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Abstract

Byzantine Agreement (BA) allows a set of 𝑛 parties to agree on

a value even when up to 𝑡 of the parties involved are corrupted.

While previous works have shown that, for ℓ-bit inputs, BA can be

achieved with the optimal communication complexity 𝑂 (ℓ𝑛) for
sufficiently large ℓ , BA only ensures that honest parties agree on a

meaningful output when they hold the same input, rendering the

primitive inadequate for many real-world applications.

This gave rise to the notion of Convex Agreement (CA), intro-

duced by Vaidya and Garg [PODC’13], which requires the hon-

est parties’ outputs to be in the convex hull of the honest inputs.

Unfortunately, all existing CA protocols incur a communication

complexity of at least 𝑂 (ℓ𝑛2). In this work, we introduce the first

synchronous CA protocol with optimal communication of 𝑂 (ℓ𝑛)
bits for inputs in Z of size ℓ = Ω(𝜅 ·𝑛 log2 𝑛), where 𝜅 is the security

parameter.

CCS Concepts

• Theory of computation→ Cryptographic protocols.

Keywords

convex agreement, optimal communication, long messages

ACM Reference Format:

Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer. 2025. Commu-

nication-Optimal Convex Agreement. In ACM Symposium on Principles of

Distributed Computing (PODC ’25), June 16–20, 2025, Huatulco, Mexico. ACM,

New York, NY, USA, 11 pages. https://doi.org/10.1145/3732772.3733551

Related Version: A full version of this paper is available at [27].

1 Introduction

Reaching collaborative decisions becomes tricky in decentralized

systems, especially when participants might be unreliable or even

malicious. This is where agreement protocols come in, acting as

crucial tools for finding common ground. One such primitive is

Byzantine Agreement (BA), enabling 𝑛 parties to agree on a value

even if 𝑡 of the parties are byzantine.

The standard BA definition comes with certain limitations when

applied to real-world scenarios. Consider, for instance, a network
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of sensors deployed within a cooling room, responsible for report-

ing the room’s temperature. One can expect minor errors in the

measurements, such as correct sensors obtaining temperatures be-

tween −10.05◦𝐶 and −10.03◦𝐶 . Standard BA would then allow the

parties to agree on a value proposed by the byzantine parties, such

as +100◦𝐶 , instead of requiring the output to reflect the correct

sensors’ measurements.

A stronger variant of BA, known as Convex Agreement (CA),

addresses this issue, as it requires the honest parties to agree on a

value within the convex hull of their inputs (or within the range

of their inputs, if the input space is uni-dimensional). CA-related

problems have gained significant attention in recent years. The

interest is driven by both theoretical curiosity [14, 43, 50] and prac-

tical concerns. Real-world applications ofCA-related problems span

diverse fields, including aviation control systems [36, 47], robotic

coordination [44], blockchain oracles [4], transaction ordering in

blockchain [13], and distributed machine learning [9, 17, 18, 48].

The synchronous model, where parties have synchronized clocks

andmessages get delivered within a publicly known amount of time,

facilitates a straightforward approach for achieving CA through

Synchronous Broadcast (BC, also known as Byzantine Broadcast).

Essentially, each party sends its input value via BC, which provides

the parties with an identical view of the inputs. Afterwards, the

parties decide on a common output by applying a deterministic

function to the values received. While this approach yields optimal

solutions in terms of resilience and round complexity, there is still a

gap in terms of communication: if the honest parties hold inputs of

at most ℓ bits, a lower bound on the communication complexity is

Ω(ℓ𝑛) bits [22, 41], and this approach incurs a sub-optimal cost of at

least𝑂 (ℓ𝑛2) bits. In fact, the communication complexity of existing

CA protocols [14, 41, 50] is adversarially chosen, as they involve

steps where honest parties forward messages sent by corrupted

parties. In real-world distributed systems, excessive communication

can be detrimental: it may lead to network congestion and hence

cause messages to be delayed or lost, compromising the system’s

reliability.

For regular BA and BC, this issue regarding communication com-

plexity was solved in a line of works [6, 22, 23, 34, 41] via so-called

extension protocols: these are protocols that achieve optimal com-

munication cost of𝑂 (ℓ𝑛) bits for sufficiently large values ℓ , relying

on protocols for short messages as building blocks. Concretely, these

protocols achieve a communication cost of 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits,
where 𝜅 is a security parameter (they make use of cryptographic

primitives that compress the input values to𝑂 (𝜅) bits). While these

results are adequate for real-world scenarios such as fault-tolerant

distributed storage systems handling large files, they fall short

in scenarios where CA is more suitable than BA. Our work will

then focus on closing the communication complexity gap in the
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synchronous model for CA. Concretely, we address the following

question:

Can we achieve CA with communication complexity

𝑂 (ℓ𝑛 + poly(𝑛, 𝜅))?

We answer this question in the affirmative. More concretely, we

introduce a protocol in the plain model (i.e. unauthenticated setting)

that achieves the optimal resilience 𝑡 < 𝑛/3, communication com-

plexity 𝑂 (ℓ𝑛 + 𝑛2𝜅 log2 𝑛), and round complexity 𝑂 (𝑛 log𝑛). The
protocol takes as inputs bitstrings interpreted as integer values: this

is without loss of generality and only used to establish an ordering

between the inputs (one could alternatively interpret the inputs

being rational numbers with some arbitrary pre-defined precision).

Our protocol makes use of collision-resistant hash functions.

1.1 Related Work

Convex Agreement. The requirement of obtaining outputs within

the honest inputs’ range has been first introduced in [15] for Ap-

proximate Agreement (AA).AA relaxes the agreement requirement,

allowing the parties’ outputs to deviate by a predefined error 𝜀 > 0.

This relaxation allows for deterministic asynchronous protocols,

circumventing the FLP result [21]. AA has been a subject of an

extensive line of works, focusing on optimal convergence rates

[5, 19, 20], higher resilience [1, 25, 33], and different input spaces,

such as multidimensional inputs [26, 37, 50], or graphs and abstract

convexity spaces [3, 14, 32, 43]. CA was formally defined by Vaidya

and Garg in [38, 50] for multidimensional input values. Feasibility

with optimal resilience has been considered for abstract convexity

spaces as well [14, 43]. Another line of works has investigated the

feasibility of an even stronger requirement for inputs in R, i.e., that
the output is close to the median of the honest inputs [13, 47], or to

the 𝑘-th lowest honest input [36].

Extension Protocols. The problem of reducing the communication

complexity of BA on multi-valued inputs was first addressed by

Turpin and Coan [49], where the authors assume 𝑡 < 𝑛/3 and give

a reduction from long-messages BA to short-messages BA with a

communication cost of𝑂 (ℓ𝑛2) bits. Fitzi and Hirt [22] later achieve
BA in the honest majority setting with the asymptotically optimal

communication complexity of 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits, assuming a

universal hash function. Further works have provided error-free

solutions focusing on reducing the additional poly(𝑛, 𝜅) factor in
the communication complexity both in the 𝑡 < 𝑛/3 setting [23,

35, 41] and in the honest-majority setting [6, 23, 41]. Extension

protocols have also been a topic of interest for problems related

to BA, such as BC in the 𝑡 < 𝑛 setting [10, 28], or asynchronous

Reliable Broadcast [8, 41].

Protocols for Short Messages. Reducing the communication com-

plexity is not only a topic of interest for long inputs, but also for

short inputs (i.e., one bit or a constant number of bits). Dolev and

Reischuk [16] showed that deterministic BA protocols (and hence

also deterministic CA protocols) incur communication complexity

Ω(𝑡2) if 𝑡 of the parties involved are byzantine, therefore Ω(𝑛2)
if 𝑡 = Θ(𝑛). This lower bound is tight [11, 40]. However, random-

ized protocols have offered a path to subquadratic communication

[2, 7, 12, 24, 29–31] under different assumptions.

To the best of our knowledge, our work introduces the first

CA protocol with asymptotically optimal communication for suf-

ficiently long messages, at least ℓ = Ω(𝜅 · 𝑛 log2 𝑛). Our protocol
is also deterministic. We leave the question of achieving commu-

nication-optimal CA for shorter messages as an interesting open

problem.

1.2 Comparison to Previous Works

In terms of techniques, our solution differs significantly from both

prior works on BA extension protocols and prior works on CA or

AA. In comparison to BA, the honest-range requirement of CA adds

a new level of challenges when it comes to reducing the commu-

nication. Roughly, in prior works on communication-optimal BA,

each party first computes a short 𝜅-bit encoding of its long ℓ-bit

input value (using e.g. a hash function). Afterwards, the parties

agree on an encoding 𝑧★ using a BA protocol for short messages.

