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Signaling is an important topic in the study of asymmetric information in economic settings. In particular,
the transparency of information available to a seller in an auction setting is a question of major interest.
We introduce the study of signaling when conducting a second price auction of a probabilistic good whose
actual instantiation is known to the auctioneer but not to the bidders. This framework can be used to model
impressions selling in display advertising. We establish several results within this framework. First, we study
the problem of computing a signaling scheme that maximizes the auctioneer’s revenue in a Bayesian setting.
We show that this problem is polynomially solvable for some interesting special cases, but computationally
hard in general. Second, we establish a tight bound on the minimum number of signals required to implement
an optimal signaling scheme. Finally, we show that at least half of the maximum social welfare can be
preserved within such a scheme.
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1. INTRODUCTION

A major concern in market design is to ensure that the markets are thick in the sense
that there is a sufficient volume of participants to produce the necessary level of com-
petition for the market to work well. Another concern is to design a practical language
that is sufficiently expressive to allow players to specify how much they value the goods
in the market. In the market for diamonds described by Levin and Milgrom [2010] for
example, the auctioneers could elicit bids for each individual stone. However, the enor-
mous effort required for the players to learn the value of each individual stone and to
submit individual bids would make the auction impractical. Moreover, bidding on each
stone separately can lead to the cherry-picking phenomenon, where very few customers
are interested in any one stone. This may lead to a situation where little revenue is
generated although the goods are valuable. In practice, stones are categorized into
deals and then auctioned. This method of treating different goods as identical is called
conflation.
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Milgrom [2010] and Levin and Milgrom [2010] provide a comprehensive analysis of
the phenomenon of conflation in various markets, with particular emphasis on online
advertisement. In these markets, auctioning each good individually is usually not an
option and conflation must be used. One particular online market that we will focus
on is the multibillion-dollar display advertisement market, where publishers (such as
MSN and Yahoo) attempt to maximize the revenue they collect from the advertisers
(say, Nike or Coca-Cola) for wisely targeting their ads at the right users. For example,
an ad referring to the surfing lifestyle on the sunny beaches of the Pacific Ocean may
be most valuable when targeted at a teenager from California; perhaps less so when
targeted at a 10 year old from Oregon; and even less when targeted at older folks in
areas that are far from the ocean. However, it would be impossible for advertisers to
decide how to bid on each individual impression. Instead, the impressions are catego-
rized based on attributes such as the time when the impression was made, cookies in
the user’s browser, certain demographic properties, geographic location, etc.; impres-
sions with similar attributes are then treated as instances of the same good.

In the context of display advertisement, the main question we deal with is: How
should those impressions be categorized in order to maximize the publisher’s revenue?
The high-level idea behind our model is to explore the natural asymmetry of infor-
mation between the publisher and the advertisers: while advertisers may know the
distribution of users visiting a particular site, the publisher usually has much more
accurate information about each individual impression.1 Upon receiving an impres-
sion, the publisher may choose to reveal to the advertisers certain attributes of this
impression (say, age and gender), while concealing other attributes (say, geographic
location). One may argue that concealing information from the advertisers might gen-
erate inefficiencies in the market, but the amount of information is typically so large
that it would be impossible for the advertisers to grasp everything anyhow. More im-
portantly, ensuring that revenue is generated is essential for the proper functioning of
markets. As described by Muthukrishnan [2009], in Ad Exchanges, which are systems
that bring together publishers and advertisers in a common marketplace, ensuring
good revenue is vital to keeping publishers in the market.

More generally, our goal in this paper is to cope with the undesired effects of compe-
tition deficiency on some items in an auction. To achieve this goal, we will exploit an
inherent information asymmetry between the auctioneer and the bidders that exists
in many market settings. We model2 the auctioneer/bidders asymmetry by considering
a framework termed a probabilistic single-item auction, in which n bidders participate
in an auction for a single item, which is chosen randomly from a set of m indivisible
goods according to a commonly known probability distribution p ∈ Δ(m). In contrast
to the bidders, who know only the probability distribution over the possible goods, the
auctioneer knows its actual realization, and can use this informational superiority to
increase the collected revenue.

Specifically, the auctioneer may choose to reveal partial information to the bidders
by means of a signaling scheme. A signaling scheme is a (possibly randomized) policy
that specifies some signal σ revealed to the bidders upon the choice (made by nature)
of each good j ∈ [m]. This policy is known to the bidders who can therefore induce the
revealed signal σ to update their perceived probability for the chosen good j from p(j)
to the “more accurate” p(j | σ).

One approach would be design an optimal auction from scratch for the problem of
maximizing revenue in a probabilistic single item auction setting. Since we are in a

1In reality, the additional information about the visitor to a site is often handled by third party demand side
platform (usually refered as DSP) . For simplicity, we abstract away this distinction.
2For the formal exposition of our model, see Section 2.

515



setting with very correlated values, this is likely to produce contorted and impracti-
cal auctions in the style of the auction of Cremer and McLean [Cremer and McLean
1985; ?], where full surplus extraction is possible. Instead, we focus on the standard
second price auction mechanism which is the de-facto standard for the sale of online
advertisement [Varian 2007; Edelman et al. 2007; Muthukrishnan 2009]. We believe
this will generate an auction that is more relevant to practical applications and that
can be easily integrated with the current implementations.

In this auction, after the bidders receive the signal, they submit their bids, and
the winner and the payment are determined according to the second-price auction;
namely, the winner is the bidder with the highest bid and the payment is the second-
highest bid. The goal of the auctioneer, which is the subject of this paper, is to design
a signaling scheme that maximizes her expected revenue.

A simple but crucial observation that facilitates our analysis is that, similar to the
classical setting of second-price auctions, here too, it is a dominant strategy for the
bidders to reveal their true expected valuations, where the expectation in this context
is taken with respect to the conditional probability p(j | σ). Therefore, the problem,
termed revenue maximization by signaling, reduces to finding a signaling scheme that
maximizes the expected second-highest bid (amounting to the expected revenue).

