com-
plexities and presents algorithms for finding the leverage of games for cautious
and optimistic mechanism designers. We show that while the leverage of a sin-
gle strategy profile can be computed efficiently for both cautious and optimistic
mechanism designers, finding an optimal implementation for a set of strategy
profiles is NP-hard by a reduction from the SETCOVER problem, and we pro-
vide a lower bound for the approximation attainable by any polynomial-time
algorithm. Moreover, we prove that an optimistic mechanism designer cannot
compute the leverage of a game in polynomial time unless P=NP and finding
approximations thereof is hard as well.

Related Work. Algorithmic game theory and mechanism design have become
popular tools for gaining insights into the sociological, economical and politi-
cal complexity of today’s distributed systems such as politics, global markets
or the Internet (we refer to [6,7] for an introduction). Typically, when a game-
theoretic analysis reveals that a system may suffer from selfish behavior, appro-
priate countermeasures have to be taken in order to enforce a desired behavior
(e.g. [4]).

As it is often infeasible for a mechanism designer to influence the rules ac-
cording to which the players act in a distributed system, she has to resort to
other measures. One way of manipulating the players’ decision-making is to offer
them money for certain outcomes. Monderer and Tennenholtz [5] showed how
creditablility can be used to outwit selfish agents and influence their decisions; in
some cases no money actually has to be paid at all to implement a certain behav-
ior (cf. also [8]). The authors consider a mechanism designer who cannot enforce
behaviors and cannot change the system, and who attempts to lead agents to
adopt desired behaviors in a given multi-agent setting. The only way the third
party can influence the outcome of the game is by promising non-negative mon-
etary transfers conditioned on the observed behavior of the agents. Eidenbenz
et al. [2] have continued the analysis of [5] and have provided deeper insights
into the possibilities and algorithmic complexities of mechanism design based on
creditability. They presented algorithms for computing a strategy profile set’s im-
plementation cost and extended the notion of k-implementation to round-based
games, risk-averse player games and average payoff games. Moreover, they show
that the complexity results given in [5] are not correct.

This paper extends [2,5] by introducing the concept of leverage, a measure for
the change of behavior a mechanism design can inflict, taking into account the
social gain and the implementation cost. Regarding the payments offered by the
mechanism designer as some form of insurance, it seems natural that outcomes
of a game can be improved at no costs. However, as a first contribution, in this
paper, we show that a malicious mechanism designer can in some cases even
reduce the social welfare at no costs. Second, we present algorithms to compute
both the regular as well as the malicious leverage, and provide evidence that
several optimization problems related to the leverage are NP-hard.
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2 Model

Game Theory. A strategic game can be described by a tuple G = (N, X, U).
N = {1, 2, . . . , n} is the set of players and each Player i ∈ N can choose a strategy
(action) from the set Xi. The product of all the individual players’ strategies is
denoted by X := X1×X2×. . .×Xn. In the following, a particular outcome x ∈ X
is called strategy profile and we refer to the set of all other players’ strategies of
a given Player i by X−i = X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn. An element of Xi is
denoted by xi, and similarly, x−i ∈ X−i; hence x−i is a vector consisting of the
strategy profiles available if Player i selects Strategy xi. U = (U1, U2, . . . , Un) is
an n-tuple of payoff functions, where Ui : X → R determines Player i’s payoff
arising from the game’s outcome. We will refer to the sum of the individual
player’s payoffs of a given strategy profile x ∈ X as the strategy profile’s gain
U(x) :=

∑n
i=1 Ui(x).

Let xi, x
′
i ∈ Xi be two strategies available to Player i. We say that xi dom-

inates x′
i iff Ui(xi, x−i) ≥ Ui(x′

i, x−i) for every x−i ∈ X−i and there exists at
least one x−i for which a strict inequality holds. xi is the dominant strategy
for Player i if it dominates every other strategy x′

i ∈ Xi\{xi}. xi is a non-
dominated strategy if no other strategy dominates it. By X∗ = X∗

1 × . . . × X∗
n

we will denote the set of non-dominated strategy profiles, where X∗
i is the set of

non-dominated strategies available to the individual Player i. A strategy profile
x ∈ X is a Nash equilibrium if no unilateral deviation in strategy by any single
player is profitable, that is ∀i ∈ N, Ui(xi, x−i) ≥ Ui(x′

i, x−i).

