
The Urban Last Mile Problem:
Autonomous Drone Delivery to Your Balcony

Gino Brunner, Bence Szebedy, Simon Tanner and Roger Wattenhofer*
Computer Engineering and Networks Laboratory

ETH Zurich
brunnegi,simtanner,wattenhofer@ethz.ch, bence.szebedy@gmail.com

Abstract— Drone delivery has been a hot topic in the industry
in the past few years. However, existing approaches either focus
on rural areas or rely on centralized drop-off locations from
where the last mile delivery is performed. In this paper we
tackle the problem of autonomous last mile delivery in urban
environments using an off-the-shelf drone. We build a prototype
system that is able to fly to the approximate delivery location
using GPS and then find the exact drop-off location using visual
navigation. The drop-off location could, e.g., be on a balcony
or porch, and simply needs to be indicated by a visual marker
on the wall or window. We test our system components in
simulated environments, including the visual navigation and
collision avoidance. Finally, we deploy our drone in a real-world
environment and show how it can find the drop-off point on
a balcony. To stimulate future research in this topic we open
source our code.

I. INTRODUCTION

Amazon, Google, UPS and a multitude of startups are
testing drone delivery services. They all have impressive
videos that show their systems in action. These videos have
in common that the drones are delivering a package to a
farm or an estate, with no other house in sight. In reality, a
growing number of people in the world live in dense urban
areas, in apartments or condominiums. According to World
Bank data, urban living is the norm already today, and its
share is growing steadily [1].

In this paper we study the urban last mile problem. In
a multi-storey house environment, the problem does not end
with finding the right building. As a next step the drone needs
to find the right apartment. Then, the drone must drop the
packet at the right location, usually a balcony with limited
space for maneuvering. While doing all this, the drone needs
to circumnavigate any obstructions.

Our contribution is a suite of software1 aiming to enable
autonomous last mile drone delivery, including:

• Autonomous control logic with high level control func-
tions (takeoff, land, approach visual marker, fly to
coordinates, etc.) and interfacing the rest of the software
nodes.

• Visual odometry algorithm (SVO) with full calibration
for the Intel Aero RTF Drone, usable for vision based
navigation.

*Authors listed in alphabetical order
1Available here:

https://github.com/szebedy/autonomous-drone

• Trajectory planner node (Ewok) with collision avoid-
ance, adjusted for usage with the Intel Aero RTF Drone.

• Visual marker tracker (WhyCon) providing precise es-
timates of the marker location at a distance of up to 7
meters using the front-facing camera of the Intel Aero
RTF Drone with a resolution 640 by 480 pixels.

• Simulation environment with a preconfigured test sce-
nario including an apartment with balcony equipped
with the WhyCon visual marker. The environment also
contains a simulated drone that seamlessly replaces real
hardware by providing the same output messages.

II. RELATED WORK

Despite the simultaneously growing popularity of un-
manned aerial vehicles (UAVs) and online shopping with
home delivery, the amount of scientific work in the area
of drone delivery is surprisingly limited. Although Joerss
et al. [2] predict that autonomous vehicles will deliver 80
percent of parcels in the future, they conclude that an
autonomous drone delivery model is only viable in rural
areas. D’Andrea [3] states that although drone delivery can
be feasible and even profitable, there are a few key challenges
that need to be addressed, like vehicle design, localization,
navigation and coordination. Additional challenges include
privacy, security and government regulations.

Guerrero et al. [4] propose a UAV design with a cable
suspended payload. They also design control laws such that
the swing of the payload is minimized along the trajectory.
In order to address vehicle coordination, Dorling et al. [5]
propose two vehicle routing problems, one of which mini-
mizes delivery costs, while the other minimizes the overall
delivery time. A complete prototype system is proposed in
[6], including an Android application to place orders of drug
parcels and an autonomous drone to deliver them. Park et
al. [7] investigate the battery management perspectives of
a drone delivery business with the promise of reducing the
battery and electricity costs by 25% and the average waiting
time for the packets by over 50%.

While implementation and operation management solu-
tions are key in enabling drone delivery, security issues and
government regulations are not to be neglected. Sanjab et
al. [8] introduce a mathematical framework for analyzing
and enhancing the security of drone delivery systems. They

https://github.com/szebedy/autonomous-drone

approach this issue with a game theoretic analysis between
the operator of a drone delivery fleet and a malicious attacker.

