
GraphFSA: A Finite State Automaton Framework for
Algorithmic Learning on Graphs

Florian Grötschlaa,1, Joël Mathysa,1, Christoffer Rauna and Roger Wattenhofera

aETH Zurich

Abstract. Many graph algorithms can be viewed as sets of rules
that are iteratively applied, with the number of iterations dependent
on the size and complexity of the input graph. Existing machine
learning architectures often struggle to represent these algorithmic
decisions as discrete state transitions. Therefore, we propose a novel
framework: GraphFSA (Graph Finite State Automaton). GraphFSA
is designed to learn a finite state automaton that runs on each node
of a given graph. We test GraphFSA on cellular automata problems,
showcasing its abilities in a straightforward algorithmic setting. For
a comprehensive empirical evaluation of our framework, we create
a diverse range of synthetic problems. As our main application, we
then focus on learning more elaborate graph algorithms. Our findings
suggest that GraphFSA exhibits strong generalization and extrapola-
tion abilities, presenting an alternative approach to represent these
algorithms.

1 Introduction

While machine learning has made tremendous progress, machines
still have trouble generalizing concepts and extrapolating to unseen
inputs. Large language models can write spectacular poems about
traffic lights, but they still fail at multiplying two large numbers.
They do not quite understand the multiplication algorithm since
they do not have a good representation of algorithms. We want to
teach machines some level of “algorithmic thinking.” Given some
unknown process, can the machine distill what is going on and
then apply the same algorithm in another situation? This paper
concentrates on one of the simplest processes: finite state automata
(FSA). An FSA is a basic automaton that jumps from one state to
another according to a recipe. FSAs are the simplest, interesting
version of an algorithm. However, if we assemble many FSAs in a
network, the result is remarkably powerful regarding computation.
Indeed, the simple Game of Life is already Turing-complete.

Building on the work of Grattarola et al. [6] and Marr and Hütt
[17], this paper presents GraphFSA (Graph Finite State Automaton),
a novel framework designed to learn a finite state automata on graphs.
GraphFSA extracts interpretable solutions and provides a framework
to extrapolate to bigger graphs, effectively addressing the inherent
challenges associated with conventional methods. To better under-
stand the capabilities of GraphFSA, we evaluate the framework on
various cellular automata problems. In this controllable setting, we
can test the model’s abilities to extrapolate and verify that GraphFSA

1 Equal contribution.

learns the correct rules. In addition, we introduce a novel dataset gen-
erator to create problem instances with known ground truth for the
evaluation of GraphFSA models. Subsequently, we consider more
elaborate graph algorithms to evaluate GraphFSA performance on
more complex graph problems. Our paper makes the following key
contributions:
• We introduce GraphFSA, an execution framework designed for al-

gorithmic learning on graphs, addressing the limitations of exist-
ing models in representing algorithmic decisions as discrete state
transitions and extracting explainable solutions.

• We present GRAB: The GRaph Automaton Benchmark, a versa-
tile dataset generator to facilitate the systematic benchmarking of
GraphFSA models across different graph sizes and distributions. 2

• We present Diff-FSA, one specific approach to train models for the
GraphFSA framework and use GRAB to compare its performance
to a variety of baselines, showcasing that our model offers strong
generalization capabilities.

• We provide a discussion and visualization of GraphFSA’s func-
tionalities and model variations. We provide insights into its ex-
plainability, limitations, and potential avenues for future work, po-
sitioning it as an alternative in learning graph algorithms.

2 Related work
Finite state automaton. A Finite State Automaton (FSA), also
known as a Finite State Machine (FSM), is a computational model
used to describe the behavior of systems that operates on a finite
number of states. It consists of a set of states, a set of transitions be-
tween these states triggered by input symbols from a finite alphabet,
and an initial state. FSAs are widely employed in various fields, in-
cluding computer science, linguistics, and electrical engineering, for
tasks such as pattern recognition [16], parsing, and protocol specifi-
cation due to their simplicity and versatility in modeling sequential
processes. Additionaly, there is a growing interest in combining FSA
with neural networks to enhance performance and generalization, a
notion supported by studies by de Balle Pigem [1] on learning FSAs.
Additional research by Mordvintsev [18] shows how a differentiable
FSA can be learned.

Cellular automaton. Cellular Automata (CA) are discrete compu-
tational models introduced by John von Neumann in 1967 von Neu-
mann and Burks [29]. They consist of a grid of cells, where each cell
is in a discrete state and evolves following transition rules based on
the states of neighboring cells. In our context, learning these tran-
sition functions from data and modeling the appropriate domain is

2 The code is available at https://github.com/ETH-DISCO/graph-fsa.

ar
X

iv
:2

40
8.