k-Implementation. We assume that players are rational and always choose
a non-dominated strategy. Moreover, they do not cooperate. We examine the
impact of payments to players offered by a mechanism designer (an interested
third party) who seeks to influence the outcome of a game. These payments
are described by a tuple of non-negative payoff functions V = (V1, V2, . . . , Vn),
where Vi : X → R

+, i.e. the payments depend on the strategy Player i se-
lects as well as on the choices of all other players. We assume that the players
trust the mechanism designer to finally pay the promised amount of money,
i.e., consider her trustworthy. The original game G = (N, X, U) is modified to
G(V ) := (N, X, [U +V ]) by these payments, where [U + V ]i(x) = Ui(x) + Vi(x),
that is, each Player i obtains the payoff of Vi in addition to the payoffs of Ui.
The players’ choice of strategies changes accordingly: Each player now selects a
non-dominated strategy in G(V ). Henceforth, the set of non-dominated strategy
profiles of G(V ) is denoted by X∗(V ). For a strategy profile x, the sum of the ad-
ditional payments to all players is denoted by the payment V (x) :=

∑n
i=1 Vi(x).

A strategy profile set O ⊆ X of G is a subset of all strategy profiles X . Simi-
larly to Xi and X−i, we define Oi := {xi|∃x−i ∈ X−i s.t. (xi, x−i) ∈ O} and
O−i := {x−i|∃xi ∈ Xi s.t. (xi, x−i) ∈ O}. The mechanism designer’s main ob-
jective is to force the players to choose a certain strategy profile or a set of
strategy profiles, without spending too much. This paper studies two kinds of
implementation costs: worst-case implementation costs and uniform implemen-
tation costs.
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First, we will consider a pessimistic scenario where the mechanism designer
calculates with the maximum possible payments for a desired outcome (worst-
case implementation costs). For a desired strategy profile set O, we say that
payments V implement O if ∅ ⊂ X∗(V ) ⊆ O. V is called (worst-case) k-
implementation if, in addition V (x) ≤ k, ∀x ∈ X∗(V ). That is, the players’
non-dominated strategies are within the desired strategy profile, and the pay-
ments do not exceed k for any possible outcome. Moreover, V is an exact k-
implementation of O if X∗(V ) = O and V (x) ≤ k ∀x ∈ X∗(V ). The cost
k(O) of implementing O is the lowest of all non-negative numbers q for which
there exists a q-implementation. If an implementation meets this lower bound,
it is optimal, i.e., V is an optimal implementation of O if V implements O
and maxx∈X∗(V ) V (x) = k(O). The cost k∗(O) of implementing O exactly is the
smallest non-negative number q for which there exists an exact q-implementation
of O. V is an optimal exact implementation of O if it implements O exactly and
requires cost k∗(O). The set of all implementations of O will be denoted by
V(O), and the set of all exact implementations of O by V∗(O). Finally, a strat-
egy profile set O = {z} of cardinality one – consisting of only one strategy profile
– is called a singleton. Clearly, for singletons it holds that non-exact and exact
k-implementations are equivalent. For simplicity’s sake we often write z instead
of {z} . Observe that only subsets of X which are in 2X1 × 2X2 × . . . × 2Xn , i.e.,
the Cartesian product of subsets of the players’ strategies, can be implemented
exactly. We call such a subset of X a convex strategy profile set.2 In conclusion,
for the worst-case implementation costs, we have the following definitions.

Definition 1 (Worst-Case Cost and Exact Worst-Case Cost). A
strategy profile set O has worst-case implementation cost k(O) :=
minV ∈V(O){maxz∈X∗(V ) V (z)}. A strategy profile set O has exact worst-case im-
plementation cost k∗(O) := minV ∈V∗(O){maxz∈X∗(V ) V (z)}.

The assumption that the cost of an implementation V is equal to the cost of
the strategy profile in X∗(V ) with the highest payments is pessimistic. This
paper therefore also looks at a less anxious mechanism designer who takes the
risk of high worst case costs if the expected costs are small. If players only
know their own utilities, assuming them to select one of their non-dominated
strategies uniformly at random, is a first simple model an optimistic mechanism
designer might apply. We define the uniform cost of an implementation V as
the average of all strategy profiles’ possible cost in X∗(V ). Thus we assume all
non-dominated strategy profiles x ∈ X∗(V ) to have the same probability.