Finally, parties holding the (unique) input value 𝑣★ matching the

encoding 𝑧★ non-trivially distribute 𝑣★ to all the parties. The main

issue when trying to adapt this approach to CA is that the short

𝜅-bit encodings lost information about the ordering of the original

values, and in particular cannot reflect the honest inputs’ range. On

the other hand, existing protocols satisfying this validity require-

ment, regardless of whether they achieve CA or AA, involve some

step where all parties send their ℓ-bit values to all other parties. It

might seem intuitive that the parties need a possibly consistent or

identical view over their actual values to decide on a valid output.

However, we show that this intuition is not true.

Our protocol relies on a byzantine variant of the longest common

prefix problem, and makes use of a BA protocol for short messages

as a building block. The central insight behind our approach is that

the longest common prefix of the honest parties’ inputs represented

as bitstrings reveals a subset of the honest inputs’ range. While

the byzantine parties prevent us from finding the exact longest

common prefix of the honest inputs, the longest common prefix

of any values in the honest inputs’ range will suffice to obtain an

output.

2 Preliminaries

We consider a setting with 𝑛 parties 𝑃1, 𝑃2, . . . , 𝑃𝑛 in a fully con-

nected network, where each pair of parties is connected by an

authenticated channel. The network is synchronous: the parties’

clocks are synchronized, all messages get delivered within Δ time,

and Δ is publicly known.

We assume an adaptive adversary that can corrupt up to 𝑡 < 𝑛/3
parties at any point in the protocol’s execution, causing them to

become byzantine: corrupted parties may deviate arbitrarily from

the protocol. Throughout the paper, we use the terms byzantine

and corrupted interchangeably.

In addition, we consider a security parameter 𝜅 and we make

use of a collision-resistant hash function 𝐻𝜅 : {0, 1}★ → {0, 1}𝜅 .
Informally, a hash function 𝐻𝜅 : {0, 1}★ → {0, 1}𝜅 is collision-

resistant if, for any computationally-bounded adversary A, the

probability thatA(1𝜅 ) outputs two values 𝑥 ≠ 𝑦 such that𝐻𝜅 (𝑥) =
𝐻𝜅 (𝑦) is negligible in 𝜅 .1 As a result, our protocols have a negligible
failure probability.

1
See [46] for a formal definition.
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2.1 Definitions

We recall the definitions of CA and BA. We mention that, through-

out the paper, we will use valid value to refer to a value satisfying

Convex Validity, as defined below.

Definition 1 (Convex Agreement). Let Π be an 𝑛-party protocol

where each party holds a value 𝑣in as input, and parties terminate

upon generating an output 𝑣out. Π achieves Convex Agreement if

the following properties hold even when up to 𝑡 of the 𝑛 parties are

corrupted:

• (Termination) All honest parties terminate;

• (Convex Validity) Honest parties’ outputs lie in the honest

inputs’ convex hull;

• (Agreement) All honest parties output the same value.

Definition 2 (Byzantine Agreement). Let Π be an 𝑛-party protocol

where each party holds a value 𝑣in as input, and parties terminate

upon generating an output 𝑣out. Π achieves Byzantine Agreement if

the following properties hold even when up to 𝑡 of the 𝑛 parties are

corrupted:

• (Termination) All honest parties terminate;

• (Validity) If all honest parties hold the same input value 𝑣 , they

output 𝑣out = 𝑣 ;

• (Agreement) All honest parties output the same value.

We denote the communication complexity for ℓ-bit inputs of a

protocol Π by bitsℓ (Π): this is the worst-case total number of bits

sent by honest parties if they all hold inputs of at most ℓ bits. In

addition, roundsℓ (Π) denotes Π’s worst-case round complexity.

2.2 Binary Representations

We establish a few notations that will be used throughout the paper.

For a value 𝑣 ∈ N, we may define its binary representation as

bits(𝑣) := b1b2 . . . b𝑘 such that the following hold: 2
𝑘−1 ≤ 𝑣 < 2

𝑘
,

b𝑖 ∈ {0, 1} for every 1 ≤ 𝑖 ≤ 𝑘 , and
∑𝑘
𝑖=1 b𝑖 · 2𝑘−𝑖 = 𝑣 .

For ℓ ≥ 𝑘 , we also define 𝑣 ’s ℓ-bit representation bitsℓ (𝑣) as
the ℓ-bit string obtained by prepending ℓ − 𝑘 zeroes to bits(𝑣). In
addition, for 1 ≤ 𝑖 ≤ ℓ , b𝑖

ℓ
(𝑣) denotes the 𝑖-th leftmost bit in 𝑣 ’s

ℓ-bit representation bitsℓ (𝑣).
The reverse operation of bits(·) will be val(bits): given a bit-

string bits := b1b2 . . . b𝑘 (where every b𝑖 ∈ {0, 1}), val(bits) :=∑𝑘
𝑖=1 b𝑖 · 2𝑘−𝑖 .
We denote the length of a bitstring bits by

��
bits

��
, and ∥ is the

concatenation operator.

We also need to define maxℓ (bits) and minℓ (bits). maxℓ (bits)
is the highest ℓ-bit value having prefix bits, obtained by appending

ℓ−
��
bits

��
ones to bits. Similarly,minℓ (bits) is the lowest ℓ-bit value

having prefix bits, obtained by appending ℓ −
��
bits

��
zeroes to bits.

3 Long Inputs in N of Fixed Length

Building towards our CA protocol for Z, we first focus on N. For
now, we assume that the inputs’ length ℓ is fixed: there is a publicly

known ℓ such that every honest input 𝑣in satisfies 𝑣in < 2
ℓ
. In

this section, we present a protocol FixedLengthCA achieving CA

under these assumptions. When ℓ ∈ poly(𝑛), FixedLengthCA
has communication complexity 𝑂 (ℓ · 𝑛 + poly(𝑛, 𝜅)) and round

complexity 𝑂 (𝑛 log𝑛).

FixedLengthCA searches for a valid value by only working

with values’ prefixes. We first use the honest parties’ inputs to

identify a bitstring prefix
★
that is the prefix of an ℓ-bit valid value.

If prefix
★
consists of ℓ bits, the parties may output val(prefix★).

Otherwise, we ensure that prefix
★
satisfies a few special properties

enabling the parties to efficiently find an output. Concretely, we

ensure that sufficiently many honest parties know valid values

that do not have prefix
★
as a prefix: such values are either lower

than any value with prefix prefix
★
, meaning that minℓ (prefix★)

is valid, or higher than any value with prefix prefix
★
, which means

that maxℓ (prefix★) is valid. These parties will announce which of

these two options they believe to be valid, enabling all parties to

decide on the final output.

We split the implementation of FixedLengthCA into three sub-

protocols. The first one is FindPrefix, where the parties agree on

a bitstring prefix
★
, and each party obtains two ℓ-bit valid values 𝑣

and 𝑣⊥ such that: (i) the values 𝑣 have prefix★ as a prefix, and (ii)

for any bitstring bits of

��
prefix

★
��+1 bits, there are 𝑡 +1 honest par-

ties whose values 𝑣⊥ do not have bits as a prefix. If

��
prefix

★
�� = ℓ ,

then the parties hold the same valid value 𝑣 , and may simply output

𝑣 . Otherwise, in our second subprotocol, AddLastBit, the par-

ties append one bit to prefix
★
using their values 𝑣 , ensuring that

the extended prefix
★
is still some valid values’ prefix. Now there

are 𝑡 + 1 honest parties holding values 𝑣⊥ that do not have prefix

prefix
★
, and these differences are announced in the third subpro-

tocol, GetOutput, where the parties agree on the final output.

FixedLengthCA(ℓ, 𝒗)

Code for party 𝑷

1: prefix
★
, 𝑣, 𝑣⊥ := FindPrefix(ℓ, 𝑣) .

2: If

��
prefix

★
�� = ℓ , return 𝑣.

3: prefix
★
:= AddLastBit(ℓ, 𝑣, prefix★) .

4: Return 𝑣 := GetOutput(ℓ, 𝑣⊥, prefix★) .

In the following subsections, we present each of these subproto-

cols in detail.