Two trivial signaling schemes are the one that reveals no information to the bidders
and the one that reveals the actual realization (all the information). Interestingly,
there are instances in which an appropriate signaling scheme provides a substantial
improvement over the two trivial ones. This can be demonstrated already through a
special case of a signaling scheme, termed clustering: The auctioneer a-priori partitions
the set of goods into disjoint clusters, and the signal is the cluster that contains the
chosen good. Consider the case in which there are m bidders and m types of goods,
an item is chosen uniformly at random, and each bidder i is only interested in good i
with a unit valuation. If no information is revealed then the expected revenue is 1/m
as the expected valuation of each bidder is 1/m. If the actual realization is revealed,
no revenue is collected since for every realization, the second-highest valuation is 0.
However, if the goods are partitioned into clusters of size 2, then the expected revenue
is 1/2, providing an improvement of a linear factor over the best trivial scheme.

Note that clustering schemes can be thought of as restricting the auctioneer to de-
terministic policies. The class of signaling schemes considered in this paper is more
general than clustering as we allow the auctioneer to toss coins when deciding on the
revealed signal.

Our Results

We begin our analysis assuming that the valuations of the bidders are known to the
auctioneer. In this somewhat less realistic case, the problem of revenue maximization
by signaling can be formalized as a concise linear program and, as such, solved to
optimality in polynomial time. A natural question is to what extent the increase in
revenue comes at the expense of social welfare. Notably, we prove that a signaling
scheme that obtains the optimal revenue can preserve at least half of the optimal
social welfare. In addition, it is shown that if the auctioneer is restricted to invoking
a signaling scheme by means of clustering, at least half of the optimal revenue can be
achieved, and this is tight.

Up until now we have assumed that the valuations of the bidders are known to the
auctioneer. However, in practice, the auctioneer rarely knows the bidders’ valuations.
This motivates the main technical contribution of this paper, namely, the study of a
Bayesian setting, in which the auctioneer holds probabilistic knowledge on the bidders’
valuations. We show that in this case the revenue maximization by signaling problem
becomes NP-hard. Still, in several cases of interest the problem remains tractable even
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in the Bayesian setting. Finally, we show that m signals are always sufficient to extract
the optimal revenue. It is an interesting open problem how to find good approximation
algorithms for the cases where the revenue maximization is NP-hard or to prove hard-
ness of approximation in those cases.

Notice that our model captures the Bayesian knowledge on behalf of the auctioneer
by assuming a probability distribution over finitely many valuation matrices. This rep-
resentation can capture complicated dependencies between the different valuations,
however it may exhibit plenty of redundancy when the valuations are assumed to be
independent. As such, it will be interesting to study our framework under more con-
cise representations – for example, where each entry of the matrix is sampled inde-
pendently from some distribution.

Related Work

There is a rich theory on markets with information asymmetry. In such markets,
agents on one side have more (or better) information than those on the other side.
The foundation of this theory dates back to the work of Akerlof, Spence, and Stiglitz
on the analysis of markets with asymmetric information, which earned them the 2001
Nobel Prize. In particular, Akerlof [1970] introduced the first formal analysis of mar-
kets in which sellers have more information than buyers regarding the quality of prod-
ucts. Spence [1973; Spence [2002] demonstrated that in certain settings, well-informed
agents can improve their outcome by signaling their private information to poorly in-
formed agents.

There is also a vast literature on the nature and effects of information revelation
in auctions. One of the most fundamental results in auction theory, namely the “Link-
age Principle” of Milgrom and Weber [1982], states that the expected revenue of an
auctioneer is enhanced when bidders are provided with more information. While this
work advocates transparency in various markets, later work observed that such trans-
parency may not be optimal in general (see, e.g., [Perry and Reny 1999; Weber 2003;
Thierry and Stefano 2003; Feinberg and Tennenholtz 2005]). More recent work [Mil-
grom 2010; Levin and Milgrom 2010] advocated the need for careful grouping of goods
as an important market design principle. Our work may be viewed as a study of in-
formation revelation through an optimization lens, since we seek to maximize the
expected revenue of an auctioneer by designing an effective information revelation
scheme.

Notice that Myerson’s classic result on revenue maximization [Myerson 1981] does
not apply to our model due to the asymmetry of information. Also, Myerson’s mech-
anism works only for single parameter settings. Our Bayesian models are multi-
parameter and are typically highly correlated. Revenue maximization results for cor-
related valuations (Papadimitriou and Pierrakos [2011] and Dobzinski et al. [2011])
also do not apply here due to asymmetric information. One could try to reveal all infor-
mation and then apply one of those mechanisms, but we would get a rather contorted
auction, with no guarantees against our auction. In fact, it is easy to construct ex-
amples where this generates arbitrary less revenue than our signaling scheme. Our
auction, on the other hand, is very practical and close to what is actually implemented
in online advertising markets.

Closer to our work is that of Ghosh et al. [2007], which studies revenue-maximizing
clustering schemes under a second-price auction in a setting with full information
and additive valuations. While this setting is different from our framework of signal-
ing in a probabilistic item auction, the mathematical formulation of the optimization
problem in their setting is a special case of our optimization problem, i.e., the case
where the valuation matrix is known to the auctioneer and the signaling scheme is
restricted to take the form of a clustering scheme. Our focus, though, is on the more
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realistic Bayesian case which is not not treated in [Ghosh et al. 2007]. In addition, our
framework relies on signaling that can be viewed as a “fractional” clustering, which
is more powerful. Indeed, while Ghosh et al. show that it is strongly NP-hard to com-
pute the optimal clustering scheme, an optimal signaling scheme can be computed in
polynomial time. Results of the similar flavour of the ones in [Ghosh et al. 2007] were
re-derived independently in a previous version of the current paper [Emek et al. 2011].

Independently of our work, Miltersen and Sheffet [2012] also analyze the problem of
obtaining optimal signaling schemes for revenue maximization using Linear Program-
ming, obtaining a result similar to our Theorem 3.2.

2. THE MODEL

In this section, we introduce the auctioning model on top of which our signaling
schemes are defined. Our focus in this paper is on a Bayesian setting, treating the un-
certainty of the auctioneer regarding the bidders’ valuations in a probabilistic manner.
For clarity of the exposition, we shall first consider the (less realistic) known-valuations
setting, where no such uncertainty is assumed.

Known-Valuations Probabilistic Single-Item Auctions

A known-valuations probabilistic single-item auction (KPSA) A is formally depicted by
the four-tuple

A = 〈n,m, p, V 〉 ,

where n ∈ Z>0 stands for the number of bidders, m ∈ Z>0 stands for the number of
distinct indivisible goods, p ∈ Δ(m) is a probability distribution over the goods, and
V ∈ R

n×m
≥0 is a non-negative real matrix capturing the valuation V (i, j) of bidder i for

good j. A single good j ∈ [m] is chosen (by nature) according to the distribution p which
is a common knowledge.