11
04

2v
1

 [
cs

.A
I]

 2
0

A
ug

 2
02

4

FSA

✘
✘

✔

✔
✘

✘

✘
✔

✔

t

✘
✔

✔
✔
✔

✘

t+1

✔
✔

✘

Figure 1. Illustration of the GraphFSA framework: Each node has its own state, represented by its color. Furthermore, each node runs the same Finite State
Automaton, determining its next state depending on the neighborhood information. On the left, an example graph is shown with the aggregation next to it. In
this example, the aggregator can distinguish if there is a node of a certain color/state in the neighborhood. In general, the aggregator can be any function that
maps a state multiset to a finite set of values. State transitions are determined by the FSA depicted in the middle, which chooses chooses the next state based on
the states appearing in the neighborhood and the old state. An example of the transition that is taken by the red node on the bottom right of the graph is shown.
Note that the green state is final and does not have any outgoing transitions.

of particular interest. Notably, recent work by Wulff and Hertz [31]
trains a Neural Network (NN) to learn 1D and 2D CAs, while further
advancements are made with Neural Cellular Automata (NCA) intro-
duced by Mordvintsev et al. [19], and the Graph Cellular Automata
(GCA) proposed by Marr and Hütt [17], operating on graph struc-
tures with diverse neighborhood transition rules. Additionally, Grat-
tarola et al. [6] introduce Graph Neural Cellular Automata (GNCA),
focusing on learning a GCA with continuous state spaces. GNCA
mainly differs from our work in that it uses continuous instead of
discrete state spaces and only learns a single transition step at a
time, while we can extract rules from observations over multiple
steps. Lastly, the study by Johnson et al. [11] investigates relation-
ships defined by paths on a graph accepted by a finite-state automa-
ton. Notably, this execution mechanism differs significantly from our
methodology, serving the distinct purpose of adding edges on ac-
cepted paths. Unlike the synchronous execution of multiple finite-
state automata in GraphFSA, here, the single automaton functions
more like an agent traversing the graph. Consequently, the tasks the
authors tackle, such as identifying additional edges in grid-world en-
vironments and abstract syntax trees (ASTs), differ from ours. It is
crucial to highlight that this model only augments edges and does not
predict node values.

Graph neural networks. Graph Neural Networks (GNNs) were
introduced by Scarselli et al. [23] and have gained significant atten-
tion. Various GNN architectures, such as Graph Convolutional Net-
works [14] and Graph Attention Networks [28], have been devel-
oped. A crucial area of GNN research is understanding their theoreti-
cal capabilities, which is linked to the WL color refinement algorithm
that limits the conventional GNNs’ expressiveness [30, 32, 21]. The
WL algorithm proceeds in rounds where node colors are relabeled
based on their own color and the colors of nodes in the neighborhood.
To achieve optimal expressiveness, message-passing GNNs must run
the layers an adequate number of rounds to match the computational
prowess of WL. The necessity of augmenting the number of rounds
has been emphasized for algorithmic graph problems [15]. However,
failing to adhere to the minimum rounds required may cause a GNN
to fall short of solving or approximating specific problems, as shown
by Sato et al. [22].

Furthermore, enhancing the interpretability and visualization of
GNNs has become an essential part of GNN research. The devel-
opment of GNNExplainer [33] marked a significant stride in gener-

ating explanations for Graph Neural Networks. Similarly, Hohman
et al. [8] delved into visual analytics in deep learning, providing an
interrogative survey for future developments in this domain. Another
approach towards explainability is understanding specific examples
proposed by Huang et al. [9]. Moreover, the GraphChef architecture
introduced by Müller et al. [20], offers a comprehensive understand-
ing of GNN decisions by replacing layers in the message-passing
framework with decision trees. GraphChef uses the gumbelized soft-
max from Johnson et al. [12] to learn a discrete state space, enabling
the extraction of decision trees.

Algorithmic learning. Algorithm learning aims to learn an under-
lying algorithmic principle that allows generalization to unseen and
larger instances. As such, one of the primary goals is to achieve ex-
trapolation. Various models have been investigated for extrapolation,
including RNNs capable of generalizing to inputs of varying lengths
[5]. Specifically, in our work, we want to learn graph algorithms. For
extrapolation, we want our learned models to scale to graphs that are
more complex and larger than those used during training. Graph Neu-
ral Networks (GNNs) have been extensively applied to solve these al-
gorithmic challenges [24, 27, 13]. Recent studies by Tang et al. [25],
Veličković et al. [26], and Ibarz et al. [10] have emphasized improv-
ing extrapolation to larger graphs in algorithmic reasoning problems.
However, most of the work focuses only on slightly larger graphs
than those in the training set. Scaling to much larger graphs, as stud-
ied by Grötschla et al. [7] remains challenging.