3.1 Finding a Valid Value’s Prefix

Roughly, FindPrefix aims to identify the longest common prefix of

the honest parties’ inputs using binary search. Identifying the precise

longest common prefix is impossible, as the byzantine parties can

act as honest parties with inputs of their own choice

However, we can identify a valid value’s prefix that is at least

as long as the honest inputs’ longest common prefix. Roughly, the

parties will be looking for some index 𝑖★ such that running BA

on their values’ 𝑖★-bit prefixes would return an honest prefix, but

running BA on their (𝑖★ + 1)-bit prefixes would not offer the same

guarantee. We need a BA protocol for long messages that satisfies

two additional properties, defined below. The first one is Intrusion

Tolerance: recall that, unless the honest parties hold identical inputs,

BA’s Validity condition does not impose any restrictions. Intrusion

Tolerance requires that the output agreed upon is either an honest

party’s input or a special symbol ⊥. The second property, Bounded

Pre-Agreement, prevents agreement on ⊥ when an honest input can

be easily identified.
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Definition 3 (Intrusion Tolerance). Honest parties output an honest

party’s input or ⊥.
Definition 4 (Bounded Pre-Agreement). If the honest parties agree

on ⊥, fewer than 𝑛 − 2𝑡 honest parties hold the same input value.

In Section 7, we present a protocol ΠℓBA+ achieving these guar-

antees with communication complexity 𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)), as de-
scribed in Theorem 1.

Theorem 1. Given a BA protocolΠBA resilient against 𝑡 < 𝑛/3 cor-
ruptions, there is a BA protocolΠℓBA+ resilient against 𝑡 < 𝑛/3 corrup-
tions that achieves Intrusion Tolerance and Bounded Pre-Agreement,

with communication complexity bitsℓ (ΠℓBA+) = 𝑂 (ℓ𝑛+𝜅 ·𝑛2 log𝑛)+
bits𝜅 (ΠBA), and with round complexity roundsℓ (ΠℓBA+) = 𝑂 (1) +
rounds𝜅 (ΠBA).

Weproceed in𝑂 (log ℓ) iterations. In the first iteration, the parties
check whether ΠℓBA+ returns ⊥ on the first half of their values’

ℓ-bit representations b1 ∥ . . . ∥bmid. If ΠℓBA+ returns⊥, mid−1 is an

upper bound for index 𝑖★. The Bounded Pre-Agreement property

ensures that at most𝑛−2𝑡 honest parties hold values 𝑣 with the same

prefix of mid bits. This means that, for any bitstring bits of mid bits,

there are at least (𝑛 − 𝑡) − (𝑛 − 2𝑡) ≥ 𝑡 + 1 honest parties holding

values 𝑣 that do not have bits as a prefix. The parties set 𝑣⊥ := 𝑣

and then continue the search for 𝑖★ within bits b1, . . . , bmid−1 in
the next iteration, using an identical approach.

Otherwise, if ΠℓBA+ returns a bitstring of mid bits prefix
★
1
∥ . . . ∥

prefix
★
mid

, Intrusion Tolerance ensures that this is the prefix of an

honest party’s (valid) value 𝑣★. The parties holding values 𝑣 with

a different prefix update 𝑣 to match this prefix: if val(b1 ∥ . . . ∥
bmid) < val(prefix★

1
∥ . . . ∥ prefix★

mid
), meaning that 𝑣 < 𝑣★, then

minℓ (prefix★
1
∥ . . . ∥ prefix★

mid
) is in [𝑣, 𝑣★] and therefore is valid.

Otherwise, if val(b1 ∥ . . . ∥ bmid) > val(prefix★
1
∥ . . . ∥ prefix★

mid
),

meaning that 𝑣 > 𝑣★, then maxℓ (prefix★
1
∥ . . . ∥ prefix★

mid
) is in

[𝑣★, 𝑣] and therefore is valid. The parties then proceed to the next

iteration, where they continue the search for 𝑖★ on the second half

of their (updated) values’ ℓ-bit representation. After 𝑂 (log ℓ) itera-
tions, either ΠℓBA+ never returned ⊥ and the parties hold identical

values 𝑣 , or 𝑖★ is found. We present the code below.

FindPrefix(ℓ, 𝒗)

Code for party 𝑷

1: left := 1; right := ℓ + 1; 𝑣 := 𝑣in.

2: 𝑣⊥ := 𝑣in; prefix
★
:= empty string.

3: loop

4: If left = right, exit the loop.

5: (b1, b2, . . . , bℓ ) := bitsℓ (𝑣) , mid := ⌊ (left + right)/2⌋.
6: Join ΠℓBA+ with input bleft ∥ . . . ∥ bmid.
7: If ΠℓBA+ has returned ⊥, set 𝑣⊥ := 𝑣 and right := mid.

8: If ΠℓBA+ has returned bits prefix
★
left

∥ . . . ∥ prefix★
mid

:

9: prefix
★
:= prefix

★ ∥ prefix★
left

∥ . . . ∥ prefix★
mid

.

10: If val(b1 ∥ . . . ∥ bmid ) < val(prefix★) :
11: 𝑣 := minℓ (prefix★) .
12: If val(b1 ∥ . . . ∥ bmid ) > val(prefix★) :
13: 𝑣 := maxℓ (prefix★) .
14: Set left := mid + 1.

15: end loop

16: Return prefix
★
, 𝑣, 𝑣⊥.

The lemma below describes the guarantees of FindPrefix. The

formal proof can be found in the full version of our paper.

Lemma 1. Assume a BA protocol ΠBA, and that honest parties join

FindPrefix with the same ℓ , and with valid ℓ-bit values 𝑣 .

Then, the honest parties obtain the same bitstring prefix
★
, and

each honest party obtains two valid ℓ-bit values 𝑣 , 𝑣⊥ such that:

(i) prefix
★
is a prefix of bitsℓ (𝑣);

(ii) for any bitstring bits consisting of

��
prefix

★
�� + 1 bits, there

are at least 𝑡 + 1 honest parties that hold values 𝑣⊥ such that

bitsℓ (𝑣⊥) does not have prefix bits.
FindPrefix has communication complexity bitsℓ (FindPrefix) =

𝑂 (ℓ ·𝑛+𝜅 ·𝑛2 log𝑛 log ℓ)+𝑂 (log ℓ)·bits𝜅 (ΠBA), and round complexity

roundsℓ (FindPrefix) = 𝑂 (log ℓ) · rounds𝜅 (ΠBA).

Proof Sketch. We consider the properties below. If these prop-

erties are satisfied at the beginning of iteration 𝑖 ≥ 1 of the loop,

then either the stopping condition left = right is met in iteration

𝑖 , or the properties hold at the beginning of iteration 𝑖 + 1 as well.

We also note that these properties hold at the beginning of the first

iteration due to the variables’ initialization.

(A) All honest parties hold the same indices left and right

such that 1 ≤ left ≤ right ≤ ℓ + 1, and the same bitstring

prefix
★
consisting of left − 1 bits.

(B) Honest parties’ indices left and right satisfy the following

condition: 0 ≤ right − left ≤ 2
⌈log

2
ℓ ⌉−(𝑖−1)

.

(C) Honest parties hold valid ℓ-bit values 𝑣 such that bitsℓ (𝑣)
has prefix

★
as a prefix.

(D) Honest parties hold valid ℓ-bit values 𝑣⊥. In addition, for

any bitstring bits of right bits, there are 𝑡 + 1 honest par-

ties holding values 𝑣⊥ such that bitsℓ (𝑣⊥) does not have
prefix bits.

Property (B) implies that the condition left = right is met by

iteration 𝑖 = ⌈log
2
ℓ⌉ + 2. Once this condition is met, Property (A)

ensures that parties hold the same bitstring prefix
★
of left − 1

bits. Property (C) ensures that honest parties hold valid ℓ-bit values

𝑣 with prefix prefix
★
. Finally, Property (D) ensures that, honest

parties hold valid ℓ-bit values 𝑣⊥ such that: for any bitstring bits

of right = left =
��
prefix

★
�� + 1 bits, there are 𝑡 + 1 honest parties

whose values 𝑣⊥ do not have prefix
★
as a prefix.

As each of the 𝑂 (log ℓ) iterations invokes ΠℓBA+ once, we may

write the round complexity as roundsℓ (FindPrefix) = 𝑂 (log ℓ) ·
roundsℓ (ΠℓBA+). Afterwards, Theorem 1 enables us to obtain the

round complexity claimed in the lemma’s statement.

For the communication complexity, we note that, in each iter-

ation 𝑖 < ⌈log
2
𝑛⌉ + 2, Property (B) ensures that FindPrefix runs

ΠℓBA+ on bitstrings consisting of at most 2
⌈log

2
ℓ ⌉−𝑖 ≤ ℓ/2𝑖−1 bits.

Then, we may write the communication complexity of FindPrefix

as follows:

bitsℓ (FindPrefix) =
⌈log

2
ℓ ⌉+1∑︁

𝑖=1

bitsℓ/2𝑖−1 (ΠℓBA+) .