The auction is conducted according to the second-price rule: Each player i places her
bid bi and the chosen good j is sold to the bidder that placed the highest bid maxi∈[n]{bi}
(ties are broken arbitrarily) for the price of the second highest bid max2i∈[n]{bi}.

Signaling Schemes

Although the bidders know the distribution p, they do not know its actual realization
which is observed only by the auctioneer. In an attempt to increase her expected rev-
enue, the auctioneer may partially reveal the realization j ∈ [m] of p to the bidders.
This partial revelation is carried out by means of signaling: given that the chosen good
is j (recall that this choice is made by nature), the auctioneer sends the bidders some
signal σ; the bidders then hold a “more accurate picture” of the chosen good that corre-
sponds to the probability distribution p conditioned on σ. The policy that dictates the
signal that the auctioneer reveals to the bidders for each good j ∈ [m] is referred to
as a signaling scheme. It is important to point out that this policy is decided by the
auctioneer and reported to the bidders prior to nature’s random choice of item j.

More formally, a signaling scheme is given by a set of s ∈ Z>0 signals and a signaling
function S : [s]× [m] → [0, 1] that satisfies∑

σ∈[s]

S(σ, j) = 1 ∀j ∈ [m] . (1)

Given that nature chose good j ∈ [m], the auctioneer reveals signal σ ∈ [s] to the
bidders with probability S(σ, j). It will be convenient to use the notation S to address
the signaling scheme as well as its inherent signaling function.
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Once again, it is assumed that S (and s) are decided by the auctioneer and reported
to the bidders prior to the random choice of j; it is the actual signal σ (determined
according to S) that is revealed to the bidders after the choice of j. (This can be thought
of as a commitment of the auctioneer to stick to the signaling scheme that it previously
reported.) Upon receiving signal σ, the bidders, knowing p and S, update their belief
from P(chosen good is j) = p(j) to

P(chosen good is j | signal is σ) =
P(signal is σ | chosen good is j) · P(chosen good is j)

P(signal is σ)

=
S(σ, j) · p(j)∑

j′∈[m] S(σ, j′) · p(j′)
.

For succinctness, we will subsequently denote the events “chosen good is j” and
“signal is σ” by j and σ, respectively (our intention will be clear from the context).

Before we proceed, let us consider the restricted variant of a deterministic auctioneer
which is not allowed to use randomness when determining which signal to reveal.
This is equivalent to imposing an additional “integrality” requirement on the signaling
scheme: S(σ, j) ∈ {0, 1} for every σ ∈ [s] and j ∈ [m]. In other words, each signal σ ∈ [s]
now corresponds to a cluster Cσ ⊆ [m] so that the clusters are pairwise disjoint and⋃

σ∈[s] Cσ = [m]. Following this view, the general case (under which the auctioneer
may use randomness when determining the signal) can be interpreted as a fractional
clustering of the goods, where S(σ, j) is the fraction of good j in cluster Cσ.

It is well known that in the classical setting of second-price single-item auctions,
it is a dominant strategy for the bidders to be truthful, i.e., to bid their true valua-
tions [Vickrey 1961]. It turns out that this remains valid in probabilistic single-item
auctions under signaling as well, as the following observation demonstrates (proof de-
ferred to the appendix).

OBSERVATION 2.1. For every i ∈ [n] and σ ∈ [s], bidding bi(σ) = E[V (i, j) | σ] in
response to the signal σ is a dominant strategy for bidder i.

Optimization Problems

Consider some KPSA A = 〈n,m, p, V 〉 and signaling scheme S. In light of Observa-
tion 2.1, we subsequently assume that the bidders are indeed truthful, that is, bidder
i bids E[V (i, j) | σ] = ∑

j∈[m] P(j | σ) · V (i, j) in response to the signal σ. Therefore, the
(expected) revenue of the auctioneer, denoted RevA(S), is given by

RevA(S) =
∑
σ∈[s]

P(σ) ·max2i∈[n]

⎧⎨⎩ ∑
j∈[m]

P(j | σ) · V (i, j)

⎫⎬⎭ .

This raises the following optimization problem, referred to as the revenue maximiza-
tion by signaling (RMS) problem: given a KPSA A, construct the signaling scheme S
that maximizes RevA(S). One may also be interested in the (expected) social welfare
resulting from signaling scheme S, defined as

SWA(S) =
∑
σ∈[s]

P(σ) ·maxi∈[n]

⎧⎨⎩ ∑
j∈[m]

P(j | σ) · V (i, j)

⎫⎬⎭ .

When A is clear form the context, we may omit it from the subscript and write simply
Rev(S) and SW(S).
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Notice that the revenue of the auctioneer can be rewritten as

Rev(S) =
∑
σ∈[s]

P(σ) ·max2i∈[n]

⎧⎨⎩ ∑
j∈[m]

P(σ | j) · P(j)
P(σ)

· V (i, j)

⎫⎬⎭
=

∑
σ∈[s]

max2i∈[n]

⎧⎨⎩ ∑
j∈[m]

S(σ, j) · p(j) · V (i, j)

⎫⎬⎭
=

∑
σ∈[s]

max2i∈[n]

⎧⎨⎩ ∑
j∈[m]

S(σ, j) ·Ψ(i, j)

⎫⎬⎭ , (2)

where Ψ(i, j) = p(j) · V (i, j) is referred to as the normalized valuation of bidder i for
item j. Following the same line of arguments, we can also rewrite the social welfare as

SW(S) =
∑
σ∈[s]

maxi∈[n]

⎧⎨⎩ ∑
j∈[m]

S(σ, j) ·Ψ(i, j)

⎫⎬⎭ .

Under the deterministic auctioneer requirement, the RMS problem turns into the
following clustering problem: Given the normalized valuation matrix Ψ ∈ R

n×m
≥0 , devise

a pairwise disjoint partition of [m] into clusters {Cσ}σ∈[s] that maximizes

Rev
(
{Cσ}σ∈[s]

)
=

∑
σ∈[s]

max2i∈[n]

⎧⎨⎩∑
j∈Cσ

Ψ(i, j)

⎫⎬⎭ .