Finally, although public perception may be controversial
regarding autonomous drone delivery, the findings of Sto-
laroff et al. [9] may incite governments to pass regulations
in favor of this future technology. They suggest that drone
delivery has the potential to reduce energy usage and green-
house gas emissions in the transportation sector. This claim
corresponds with the vision of Google’s project Wing [10].
Although they do not disclose implementation details, they
claim that for local deliveries the CO2 emissions of their
aircraft are significantly lower than of delivery trucks. In
contrast to our approach, the prototypes displayed on their
website all include fixed wings, presumably for increased
energy efficiency. Apart from designing vehicles, they are
also working on an unmanned traffic management system,
with the aim of enabling safe and responsible shared airspace
usage for hobbyists and commercial operators alike.

Amazon’s drone delivery service, Prime Air [11], tested
different vehicle designs to discover the best delivery method
in different operating environments. They show three differ-
ent vehicle designs, but one feature is common in all of them;
they include four rotors, similar to our approach.

The multinational logistics company UPS has also con-
ducted tests with autonomous delivery drones [12]. However,
instead of replacing delivery trucks, they plan to extend their
range and increase their efficiency simultaneously with the
delivery drones. The drone they tested was launched from the
top of a delivery truck, autonomously delivered a package
and then returned to the ground vehicle. UPS claims that
reducing the path of every driver by one mile per day would
result in savings of up to $50 million.

Although each of the above mentioned multinational
companies have their own approach to autonomous drone
delivery, they all share one aspect; they plan to use this
type of service in rural areas with low to average population
density, where it is possible to navigate precisely based on
GPS signals, and there is enough space for landing sites or
drop off locations. In contrast, we aim to enable autonomous
drone delivery in dense urban environments with buildings
equipped with a small private area for landing, e.g., a balcony
or a porch.

III. METHOD

In our proposed scenario, the delivery drone autonomously
navigates to a location above the recipient’s home using
GPS based navigation. This is possible since GPS navigation
remains accurate as long as the drone stays above the
rooftops. Then, it switches to vision based navigation and
starts descending in order to find the target balcony, tagged
by a visual marker. Once the balcony is found, the drone
enters the balcony, drops off the package, and leaves on the
same path it arrived. Therefore, the delivery recipient needs
to cooperate with the delivery service provider. On one hand,
the recipient needs to print a visual marker, and stick it on
the balcony door or wall where it is clearly visible. On the
other hand, the recipient needs to provide GPS coordinates of

a descent channel in front of the balcony, where the delivery
drone can descend while scanning the building for the visual
marker.

We have chosen the size of the visual marker such that
it can be printed on a sheet of paper of the size US letter
or A4. Our work is currently restrained to using a single
marker for detection. However, in a real-life scenario the
print might include two visual markers; one of which can be
detected at larger distances, and another one that can encode
the information necessary for parcel identification.

Once the visual marker is printed and placed on a vertical
surface on the balcony, the exact GPS coordinates of a
descent channel in front of the balcony need to be provided.
The graphical user interface (GUI) aiding the recipients in
providing the coordinates could take advantage of Google
maps’ high resolution satellite images in urban environments.
However the implementation of the GUI is not part of this
paper and left for future work. The descent channel should
be free from obstacles and provide direct view on the visual
marker. To further facilitate the detection of the marker, an
approximate direction towards the visual marker could also
be specified.

With the above mentioned prerequisites fulfilled, the de-
livery service provider attaches the packet to one of its
autonomous drones and launches the delivery. Our algorithm
assumes that the drone can navigate to the desired coordi-
nates using GPS based navigation. Since this is only possible
at high altitudes where GPS signals are not disrupted by
buildings, the drone would arrive at an altitude above the
delivery location.

Our algorithm uses visual-inertial localization to navigate
the drone to the target balcony. First, the drone starts de-
scending in the obstacle free channel, while continuously
scanning the building for the visual marker. Once the visual
marker is detected, the drone uses its trajectory planner with
collision avoidance to approach the marker.

Our implementation is currently restricted to au-
tonomously approaching the marker, however, in a final
system the drone must also release the parcel and finally
navigate back to the launching location on the same path it
arrived.