3 The GraphFSA framework
We present GraphFSA, a computational framework designed for exe-
cuting Finite State Automata (FSA) on graph-structured data. Draw-
ing inspiration from Graph Cellular Automata and Graph Neural Net-
works, GraphFSA defines an FSA at each node within the graph.
This FSA remains the same across all nodes and encompasses a pre-
determined set of states and transition values. While all nodes abide
by the rules of the same automaton, the nodes are usually in dif-
ferent states. As is customary for FSAs, a transition value and the
current state jointly determine the subsequent state transition. In our
approach, transition values are computed through the aggregation of
neighboring node states. As the FSA can only handle a finite num-
ber of possible aggregations, we impose according limitations on the
aggregation function. For the execution of the framework, nodes are

first initialized with a state that represents their input features. The
FSA is then executed synchronously on all nodes for a fixed number
of steps. Each step involves determining transition values and execut-
ing transitions for each node to change their state. Upon completion,
each node reaches an output state, facilitating node classification into
a predetermined set of categorical values. A visual representation of
the GraphFSA model is depicted in Figure 1.

3.1 Formal definition

More formally, the GraphFSA F consists of a tuple (M,Z,A, T).
F is applied to a graph G = (V,E) and consists of a set of states M,
an aggregation A and a transition function T . At time t, each node
v ∈ V is in state sv,t ∈ M. In its most general form, the aggregation
A maps the multiset of neighboring states to an aggregated value
a ∈ Z of a finite domain.

av,t = A({{su,t | u ∈ N(v)}}) (1)

Here {{}} denotes the multiset and N(v) the neighbors of v in G.
At each timestep t, the transition function T : M×Z → M takes
the state of a node sv,t and its corresponding aggregated value av,t

and computes the state for the next timestep.

sv,t+1 = T (sv,t, av,t) (2)

For notational convenience, we also define the transition matrix
T of size |M| × |Z| where Tm,a stores T (m,a). Moreover, we
introduce the notion of a state vector stv for each node v ∈ V at time
t, which is a one-hot encoding of size |M| of the node’s current state.

Aggregation functions. The transition value a for node v at time
t is directly determined by aggregating the multi-set of states from
all neighboring nodes at time t. The aggregation A specifies how the
aggregated value is computed from this neighborhood information.
Note that this formulation of the aggregation A allows for a general
framework in which many different design choices can be made for
a concrete class of GraphFSAs. Throughout this work, we will focus
on the counting aggregation and briefly touch upon the positional
aggregation.

Counting aggregation: The aggregation aims to count the occur-
rence of each state in the immediate neighborhood. However, we
want the domain Z to remain finite. Note that due to the general
graph topology of G, the naive count could lead to Z growing with
n the number of nodes. Instead, we take inspiration from the dis-
tributed computing literature, specifically the Stone Age Computing
Model by Emek and Wattenhofer [3]. Here, the aggregation is per-
formed according to the one-two-many principle, where each neigh-
bor can only distinguish if a certain state appears once, twice, or
more than twice in the immediate neighborhood. Formally, we
can generalize this principle using a bounding parameter b, which de-
fines up to what threshold we can exactly count the neighbor states.
The simplest mode would use b = 1, i.e., where we can distinguish if
a state is part of the neighborhood or not. Note that this is equivalent
to forcing the aggregation to use a set instead of a multi-set. For the
general bounding parameter b, we introduce the threshold function
σ, which counts the occurrences of a state in a multi-set.

σ(m,S) = min(b, |{{s | s = m, s ∈ S}}|) (3)

Figure 2. Original topology (left), nodes that GraphFSA can distinguish
with 2+ aggregation (i.e., distinguish neighbors as 0, 1 or more than 2)
(middle) and 1-WL color classes (right). More specifically, for GraphFSA,
nodes cannot differentiate if they have 2 or 3 neighbors of a kind. In contrast,
1-WL can further distinguish the two nodes.

Therefore, the aggregated value av,t will be an |M| dimensional vec-
tor of the following form, where the m-th dimension corresponds to
the number of occurrences of state m.

(av,t)m = σ(m, {{su,t | u ∈ N(v)}}) (4)

Note that there is a tradeoff between expressiveness and model
size when choosing a higher bounding parameter b. For a model with
|M| number of states there are (b+ 1)|M| many transition values
for each state m ∈ M.

Positional aggregation: This aggregation function takes into ac-
count the spatial relationship between nodes in the graph. If the un-
derlying graph has a direction associated with each neighbor, i.e., in
a grid, we assign each neighbor to a distinct slot within a transition
value vector av,t. This generalizes to graphs of maximum degree d,
where each of the d entries in av,t corresponds to a state of a neigh-
boring node.

Average threshold-based aggregation An alternative aggregation
operator utilizes the average value, which allows us to detect whether
a specific threshold t of neighbors is in a particular state. We compute
the value to threshold by dividing the state sum by the neighborhood
size of a node v. That, for example, allows us to detect whether the
majority (e.g., 0.5) of neighbors are in a specific state.