A Bayesian Setting

Recall that up until now, we assumed that the valuations of the bidders are known to
the auctioneer.3 However, in many practical scenarios the auctioneer does not know the
exact valuation of each bidder. To tackle this obstacle, we assume a Bayesian setting,
treating the state of knowledge that the auctioneer holds on the bidders’ valuations in
a probabilistic manner. This is captured in our model by considering k ∈ Z>0 distinct
valuation matrices V1, . . . , Vk ∈ R

n×m
≥0 and a probability distribution q ∈ Δ(k) associ-

ating each valuation matrix V� with the probability q(�) that it occurs. A probabilistic
single-item auction (PSA) is then depicted by the 6-tuple

A =
〈
n,m, k, p, q, {V�}�∈[k]

〉
,

where n ∈ Z>0, m ∈ Z>0, and p ∈ Δ(m) have the same role as in the known-
valuations case; and k ∈ Z>0, q ∈ Δ(k), and

{
V� ∈ R

n×m
≥0

}
�∈[k]

capture the aforemen-

tioned Bayesian angle.

3In some sense, we also assumed that the valuations of each bidder are known to the other bidders. However,
Observation 2.1 implies that this does not matter: a bidder is better off bidding its true (expected) valuation
regardless of the strategies of the other bidders.
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The expected revenue of the auctioneer from the signaling scheme S is now defined
to be

RevA(S) =
∑
�∈[k]

q(�)
∑
σ∈[s]

P(σ) ·max2i∈[n]

⎧⎨⎩∑
j

P(j | σ) · V�(i, j)

⎫⎬⎭
=

∑
�∈[k]

q(�)
∑
σ∈[s]

max2i∈[n]

⎧⎨⎩∑
j

S(σ, j) ·Ψ�(i, j)

⎫⎬⎭ ,

where Ψ�(i, j) = p(j) · V�(i, j) and the last equation follows from the same line of argu-
ments that was used to establish (2).

3. OPTIMAL SIGNALING SCHEMES — THE KNOWN-VALUATIONS CASE

Let us start our technical treatment of signaling schemes with (the simpler) known-
valuations setting, considering a KPSA A = 〈n,m, p, V 〉. We show that an optimal
signaling scheme for A can be obtained by solving an LP with O(n2m) variables and
O(n2 +m) constraints (excluding the non-negativity constraints).

Given an s-signal signaling scheme S for A and a signal σ ∈ [s], let hS
1 (σ)

and hS
2 (σ) denote the bidders i that realize maxi∈[n]

{∑
j∈[m] S(σ, j) ·Ψ(i, j)

}
and

max2i∈[n]

{∑
j∈[m] S(σ, j) ·Ψ(i, j)

}
, respectively. (When the signaling scheme S is clear

from the context, we may omit the superscripts.) Our concise LP relies on the following
observation.

OBSERVATION 3.1. There exists an optimal s-signal signaling scheme S for A such
that given σ, σ′ ∈ [s], if hS

1 (σ) = hS
1 (σ

′) and hS
2 (σ) = hS

2 (σ
′), then σ = σ′.

PROOF. Consider an optimal s-signal signaling scheme S that minimizes s. We ar-
gue that S must satisfy the assertion. To that end, assume by contradiction that there
are two distinct signals σ, σ′ ∈ [s] such that hS

1 (σ) = hS
1 (σ

′) = i1 and hS
2 (σ) = hS

2 (σ
′) =

i2. Let S∗ be the (s − 1)-signal signaling scheme obtained from S by replacing both
signals σ and σ′ by a new signal σ∗ defined by setting S(σ∗, j) = S(σ, j) + S(σ′, j) for
every j ∈ [m].

It is easy to verify that S∗ is valid in terms of (1). Moreover, since hS∗
1 (σ∗) = i1 and

hS∗
2 (σ∗) = i2, we can use (2) to conclude that the combined contribution of σ and σ′ to

Rev(S) is ∑
j∈[m]

(S(σ, j) + S(σ′, j)) ·Ψ(i2, j) =
∑
j∈[m]

S∗(σ∗, j) ·Ψ(i2, j)

which is precisely the contribution of σ∗ to Rev(S∗). Thus, Rev(S) = Rev(S∗), in
contradiction to the minimality of s.

A direct corollary of Observation 3.1 is that it suffices to consider signaling schemes
with s = n(n − 1) signals — each signal σ is uniquely identified by h1(σ) and h2(σ).
This turns out to be asymptotically tight as there are examples showing that Ω(n2) sig-
nals are required to implement an optimal signaling scheme (see Section 5). Based on
Observation 3.1 and on the formulation of revenue in (2), we can construct an optimal
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signaling scheme S by solving the following linear program, denoted LP1:

max
∑

i1,i2∈[n],i1 �=i2

R(σi1,i2) s.t.

R(σi1,i2) ≤
∑
j∈[m]

S(σi1 ,i2 , j) ·Ψ(i1, j) ∀i1, i2 ∈ [n], i1 	= i2

R(σi1,i2) =
∑
j∈[m]

S(σi1 ,i2 , j) ·Ψ(i2, j) ∀i1, i2 ∈ [n], i1 	= i2

∑
i1,i2∈[n],i1 �=i2

S(σi1 ,i2 , j) = 1 ∀j ∈ [m]

S(σi1 ,i2 , j) ≥ 0 ∀i1, i2 ∈ [n], i1 	= i2, ∀j ∈ [m] .

Since LP1 consists of O(n2m) variables and O(n2 + m) constraints (excluding the
non-negativity constraints), it can be solved in polynomial time.

THEOREM 3.2. Under the known-valuations setting, the RMS problem can be
solved in polynomial time.

Signaling versus Clustering

A clustering scheme is a special case of a signaling scheme, where the auctioneer can-
not use randomness (see Section 2). This restricted case has been studied in [Ghosh
et al. 2007], and is equivalent to imposing the requirement that S(σ, j) ∈ {0, 1} for
every σ and j in our framework.

THEOREM 3.3. The optimal revenue that can be extracted by a signaling scheme is
at most twice the optimal revenue that can be extracted by a clustering scheme, and this
is tight.