IV. SYSTEM ARCHITECTURE

Figure 1 shows an overview of the system architecture of
our autonomous delivery drone. The application runs on two
separate processors. The flight controller contains an embed-
ded processor capable of executing the autopilot . All other
software components of the system (i.e., visual odometry,
trajectory planner, visual marker tracker and control logic)
are executed on a separate processor. The autopilot can take
position setpoints as its input and calculate the required
motor power as the output, based on the current position
estimate. The GPS module provides precise global position
estimates in large open environments and thus can be used
for localization with the aid of the sensor data provided by
the inertial measurement unit (IMU).

Compute Board

Front
camera

RGB
image

Depth
image

Trajectory
planner

Control
logic

Setpoint
position

Visual
odometry

Bottom
camera

Motors

Mono
image

Motor
power

Global
position

GPS

Setpoint
position

Visual
marker
tracker

Marker
position

Endpoint
position

Local
position

Flight controller

IMU
Sensor

data
Autopilot

Fig. 1. System architecture of the autonomous delivery drone. The
hardware blocks of the system are represented by rounded green rectangles,
whereas the software blocks are represented by the blue rectangles. The
different modules of the system communicate with each other through the
data structures described by the ellipsoids.

However, since buildings can reflect off GPS signals
causing localization errors of several meters, GPS becomes
unusable for localization in clustered urban environments.
Therefore, the local position provided by visual odometry is
essential for this application. The system includes a down-
ward facing camera providing monochrome images used
for visual odometry. It also features a front-facing camera
capable of streaming depth and RGB images. The trajectory
planner uses the depth images to build an occupancy grid to
avoid collisions, while the visual marker tracker processes
the RGB images, since we chose to identify the delivery
target location with a visual marker.

Finally, the control logic block ensures autonomous mis-
sion execution. It acts as an overseer of the whole application
and an interface between the two processors. Thus, it is re-
sponsible for maintaining the current state of the system (for
example the marker position), executing the mission based
on the system state, error handling and sending setpoint
positions to the autopilot based on the mission state and
trajectory planner output.

V. IMPLEMENTATION

Since visual odometry is a computationally intensive task,
researchers in this field typically use customized drones with
desktop grade processing units [13], [14], [15]. In our work
we present a solution with an off-the-shelf drone, the Intel R©

Aero Ready to Fly (RTF) Drone. Figure 2 illustrates that
the RTF drone contains all the hardware blocks displayed
in Figure 1, and is capable of executing all software blocks
simultaneously.

While the autopilot runs on an embedded microprocessor
(STM32) with real-time guarantees, the remaining software
blocks are executed on a quad core processor with Intel

Fig. 2. Hardware components of the Intel R© Aero Ready to Fly Drone [16].
This drone is a fully-assembled, flight tested, ready to fly quadcopter
intended to alleviate some of the development burden from commercial
drone developers and researchers.

x64 architecture (Intel Atom R© x7-Z8750). This processor is
capable of running an Ubuntu 16.04 operating system with
the Robot Operating System (ROS).

A. Robot Operating System (ROS)

Despite its name, the Robot Operating System is not an
operating system but rather a middle-ware or framework
to facilitate building robot applications. A ROS application
consists of processes, called nodes, communicating through
message queues, called topics. In order to encourage collab-
orative robotics software development, ROS offers a large
variety of conventionalized data types to be used as topics
and it is possible to define new, application specific ones.

Thanks to the open source nature of ROS, our application
can take advantage of a few already existing ROS nodes
developed in different laboratories all across the world.
For example, we use the visual marker tracker and visual
odometry ROS packages without modification, however the
control logic block has been created for this application from
scratch, and the trajectory planner ROS node has also been
customized for our application.

Intel provides a ROS package to enable the usage of
the front-facing camera of the RTF drone with ROS. Once
started, various raw and processed image streams are avail-
able in ROS for further processing. There is, however, no
official ROS driver for the bottom-facing camera, therefore
we modified an existing ROS driver designed for V4L USB
cameras in order to acquire the desired image stream.

B. Autopilot

The flight controller of the RTF drone supports two of the
most widespread autopilots; PX4 [17] and Ardupilot. While
both autopilots cover a great range of functionalities and are
mature, well maintained software, we decided to use the PX4
flight stack for the following reasons:

• PX4 was meant for advanced drone applications. It
can be used in hybrid systems, with safety critical
algorithms running on a real-time OS that can com-
municate with ROS running on Linux on a companion
computer [18].