Starting and final states. We use starting states S ⊆ M of the
FSA to encode the discrete set of inputs to the graph problem. These
could be the starting states of a cellular automaton or the input to an
algorithm (e.g., for BFS, the source node starts in a different state
from the other nodes). Final states F ⊆ M are used to represent the
output of a problem. In node prediction tasks, we choose one final
state per class. Opposed to other states, it is not possible to transition
away from a final state, meaning that once such a state is reached, it
will never change.

Scalability. Scalability can be analyzed along two primary dimen-
sions: the size of the graphs on which the cellular automata (CA)
are executed, and the number of states that the learned CA can pos-
sess. Our approach demonstrates good scalability for larger graphs as
it operates in linear time relative to the number of nodes and edges.
However, scalability concerning the number of states is influenced by
the chosen aggregation method. Specifically, with the counting ag-
gregation, the number of possible aggregations becomes exponential
in the number of states. It is, therefore, crucial to choose aggregations
that lead to a smaller expansion when dealing with more states.

f0s1
[0, 1, 0, 0]

[0, 0, 1, 0]

f0

f1s0

[0, 0, 1, 1]

[1, 0, 1, 0]

[0, 0, 0, 1]

[1, 0, 0, 0]s1

[0, 0, 1, 0]

[0, 1, 0, 1]

[0, 1, 0, 0]

[0, 0, 0, 1]

Figure 3. Partial Visualization of a learned GraphFSA model for the Distance problem. The root node starts in state s1 (left), whereas all other nodes start
in state s0 (right). The final states f0, f1 represent even and odd distances to the root, respectively. Aggregation values are presented as [f0, f1, s0, s1] where
we apply the counting aggregation with bounding parameter b = 1. We can verify on the right that the nodes wait until they observe a final state in their
neighborhood and then transition to the other final state. A full visualization of the same automaton can be found in the Appendix.

3.2 Expressiveness

While the execution of GraphFSA may bear resemblance to one
round of the Weisfeiler-Lehman test, this does not hold in gen-
eral. In the example Figure 1, they are the same because the cho-
sen GraphFSA-instantiation is powerful enough to distinguish all
occurrences of states appearing in the neighborhoods. More specif-
ically, nodes can distinguish if they have 0 or more than one
neighbor in a certain state (“1+ aggregation”), which is sufficient
for the given graph. In general, the aggregation function A distin-
guishes GraphFSA from the standard WL-refinement notion as it
restricts the observation of the neighborhood from the usual multi-
set observations (as these cannot be bounded in size). Consequently,
GraphFSA is strictly less expressive than 1-WL, resulting in a trade-
off between using a more expressive aggregator and maintaining the
simplicity or explainability of the resulting model, particularly as the
state space grows exponentially. Figure 2 presents an example com-
paring GraphFSA’s execution with a 2+ aggregator to WL refine-
ment. Here, we can observe that GraphFSA is less expressive than
1-WL. However, for a large enough b, GraphFSA can match 1-WL
on restricted graph classes of bounded degree. In conclusion, while
the finite number of possible aggregations restricts GraphFSA, it also
keeps the mechanism simple. Our evaluation demonstrates that this
can improve generalization performance for a learned GraphFSA.

3.3 Visualization and interpretability

The GraphFSA framework offers inherent interpretability, facilitat-
ing visualization akin to a Finite State Automaton (FSA). This visu-
alization approach allows us to easily explore the learned state tran-
sitions and the influence of neighboring nodes on state evolution. We
outline two primary visualization techniques for GraphFSA:

Complete FSA visualization. This method provides a comprehen-
sive depiction of the entire FSA representation within the GraphFSA
model, encompassing all states and transitions. Each node in the
graph corresponds to a distinct state, while directed edges represent
transitions between states based on transition values. An example is
visualized in Figure 5.

Partial FSA visualization. Tailored for targeted analysis of the
GraphFSA model’s behavior, this approach proves especially useful
when dealing with large state spaces or focusing on specific behav-
iors. This method visualizes a selected starting state by evaluating
the model across multiple problem instances and tracking all transi-
tions that occur. Then, the visualization is constructed by exclusively
displaying the states and transitions that have been used from the
specified starting state.

Figure 3 illustrates the partial visualization of a learned automa-
ton. The transitions in the diagram are determined by aggregating
the information of the neighboring states. The structure of the transi-
tion value is [f0, f1, s0, s1]. For instance, the state vector [0, 0, 1, 0]
indicates that the node in the graph has one or more neighbors in
state s0 while having no neighbors in other states.