PROOF. The algorithm in [Ghosh et al. 2007] produces a clustering scheme that
extracts revenue that is greater or equal to half of

min
i′

∑
j

max
i�=i′

Ψ(i, j). (3)

Therefore, in order to establish the upper bound, it is sufficient to show that the rev-
enue extracted by any signaling scheme is bounded by Equation (3). For every i′ ∈ [n],
one can express the revenue of a signaling scheme S as

Rev(S) =
∑
σ

max2i
∑
j

S(σ, j)Ψ(i, j)

≤
∑
σ

max
i�=i′

∑
j

S(σ, j)Ψ(i, j)

≤
∑
σ

∑
j

S(σ, j)max
i�=i′

Ψ(i, j)

=
∑
j

max
i�=i′

Ψ(i, j) ,

where the last equality holds since
∑

σ S(σ, j) = 1. The upper bound follows.
To establish the lower bound, consider Example 5.3. While the optimal signaling

scheme extracts revenue n
(n+1) , it is not difficult to verify that the optimal clustering
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scheme partitions items 1, . . . ,m into pairs and leaves item 0 as a singleton. This clus-
tering scheme extracts revenue n

2(n+1) , which is half of the revenue extracted by the
optimal signaling scheme.

We remark that while we used Equation (3) as our benchmark, a better benchmark
would be to compare the clustering revenue to the solution of the LP in Theorem 3.2.
However, Example 5.3 demonstrates that 1

2 is tight with respect to this benchmark as
well.

Social Welfare versus Revenue

Increasing the revenue by signaling usually comes at the expense of degrading the
social welfare. We show, however, that it is easy to calculate the best revenue one can
get without degrading the social welfare by much. For every j ∈ [m], let μ(j) denote
the bidder i that maximizes the normalized valuation Ψ(i, j) (which means that i also
maximizes V (i, j)). Then, the optimal social welfare is given by W ∗ =

∑
j∈[m] Ψ(μ(j), j).

By augmenting LP1 with the constraint∑
i1,i2∈[n],i1 �=i2

∑
j∈[m]

S(σi1,i2 , j) ·Ψ(i1, j) ≥ βW ∗ ,

we guarantee the highest possible revenue conditioned on preserving at least a β-
fraction of the social welfare. Theorem 3.4 (whose proof is deferred to the appendix)
shows that taking β ≤ 1/2 does not affect LP1. Note that this theorem can be viewed
as a signaling analogue of Theorem 2 in [Ghosh et al. 2007] and its proof essentially
follows similar arguments.

THEOREM 3.4. There exists a revenue-optimal signaling scheme S with SW(S) ≥
W ∗/2.

4. OPTIMAL SIGNALING SCHEMES — THE BAYESIAN CASE

We now turn to discuss the more interesting Bayesian setting, considering a PSA A =〈
n,m, k, p, q, {V�}�∈[k]

〉
, where q is a probability distribution over the valuation matrices

V1, . . . , Vk ∈ R
n×m
≥0 . Our goal in this section is twofold: (1) proving that the RMS problem

under the Bayesian setting is NP-hard; and (2) presenting poly-time algorithms when
k or m are fixed. Note that the RMS problem remains NP-hard if n is fixed as long as
both k and m are free parameters.

Tractable Special Cases

Let us start with developing an efficient algorithm for the RMS problem assuming
that k = O(1) (without any restriction on n or m). Consider some s-signal signaling
scheme S for A. Given a Bayesian outcome � ∈ [k] and a signal σ ∈ [s], let hS

1 (�, σ)

and hS
2 (�, σ) denote the bidders i that realize maxi∈[n]

{∑
j∈[m] S(σ, j) ·Ψ�(i, j)

}
and

max2i∈[n]

{∑
j∈[m] S(σ, j) ·Ψ�(i, j)

}
, respectively. (When the signaling scheme S is clear

from the context, we may omit the superscripts.) Using this notation, we can now state
the following observation which is established by repeating the line of arguments that
led to Observation 3.1.

OBSERVATION 4.1. There exists an optimal s-signal signaling scheme S for A such
that given σ, σ′ ∈ [s], if hS

1 (�, σ) = hS
1 (�, σ

′) and hS
2 (�, σ) = hS

2 (�, σ
′) for every � ∈ [k], then

σ = σ′.
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Observation 4.1 implies that it is sufficient to consider O(n2k) signals σ, each
uniquely identified by h1(1, σ), h2(1, σ), . . . , h1(k, σ), h2(k, σ). In order to formulate it as
a concise linear program, we fix

Λ =
{〈

(i11, i
1
2), . . . , (i

k
1 , i

k
2)
〉 | i�h ∈ [n] ∀h ∈ {1, 2}, � ∈ [k] ∧ i�1 	= i�2 ∀� ∈ [k]

}
.

An optimal signaling scheme S can now be constructed by solving the following linear
program, denoted LP2:

max
∑
λ∈Λ

R(σλ) s.t.

R(σλ) ≤
∑
�∈[k]

q(�)
∑
j∈[m]

S(σλ, j) ·Ψ�(λ(�, 1), j) ∀λ ∈ Λ

R(σλ) =
∑
�∈[k]

q(�)
∑
j∈[m]

S(σλ, j) ·Ψ�(λ(�, 2), j) ∀λ ∈ Λ

∑
λ∈Λ

S(σλ, j) = 1 ∀j ∈ [m]

S(σλ, j) ≥ 0 ∀λ ∈ Λ, ∀j ∈ [m] .

Since LP2 consists of O(n2km) variables and O(n2k +m) constraints (excluding the
non-negativity constraints), it can be solved in polynomial time as long as k is constant.

THEOREM 4.2. If k is fixed, then the RMS problem can be solved in polynomial
time.

Next, we show how to compute an optimal s-signal signaling scheme S when m =
O(1) (without any restriction on k and n). The main ingredient for this will be the
following lemma (refer to [Stanley 2004] for a proof).

LEMMA 4.3. The number of distinct regions with non-empty interior4 defined by
t ≥ m hyperplanes in R

m is bounded from above by the Whitney number W (m, t) =∑m
i=0

(
t
i

)
= O(tm).