Gazebo

ROS

Front
camera

RGB
image

Depth
image

Trajectory
planner

Control
logic

Setpoint
position

Visual
odometry

Bottom
camera

Motors

Mono
image

Motor
power

Global
position

GPS

Setpoint
position

Visual
marker
tracker

Marker
position

Endpoint
position

Local
position

IMU
Sensor

data

PX4 on
SITL

Fig. 3. System architecture of the simulated autonomous delivery drone.
The simulated hardware blocks of the system are represented by rounded
orange rectangles, and the ROS nodes are represented by the blue rectangles.
The different modules of the system communicate with each other through
the data structures described by the ellipsoids.

• It can be compiled for POSIX systems and offers
a more mature software-in-the-loop (SITL) simulation
with built-in support of Gazebo simulator.

• The pose estimator in its 1.8.0 release 2 supports the di-
rect fusion of data coming from visual inertial odometry
and has an interface for collision avoidance.

PX4 features an off-board flight mode where the vehi-
cle obeys a position, velocity or attitude setpoint provided
through the MAVLink communication protocol. In our im-
plementation, the compute board periodically updates the
position setpoint and forwards it to the flight controller in
order to achieve the autonomous navigation.

C. Visual Odometry

We have considered several types of algorithms for vision-
based localization. The options include optical flow (OF),
simultaneous localization and mapping (SLAM) and visual
odometry (VO).

The Intel Aero RTF drone supports the usage of OF,
but requires external hardware (distance sensor and special-
purpose camera) to be installed on the drone. On the other
hand, a SLAM library called RTAB-Map is provided with
the RTF drone installation files, but since it barely fits the
power budget of the compute board, it is not usable for
autonomous navigation in practice. Parallel Tracking and
Mapping (PTAM) [19] is a SLAM algorithm designed for
hand-held cameras. While it requires low processing capac-

2https://github.com/PX4/Firmware/releases/tag/v1.
8.0

outer: 122mm
inner: 50mm

PLEASE MEASURE ON FINAL PRINTFig. 4. The WhyCon visual marker is a simple thick black circle with
known inner and outer diameters. The marker print is white inside and
outside around the circle, such that the black circle is clearly distinguishable
from its environment.

ity, our empirical evaluation showed that it is not precise and
robust enough to be used for vision-based localization.

The RTF drone features a monochrome downward facing
camera with global shutter. This camera was meant for
VO, and several mature open-source VO algorithms exist,
therefore it was a logical choice to use VO for localization.
Robust Visual-Inertial Odometry (ROVIO) [20] and Semi-
Direct Visual Odometry (SVO) [21] are both well maintained
open-source VO algorithms, and they both integrate with
ROS. While both algorithms fit the computational budget
of the compute board, the shorter processing time of SVO
means shorter time delay for the pose estimator, enables
faster processing rate, and thus it is more suitable for our
application.

D. Visual Marker Tracker

Again, a large variety of visual markers with trackers
exists in the literature, each with different complexities and
advantages. For our application WhyCon [22] proved to
be an excellent solution, since it combines advantages like
precision, robustness, efficiency, low cost and it integrates
with ROS. The simple design of the WhyCon visual marker,
as illustrated on Figure 4, enables detection at large distances
with more than one orders of magnitude smaller processing
time than other marker trackers [22].

E. Trajectory Planner

The main purpose of the trajectory planner is to calculate
a collision free trajectory based on the current position of the
drone, the desired trajectory endpoint and the image stream
of the depth camera. Usenko et al. [23] propose a real-time
approach by storing an occupancy grid of the environment in
a three-dimensional (3D) circular buffer that moves together
with the drone. They represent the trajectories by uniform
B-Splines, which ensures that the trajectory is sufficiently
smooth and allows for efficient optimization.

Our trajectory planner node expects the coordinates of the
desired target location as its input. Then, it first calculates
a collision free trajectory based on the occupancy grid,
with the current position of the drone as starting point and
the target location as endpoint of the trajectory. Since the
output of the node is a setpoint position published with
a rate of 2 Hz, it also calculates uniformly distributed

https://github.com/PX4/Firmware/releases/tag/v1.8.0
https://github.com/PX4/Firmware/releases/tag/v1.8.0

control points along the trajectory, subject to velocity and
acceleration constraints. During flight, the occupancy grid
is continuously updated based on the depth camera output.
Before the next setpoint position is published towards the
flight controller, the trajectory is re-optimized in order to
avoid undesired behavior (e.g., collision or large deviation
from the trajectory). Figure 5 shows the trajectory planning
in action during simulation, including the occupancy grid
shown in red.