Definition 2 (Uniform Cost and Exact Uniform Cost). A strategy profile
set O has uniform implementation cost kUNI(O) := minV ∈V(O){∅z∈X∗(V ) V (z)}
where ∅ is defined as ∅x∈X f(x) := 1/ |X | ·

∑
x∈X f(x). A strat-

egy profile set O has exact uniform implementation cost k∗
UNI(O) :=

minV ∈V∗(O){∅z∈X∗(V ) V (z)}.

2 These sets define a convex area in the n-dimensional hyper-cuboid, provided that
the strategies are depicted such that all oi are next to each other.
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(Malicious) Leverage. Mechanism designers can implement desired outcomes
in games at certain costs. This raises the question for which games it makes sense
to take influence at all. This paper examines two diametrically opposed kinds of
interested parties, the first one being benevolent towards the participants of the
game, and the other being malicious. While the former is interested in increasing
a game’s social gain, the latter seeks to minimize the players’ welfare. We define
a measure indicating whether the mechanism of implementation enables them to
modify a game in a favorable way such that their gain exceeds the manipulation’s
cost. We call these measures the leverage and malicious leverage, respectively.
Note that in the following, we will often write “(malicious) leverage” signifying
both leverage and malicious leverage.

As the concept of leverage depends on the implementation costs, we exam-
ine the worst-case and the uniform leverage. The worst-case leverage is a lower
bound on the mechanism designer’s influence: We assume that without the addi-
tional payments, the players choose a strategy profile in the original game where
the social gain is maximal, while in the modified game, they select a strategy
profile among the newly non-dominated profiles where the difference between
the social gain and the mechanism designer’s cost is minimized. The value of
the leverage is given by the net social gain achieved by this implementation mi-
nus the amount of money the mechanism designer had to spend. For malicious
mechanism designers we have to invert signs and swap max and min. Moreover,
the payments made by the mechanism designer have to be subtracted twice,
because for a malicious mechanism designer, the money received by the players
are considered a loss.

Definition 3 (Worst-Case (Malicious) Leverage). Let lev(O) :=
maxV ∈V(O){minz∈X∗(V ){U(z) − V (z)}} – maxx∗∈X∗ U(x∗) and mlev(O) :=
minx∗∈X∗ U(x∗) − minV ∈V(O){maxz∈X∗(V ){U(z) + 2V (z)}}. The leverage and
malicious leverage of a strategy profile set O are LEV (O) := max{0, lev(O)}
and MLEV (O) := max{0, mlev(O)}, respectively.

Observe that according to our definitions, leverage values are always non-
negative, as a mechanism designer has no incentive to manipulate a game if
she will lose money. If the desired set consists only of one strategy profile z,
i.e., O = {z}, we will speak of the singleton leverage. Similarly to the (worst-
case) leverage, we can define the uniform leverage for less anxious mechanism
designers.

Definition 4 (Uniform (Malicious) Leverage). Let levUNI(O) :=
maxV ∈V(O){∅z∈X∗(V )(U(z) − V (z))} − ∅x∗∈X∗ U(x∗) and mlevUNI(O) :=
∅x∗∈X∗ U(x∗) − minV ∈V(O){∅z∈X∗(V ){U(z) + 2V (z)}}. The uniform leverage
and malicious uniform leverage of a strategy profile set O are LEVUNI(O) :=
max{0, levUNI(O)} and MLEVUNI(O) := max{0, mlevUNI(O)}, respectively.

We define the exact (uniform) leverage LEV ∗(O) and the exact (uniform) mali-
cious leverage MLEV ∗(O) by simply changing V(O) to V∗(O) in the definition
of LEV(UNI)(O) and MLEV(UNI)(O). Thus, the exact (uniform) (malicious)
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leverage measures a set’s leverage if the interested party may only promise pay-
ments which implement O exactly.

3 Worst-Case Leverage

Singletons. Consider a mechanism designer seeking to implement a game’s best
singleton, i.e., the strategy profile with the highest singleton leverage. Dually, a
malicious designer attempts to find the profile of the largest malicious leverage.