Using Theorem 1 and that

∑∞
𝑖=0 1/2𝑖 ≤ 2, we obtain our claimed

communication cost. □
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3.2 Extending the Prefix Agreed Upon

We now describe the subprotocol AddLastBit, where parties ex-

tend the bitstring prefix
★
agreed upon in FindPrefix with one

bit (assuming

��
prefix

★
�� < ℓ). The resulting bitstring should still

be a valid value’s prefix. As each party holds a valid value 𝑣 with

prefix prefix
★ | |0 or prefix★ | |1, we extend prefix

★
by using a bit

BA protocol ΠBA.

AddLastBit(ℓ, 𝒗, prefix★)

Code for party 𝑷 .

1: Join ΠBA with input b
𝑖★+1
ℓ (𝑣) , where 𝑖★ =

��
prefix

★
��
, and obtain

output b
★
. Return prefix

★ ∥ b★.

The lemma below describes the properties of AddLastBit and

is proven in the paper’s full version.

Lemma 2. Assume a BA protocol ΠBA, and that honest parties join

AddLastBit with the same value ℓ , the same bitstring prefix
★
of

𝑖★ < ℓ bits, and with valid ℓ-bit values 𝑣 such that bitsℓ (𝑣) has prefix
prefix

★
. Then, the honest parties agree on a bitstring of 𝑖★ + 1 bits

that is the prefix of a valid value’s ℓ-bit representation. AddLastBit

has communication complexity bitsℓ (AddLastBit) = bits1 (ΠBA)
and round complexity roundsℓ (AddLastBit) = rounds1 (ΠBA).

3.3 Obtaining the Final Output

After running AddLastBit, the parties hold a bitstring prefix
★

of 𝑖★ + 1 bits that is a valid value’s prefix. Moreover, 𝑡 + 1 honest

parties hold valid values 𝑣⊥ that do not have prefix prefix
★
. These

parties’ values 𝑣⊥ are either lower than minℓ (prefix★) or higher
than maxℓ (prefix★), hence at least one of these two options is

valid. Each of these parties may announce (by sending a bit) which

of the two options it believes to be valid. Then, every party becomes

aware of a valid option by looking at the bit received the most (and

therefore sent by at least one honest party). Afterwards, the parties

use ΠBA to agree on a valid option.

GetOutput(ℓ, 𝒗⊥, prefix★)

Code for party 𝑷

1: If prefix
★
is not a prefix of bitsℓ (𝑣⊥ ) :

2: Set b := 0 if 𝑣⊥ < minℓ (prefix★) and b := 1 otherwise.

3: Send b to all parties.

4: Set𝑚 := the number of bits b received.

5: Set choice := a bit b received from ⌈𝑚/2⌉ parties.
6: Join ΠBA with input choice. If the bit agreed upon is 0, return

minℓ (prefix★) . Otherwise, return maxℓ (prefix)★.

The next lemma presents the properties of GetOutput. The

proof is included our paper’s full version.

Lemma 3. Assume a BA protocol ΠBA, and that honest parties

join GetOutput with the same value ℓ , and with the same bitstring

prefix
★
representing the prefix of some valid value’s ℓ-bit representa-

tion. In addition, assume that each party joins with some valid ℓ-bit

input 𝑣⊥ such that the ℓ-bit representations of 𝑡 + 1 honest parties’

values 𝑣⊥ do not have prefix
★
as a prefix. Then, the honest parties

obtain the same valid value 𝑣out.

GetOutput has communication complexity bitsℓ (GetOutput) =
𝑂 (𝑛2) +bits1 (ΠBA) and round complexity roundsℓ (GetOutput) =
𝑂 (1) + rounds1 (BA).

3.4 Protocol Analysis

We have now reached the final theorem of this section, which

presents the guarantees of FixedLengthCA. We highlight that,

when considering inputs of ℓ bits such that ℓ ∈ poly(𝑛) and there-

fore log ℓ ∈ 𝑂 (log𝑛), the communication complexity of our proto-

col FixedLengthCA becomes bitsℓ (FixedLengthCA) = 𝑂 (ℓ𝑛+𝜅 ·
𝑛2 log2 𝑛) +𝑂 (log𝑛) · bits𝜅 (ΠBA). Similarly, the round complexity

becomes roundsℓ (FixedLengthCA) = 𝑂 (log𝑛) · rounds𝜅 (ΠBA).

Theorem 2. Assume a BA protocol ΠBA resilient against 𝑡 <

𝑛/3 corruptions. Then, if the honest parties hold ℓ-bit inputs 𝑣in ∈
N and ℓ is publicly known, FixedLengthCA is a CA protocol re-

silient against 𝑡 < 𝑛/3 corruptions, with communication complex-

ity bitsℓ (FixedLengthCA) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛 log ℓ) +𝑂 (log ℓ) ·
bits𝜅 (ΠBA), and round complexity roundsℓ (FixedLengthCA) =

𝑂 (log ℓ) · rounds𝜅 (ΠBA).

Proof. Lemma 1 ensures that FindPrefix enables the parties

to agree on a bitstring prefix
★
, and provides them with valid ℓ-bit

values 𝑣, 𝑣⊥ such that the values 𝑣 have prefix prefix★.

If

��
prefix

★
�� = ℓ , the honest parties hold the same valid value 𝑣 ,

and therefore CA is achieved.

Otherwise, Lemma 2 ensures that parties obtain the same bit-

string prefix
★
such that there are 𝑡 + 1 honest parties whose values

𝑣⊥ do not have prefix
★
as a prefix. Then, GetOutput’s precondi-

tions are met, and Lemma 3 ensures that CA is achieved.

The communication complexity and the round complexity follow

from summing up the complexities of each subprotocol. □

4 Longer Inputs in N of Fixed length

The protocol FixedLengthCA presented in Section 3 achieves our

communication complexity goal when ℓ ∈ poly(𝑛). We now con-

sider values ℓ ≥ 𝑛2 that may not satisfy this condition, and we

build a round-efficient CA protocol with communication complex-

ity𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) by making small adjustments to the protocol

of Section 3. We maintain the same assumptions: parties hold ℓ-bit

inputs in N, and ℓ is publicly known.

We first describe the adjustments for FindPrefix. Instead of

comparing substrings of bits in each iteration, we compare sub-

strings of blocks. For simplicity, we assume that ℓ is a multiple

of 𝑛2. Then, each party will split its ℓ-bit value into 𝑛2 blocks

block1, block2, . . . , block𝑛2 of ℓ/𝑛2 bits each. For an ℓ-bit value

𝑣 ∈ N, we define blocks(𝑣) := (block1, block2, . . . , block𝑛2 ) such
that bitsℓ (𝑣) = block1 ∥ block2 ∥ . . . ∥ block𝑛2 , and, for every

1 ≤ 𝑖 ≤ 𝑛2,
��
block𝑖

�� = ℓ/𝑛2. We denote block𝑖 by block𝑖 (𝑣), and
we use the term block to refer to such sequences of ℓ/𝑛2 bits.

Then, in each iteration, instead of comparing via ΠℓBA+ the

sequences of bits bleft ∥ . . . ∥ bmid of honest parties’ values 𝑣 , we

compare sequences of blocks blockleft∥ . . .∥blockmid. This change
reduces the number of iterations from 𝑂 (log ℓ) to 𝑂 (log𝑛): after
𝑂 (log𝑛) iterations, parties agree on a bitstring prefix

★
of 𝑖★ blocks,

and each party obtains two ℓ-bit valid values 𝑣, 𝑣⊥. The values 𝑣
have prefix prefix

★
, and, for any bitstring of 𝑖★ + 1 blocks, there
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are 𝑡 + 1 honest parties whose values 𝑣⊥ do not have that bitstring

as prefix. We present the modified subprotocol below.

FindPrefixBlocks(ℓest, 𝒗)

Code for party 𝑷

1: left := 1, right := 𝑛 + 1.

2: 𝑣 := 𝑣in, 𝑣⊥ := 𝑣in, prefix
★
:= empty string.

3: loop

4: If left = right, set 𝑖★ := left and exit the loop.

5: (block1, block2, . . . , block𝑛 ) := blocks(𝑣) .
6: mid := ⌊ (left + right)/2⌋.
7: Join ΠℓBA+ with input blockleft ∥ . . . ∥ blockmid.
8: If ΠℓBA+ has returned ⊥, set 𝑣⊥ := 𝑣 and right := mid.

9: If ΠℓBA+ has returned blocks prefix
★
left

∥ . . . ∥ prefix★
mid

:

10: prefix
★
:= prefix

★ ∥ prefix★
left

∥ . . . ∥ prefix★
mid

.