F. Control Logic

The control logic acts as an interface between the system
components and ensures autonomous mission execution. It
relies on ROS topics to communicate with the remain-
ing nodes, for example to read the estimate of the visual
marker position. Although the autopilot uses the MAVLink
communication protocol, the MAVROS package provides
a communication driver and exposes various commands,
system state variables and interfaces as ROS topics. For
example by publishing to the corresponding MAVROS topic
the autopilot can be commanded to take off and fly to a given
position. Also, by implementing a callback function, the local
position of the drone can be monitored and processed. In
order to keep track and conveniently switch between different
coordinate frames, the control logic block uses the second
generation of the transform ROS package, called tf2.

VI. EVALUATION

Until the research community agrees on a quantitative yet
meaningful evaluation method for drone delivery applica-
tions, empirical evaluation remains the best option. Since
field tests are expensive both in terms of time and - in case
of crashes - money, a simulation environment is essential for
development and testing.

A. Simulation

As mentioned in Section V-B, PX4 offers SITL simulation
with support for the Gazebo simulator. Thus, it is possible
to simulate the application on a single computer running
Ubuntu. Figure 3 illustrates the system architecture of the
simulated autonomous delivery drone. Compared to Figure 1
it is apparent that the ROS software nodes are left untouched.
Thus, they can be launched and executed on the computer
used for simulation in the same manner as they were on
the compute board of the drone. The main difference is
that they receive their input image streams from simulated
cameras inside the Gazebo simulator, instead of the real
hardware. The same applies for the autopilot; PX4 on SITL
communicates with ROS through MAVROS messages the
same way it would if it were executed inside the flight
controller.

B. Visualization

Gazebo offers a GUI for 3D visualization of the simulation
environment. RVIZ on the other hand is a tool provided by
ROS offering 3D visualization of transformations and sensor
information, as illustrated in Figure 5. While the GUI of

Fig. 5. RVIZ GUI snapshot of the same environment as seen in Figure 6.
The red cubes represent the occupancy grid, while the blue and green dots
along the green trajectory line are the past and future control setpoints sent
to the flight controller. The perpendicular red-green-blue lines with texts
represent different frames logged by the transform package.

Fig. 6. Snapshot of the Gazebo simulator GUI during autonomous delivery
mission execution. The simulated drone has currently found the visual
marker and attempts to approach it using the trajectory planner with collision
avoidance.

Gazebo displays how a human perceives the environment,
RVIZ visualizes the robot’s sensory information, and can
be used with real sensor data as well. With the help of
RVIZ we visualize the occupancy grid stored in the the
ring buffer, as described in Section V-E. We also visualize
the current trajectory of the drone, including the past and
future control setpoints sent to the flight controller. Finally,
we visualize various frames and positions as maintained by
the transform package, like the drone body frame and the
estimated position of the visual marker.

C. Experimental Results

We evaluate the maximum detection distance and process-
ing time of the WhyCon visual marker tracker with both
image resolutions supported by the front-facing camera of

Vehicle

Compute
Board

UART

Flight
Controller

Ground
Station

WiFi

Transmitter
2.4 GHz
DMSX

Fig. 7. Overview of the field test setup. The vehicle can be controlled
in manual flight mode using the transmitter, or in off-board flight mode
through MAVLink commands sent by the compute board. Code execution
on the compute board can be launched and monitored on a ground station
through WiFi connection.

the drone. For the distance measurements the marker was
moved along the optical axis of the camera, however similar
distances were measured with the marker on the edge of the
camera field of view. At larger detection distances the visual
marker could be tilted up to 45 degrees without detection
failure. The processing times include the overhead introduced
by the message propagation of ROS and represent the total
time elapsed between capturing an image and receiving the
position of the visual marker. The results in Table I show
that although increasing the image resolution can double
the maximal detection distance, the average processing time
increases nearly tenfold.