Due to the fact that k(z) =
∑n

i=1 maxxi∈Xi{Ui(xi, z−i) − Ui(zi, z−i)} [5], the
leverage of a singleton can be computed efficiently.

Theorem 1. For a game where every player has at least two strategies, there
exists an algorithm which computes all singletons’ (malicious) leverage within a
strategy profile set O in O

(
n|X |2

)
time.

Strategy Profile Sets. Observe that implementing singletons may be opti-
mal for entire strategy sets as well, namely in games where the strategy profile
set yielding the largest (malicious) leverage is of cardinality 1. In some games,
however, dominating all other strategy profiles in the set is expensive and un-
necessary. Therefore, a mechanism designer is bound to consider sets consisting
of more than one strategy profile as well to find a subset of X yielding the max-
imal (malicious) leverage. Moreover, we can construct games where the differ-
ence between the best (malicious) set leverage and the best (malicious) singleton
leverage gets arbitrarily large. Fig. 2 depicts such a game.

A similar game can be used to show an arbitrarily large difference for the
malicious leverage: E.g., set the payoffs in the four upper right strategy profiles
of the game G in Fig. 2 to 100 instead of 10. V still implements O but switching
to O now decreases the social gain.

Although many factors influence a strategy profile set’s (malicious) lever-
age, there are some simple observations. First, if rational players already choose
strategies such that the strategy profile with the highest social gain is non-
dominated, a designer will not be able to ameliorate the outcome. Just as well, a

G =

20 0 11 9 10 10 10 10
11 9 20 0 10 10 10 10
19 10 10 19 9 11 0 20
10 19 19 10 0 20 9 11

V =

0 ∞ 0 ∞ 0 0 0 0
0 ∞ 0 ∞ 0 0 0 0
1 1 1 1 ∞ 0 ∞ 0
1 1 1 1 ∞ 0 ∞ 0

Fig. 2. Two-player game where set O bears the largest leverage. Implementation V
yields X∗(V ) = O. By offering payments V , a benevolent mechanism designer has cost
2, no matter which o ∈ O will be played. However, she improves the social welfare by
9. Thus O has a leverage of 7 whereas any singleton o ∈ O has a leverage of 0. By
reducing Player 2’s payoffs in the upper game half and Player 1’s payoffs in the right
game half, O ’s leverage gets arbitrarily large.
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malicious interested party will have nothing to corrupt if a game already yields
the lowest social gain possible.

Fact 2. (i) If a game G’s social optimum xopt := arg maxx∈X U(x) is in X∗ then
LEV (G) = 0. (ii) If a game G’s social minimum xworst := argminx∈X U(x) is
in X∗ then MLEV (G) = 0.

As an example, a class of games where both properties (i) and (ii) of Fact 2
always hold are equal sum games, where every strategy profile yields the same
gain, U(x) = c ∀x ∈ X, c : constant. (Zero sum games are a special case of equal
sum games where c = 0.)

Fact 3 (Equal Sum Games). The leverage and the malicious leverage of an
equal sum game G is zero: LEV (G) = 0, MLEV (G) = 0.

A well-known example of an zero sum game is Matching Pennies : Two players
toss a penny. If both coins show the same face, Player 2 gives his penny to Player
1; if the pennies do not match, Player 2 gets the pennies. This matching pennies
game features another interesting property: There is no dominated strategy.
Therefore an interested party could only implement strategy profile sets O which
are subsets of X∗. This raises the question whether a set O ⊆ X∗ can ever have
a (malicious) leverage. We find that the answer is no and moreover:

Theorem 4. The leverage of a strategy profile set O ⊆ X intersecting with the
set of non-dominated strategy profiles X∗ is (M)LEV = 0.