Given some λ ∈ Λ, we define Xλ to be the region that contains every vector x ∈
R

m
≥0 − {0} such that∑

j∈[m]

x(j) ·Ψ� (λ(�, 1), j) ≥
∑
j∈[m]

x(j) ·Ψ� (λ(�, 2), j) ≥
∑
j∈[m]

x(j) ·Ψ� (i, j) (4)

for every � ∈ [k] and i /∈ {λ(�, 1), λ(�, 2)}. The key observation here is that if two signals
σ, σ′ ∈ [s] are such that their corresponding vectors S(σ, ·),S(σ, ·) ∈ R

m
≥0 fall into the

same region Xλ, λ ∈ Λ, then we can merge them without decreasing the revenue.
Therefore, if we can come up with a poly-size subset Λ′ ⊆ Λ so that the regions in
{Xλ | λ ∈ Λ′} cover the entire R

m
≥0 − {0}, then we can construct an optimal signaling

scheme by picking one signal (the right one) for each region Xλ such that λ ∈ Λ′.
So, how can we come up with such a subset Λ′ ⊆ Λ? It turns out that although there

are many regions Xλ, only a polynomially small subset of them have a non-empty
interior. Indeed, the total number of linear constraints (4) involved in the definition of
the regions Xλ, λ ∈ Λ, is n2k (each linear constraint is of the form

∑
j∈[m] x(j)·Ψ�(i, j) ≥∑

j∈[m] x(j) · Ψ�(i
′, j) for some i, i′ ∈ [n] and � ∈ [k]). Since those linear constraints

4A region R ∈ R
m is said to have a non-empty interior if it contains an m-dimensional open set.
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s t
1 K1

2 K1

3 K1 K1

(a) � = 1

s u
1 K2

2 K2

3
(b) 2 ≤ � ≤ n− 1

t u
1 K2

2 K2

3
(c) n ≤ � ≤ 2n− 3

u v
1 1
2 1
3 1 1

(d) 2n− 2 ≤ � ≤ 2n+m− 3

Fig. 1. Representation of the mapping from MAX-CUT to Bayesian signaling. The tables represent Φ�(i, v)
for v ∈ V and i ∈ {1, 2, 3}. Values not specified in the tables are zero.

correspond to hyperplanes in R
m, Lemma 4.3 guarantees that there are O((n2k)m)

regions Xλ with a non-empty interior.
Once the subset Λ′ ⊆ Λ of regions with non-empty interior has been identified, pro-

viding the linear constraints of (4) for each such region, we can rewrite LP2, dedicating
a single signal σ to each region Xλ such that λ ∈ Λ′ (the vector S(σ, ·) takes the role of
the vector x in (4)). The resulting linear program consists of O(|Λ′| ·m) variables and
O(|Λ′| · kn) constraints, thus it can be solved in polynomial time.

It remains to show that we can efficiently enumerate the collection of regions with
non-empty interiors. This is carried out by recursion on k: When k = 1, we can simply
iterate through all the regions and check if their interior is non-empty. For the recur-
sive step, observe that if the region Xλ has an empty interior, then clearly, so does
the region Xλ◦(ik+1

1 ,ik+1
2 ) for every ik+1

1 , ik+1
2 ∈ [n]. Therefore, we can keep iterating only

through those regions that had a non-empty interior in the previous recursive level.
By Lemma 4.3, the whole process requires checking n(n− 1) ·O((n2(k − 1))m) regions.

THEOREM 4.4. If m is fixed, then the RMS problem can be solved in polynomial
time.

Hardness of the General Case

Finally, we establish the NP-completeness of (the decision version of) the RMS problem
in the Bayesian setting for the case n = 3. The inclusion of this problem in NP follows
from Theorem 5.2 that ensures that it suffices to consider signaling schemes with at
most m signals (which also implies that the number of bits required to represent the
solutions of the LP is polynomial).

The remainder of the section is dedicated to proving that the RMS problem in the
Bayesian setting is NP-hard. This is done by a reduction from MAX-CUT (problem
ND16 in [Garey and Johnson 1990]): Given a graph G = (V,E) and two vertices x, y ∈
V , the MAX-CUT problem asks for the maximum integer k such that there exists a
vertex subset U ⊆ V , |{x, y} ∩ U | = 1, with at least k edges crossing between U and
V − U . Given such an instance of MAX-CUT, assuming that |V | = n and |E| = m,
we construct a PSA A with 3 bidders, n items (associated with the vertices in V ),
and 2n + m − 3 Bayesian outcomes. It will be convenient to associate the Bayesian
outcomes as follows: each 2 ≤ � ≤ n − 1 is associated with some vertex u ∈ V − {x, y};
each n ≤ � ≤ 2n− 3 is also associated with some vertex u ∈ V − {x, y}; each 2n − 2 ≤
� ≤ 2n + m − 3 is associated with some edge (u, v) ∈ E. Figure 1 depicts the values
of Φ�(i, j) = q(�) · Ψ�(i, j) for every i ∈ {1, 2, 3}, j ∈ [n], and � ∈ [2n + m − 3], where
K1  K2  1 are integers that will be determined in the course of the proof. This
specifies everything we need for the reduction.

Suppose that the solution to the MAX-CUT instance is C∗ and that this is realized
by the vertex subset X ⊆ V , where x ∈ X and y ∈ Y = V −X . We design a signaling

scheme S with two signals σx, σy such that S(σx, u) =

{
1 if u ∈ X
0 if u ∈ Y

and S(σy , u) =
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{
0 if u ∈ X
1 if u ∈ Y

. It can be checked that the revenue generated by this signaling scheme

is

∑
�∈[2n+m−3]

∑
σ∈{σx,σy}

max2i∈{1,2,3}

{∑
u∈V

Φ�(i, u) · S(σ, u)
}

= 2K1 + (n− 2)K2 +m+C∗ .

The reduction is completed by showing that this is an upper bound on the revenue
generated by any signaling scheme.

Consider some s-signal signaling scheme S. The revenue of S is

Rev(S) =
∑

�∈[2n+m−3]

∑
σ∈[s]

max2i∈{1,2,3}

{∑
u∈V

Φ�(i, u) · S(σ, u)
}

= K1

∑
σ∈[s]

max{S(σ, x),S(σ, y)}

+K2

∑
u∈V −{x,y}

∑
σ∈[s]

[min{S(σ, x),S(σ, u)} +min{S(σ, y),S(σ, u)}]

+
∑

(u,v)∈E

∑
σ∈[s]

max{S(σ, u),S(σ, v)} . (5)

We argue that if S is optimal, then for each signal σ, either S(σ, x) = 0 or S(σ, y) = 0.
Indeed, if there is a signal σ with S(σ, x) and S(σ, y) simultaneously positive, then we
can split this signal into two signals σ′, σ′′ such that S(σ′, x) = S(σ, x) and S(σ′, u) = 0
for u 	= x; S(σ′′, x) = 0 and S(σ′′, u) = S(σ, u) for u 	= x. Taking K1 to be sufficiently
large ensures that the revenue increases following this transformation.