11: If val(block1 ∥ . . . ∥ blockmid ) < val(prefix★) :
12: 𝑣 := minℓest (prefix★) .
13: If val(block1 ∥ . . . ∥ blockmid ) > val(prefix★) :
14: 𝑣 := maxℓest (prefix★) .
15: Set left := mid + 1.

16: end loop

17: Return prefix
★
, 𝑣, 𝑣⊥.

The lemma below is the block version of Lemma 1. The proof is

included in the full version of our paper.

Lemma 4. Assume a BA protocol ΠBA, and that honest parties join

FindPrefixBlocks with the same (multiple of 𝑛2) ℓ , and with valid ℓ-

bit values 𝑣 . Then, the honest parties obtain the same bitstring prefix
★

of 𝑖★ blocks, and each honest party obtains two valid ℓ-bit values 𝑣 ,

𝑣⊥ such that:

(i) the ℓ-bit representations of the values 𝑣 have prefix prefix★;

(ii) for any bitstring bits of 𝑖★+1 blocks, at least 𝑡+1 honest parties
hold values 𝑣⊥ such that bitsℓ (𝑣⊥) does not have prefix bits.

Subprotocol FindPrefixBlocks achieves communication complex-

ity bitsℓ (FindPrefixBlocks) = 𝑂 (ℓ · 𝑛 + 𝜅 · 𝑛2 log2 𝑛) +𝑂 (log𝑛) ·
bits𝜅 (ΠBA), and round complexity roundsℓ (FindPrefixBlocks) =
𝑂 (log𝑛) · rounds𝜅 (ΠBA).

AddLastBit becomes AddLastBlock: in order to decide on a

final output using the values 𝑣⊥, we need to append one block to

prefix
★
, so that the extended prefix

★
is a valid values’ prefix. As

the honest parties’ values 𝑣 have prefix★ as a common prefix of

𝑖★ blocks, any block within the range of values val(block𝑖★+1 (𝑣))
of the honest parties’ values 𝑣 suffices. Finding such a block comes

down to solving CA on inputs of ℓ/𝑛2 bits. Since we only run this

step once, and on inputs of ℓ/𝑛2 bits, we may use a high communica-

tion complexity approach. For instance, we may use the protocol of

[47], with minor adjustments. The full version of our paper provides

a detailed description of this protocol.

Theorem 3 (Theorem 4 of [47]). There is a protocolHighCostCA

achieving CA for N up to 𝑡 < 𝑛/3 corruptions, with communication

complexity bitsℓ (HighCostCA) = 𝑂 (ℓ · 𝑛3), and round complexity

roundsℓ (HighCostCA) = 𝑂 (𝑛).
We present AddLastBlock below. Lemma 5 describes the guar-

antees of AddLastBlock, and the proof is deferred to the full ver-

sion of our paper.

AddLastBlock(ℓ, 𝒗, prefix★)

Code for party 𝑷

1: Set 𝑖★ :=
��
prefix

★
��/(ℓ/𝑛2 ) , i.e., the number of blocks in prefix

★
.

2: Set block
′
𝑖★+1 := HighCostCA(block𝑖★+1 (𝑣) ) .

3: Return prefix
★ ∥ block′

𝑖★+1.

Lemma 5. Assume that the honest parties join AddLastBlock

with the same value ℓ (that is a multiple of 𝑛2), with the same

bitstring prefix prefix
★
of 𝑖★ < 𝑛2 blocks, and with valid ℓ-bit

values 𝑣 that have prefix
★
as a prefix. Then, the honest parties

agree on a bitstring of 𝑖★ + 1 blocks that is the prefix of a valid

value’s ℓ-bit representation.AddLastBlock has communication com-

plexity bitsℓ (AddLastBlock) = 𝑂 (ℓ · 𝑛) and round complexity

roundsℓ (AddLastBlock) = 𝑂 (𝑛).

Afterwards, as in FixedLengthCA, the parties obtain their out-

put using the subprotocol GetOutput presented in Section 3. We

present the code of FixedLengthCABlocks below.

FixedLengthCABlocks(ℓ, 𝒗)

Code for party 𝑷

1: prefix
★
, 𝑣, 𝑣⊥ := FindPrefixBlocks(ℓ, 𝑣) .

2: If

��
prefix

★
��
:= ℓ , return 𝑣.

3: prefix
★
:= AddLastBlock(ℓ, 𝑣, prefix★) .

4: Return 𝑣 := GetOutput(ℓ, 𝑣⊥, prefix★) .

Similarly to the proof of Theorem 2, we can prove the following

theorem by showing that the preconditions of each subprotocol are

met. We have included the proof in the full version of our paper.

Theorem 4. Assume a BA protocol ΠBA resilient against 𝑡 < 𝑛/3
corruptions. If the honest parties hold ℓ-bit input values 𝑣in ∈ N, where
ℓ > 0 is a publicly known multiple of 𝑛2, FixedLengthCABlocks

is a CA protocol resilient against 𝑡 < 𝑛/3 corruptions. In addition,

the communication complexity is bitsℓ (FixedLengthCABlocks) =
𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log2 𝑛) + 𝑂 (log𝑛) · bits𝜅 (ΠBA) and the round com-

plexity is roundsℓ (FixedLengthCABlocks) = 𝑂 (𝑛) + 𝑂 (log𝑛) ·
rounds𝜅 (ΠBA).

5 Final CA Protocol for N

In the previous sections, we have presented two protocols achieving

CA given that the honest parties hold ℓ-bit input values in N and ℓ

is publicly known. FixedLengthCA matches our communication

complexity goal when ℓ ∈ poly(𝑛), while FixedLengthCABlocks
does not impose an upper bound on ℓ , but instead implicitly requires

that ℓ ≥ 𝑛2. Our final protocol combines these two, and removes

the assumption that ℓ is publicly known.

The parties decide which protocol to run using a bit BA protocol

ΠBA: each party joins ΠBA with input 0 if

��
bits(𝑣in)

�� ≤ 𝑛2, and

input 1 otherwise.

If ΠBA returns 0, the parties obtain an estimation for ℓ within

𝑂 (log𝑛) ·rounds1 (ΠBA) rounds by comparing their inputs’ length

with powers of two. Afterwards, they run FixedLengthCA.

Otherwise, if ΠBA returns 1, the parties obtain an estimation for

ℓ by agreeing on a block size using the high-communication-cost
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protocol HighCostCA. Once the estimation is obtained, they run

FixedLengthCABlocks.

We present the code of our protocol ΠN below.

Protocol 𝚷
N

Code for party 𝑷 with input 𝒗in

1: Join ΠBA with input 0 if

��
bits(𝑣in )

�� ≤ 𝑛2 and 1 otherwise.

2: If ΠBA has returned 0:

3: If

��
bits(𝑣in )

�� > 𝑛2, set 𝑣in := 2
𝑛2 − 1.

4: For 𝑖 = 0...⌈log
2
𝑛2 ⌉:

5: Let b := 0 if

��
bits(𝑣in )

�� ≤ 2
𝑖
and 1 otherwise.

6: Join ΠBA with input b. If ΠBA returns 0:

7: Let ℓest := 2
𝑖
.

8: If

��
bits(𝑣in )

�� > ℓest, set 𝑣in := 2
ℓest − 1.

9: Set 𝑣out := FixedLengthCA(ℓest, 𝑣) .
10: Output 𝑣out and terminate.

11: Otherwise, if ΠBA has returned 1:

12: Set blockSize := ⌈
��
bits(𝑣in )

��/𝑛2 ⌉.
13: Set blockSize

′
:= HighCostCA(blockSize) .

14: Set ℓest := blockSize
′ · 𝑛2.

15: If

��
bits(𝑣in )

�� ≥ ℓest, set 𝑣in := 2
ℓest − 1.

16: Set 𝑣out := FixedLengthCABlocks(ℓest, 𝑣) .
17: Output 𝑣out and terminate.

The following theorem presents the properties of ΠN.

Theorem 5. Assume a BA protocol ΠBA resilient against 𝑡 <

𝑛/3 corruptions. Then, if the honest parties hold ℓ-bit inputs 𝑣in ∈
N, ΠN is a CA protocol resilient against 𝑡 < 𝑛/3 corruptions, with
communication complexity bitsℓ (ΠN) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log2 𝑛) +
𝑂 (log𝑛)·bits𝜅 (ΠBA), and round complexity roundsℓ (ΠN) = 𝑂 (𝑛)+
𝑂 (log𝑛) · rounds𝜅 (ΠBA).

Proof. Let ℓmin and ℓmax denote the lengths of the lowest and

the highest honest inputs respectively.

We first assume that the ΠBA invocation in line 1 returns 0.