We also evaluated the processor usage of three different
vision-based localization algorithms on the compute board.
The processor usage of the whole system was measured
with the Unix program htop over a one minute time
period, while executing different vision-based localization
algorithms. The results are summarized by Table II. All
algorithms were executed with an input image stream of 640
by 480 monochrome pixels published at a rate of 30 Hz. The
results show that PTAM has the lowest average processor
usage per core. Although the processor usage of ROVIO
is significantly lower than of SVO, SVO makes better use
of the 4 available processor cores and processes the frames
significantly faster. Even after reducing the performance
settings of ROVIO (NMAXFEATURE=15, PATCHSIZE=4,
NPOSE=0), the long processing time per frame resulted in
an average loss of 5 frames per second. Therefore, in the

TABLE I
EVALUATION OF WHYCON VISUAL MARKER TRACKER ON THE INTEL

AERO COMPUTE BOARD

Image size Maximal detection Processing time [ms]
[pixels x pixels] distance [m] Avg Max

640 x 480 7 ± 0.5 10.61 12.23
1920 x 1080 14 ± 0.5 102.35 240.72

Fig. 8. Snapshot of the drone approaching the visual marker on a balcony
during a field test.

final implementation we use SVO.

D. Field Test

Figure 7 displays the setup needed for testing our au-
tonomous delivery drone application. The compute board
of the vehicle can act as a WiFi hotspot and thus enables
a laptop, or any WiFi compatible device to establish a
connection with it. Then, the ground station can connect to
the compute board through ssh and launch the ROS nodes
of the application. The ground station can also run the
qGroundControl application, which communicates with the
flight controller (through the compute board) and provides
numerous features like full flight control, autopilot parameter
changes and flight log recordings. Figure 8 shows our drone
while approaching the visual marker on an urban balcony. A
link to a complete video demonstrating the functionality of
our code can be found on our GitHub repository referenced
in Section I.

E. Lessons Learned

The first lesson we learned is that autonomous drone
flights are dangerous. During a field test between five-storey
buildings, a GPS location error of 10m caused the drone
to crash into a concrete wall that was 5m away from the
desired flight location. We recommend system engineers to
test their application on a meadow or sports field, where

TABLE II
AVERAGE PROCESSOR UTILIZATION OF THE COMPUTE BOARD OVER A 1

MINUTE PERIOD WHILE EXECUTING DIFFERENT VISION-BASED

LOCALIZATION ALGORITHMS

VIO algorithm Avg. processor usage [%] Processing rate [Hz]
Without 8 ± 5 n/a
PTAM 22 ± 10 30
SVO 71 ± 10 30

ROVIO (default) 51 ± 10 15
ROVIO (reduced) 46 ± 10 25

buildings are at least as far away as their height. Also we
recommend to bind one of the switch positions on the radio
transmitter to manual flight mode. In case the developer
observes unexpected behavior she can immediately regain
control over the drone by switching to manual flight mode.

Another finding is that the hardware of a delivery drone
mainly needs to be tailored to the VIO algorithm. On
one hand, VIO needs high computing power compared to
the other software components, and state-of-the-art VIO
algorithms require a dedicated GPU. On the other hand,
inertial data can only be used if time stamps are precisely
synchronized with the camera frames. Since the hardware
of the Intel Aero RTF Drone does not support this feature,
inertial data cannot be readily used to help with navigation.

VII. CONCLUSION AND FUTURE WORK

Although autonomous drone delivery might sound like
science fiction today, our work provides a working proof
of concept that can be further extended to a complete last
mile delivery solution in urban environments. Despite the
complexity of this problem, we were able to address several
key aspects of it including vision-based navigation and target
location detection.

Our software suite enables the drone to reach a drop-
off location by using visual navigation. Here we discuss
challenges that should still be addressed in the future. For
one, the collision avoidance only uses data from the front-
facing camera, this can be problematic especially when the
drone is navigating in tight spaces or is trying to land.
Adding an additional bottom-facing (depth) camera could
alleviate this issue. Currently the drone is solely relying
on visual data for navigation and stabilization. Combining
the camera images with data from the IMU could result in
more stable flight trajectories and thus allowing for faster
flight speeds. In our current implementation the drone simply
approaches the building in a straight line, and then descends
vertically until it detects the marker. This requires the initial
target GPS location to be very accurate. However, the drone
should be able to automatically scan entire buildings in
case it cannot immediately detect the marker. Finally, we
have not considered the problem of actual package transport.
This would require a mechanism to load, carry and release
packages. For that, the flight controller might also require
some tuning to maintain stable flight with the additional
weight.

The repository containing our algorithms and calibration
data is publicly available on GitHub including detailed
installation and usage instructions. Since our system is based
on the open source project ROS, it can easily be adapted
to other hardware platforms. We believe this repository can
form the basis of various research projects investigating
the above mentioned topics or exploring autonomous drone
applications in general.