Now, consider a signal σ ∈ [s] with S(σ, x) > 0. If there exists some u 	= x such that
S(σ, u) > S(σ, x), then there must exists a signal σ′ ∈ [s] such that S(σ′, u) < S(σ′, x)
since

∑
σ∈[s] S(σ, x) =

∑
σ∈[s] S(σ, u) = 1. Therefore, we can increase the value of

S(σ′, u) and decrease the value of S(σ, u) by a small value δ, obtaining a valid sig-
naling scheme with larger revenue (this is due to the fact that K2 is large compared to
1). Similarly, we can claim that in an optimal signaling scheme, a signal σ ∈ [s] with
S(σ, y) > 0 has S(σ, u) ≤ S(σ, y) for all u ∈ V . The same argument also implies that for
each signal σ that has positive probability, either S(σ, x) > 0 or S(σ, y) > 0.

Consider a signal σ and let x = u0, u1, . . . , uk ∈ V be the items with positive
S(σ, ui). Assume without loss of generality that S(σ, u0) ≥ S(σ, u1) ≥ · · · ≥ S(σ, uk) >
S(σ, uk+1) = 0. Now, split signal σ in k + 1 signals σ0, σ1, . . . , σk such that S(σi, s) =
S(σi, u1) = · · · = S(σi, ui) = S(σ, ui) − S(σ, ui+1). By substituting the split signals into
(5), we conclude that the revenue is kept unchanged.

Therefore, PSA instances produced by our reduction always admit an optimal s-
signal signaling scheme S such that for every signal σ ∈ [s], there exist a vertex subset
Uσ ⊆ V and a real 0 < pσ ≤ 1 satisfying:
(1) |Uσ ∩ {x, y}| = 1;
(2) S(σ, u) = pσ for every u ∈ Uσ;
(3) S(σ, u) = 0 for every u /∈ Uσ;
(4)

∑
σ:v∈Uσ

pσ = 1 for every v ∈ V ; and
(5)

∑
σ∈[s] pσ =

∑
σ:x∈Uσ

pσ +
∑

σ:y∈Uσ
pσ = 2. This is employed in order to prove that

Rev(S) ≤ 2K1+(n− 2)K2+m+C∗. From (5), we see that Rev(S) = 2K1+(n− 2)K2+
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∑
(u,v)∈E

∑
σ∈[s] max{S(σ, u),S(σ, v)}, so it remains to show that∑

(u,v)∈E

∑
σ∈[s]

max{S(σ, u),S(σ, v)} ≤ m+ C∗ . (6)

To that end, note that every edge (u, v) ∈ E and signal σ ∈ [s] contribute pσ to the
the left-hand side in (6) if |{u, v} ∩ Uσ| ≥ 1; and 0 otherwise. Therefore, the left-hand
side in (6) is equal to

∑
(u,v)∈E

⎡⎣1 + (1/2)
∑

σ:|{u,v}∩Uσ|=1

pσ

⎤⎦ = m+
∑
σ∈[s]

pσ
2
|∂(Uσ)| ≤ m+ C∗ ,

where ∂(U) is the set of edges with exactly one endpoint in U , and the last inequality
follows since

∑
σ∈[s]

pσ

2 = 1, hence
∑

σ∈[s]
pσ

2 |∂(Uσ)| can be viewed as the average size
of cuts corresponding to the vertex subsets Uσ, σ ∈ [s]. This establishes the following
theorem.

THEOREM 4.5. The decision version of the RMS problem in the Bayesian setting is
NP-complete. The problem is hard already for n = 3.

5. BOUNDING THE NUMBER OF SIGNALS

In a market with n bidders, the algorithm described in Section 3 generates a signaling
scheme with O(n2) signals. In fact, some instances might require that many signals in
order to produce the optimal signaling.

Example 5.1. Consider a KPSA with n2−n items appearing with uniform probabil-
ity. Each item Ii,i′ is labeled with an ordered pair (i, i′) of bidders, where V (i, Ii,i′ ) = 1,
V (i′, Ii,i′ ) = 1

2 , and V (i′′, Ii,i′ ) = 0 for every i′′ ∈ [n]− {i, i′}. The optimal signaling gen-
erates revenue of 3

4 , by emitting a signal σi,i′ when either Ii,i′ or Ii′,i is chosen. Notice
that s =

(
n
2

)
signals are required to implement this signaling scheme. It is not hard to

see that with fewer signals, it is impossible to achieve this revenue.

The KPSA described in Example 5.1 has m = Ω(n2) items. Can we construct a simi-
lar bad example with much fewer items? More generally, can we bound the minimum
number of signals required to implement an optimal signaling scheme as a function
depending only on m?

THEOREM 5.2. Every PSA has an optimal signaling scheme with m signals.

PROOF. For brevity, we establish the assertion assuming the known-valuations set-
ting; the proof of the Bayesian setting follows from the same line of arguments. Con-
sider some KPSA A = 〈n,m, p, V 〉 and let S be an s-signal signaling scheme for A that
minimizes s. Assume by contradiction that s > m. Associate with each signal σ ∈ [s]
a vector �qσ ∈ R

m
≥0, where qσ(j) = S(σ, j) for every j ∈ [m]. We can rewrite the con-

tribution of σ to the revenue of S as Rev(σ,S) = max2i∈[n]{
∑

j∈[m] qσ(j) · Ψ(i, j)}, so
Rev(·,S) is a homogeneous, but not necessarily linear, operator.

Since s > m, the vector collection {�qσ | σ ∈ [s]} must exhibit linear dependen-
cies. Therefore, there must exist some reals x1, . . . , xr, xr+1, . . . , xt > 0 and signals
σ1, . . . σr, σr+1, . . . , σt such that

x1�qσ1 + · · ·+ xr�qσr = xr+1�qσr+1 + · · ·+ xt�qσt .
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Consider the s-signal signaling scheme S ′ defined by the modified signals σ′ obtained
from S by setting

�qσ′
z

=

{
(1 + εxz)�qσz if 1 ≤ z ≤ r
(1 − εxz)�qσz if r + 1 ≤ z ≤ t
�qσz otherwise .

For any ε ∈
[
− 1

max1≤z≤r{xz} ,
1

maxr+1≤z≤t{xz}
]
, the resulting signaling scheme S′ is valid

as
∑

σ′∈[s] �qσ′ =
∑

σ∈[s] �qσ = 1 and �qσ′ ≥ 0.
Now, notice that the revenue of the new signaling scheme satisfies

Rev(S′) = Rev(S) + ε

[
r∑

z=1

xzRev(σz ,S)−
t∑

z=r+1

xzRev(σz ,S)
]

.