Then, at least one honest party has joined with input 0 due to

ΠBA’s Validity condition and therefore ℓmin ≤ 𝑛2. If any honest

party holds an input value longer than 𝑛2 bits, 2𝑛
2 − 1 is within

the honest inputs’ range. Therefore, the parties join the loop in

line 4 with valid values of at most 𝑛2 bits. If ΠBA returns 0 in

some iteration 𝑖 of the loop, then at least one honest party has

joined this ΠBA invocation with input 0, meaning that ℓmin ≤ 2
𝑖
.

Then, if an honest party holds an input value longer than 𝑖 bits,

2
𝑖 − 1 is in the honest inputs’ range. Note that ΠBA returns 0 by

iteration 𝑖 = ⌈log
2
min(ℓmax, 𝑛

2)⌉ the latest, since all honest par-
ties hold values of at most min(ℓmax, 𝑛

2) bits. This ensures that
the parties agree on an estimation ℓest ≤ 2 · min(ℓmax, 𝑛

2) ≤
2 ·𝑛2 with𝑂 (log𝑛) iterations. Finally, parties join FixedLengthCA
with the same value ℓest ≤ 2 · min(ℓ, 𝑛2) and valid ℓest-bit val-

ues. The parties agree on a valid output 𝑣out, which ensures that

CA is achieved. The communication complexity in this case is

𝑂 (log𝑛) ·bits1 (ΠBA)+bits2·min(ℓ,𝑛2 ) (FixedLengthCA) = 𝑂 (ℓ𝑛+
𝜅𝑛2 log2 𝑛) +𝑂 (log𝑛) · bits𝜅 (ΠBA), while the round complexity is

𝑂 (log𝑛) · rounds1 (ΠBA) + rounds
2·min(ℓ,𝑛2 ) (FixedLengthCA),

hence 𝑂 (log𝑛) · rounds𝜅 (ΠBA).

Otherwise, if the ΠBA invocation in line 1 returns 1, then there

is an honest party holding an input value longer than 𝑛2 bits: 𝑛2 <

ℓmax ≤ ℓ . Parties join the invocation of HighCostCA with inputs

blockSize := ⌈
��
bits(𝑣in)

��/𝑛2⌉ and obtain a value blockSize
′
with

the property that ⌈ℓmin/𝑛2⌉ ≤ blockSize
′ ≤ ⌈ℓmax/𝑛2⌉. Note that

the values blockSize can be represented using 𝑂 (log(ℓ/𝑛2)) bits,
hence𝑂 (ℓ/𝑛2) bits, and therefore this step has communication cost

𝑂 (ℓ𝑛). We have also obtained that ℓest := blockSize
′ · 𝑛2 satisfies

the following: ℓmin ≤ ℓest ≤ ℓmax + 𝑛2 ≤ 2 · ℓ .
Since ℓest ≥ ℓmin, if an honest party’s input value is longer than

ℓest bits, 2
ℓest − 1 is guaranteed to be in the honest inputs’ range.

It follows that the parties join FixedLengthCABlocks with the

same value ℓest ≤ 2 · ℓ (that is a multiple of 𝑛2) and valid ℓest-bit

values. The parties agree on a valid value 𝑣out and therefore CA is

achieved.

The communication complexity achieved by ΠN can be com-

puted as bitsℓ (ΠN) = bits1 (ΠBA) + bits𝑂 (ℓ/𝑛2 ) (HighCostCA) +
bits2ℓ (FixedLengthCABlocks), hence we obtain bitsℓ (ΠN) =

𝑂 (ℓ𝑛 +𝜅𝑛2 log2 𝑛). Regarding the round complexity, roundsℓ (ΠN)
can bewritten as rounds1 (ΠBA)+rounds𝑂 (ℓ/𝑛2 ) (HighCostCA)+
rounds(FixedLengthCABlocks), and therefore roundsℓ (ΠN) =
𝑂 (𝑛) +𝑂 (log𝑛) · rounds𝜅 (ΠBA). □

6 CA Protocol for Z

To extend the input space to Z, we assume that the parties’ inputs

𝑣in are represented as (−1)signin · 𝑣N
in
, where signin ∈ {0, 1} and

𝑣N
in

∈ N.
Then, in order to cover negative numbers using ΠN, the parties

make use of the assumed BA protocol ΠBA to agree on their values’

sign. If the sign agreed upon, denoted by signout, differs from a

party 𝑃 ’s signin, 𝑃 updates 𝑣N
in

to 0, since it is guaranteed to be

valid. Afterwards, the parties join ΠN with their possibly updated

inputs 𝑣N
in

and agree on 𝑣N
out

such that 𝑣out := (−1)signout · 𝑣N
in

is

valid. We present the code and the guarantees of ΠZ below. The

formal proof is included in the full version of our paper.

Protocol 𝚷
Z

Code for party 𝑷 with input 𝒗in = (−1)signin · 𝒗N
in

1: Join ΠBA with input signin and obtain output signout.

2: If signout ≠ signin, set 𝑣
N
in

:= 0.

3: Join ΠN with input 𝑣N
in

and obtain output 𝑣N
out

.

4: Output 𝑣out := (−1)signout · 𝑣N
out

.

Corollary 1. Assume a BA protocol ΠBA resilient against 𝑡 < 𝑛/3
corruptions. Then, if the honest parties hold inputs (−1)signin · 𝑣N

in
∈

Z, such that 𝑣N
in

∈ N with

��
bits(𝑣N

in
)
�� ≤ ℓ , ΠZ is a CA protocol

resilient against 𝑡 < 𝑛/3 corruptions, with communication complexity

bitsℓ (ΠZ) = 𝑂 (ℓ𝑛+𝜅 ·𝑛2 log2 𝑛) +𝑂 (log𝑛) ·bits𝜅 (ΠBA), and round
complexity roundsℓ (ΠZ) = 𝑂 (𝑛) +𝑂 (log𝑛) · rounds𝜅 (ΠBA).

We state the final corollary, where we instantiate the assumed

BA protocol ΠBA with a deterministic BA protocol with quadratic

communication (e.g. [11]).

Corollary 2. If the honest parties hold inputs (−1)signin · 𝑣N
in

∈
Z, such that 𝑣N

in
∈ N with

��
bits(𝑣N

in
)
�� ≤ ℓ , ΠZ is a CA protocol
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resilient against 𝑡 < 𝑛/3 corruptions, with communication com-

plexity bitsℓ (ΠZ) = 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log2 𝑛), and round complexity

roundsℓ (ΠZ) = 𝑂 (𝑛 log𝑛).

7 BA for Long Messages with Additional

Properties

We recall that our CA protocol relies on a BA protocol ΠℓBA+ with

communication complexity𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) that satisfies two ad-
ditional properties: Intrusion Tolerance and Bounded Pre-Agreement,

introduced in Section 3. We restate the theorem describing this

protocol below.

Theorem 1. Given a BA protocolΠBA resilient against 𝑡 < 𝑛/3 cor-
ruptions, there is a BA protocolΠℓBA+ resilient against 𝑡 < 𝑛/3 corrup-
tions that achieves Intrusion Tolerance and Bounded Pre-Agreement,

with communication complexity bitsℓ (ΠℓBA+) = 𝑂 (ℓ𝑛+𝜅 ·𝑛2 log𝑛)+
bits𝜅 (ΠBA), and with round complexity roundsℓ (ΠℓBA+) = 𝑂 (1) +
rounds𝜅 (ΠBA).

In this section, we describe the construction behind this theorem.

The main technical challenge lies in building a communication-

efficient BA protocol for short messages (𝜅 bits) that achieves the

two additional properties, denoted by ΠBA+. Afterwards, ΠℓBA+ is

constructed using the outline of prior works [6, 41].

7.1 Protocol 𝚷BA+

In our protocol ΠBA+, the parties first distribute their input values.
Each party 𝑃 receives 𝑛 − 𝑡 values from honest parties, plus at most

𝑡 values from corrupted parties, and checks whether there is any

value received from 𝑛 − 2𝑡 parties. Note that 𝑃 sees at most two

values 𝑣1, 𝑣2 with this property. Moreover, if there is some value 𝑣

held as input by 𝑛 − 2𝑡 honest parties, all honest parties observe

this value.

The parties then vote for the values they have seen 𝑛 − 2𝑡 times

by sending either vote(·), vote(𝑣1), or vote(𝑣1, 𝑣2), depending on
how many such values they have seen. Each party 𝑃 looks at the

values that have received 𝑛− 𝑡 votes: there will be at most two such

values. If there are two, 𝑃 denotes them by 𝑎 and 𝑏 such that 𝑎 ≤ 𝑏.