REFERENCES

[1] W. Bank, “Urban population (% of total),” https://data.worldbank.org/
indicator/SP.URB.TOTL.IN.ZS, 2018, accessed: 2019-05-09.

[2] M. Joerss, A. Schrder, F. Neuhaus, C. Klink, and F. T. Mann, “Parcel
delivery: The future of the last mile,” McKinsey & Company, Tech.
Rep., 2016.

[3] R. D’Andrea, “Guest editorial can drones deliver?” IEEE Trans.
Automation Science and Engineering, vol. 11, no. 3, pp. 647–
648, 2014. [Online]. Available: https://doi.org/10.1109/TASE.2014.
2326952

[4] M. E. Guerrero, D. A. Mercado, R. Lozano, and C. D. Garcia,
“Passivity based control for a quadrotor UAV transporting a
cable-suspended payload with minimum swing,” in 54th IEEE
Conference on Decision and Control, CDC 2015, Osaka, Japan,
December 15-18, 2015, 2015, pp. 6718–6723. [Online]. Available:
https://doi.org/10.1109/CDC.2015.7403277

[5] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski,
“Vehicle routing problems for drone delivery,” IEEE Trans. Systems,
Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 70–85, 2017.
[Online]. Available: https://doi.org/10.1109/TSMC.2016.2582745

[6] V. Gatteschi, F. Lamberti, G. Paravati, A. Sanna, C. Demartini,
A. Lisanti, and G. Venezia, “New frontiers of delivery services
using drones: A prototype system exploiting a quadcopter for
autonomous drug shipments,” in 39th IEEE Annual Computer
Software and Applications Conference, COMPSAC, Taichung, Taiwan,
July 1-5, Volume 2, 2015, pp. 920–927. [Online]. Available:
https://doi.org/10.1109/COMPSAC.2015.52

[7] S. Park, L. Zhang, and S. Chakraborty, “Battery assignment
and scheduling for drone delivery businesses,” in IEEE/ACM
International Symposium on Low Power Electronics and Design,
ISLPED, Taipei, Taiwan, July 24-26, 2017, pp. 1–6. [Online].
Available: https://doi.org/10.1109/ISLPED.2017.8009165

[8] A. Sanjab, W. Saad, and T. Basar, “Prospect theory for enhanced cyber-
physical security of drone delivery systems: A network interdiction
game,” in IEEE International Conference on Communications, ICC,
Paris, France, May 21-25, 2017, pp. 1–6. [Online]. Available:
https://doi.org/10.1109/ICC.2017.7996862

[9] J. Stolaroff, C. Samaras, E. O’Neill, A. Lubers, A. Mitchell,
and D. Ceperley, “Energy use and life cycle greenhouse gas
emissions of drones for commercial package delivery,” Nature
Communications, vol. 9, no. 1, 2018. [Online]. Available: https:
//doi.org/10.1038/s41467-017-02411-5

[10] X, “X - wing,” https://x.company/projects/wing/, 2018, accessed:
2019-05-09.

[11] Amazon, “Amazon prime air,” https://www.amazon.com/
Amazon-Prime-Air/b?ie=UTF8&node=8037720011, 2018, accessed:
2019-05-09.

[12] UPS, “UPS tests residential delivery via drone launched
from atop package car,” https://pressroom.ups.com/pressroom/
ContentDetailsViewer.page?ConceptType=PressReleases&id=
1487687844847-162, 2018, accessed: 2019-05-09.

[13] J. Surber, L. Teixeira, and M. Chli, “Robust visual-inertial
localization with weak GPS priors for repetitive UAV flights,” in
IEEE International Conference on Robotics and Automation, ICRA
, Singapore, Singapore, May 29 - June 3, 2017, pp. 6300–6306.
[Online]. Available: https://doi.org/10.1109/ICRA.2017.7989745

[14] C. Papachristos, S. Khattak, and K. Alexis, “Autonomous exploration
of visually-degraded environments using aerial robots,” in 2017
International Conference on Unmanned Aircraft Systems (ICUAS),
June 2017, pp. 775–780. [Online]. Available: https://doi.org/10.1109/
ICUAS.2017.7991510

[15] I. Alzugaray, L. Teixeira, and M. Chli, “Short-term UAV path-
planning with monocular-inertial SLAM in the loop,” in IEEE
International Conference on Robotics and Automation, ICRA ,
Singapore, Singapore, May 29 - June 3, 2017, pp. 2739–2746.
[Online]. Available: https://doi.org/10.1109/ICRA.2017.7989319

[16] Intel, “Intel aero ready to fly drone,” https://www.intel.com/content/
www/us/en/products/drones/aero-ready-to-fly.html, 2018, accessed:
2019-05-09.