3.4 GRAB: The GraphFSA dataset generator

Accompanying the GraphFSA execution framework, which outlines
the general interface and underlying principles shared amongst in-
stances of GraphFSA, we provide GRAB, a flexible dataset generator
to evaluate learned state automatons. Note that the introduced frame-
work specifies the model structure but allows for different training
methodologies that can be used to train specific model instances.
The discrete nature of state transitions makes training these mod-
els a challenging task. This work proposes one possible way to train
such models using input and output pairs. For alternative approaches,
we deem it crucial to provide a systematic tool that can be used
to develop new training strategies and further provide a principled
way of thoroughly assessing the effectiveness across training meth-
ods. Therefore, GRAB provides an evaluation framework for learn-
ing state automatons on graphs. GRAB generates the ground truth
for a synthetic FSA, which can be used for learning and testing on
various graphs. In particular, GRAB provides out-of-the-box support
for several graph sizes and supports testing on multiple graph distri-
butions.

In the dataset construction process, we first define the characteris-
tics of the ground truth GraphFSA, specifying the number of states
and configuring the number of initial and final states. Next, we gen-
erate a random Finite State Automaton (FSA) by selecting states for
each transition value, adhering to the constraints of the final state
set (final states cannot transition to other states). We then sample
graphs from predefined distributions, offering testing on a diverse set
of graph types such as trees, grids, fully connected graphs, regular
graphs, and Erdos-Renyi graphs. The starting states for each node
within these generated graphs are randomly initialized from the set
S. Finally, we apply the GraphFSA model to these input graphs to
compute the outputs according to the defined state transitions. For the
dataset generation, we emphasize evaluating generalization, which
we believe to be one of the essential abilities of the GraphFSA frame-
work. Therefore, we establish an extrapolation dataset to assess the
model’s capability beyond the graph sizes encountered during train-
ing. This dataset contains considerably larger graphs, representing
a substantial deviation from the training data. However, if the cor-
rect automaton can be extracted during training, good generalization

Figure 4. We study learning cellular automata as the simplest form of algorithmic behavior, which can lead to complex and intricate behavior patterns when
assembled in a network. The left shows Conway’s Game of Life, which we can learn on general topologies such as the hexagonal grid due to the graph
representation. A WireWorld automata is depicted on the right, which can be used to simulate transistors and electrical circuits. It shows the electron head (blue)
and tail (red) transitioning through different wires (yellow).

should be achievable despite the shift in the testing distribution. In-
put/output pairs for these larger graphs are produced by applying the
same generated FSA to obtain the resulting states.

4 Empirical evaluation

The GraphFSA framework is designed to extract state automaton
representations with discrete states and transitions to learn to
solve the task at hand through an algorithmic representation. Our
evaluation consists of two key components to showcase this. In the
first part, we focus on classic cellular automaton problems. These
automatons serve as a foundational component of our study as they
represent the simplest possible version of an algorithm. However,
despite their simplicity, they can becomes increasingly powerful and
exhibit complex behaviour when assembled together in a network.
We successfully learn the underlying automaton rules, demonstrating
the ability and advantage of the GraphFSA framework to capture
simple algorithmic behaviour.

In the second part of our empirical study, we evaluate our models
using our proposed graph automaton benchmark and a set of more
challenging graph algorithms. GRAB enables a comprehensive in-
vestigation of GraphFSA’s performance across a broad range of prob-
lems. We are particularly interested in the generalisation ability of the
GraphFSA Framework. Therefore, we perform extrapolation experi-
ments where we train on smaller graphs and subsequently test its per-
formance on larger instances. Finally, we use the GraphFSA frame-
work to learn a selection of elementary graph algorithms, demon-
strating the framework’s capability and potential for algorithm learn-
ing.

4.1 Training

We take inspiration from prior research on training differentiable
finite state machines [18] and propose an adaption to train Diff-FSA,
which follows the GraphFSA framework, on general graphs. To
maintain differentiability, we relax the requirement for choos-
ing a single next state for a transition in T during training and
instead model it as a probability distribution over possible next
states, resulting in a probabilistic automaton. We thus compute
P (X = m | M×Z) for m ∈ M and parameterize Diff-FSA with
a matrix T ′ of size M × Z × M that holds the probabilities for
all possible transitions and states. This means that the transition
matrix T ′ contains the probabilities of transitioning from a state m1

to a state m2 given a specific transition value. To train the model
with a given step number t, we execute Diff-FSA for t rounds
and compute the loss based on the ground-truth output states of

the graph automaton we want to learn when executing the same
number of steps t. For example, in the case of node classification
problems, we aim to predict each node’s final state f ∈ F . This
makes it possible to backpropagate through the transition matrix T ′.
In addition, we apply an L2 loss to achieve the correct mapping be-
tween input and output states. Once the training of the probabilistic
model is complete, we extract the decision matrix T from T ′ by dis-
cretizing the distribution P over the next states to the most likely one.