If there is only one such value 𝑣 , 𝑃 sets 𝑎 := 𝑣 and 𝑏 := 𝑣 . If there

are none, 𝑃 simply sets 𝑎 := ⊥ and 𝑏 := ⊥.
The key observation will be that, if there is a value 𝑣 held as

input by 𝑛 − 2𝑡 honest parties, then the honest parties hold the

same 𝑎 = 𝑣 or the same 𝑏 = 𝑣 . The parties then first try to agree

on 𝑎: they run a BA protocol ΠBA on their values 𝑎 and obtain an

output 𝑎′. Afterwards they check whether they are happy with 𝑎′

by joining ΠBA once again: with input 1 if 𝑎 = 𝑎′ and 0 otherwise.

If ΠBA returns 1, the parties output 𝑎′. If ΠBA returns 0, the parties

check whether they hold the same value 𝑏 with the same strategy:

they join ΠBA with input 𝑏, and obtain output 𝑏′. Afterwards, they
join ΠBA again with input 1 if 𝑏 = 𝑏′ and 0 otherwise. If the output

is 1, they output 𝑏′, and otherwise they output ⊥.
This way, if 𝑛 − 2𝑡 honest parties hold the same input, the out-

put is guaranteed to be non-⊥, which ensures that Bounded Pre-

Agreement holds. In addition, if the parties output a non-⊥ value,

we are able to show that some honest party has received it from

𝑛 − 2𝑡 > 𝑡 parties in the first step, and therefore it is an honest

input, which ensures that Intrusion Tolerance holds.

We present the code of ΠBA+ below.

Protocol 𝚷BA+

Code for party 𝑷 with input 𝒗in

1: Send 𝑣in to all parties.

2: Check if there is any value received from 𝑛 − 2𝑡 parties. If there

is none, send vote( ·) to all parties. If there is only one, let this

value be 𝑣1 and send vote(𝑣1 ) to all parties. If there are two, let

these values be 𝑣1 and 𝑣2 and send vote(𝑣1, 𝑣2 ) to all parties.

3: Let 𝑎 := ⊥, 𝑏 := ⊥. If there is a single value 𝑣 voted by 𝑛 − 𝑡

parties, set 𝑎 := 𝑣 and 𝑏 := 𝑣. If there are two values 𝑣 ≤ 𝑣′

voted by 𝑛 − 𝑡 parties, set 𝑎 := 𝑣 and 𝑏 := 𝑣′ .
4: Join ΠBA with input 𝑎 and obtain output 𝑎′. If 𝑎′ = 𝑎 ≠ ⊥, join

ΠBA with input 1, and otherwise with input 0. If ΠBA returns 1,

output 𝑎 and terminate.

5: Join ΠBA with input 𝑏 and obtain output 𝑏′. If 𝑏′ = 𝑏 ≠ ⊥, join
ΠBA with input 1, and otherwise with input 0. If ΠBA returns 1,

output 𝑏 and terminate. Otherwise, output ⊥ and terminate.

The next theorem discusses the guarantees of ΠBA+.

Theorem 6. Assume a BA protocol ΠBA resilient up to 𝑡 < 𝑛/3 cor-
ruptions. Then, there is a BA protocol ΠBA+ resilient up to 𝑡 < 𝑛/3 cor-
ruptions that additionally achieves Intrusion Tolerance and Bounded

Pre-Agreement. ΠBA+ has communication complexity bits𝜅 (ΠBA+) =
𝑂 (𝜅𝑛2) + bits𝜅 (ΠBA) and round complexity rounds(BA+) = 𝑂 (1) ·
rounds𝜅 (ΠBA).

Proof. We first show that ΠBA+ is indeed a BA protocol. Agree-

ment and Termination follow from the fact that ΠBA satisfies these

properties. If all honest parties hold the same input value 𝑣 , then no

honest party receives 𝑣 ′ ≠ 𝑣 from 𝑛 − 2𝑡 > 𝑡 parties, and therefore

all honest parties send (vote, 𝑣). Then, the honest parties see at
most 𝑡 votes for any value 𝑣 ′ ≠ 𝑣 , and therefore all honest parties

set 𝑎 = 𝑏 = 𝑣 . They join the ΠBA invocation in line 4 with input

𝑎 = 𝑣 , and, since ΠBA achieves Validity, they agree on 𝑎′ = 𝑣 . All

honest parties join the second ΠBA invocation of line 4 with input

1, and therefore they agree on 1 and output 𝑣 , hence Validity holds.

We now focus on Intrusion Tolerance. If the honest parties output

some value 𝑣 ≠ ⊥, then this is the value 𝑎 or𝑏 obtained by an honest
party 𝑃 (due to ΠBA’s Validity). 𝑃 has received 𝑛 − 𝑡 votes for 𝑣 ,

hence at least one vote from some honest party 𝑃 ′. Then, 𝑃 ′ has
received 𝑣 from 𝑛 − 2𝑡 > 𝑡 parties, hence from at least one honest

party, and therefore Intrusion Tolerance holds.

For Bounded Pre-Agreement, we show that, if there is a value 𝑣

held as input by 𝑛 − 2𝑡 honest parties, then the value agreed upon

is not ⊥.
We establish that, in line 2, every party sees at most two input

values from 𝑛 − 2𝑡 parties each: if a party has received at least three

input values sent by 𝑛 − 2𝑡 parties each, we obtain 3 · (𝑛 − 2𝑡) ≤ 𝑛,

contradicting 𝑡 < 𝑛/3. Hence, each party sees at most two values

from 𝑛 − 2𝑡 parties each, and one of these is 𝑣 . Then, each honest

party sends a vote for 𝑣 , and possibly for a second value.

Afterwards, each party receives the 𝑛 − 𝑡 votes for 𝑣 from the

honest parties. In addition, each party receives 𝑛 − 𝑡 votes for two

values at most: since each party votes for at most two values, there

are at most 2𝑛 votes in total. Assuming that a party receives 𝑛 − 𝑡
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votes for at least three values implies 3 · (𝑛 − 𝑡) ≤ 2𝑛, which

contradicts that 𝑡 < 𝑛/3.
If every honest party sees 𝑣 as the only value with 𝑛 − 𝑡 votes,

then every honest party sets 𝑎 = 𝑏 = 𝑣 , and therefore all honest

parties output 𝑣 in line 4. Otherwise, let 𝑃 and 𝑃 ′ be two honest

parties. We assume that 𝑃 sees two values with 𝑛−𝑡 votes each: one
of these we know to be 𝑣 , and the other is 𝑣 ′ ≠ 𝑣 . We have showed

that 𝑃 ′ also sees 𝑣 with 𝑛 − 𝑡 (honest) votes, and we assume that

𝑃 ′ receives 𝑛 − 𝑡 votes for a value 𝑣 ′′ such that 𝑣 ′′ ∉ {𝑣, 𝑣 ′}. This
leads to a contradiction as 𝑃 ′ has received 𝑛 − 𝑡 honest votes for 𝑣 ,

and at least 𝑛 − 2𝑡 honest votes for 𝑣 ′. Since every party may vote

for at most two different values, there are at most 𝑡 honest votes

and 𝑡 votes from byzantine parties left for 𝑣 ′′: these are 2𝑡 < 𝑛 − 𝑡

in total.

It follows that every honest party obtains 𝑎, 𝑏 such that 𝑣 ∈
{𝑎, 𝑏} ⊆ {𝑣, 𝑣 ′}. The parties then try to agree on 𝑎 in line 4. If the

second ΠBA invocation of line 4 returns 0, then the honest parties

hold different values 𝑎: 𝑎 = 𝑣 for some honest parties, and 𝑎 = 𝑣 ′ for
the others. As every honest party has set 𝑎 and 𝑏 such that 𝑎 ≤ 𝑏,

this means that the honest parties hold the same value 𝑏 = 𝑣 and

output 𝑣 in line 5.

For the round complexity, note that ΠBA+ incurs two rounds of

communication and afterwards runs ΠBA at most four times. For

the communication complexity, note that each party sends at most

three values to all parties, and each of these values is an honest

party’s input, and therefore consists of 𝜅 bits. Afterwards, they run

ΠBA on 𝜅-bit inputs at most twice and on bits at most twice. □

7.2 From 𝚷BA+ to 𝚷ℓBA+

Wemay now describe our protocolΠℓBA+ for longmessages, relying

on ΠBA+ and on the outline of prior works [6, 41].