[17] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms,” in IEEE International Conference on Robotics and
Automation, ICRA 2015, Seattle, WA, USA, 26-30 May, 2015, 2015,
pp. 6235–6240. [Online]. Available: https://doi.org/10.1109/ICRA.
2015.7140074

https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
https://doi.org/10.1109/TASE.2014.2326952
https://doi.org/10.1109/TASE.2014.2326952
https://doi.org/10.1109/CDC.2015.7403277
https://doi.org/10.1109/TSMC.2016.2582745
https://doi.org/10.1109/COMPSAC.2015.52
https://doi.org/10.1109/ISLPED.2017.8009165
https://doi.org/10.1109/ICC.2017.7996862
https://doi.org/10.1038/s41467-017-02411-5
https://doi.org/10.1038/s41467-017-02411-5
https://x.company/projects/wing/
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1487687844847-162
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1487687844847-162
https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=PressReleases&id=1487687844847-162
https://doi.org/10.1109/ICRA.2017.7989745
https://doi.org/10.1109/ICUAS.2017.7991510
https://doi.org/10.1109/ICUAS.2017.7991510
https://doi.org/10.1109/ICRA.2017.7989319
https://www.intel.com/content/www/us/en/products/drones/aero-ready-to-fly.html
https://www.intel.com/content/www/us/en/products/drones/aero-ready-to-fly.html
https://doi.org/10.1109/ICRA.2015.7140074
https://doi.org/10.1109/ICRA.2015.7140074

[18] D. Technologies, “Why we chose PX4 (vs
APM) as luci’s default firmware,” accessed: 2019-
05-09. [Online]. Available: https://medium.com/@Dronesmith/
why-we-chose-px4-vs-apm-as-lucis-default-firmware-ea39f4514bef

[19] G. Klein and D. W. Murray, “Parallel tracking and mapping
for small AR workspaces,” in Sixth IEEE/ACM International
Symposium on Mixed and Augmented Reality, ISMAR, 13-16
November, Nara, Japan, 2007, pp. 225–234. [Online]. Available:
https://doi.org/10.1109/ISMAR.2007.4538852

[20] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart,
“Iterated extended kalman filter based visual-inertial odometry using
direct photometric feedback,” I. J. Robotics Res., vol. 36, no. 10,
pp. 1053–1072, 2017. [Online]. Available: https://doi.org/10.1177/
0278364917728574

[21] C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza,
“SVO: semidirect visual odometry for monocular and multicamera
systems,” IEEE Trans. Robotics, vol. 33, no. 2, pp. 249–265, 2017.
[Online]. Available: https://doi.org/10.1109/TRO.2016.2623335

[22] M. Nitsche, T. Krajnı́k, P. Čı́žek, M. Mejail, and T. Duckett, “Whycon:
An efficent, marker-based localization system,” in IROS Workshop on
Open Source Aerial Robotics, 2015.

[23] V. C. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers,
“Real-time trajectory replanning for MAVs using uniform b-
splines and a 3d circular buffer,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS, Vancouver, BC,
Canada, September 24-28, 2017, pp. 215–222. [Online]. Available:
https://doi.org/10.1109/IROS.2017.8202160

https://medium.com/@Dronesmith/why-we-chose-px4-vs-apm-as-lucis-default-firmware-ea39f4514bef
https://medium.com/@Dronesmith/why-we-chose-px4-vs-apm-as-lucis-default-firmware-ea39f4514bef
https://doi.org/10.1109/ISMAR.2007.4538852
https://doi.org/10.1177/0278364917728574
https://doi.org/10.1177/0278364917728574
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/IROS.2017.8202160

	Introduction
	Related work
	Method
	System Architecture
	Implementation
	Robot Operating System (ROS)
	Autopilot
	Visual Odometry
	Visual Marker Tracker
	Trajectory Planner
	Control Logic

	Evaluation
	Simulation
	Visualization
	Experimental Results
	Field Test
	Lessons Learned

	Conclusion and Future Work
	References