In general, the problem of computing a Algorithm 1 Exact Leverage
Input: Game G, convex set O with O−i ⊂ X−i∀ i
Output: LEV ∗(O)

1: Vi(x) := 0, Wi(x) := 0 ∀x ∈ X , i ∈ N ;
2: Vi(oi, ō−i) := ∞ ∀i ∈ N , oi ∈ Oi , ō−i ∈ X−i\O−i;
3: compute X∗

i ;
4: return max{0, ExactLev(V, n) − maxx∗∈X∗ U(x∗)};

ExactLev(V , i):
Input: payments V , current Player i
Output: lev∗(O) for G(V )

1: if |X∗
i (V )\Oi| > 0 then

2: s := any strategy in X∗
i (V )\Oi; levbest := 0;

3: for all oi ∈ Oi do
4: for all o−i ∈ O−i do
5: Wi(oi, o−i):=max{0, Ui(s, o−i)−

(Ui(oi, o−i) + Vi(oi, o−i))};
6: lev := ExactLev(V + W, i);
7: if lev > levbest then
8: levbest := lev;
9: for all o−i ∈ O−i do

10: Wi(oi, o−i) := 0;
11: return levbest;
12: if i > 1 return ExactLev(V , i − 1);
13: else return mino∈O{U(o) − V (o)};

strategy profile set’s (malicious) leverage
seems computationally hard. It is related
to the problem of computing a set’s im-
plementation cost, which is conjectured in
[2] to be NP-hard, and hence, we conjec-
ture the problem of finding LEV (O) or
MLEV (O) to be NP-hard in general as
well. In fact, we can show that comput-
ing the (malicious) leverage has at least
the same complexity as computing a set’s
cost.

Theorem 5. If the computation of a set’s
implementation cost is NP-hard, then the
computation of a strategy profile set’s (malicious) leverage is also NP-hard.

The task of finding a strategy profile set’s leverage is computationally hard.
Recall that we have to find an implementation V of O which maximizes the term
minz∈X∗(V ){U(z)−V (z)}. Thus, there is at least one implementation V ∈ V(O)
bearing O’s leverage. Since this V implements a subset of O exactly, it is also
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valid to compute O’s leverage by searching among all subsets O′ of O the one
with the largest exact leverage LEV ∗(O′).3

In the following we will provide an algorithm which computes a convex strat-
egy profile set’s exact leverage. It makes use of the fact that if X∗(V ) has to
be a subset of O, each strategy ōi /∈ Oi must be dominated by at least one
strategy oi in the resulting game G(V ) – a property which has been observed
and exploited before in [2] in order to compute a set’s exact cost. In order to
compute LEV (O), we can apply Algorithm 1 for all convex subsets and return
the largest value found.

Theorem 6. Algorithm 1 computes a strategy profile set’s exact leverage in time
O

(
|X |2 maxi∈N (|Oi|n|X

∗
i \Oi|−1) + n|O| maxi∈N (|Oi|n|X

∗
i \Oi|)

)
.

4 Uniform Implementation Cost

We will now turn our attention to the situation of less anxious mechanism de-
signers who anticipate uniform rather than worst-case implementation cost.

Note that for strategy profile sets O with k∗
UNI(O) = 0 any exact implemen-

tation V must have zero payments for any profile inside O, i.e. V (o) = 0 ∀o ∈ O.
Thus, for 0-implementable strategy profile sets, the concepts of worst case exact
cost and uniform exact cost coincide, i.e., k∗

UNI(O) = 0 iff k∗(O) = 0. Therefore,
Algorithm 2 from [2] decides if O has uniform exact cost of 0 for the uniform
case in polynomial as well.

Complexity. In the following we show that it is NP-hard to compute the
uniform implementation cost for both the non-exact and the exact case. We
devise game configurations which reduce SETCOVER to the problem of finding
an implementation of a strategy profile set with optimal uniform cost.

Theorem 7. In games with at least two (three) players, the problem of finding a
strategy profile set’s exact (non-exact) uniform implementation cost is NP-hard.

Proof. Exact Case: For a given universe U of l elements {e1, e2, . . . , el} and
m subsets S = {S1, S2, . . . , Sm}, with Si ⊂ U , SETCOVER is the problem
of finding the minimal collection of Si’s which contains each element ei ∈ U .
We assume without loss of generality that �(i �= j) : Si ⊂ Sj . Given a SET-
COVER problem instance SC = (U , S), we can efficiently construct a game
G = (N, X, U) where N = {1, 2}, X1 = {e1, e2, . . . , el, s1, s2, . . . , sm}, and
X2 = {e1, e2, . . . , el, d, r}. Each strategy ej corresponds to an element ej ∈ U ,
and each strategy sj corresponds to a set Sj . Player 1’s payoff function U1 is
defined as follows: U1(ei, ej) := m+1 if i = j and 0 otherwise, U1(si, ej) := m+1
if ej ∈ Si and 0 otherwise, U1(ei, d) := 1, U1(si, d) := 0, U1(x1, r) := 0
∀x1 ∈ X1. Player 2 has a payoff of 0 when playing r and 1 otherwise. In
3 Note that we do not provide algorithms for computing the malicious leverage but for