Furthermore, we are interested in the model’s ability to produce
consistent and correct outputs, even as the number of iterations
changes. We refer to this as Iteration stability. The extrapolation ca-
pabilities of the GraphFSA model are achieved through the ability to
adjust the number of iterations, representing the number of steps ex-
ecuted by the FSA. This flexibility is essential, especially for graphs
with larger diameters, where information needs to propagate to all
nodes. We can, therefore, train an FSA where we can choose a suf-
ficiently large number of iterations to produce a correct output, and
increasing this number of iterations still leads to a correct solution.
We develop two approaches:

Random iteration offset. During training, we introduce random
adjustments to the number of iterations with a small offset factor.
This randomization ensures that the model can effectively handle the
problem with varying numbers of iterations.

Final state loss. One approach to incentivize final states not to
switch to other states is to incorporate an additional loss term that pe-
nalizes leaving a final state. We consider the learned transition matrix
probabilities and penalize the model if the probability of switching
from a final state f ∈ F to any other state m ∈ M,m ̸= f is
greater than 0 using an L1 loss. This approach encourages the model
to stay in the final state, resulting in more stable predictions. Figure 3
provides an example of a state automata trained with this additional
loss.

Baseline models. The architecture that aligns most closely with
our tasks is the Graph Neural Cellular Automata (GNCA) [6]. While
GNCAs are designed to learn rules from single-step supervision, we
apply several rounds when training with multiple steps. Besides GN-
CAs, we use recurrent message-passing GNNs. In contrast to GNCA,
we follow the typical encode-process-decode [27], which means that
the GNN keeps intermediate hidden embeddings that can be decoded
to make predictions. We use the architecture proposed by Grötschla
et al. [7], and observe that employing a GRU in the node update
yields the best performance and generalization capabilities, in line
with their results. This convolution is therefore used in all results in
the paper. As the goal of a GraphFSA is to extract rules from the local
neighborhood and update the node state purely based on this infor-

f0

f1

s0

[01010]

[00011]

[00110]

[00000]

[00010]

[01111]

[00001]

[01101]

[01000]

[01100]

[00101]

[01001]

[01110]

[01011] s1

[00100]

[00111]

[01110]

[01010]

[00011]

[01011]

[00110]

[00010]

[01111]

[00001]

[01101]

[01100]

[00101]

[01001]

[00000]

[00111]

[01000]

[00100]

Figure 5. Complete Visualization of a learned GraphFSA model for the
Distance problem. The root node starts in state s1, whereas all other nodes
start in state s0. The final states f0, f1 represent even and odd distances to the
root respectively. Aggregation values are presented as [f0, f1, s0, s1] where
we apply the counting aggregation with bounding parameter b = 1.
mation, more advanced graph-learning architectures that go beyond
this simple paradigm are not applicable in this setting. Our analysis
mainly focuses on demonstrating the value of discrete state spaces,
especially when generalizing to longer rollouts and larger graphs.

4.2 Classical cellular automata problems

As a first step towards learning algorithms, we focus on cellular au-
tomata probelms. We consider a variety of different settings such as
1D and 2D automata, these include more well known instances such
as Wireworld or Game of Life, which despite their simple rules are
known to be Turing complete. For a more detailed explanation of the
datasets, we refer to the Appendix.

1D-Cellular Automata The 1D-Cellular Automata dataset con-
sists of one-dimensional cellular automata systems, each defined by
one of the possible 22

3

rules. Each rule corresponds to a distinct
mapping of a cell’s state and its two neighbors to a new state.

Game Of Life. The GameOfLife dataset follows the rules defined
by Conway’s Game of Life [4]. A cell becomes alive if it has ex-
actly 3 live neighbors. If a cell has less than 2 or more than 4 live
neighbors, it dies, otherwise it persists. Furthermore, we consider a a
variation where cells are hexagonal instead of the traditional square
grid, which we refer to as the Hexagonal Game of Life. A visual
representation is depicted in Figure 4.

WireWorld. WireWorld [2] is an automaton designed to simulate
the flow of an electron through a circuit. Cells can take one of four
states: empty, electron head, electron tail, and conductor. Figure 4
shows an initial grid starting state and the evolution of WireWorld
over multiple time steps.

0 20 40 60 80 100
t

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Model
Recurrent GNN
Diff-FSA
GNCA

Figure 6. Mean accuracies for Wireworld on a regular grid when trained on
1 step and applied for t steps during inference (for 10 seeds each). All models
report high accuracy for t = 1. However, performance deteriorates during
inference when more steps are executed except for Diff-FSA.
4.2.1 Results

For Cellular Automata problems, we generate training data for each
problem by initializing a 4x4 input grid or path of length 4 (for 1D
problems) with random initial states and apply the problem’s rules
for a fixed number of steps to produce the corresponding output
states. Our models are trained on these input-output pairs, using the
same number of iterations as during dataset creation to ensure that we
can extract the rule. Additionally, we test on an extrapolation dataset
consisting of larger 10x10 grids. This dataset is used to evaluate the
model’s ability to adapt to varying rule iterations with four different
iteration numbers.