ΠℓBA+ makes use of Reed-Solomon (RS) codes [45], which allow

each party to split its value into 𝑛 codewords so that reconstructing

the original value only requires 𝑛 − 𝑡 of these 𝑛 codewords. To

enable the parties to detect corrupted codewords, and also to com-

press values, prior works make use of collision-free cryptographic

accumulators [42]. Essentially, accumulators convert a set (in our

case, the 𝑛 codewords) into a 𝜅-bit value and provide witnesses

confirming the accumulated set’s contents. For this task, we use

Merkle Trees (MT) [39], which do not require a trusted dealer. We

briefly describe RS codes and MT below.

ΠℓBA+ assumes standard RS codes with parameters (𝑛, 𝑛−𝑡). This
provides us with a deterministic algorithm RS.encode(𝑣), which
takes a value 𝑣 as input and converts it into𝑛 codewords (s1, . . . , s𝑛)
of 𝑂 (

��
bits(𝑣)

��/𝑛) bits each. The codewords s𝑖 are elements of a

Galois Field F = 𝐺𝐹 (2𝑎) with 𝑛 ≤ 2
𝑎−1. To reconstruct the original

value, RS codes provide a decoding algorithm, RS.decode, which

takes as input𝑛−𝑡 of the𝑛 codewords and returns the original value

𝑣 . Any 𝑛 − 𝑡 of the 𝑛 codewords uniquely determine the original

value 𝑣 .

AnMT is a balanced binary tree that enables us to compress a

multiset of values into a𝜅-bit encoding, and to efficiently verify that

some value belongs to the compressed multiset. Given a multiset

𝑆 = {s1, . . . , s𝑛}, the MT is built bottom-up, using the collision-

resistant hash function 𝐻𝜅 : starting with 𝑛 leaves, where the 𝑖-th

leaf stores 𝐻𝜅 (s𝑖 ). Each non-leaf node stores 𝐻𝜅 (ℎleft ∥ ℎright),

where ℎleft and ℎright are the hashes stored by the node’s left

child and resp. right child. This way, the hash stored by the root

represents the encoding of 𝑆 . Given the root’s hash 𝑧, one can prove

that s𝑖 belongs to the compressed multiset using a witness 𝑤𝑖 of

𝑂 (𝜅 · log𝑛) bits. The witness 𝑤𝑖 contains the hashes needed to

verify the path from the 𝑖-th leaf to the root. Note that the collision-

resistance assumption leads to different encodings for different

multisets, and prevents the adversary from producing witnesses for

values of its own choice. We will use MT.Build(𝑆) to denote the

(deterministic) algorithm that creates theMT for the given multiset

𝑆 and returns the hash stored by the root 𝑧 and the witnesses

𝑤1,𝑤2, . . . ,𝑤𝑛 . Afterwards,MT.Verify(𝑧, 𝑖, s𝑖 ,𝑤𝑖 ) returns true if
𝑤𝑖 proves that 𝐻𝜅 (s𝑖 ) is indeed stored on the 𝑖-th leaf of the MT

with root hash 𝑧 and false otherwise.

Then, ΠℓBA+ consists of three steps. In the first step, every

party computes s1, . . . , s𝑛 := RS.encode(𝑣in) and 𝑧,𝑤1, . . . ,𝑤𝑛 :=

MT.Build({s1, . . . , s𝑛}). Second, the parties agree on an encoding

𝑧★ with the help of ΠBA+. In the third step, the parties obtain

the final output. If ΠBA+ returns ⊥, the parties output ⊥. Oth-
erwise, if ΠBA+ returns 𝑧★, every party 𝑃★ holding 𝑧 = 𝑧★ dis-

tributes 𝑣★ := 𝑣in to all the parties. To achieve this using only

𝑂 (ℓ𝑛 + poly(𝑛, 𝜅)) bits, 𝑃★ sends s𝑖 and its MT witness𝑤𝑖 to each

party 𝑃𝑖 . The MT witnesses allow the parties to detect and discard

any corrupted codewords. In addition, RS codes are deterministic,

so each party 𝑃𝑖 obtains a unique codeword s𝑖 from RS.encode(𝑣★).
Every party 𝑃𝑖 then sends (s𝑖 ,𝑤𝑖 ) to all parties, which allows the

parties to reconstruct 𝑣★.

Protocol 𝚷ℓBA+

Code for party 𝑷𝒊 with input 𝒗in

1: Let s1, s2, . . . , s𝑛 := RS.encode(𝑣in ) .
2: Let 𝑧, 𝑤1, 𝑤2, . . . , 𝑤𝑛 := MT.Build({s1, s2, . . . , s𝑛 }) .
3: Join ΠBA+ with input 𝑧.

4: If ΠBA+ has returned ⊥, output ⊥ and terminate.

5: If ΠBA+ has returned 𝑧★ ≠ ⊥, run the distributing step:

6: If 𝑧★ = 𝑧:

7: For every 1 ≤ 𝑗 ≤ 𝑛, send ( 𝑗, s𝑗 , 𝑤𝑗 ) to 𝑃 𝑗 .

8: If you received a tuple (𝑖, s𝑖 , 𝑤𝑖 ) :
9: If MT.Verify(𝑖, 𝑧★, s𝑖 , 𝑤𝑖 ) = true:
10: Send (𝑖, s𝑖 , 𝑤𝑖 ) to all parties.

11: Let 𝑆 := the set of correct tuples received.

12: Output 𝑣★ := RS.decode(𝑆 ) .

We may now sketch the proof of Theorem 1. The formal proof

is included in the full version of our paper.

Proof sketch of Theorem 1. As ΠBA+ achieves Termination,

ΠℓBA+ achieves Termination as well.

Then, note that ΠℓBA+ returns ⊥ whenever ΠBA+ returns ⊥, and
the parties obtain non-⊥ in ΠℓBA+ whenever ΠBA+ returns a non-

bot value. Moreover, the Intrusion Tolerance property of ΠBA+
ensures that, whenever ΠBA+ returns non-⊥, the parties agree on
the encoding 𝑧★ of an honest party’s input, therefore the parties

successfully decode a value that is an honest party’s input. Hence,

both Agreement and Intrusion Tolerance hold.

For Bounded Pre-Agreement, since ΠBA+ only returns ⊥ when

fewer 𝑛 − 2𝑡 parties hold the same input value, ΠℓBA+ also only
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returns ⊥ when fewer 𝑛 − 2𝑡 parties hold the same input value.

Finally, for Validity, if all honest parties hold the same input value

𝑣★, ΠBA+’s Validity ensures that the parties agree on the encoding

𝑧★ of 𝑣★, and therefore the parties successfully decode 𝑧★.

The round complexity follows immediately from the round com-

plexity of ΠBA+. For the communication complexity, note that, in

Step 3, each party sends at most two shares and two MT witnesses

to each party. This leads 𝑂 (ℓ𝑛 + 𝜅 · 𝑛2 log𝑛) + bits𝜅 (ΠBA+) bits of
communication. □

8 Conclusions

Achieving solutions with optimal communication has been the sub-

ject of an extensive line of works [6, 22, 23, 34, 41]. Theseworks have

primarily focused on the fundamental primitives BA and BC, where

Ω(ℓ𝑛) bits of communication are necessary, and have presented

protocols with communication complexity𝑂 (ℓ𝑛+poly(𝑛, 𝜅)), prov-
ing the lower bound tight for large enough ℓ . Our work shows

that the lower bound Ω(ℓ𝑛) is also tight for synchronous CA on

integers given that ℓ is large enough, namely ℓ = Ω(𝜅 · 𝑛 log2 𝑛).
We have presented a protocol that relies on finding some valid val-

ues’ longest common prefix, achieving CA with optimal resilience,

asymptotically optimal communication complexity, and efficient

round complexity. Our protocol is also deterministic and operates

without trusted setup.

We leave a number of exciting open problems. While we expect

that our techniques can be easily extended to the asynchronous

setting for a lower number of corruptions 𝑡 < 𝑛/5, it would be

interesting to see whether achieving asymptotically optimal com-

munication complexity for 𝑡 < 𝑛/3 corruptions in the asynchronous
model is possible. The same question applies to the synchronous

model with 𝑡 < 𝑛/2 corruptions assuming cryptographic setup. A

different direction could investigate whether the round complexity

can be reduced from 𝑂 (𝑛 log𝑛) to the optimal 𝑂 (𝑛) while main-

taining the communication complexity. Further works could also

consider extending our question to input spaces beyond Z.
It is also important to examine our protocol from a practical lens,

particularly in light of the poly(𝑛, 𝜅) factor in the communication

complexity. Given that modern hash functions are typically 256

bits long, our protocol offers optimal communication guarantees

for inputs of the order of a few kilobytes if 𝑛 = 10 or megabytes if

𝑛 = 1000. Whether the poly(𝑛, 𝜅) overhead can be reduced remains

an open question.
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