the benevolent leverage only. However, it is straightforward to adapt our algorithms
for the benevolent leverage.
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this game, strategies ej are not dominated for Player 1 because in column d,
U1(ej , d) > U1(si, d), ∀i ∈ {1, . . .m}. The set O we would like to implement is
{(x1, x2)|x1 = si ∧ (x2 = ei ∨ x2 = d)}. See Fig. 3 for an example.

Let Q = {Q1, Q2, . . . , Qk}, where each Qj cor-

Fig. 3. Payoff matrix for
Player 1 in a game which
reduces the SETCOVER
problem instance SC = (U , S)
where U = {e1, e2, e3, e4, e5},
S = {S1, S2, S3, S4}, S1 =
{e1, e4}, S2 = {e2, e4}, S3 =
{e2, e3, e5}, S4 = {e1, e2, e3}
to the problem of computing
k∗

UNI( O ). The optimal exact
implementation V of O
in this sample game adds
a payment V1 of 1 to the
strategy profiles (s1, d) and
(s3, d), implying that the
two sets S1 and S3 cover U
optimally.

responds to an Si. We now claim that Q is an
optimal solution for a SETCOVER problem, an
optimal exact implementation V of O in the cor-
responding game has payments V1(si, d) := 1
if Qi ∈ Q and 0 otherwise, and all payments
V1(si, ej) equal 0.

Note that by setting V1(si, d) to 1, strategy si

dominates all strategies ei which correspond to an
element in Si. Thus, our payment matrix makes
all strategies ei of Player 1 dominated since any
strategy ei representing element ei is dominated
by the strategies sj corresponding to Sj which
cover ei in the minimal covering set.4 If there are
any strategies si dominated by other strategies
sj , we can make them non-dominated by adjust-
ing the payments V1(si, r) for column r. Hence,
any solution of SC corresponds to a valid exact
implementation of O.

It remains to show that such an implemen-
tation is indeed optimal and there are no other
optimal implementations not corresponding to
a minimal covering set. Note that by setting
V1(si, d) := 1 and V1(si, r) > 0 for all si, all
strategies ej are guaranteed to be dominated
and V implements O exactly with uniform cost
∅o∈O V (o) = m/ |O|. If an implementation had
a positive payment for any strategy profile of
the form (si, ej), it would cost at least m + 1 to have an effect. However, a
positive payment greater than m yields larger costs. Thus, an optimal V has
positive payments inside set O only in column d. By setting V1(si, d) to 1, si

dominates the strategies ej which correspond to the elements in Si, due to our
construction. An optimal implementation has a minimal number of 1s in column
d. This can be achieved by selecting those rows si (V1(si, d) := 1), which form
a minimal covering set and as such all strategies ei of Player 1 are dominated
at minimal cost. Our reduction can be generalized for n > 2 by simply
adding players with only one strategy and zero payoffs in all strategy profiles.
We only prove the exact case here. For the non-exact case, we construct a similar

4 If |Sj | = 1, sj gives only equal payoffs in G(V ) to those of ei in the range of O2.
However, sj can be made dominating ei by increasing sj ’s payoff V1(sj , r) in the
extra column r.
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game with three players, forcing the mechanism designer to exactly implement
O. We refer to the technical report for details. �

Due to the nature of the reduction the inapproximability results of SETCOVER
[1,3] carry over to our problem.

Theorem 8. No polynomial-time algorithm can achieve an approximation ratio
better than Ω (n maxi{log |X∗

i \ Oi|}) for both the exact and non-exact implemen-
tation costs within any function of the input length unless P=NP.

5 Uniform Leverage

A mechanism designer calculating her average case cost is more optimistic than
an anxious designer. Thus, the observation stating that the uniform (malicious)
leverage is always at least as large as the worst-case (malicious) leverage does
not surprise.