1D Cellular Automata. On this dataset, Diff-FSA uses the “po-
sitional neighbor-informed aggregation” aggregation technique. No-
tably, our model can successfully learn the rules for one-step training
data (t=1). For the complete results, we refer to the Appendix.

2D Cellular Automata. For 2D Cellular Automata (CA) problems,
Diff-FSA employs the counting aggregation. For Wireworld, we use
a state space of four and a bounding parameter of three. We train
all models to learn the one-step transition rules. During training, all
models and baselines report high accuracy. We then investigate the
generalization capabilities and especially the iteration stability of the
learned models. We run the trained models on larger 10xs10 grids
for more time steps t than during training. The results are depicted in
Figure 6. Note that the recurrent GNN and GNCA both deteriorate
outside the training distribution. However, Diff-FSA exhibits good
iteration stability across the whole range of iterations. For the Game
of Life variations, we provide a detailed comparison in the Appendix.

4.3 Evaluation with GRAB

We use GRAB to create diverse datasets to benchmark the different
models. These datasets encompass different graph types and sizes
and generate a synthetic state automaton to generate the ground truth.
This allows us to precisely control the setup by adjusting the number
of states of the ground truth automaton. For each specific dataset
configuration, we train 10 different model instances. Extended results
with more runs can be found in the Appendix.

Table 1 shows the results for a dataset generated by GRAB. The
dataset consists of tree graphs with a ground truth FSA consisting
of 4 states. Generally, we can observe that both Diff-FSAinstances
of the GraphFSA framework perform well, even if the number of
states does not match exactly. The GNCA model performs poorly

Table 1. Evaluation of GraphFSA on synthetic data provided by GRAB. We report the accuracy and standard deviation over 10 runs. The underlying ground
truth consists of an FSA using 4 states. We can test the in-distribution validation accuracy to see how well a model can fit the data. Moreover, we test extrapolation
to larger graphs to verify that the rules for underlying automata were successfully learned. Our Diff-FSA models generally perform well across all scenarios.
Note that the recurrent GNN performs well but lacks the interpretation and visualization of the learned mechanics as discrete state automata.

Model Val Acc n=10 n=20 n=50 n=100

GNCA 0.38 ± 0.00 0.39 ± 0.00 0.40 ± 0.00 0.40 ± 0.00 0.39 ± 0.00
Recurrent GNN 1.00 ± 0.00 0.91 ± 0.10 0.85 ± 0.13 0.82 ± 0.16 0.81 ± 0.16

Diff-FSA (4 states) 0.99 ± 0.02 0.97 ± 0.02 0.96 ± 0.02 0.95 ± 0.03 0.94 ± 0.03
Diff-FSA (5 states) 1.00 ± 0.01 0.98 ± 0.01 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.02
Diff-FSA (6 states) 0.99 ± 0.01 0.98 ± 0.01 0.95 ± 0.02 0.94 ± 0.02 0.94 ± 0.02

in this setting, as it struggles to learn the rules when they are ap-
plied for multiple steps. The recurrent GNN baseline performs well
on in-distribution graphs, but struggles to generalize when the graph
sizes are increased. Note that the recurrent GNN operates on con-
tinuous states, in contrast to the discrete states used by Diff-FSA.
Moreover, the experiments were conducted with a varying number
of states for Diff-FSA. While the ground-truth solution is modeled
with 4 states, we want to investigate whether increasing this number
for the learned automaton leads to different results. As we can ob-
serve, the accuracies are consistent for all sizes, indicating that more
states can be used for training, which is especially useful when the
underlying ground-truth automaton is not known beforehand.

4.4 Graph algorithms

Table 2. Evaluation of learning graph algorithms on the Distance dataset.
We report the accuracy and standard deviation over 10 runs. All models are
trained on graphs of size at most 10 and then tested for extrapolation on
larger graph sizes n. Our Diff-FSA outperforms other discrete transition-
based models while matching the recurrent GNN baseline.

Model n = 10 n = 20 n = 50 n = 100

GNCA 0.50 ± 0.00 0.50 ± 0.00 0.51 ± 0.00 0.50 ± 0.00
Recurrent GNN 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Diff-FSA 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

To showcase the potential of the GraphFSA framework for
algorithm learning, we further evaluate it on more challenging graph
algorithm problems. We use the same graph algorithms as Grötschla
et al. [7], which, among other setups, includes a simplified distance
computation and path finding. Detailed descriptions of these datasets
can be found in the Appendix. Similar to the data generated by
GRAB, our training process incorporates a random number of
iterations, with the sole condition that the number of steps is
sufficiently large to ensure complete information propagation across
the graph. For problems involving small training graphs, we train
the Diff-FSA model with approximately ten iterations and apply
the additive final state loss to ensure iteration stability and establish
distinct starting and final states.