Since S is optimal, it must be the case that
∑r

z=1 xzRev(σz ,S) −∑t
z=r+1 xzRev(σz ,S) = 0 (recall that ε can be taken to be positive or negative).

Thus, we can take ε to be either − 1
max1≤z≤r{xz} or 1

maxr+1≤z≤t{xz} and get an optimal
signaling scheme with less than s signals, in contradiction to the choice of S.

If one can achieve revenue R with s signals, then it is trivial to see that with s′ ≤ s

signals, one can achieve revenue
⌊
s′
s

⌋
R. This turns out to be the best possible in some

cases.

Example 5.3. Consider n + 1 items {0, 1, . . . , n}, each chosen with probability 1
n+1

and n+1 bidders with valuations V (i, i) = 1 for i = 1, . . . , n, V (0, 0) = n, and V (i, j) = 0
otherwise. The optimal signaling scheme S uses n signals σ1, . . . , σn such that S(σi, i) =
1 and S(σi, 0) = 1

n for i = 1, . . . , n and zero otherwise. The revenue of this scheme is
n

n+1 . Now, for any s < n and an s-signal signaling scheme S′, we have

Rev(S′) =
∑
σ′∈[s]

max2i∈[n]

⎧⎨⎩ ∑
j∈[m]

S ′(σ′, j) ·Ψ(i, j)

⎫⎬⎭
≤

∑
σ′∈[s]

maxi∈[n]−{0}

⎧⎨⎩ ∑
j∈[m]

S ′(σ′, j) ·Ψ(i, j)

⎫⎬⎭
≤

∑
σ′∈[s]

1

n+ 1
=

s

n+ 1
.
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Online Appendix to:
Signaling Schemes for Revenue Maximization
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MOSHE TENNENHOLTZ, Microsoft Research and Technion

PROOF OF OBSERVATION 2.1. Consider the known-valuations ex-ante game de-
fined by setting the strategy space of each bidder i ∈ [n] to be the collection of all
possible functions bi : [s] → R≥0 and the utility of bidder i from strategy profile
b = (b1, . . . , bn) to be the expected utility of bidder i in the KPSA A assuming that
each bidder adheres to b. Fix some (arbitrary) strategies bi′ : [s] → R≥0 for all bidders
i′ 	= i and consider the strategy bi of bidder i that bids

bi(σ) = E [V (i, j) | σ] =
∑
j∈[m]

P(j | σ) · V (i, j) =
∑
j∈[m]

S(σ, j) · p(j)∑
j′∈[m] S(σ, j′) · p(j′)

· V (i, j)

in response to each signal σ ∈ [s].
Fix some signal σ. From bidder i’s point of view, the expected valuation of the chosen

good is bi(σ), whereas each other bidder i′ 	= i, bids bi′(sigma). If bidder i does not
win the chosen good, which happens only if maxi′ �=i{bi′(σ)} ≥ bi(σ), then her utility
in the ex-ante game is 0. This can be changed only if bidder i increases her bid so
that it exceeds maxi′ �=i{bi′(σ)}, but this imposes a negative utility on i. So, assume
that maxi′ �=i{bi′(σ)} ≤ bi(σ) and bidder i does win the chosen good. By the definition
of the second-price rule, the utility of i must be non-negative. Clearly, bidder i has no
incentive to increase her bid. Decreasing her bid does not change her utility as long as
it still exceeds maxi′ �=i{bi′(σ)}; decreasing her bid further resets her utility to zero. The
assertion follows.

PROOF OF THEOREM 3.4. Consider an optimal signaling scheme and let σ be a sig-
nal and j an item such that S(σ, j) > 0. If μ(j) /∈ {hS

1 (σ), h
S
2 (σ)}, then we construct

the new signaling scheme Ŝ obtained from S by replacing signal σ with the two new
signals σ′, σ′′ such that Ŝ(σ′, j) = S(σ, j), Ŝ(σ′, j′) = 0 for j′ 	= j; and Ŝ(σ′′, j) = 0,
S(σ′′, j′) = S(σ, j′) for j′ 	= j.

We argue that Rev(Ŝ) ≥ Rev(S) which, by the optimality of S, implies that
Rev(Ŝ) = Rev(S). To that end, note that the contribution of σ to Rev(S) is

Rev(σ,S) = S(σ, j) ·Ψ(hS
2 (σ), j) +

∑
j′ �=j

S(σ, j′) ·Ψ(hS
2 (σ), j

′)

≤ S(σ, j) ·Ψ(hS
1 (σ), j) +

∑
j′ �=j

S(σ, j′) ·Ψ(hS
1 (σ), j

′) ,

whereas the contributions of σ′ and σ′′ to Rev(Ŝ) are

Rev(σ′, Ŝ) = S(σ, j) ·max2i∈[n] {Ψ(i, j)}
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and

Rev(σ′′, Ŝ) = max2i∈[n]

⎧⎨⎩∑
j′ �=j

S(σ, j′) ·Ψ(i, j′)

⎫⎬⎭ ,

respectively. The argument follows since

Rev(σ′, Ŝ) ≥ max
{S(σ, j) ·Ψ(hS

2 (σ), j),S(σ, j) ·Ψ(hS
1 (σ), j)

}
and

Rev(σ′′, Ŝ) ≥ min

⎧⎨⎩∑
j′ �=j

S(σ, j′) ·Ψ(hS
2 (σ), j

′),
∑
j′ �=j

S(σ, j′) ·Ψ(hS
1 (σ), j

′)

⎫⎬⎭ .

It follows that there exists a revenue-optimal signaling scheme S such that S(σ, j) >
0 only if μ(j) ∈ {h1(σ), h2(σ)}. Therefore, the social welfare of S satisfies

SW(S) =
∑
σ∈[s]

∑
j∈[m]

S(σ, j) ·Ψ(h1(σ), j)

≥
∑
σ∈[s]

∑
j∈[m]

S(σ, j) · Ψ(h1(σ), j) + Ψ(h2(σ), j)

2

≥ 1

2

∑
σ∈[s]

∑
j∈[m]

S(σ, j) ·Ψ(μ(j), j) =
1

2
W ∗ .

The assertion follows.
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