Theorem 9. A set’s uniform (malicious) leverage is always larger or equal the
set’s (malicious) leverage.

Another difference concerns the sets O intersecting with X∗, i.e., O ∩ X∗ �= ∅:
Unlike the worst-case leverage (Theorem 4), the uniform leverage can exceed
zero in these cases, as can be verified by calculating O’s leverage in Fig. 3.

Complexity. We conclude our extended abstract with the following theorem
on the hardness of computing or approximating the uniform leverage and a proof
sketch. We show how the uniform implementation cost can be computed in poly-
nomial time given the corresponding leverage. Thus the complexity of computing
the leverage follows from the NP-hardness of finding the optimal implementa-
tion cost. The lower bounds are derived by modifying the games constructed
from the SETCOVER problem in Theorem 7, and by using a lower bound for
the approximation quality of the SETCOVER problem. If no polynomial time
algorithm can approximate the size of a set cover within a certain factor, we
get an arbitrarily small approximated leverage LEV approx

UNI ≤ ε while the actual
leverage is large. Hence the approximation ratio converges to infinity and, unless
P=NP, there exists no polynomial time algorithm approximating the leverage
of a game within any function of the input length.

Theorem 10. For games with at least two (three) players, the problem of com-
puting a strategy profile set’s exact (non-exact) uniform (malicious) leverage is
NP-hard. Furthermore, the (exact) uniform leverage of O cannot be approxi-
mated in polynomial time within any function of the input length unless P=NP.

Proof (Sketch). NP-Hardness: For benevolent mechanism designer the
claim follows in the exact case from the observation that if LEV ∗

UNI(O)
is found, we can immediately compute k∗

UNI(O) which is NP-hard (The-
orem 7). Due to the fact that any z ∈ O is also in X∗(V ) for any V ∈
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V∗(O), levUNI(O) = maxV ∈V∗(O){∅z∈X∗(V ){U(z) − V (z)}} − ∅z∈X∗ U(x∗)
= maxV ∈V∗(O){∅z∈X∗(V ) U(z) − ∅z∈X∗(V ) V (z)} − ∅x∗∈X∗ U(x∗) =
∅z∈X∗(V ) U(z) − minV ∈V∗(O){∅z∈X∗(V ) V (z)} − ∅x∗∈X∗ U(x∗) =
∅z∈X∗(V ) U(z) − k∗

UNI(O) − ∅x∗∈X∗ U(x∗). Note that ∅z∈X∗(V ) U(z) and
∅x∗∈X∗ U(x∗) can be computed in polynomial time. Moreover, it can be
shown that it is possible to efficiently construct a problem instance (G′, O)
from any (G, O) with the same cost, such that for G′: lev(UNI) = LEV(UNI).
This approach can be applied for the malicious mechanism designers and the
non-exact case as well.

Lower Bound Approximation: The game constructed from the SET-
COVER problem in Theorem 7 is modified for a benevolent mech-
anism designer in the exact case as follows: The utilities of Player
1 remain the same. The utilities of Player 2 are all zero except for
U2(e1, r) = (l + m)(

∑m
i=1 |Si|(m + 1)/(ml + m) − kLB − ε), where k is

the minimal number of sets needed to solve the corresponding SETCOVER
instance, ε > 0, and LB denotes a lower bound for the approximation
quality of the SETCOVER problem. Observe that X∗ consists of all
strategy profiles of column r. The target set we want to implement ex-
actly is given by O1 = {s1, ..., sm} and O2 = {e1, ..., el, d}. We compute
levopt

UNI = ∅o∈O U(o) − ∅x∈X∗ U(x) − k =
∑m

i=1 |Si|(m + 1)/(ml + m) −∑m
i=1 |Si|(m+1)/(ml +m)− (−kLB − ε)−k = k(LB −1)+ ε. As no polynomial

time algorithm can approximate k within a factor LB, LEV approx
UNI ≤ ε.

Since limε→0 LEV opt
UNI/LEV approx

UNI = ∞, the claim follows. A similar modi-
fication of the games in the proof of Theorem 7 and corresponding analysis
yield the same result for malicious mechanism designers and the non-exact
case. �
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