The main aim is to validate that our proposed model is capable
of learning more challenging algorithmic problems. It consistently
performs better than GNCA. Compared to the recurrent GNN, it does
not perform as well across all selected problems, but can learn correct
solutions, as seen in the Distance task illustrated in Table 2. However,
recall that Diff-FSAoperates on discrete states, making it much more
challenging to learn. On the other hand, we can extract the learned
solution and analyse the learned mechanics. A visualization of such
a learned model is depicted in Figure 3 and Figure 5. This has the
advantage over the recurrent baseline in that the learned mechanics

can be interpreted, and the algorithmic behavior can be explained and
verified.

5 Limitations and future work
The main advantage of the GraphFSA framework is its use of discrete
states. This allows us to interpret the learned mechanics through the
lens of a state automaton. Moreover, it can perform well in scenarios
where the underlying rules of a problem can be modeled with discrete
transitions while requiring that inputs and outputs can be represented
as discrete states. This is the case for several algorithmic settings but
limits the model’s applicability to arbitrary graph learning tasks. To
broaden the applicability of the GraphFSA framework, future work
could investigate methods to map continuous input values to discrete
states, potentially with a trainable module. Another aspect to inves-
tigate is the study of more finite aggregations for GraphFSA. These
can heavily influence a model’s expressivity or align its execution
to a specific task. Moreover, Diff-FSA only represents one possible
approach to train models within the GraphFSA framework. Training
models that yield discrete transitions remains challenging and could
further improve performance and effectiveness.

6 Conclusion
We present GraphFSA, an execution framework that extends finite
state automata by leveraging discrete state spaces on graphs. Our re-
search demonstrates the potential of GraphFSA for algorithm learn-
ing on graphs due to its ability to simulate discrete decision-making
processes. Additionally, we introduce GRAB, a benchmark designed
to test and compare methods compatible with the GraphFSA frame-
work across a variety of graph distributions and sizes. Our evaluation
shows that Diff-FSAcan effectively learn rules for classical cellular
automata problems, such as the Game of Life, producing structured
and interpretable representations in the form of finite state automata.
While this approach is intentionally restrictive, it simplifies complex-
ity and aligns the model with the task at hand. We further validate
our methodology on a range of synthetic state automaton problems
and complex algorithmic datasets. Notably, the discrete state space
within GraphFSA enables Diff-FSAto exhibit robust generalization
capabilities.

References
[1] B. de Balle Pigem. Learning finite-state machines: statistical and al-

gorithmic aspects. TDX (Tesis Doctorals en Xarxa), 7 2013. URL
http://www.tesisenred.net/handle/10803/129070.

[2] A. K. Dewdney. Computer recreations. Scientific American, 262(1):
146–149, 1990. ISSN 00368733, 19467087. URL http://www.jstor.org/
stable/24996654.

[3] Y. Emek and R. Wattenhofer. Stone age distributed computing.
In Proceedings of the 2013 ACM Symposium on Principles of Dis-
tributed Computing, PODC ’13, page 137–146, New York, NY, USA,
2013. Association for Computing Machinery. ISBN 9781450320658.
doi: 10.1145/2484239.2484244. URL https://doi.org/10.1145/2484239.
2484244.

[4] M. Gardner. Mathematical games. Scientific American, 223(4):120–
123, 1970. ISSN 00368733, 19467087. URL http://www.jstor.org/
stable/24927642.

[5] F. Gers and E. Schmidhuber. Lstm recurrent networks learn simple
context-free and context-sensitive languages. IEEE Transactions on
Neural Networks, 12(6):1333–1340, 2001. doi: 10.1109/72.963769.

[6] D. Grattarola, L. Livi, and C. Alippi. Learning graph cellular automata.
In Proceedings of the 35th International Conference on Neural Informa-
tion Processing Systems, NIPS ’21, Red Hook, NY, USA, 2024. Curran
Associates Inc. ISBN 9781713845393.

[7] F. Grötschla, J. Mathys, and R. Wattenhofer. Learning graph algorithms
with recurrent graph neural networks. 2022. URL https://arxiv.org/abs/
2212.04934.

[8] F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual analytics
in deep learning: An interrogative survey for the next frontiers. IEEE
Transactions on Visualization and Computer Graphics, 25(8):2674–
2693, 2019. doi: 10.1109/TVCG.2018.2843369.

[9] Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang. Graphlime:
Local interpretable model explanations for graph neural networks. IEEE
Transactions on Knowledge and Data Engineering, 35(7):6968–6972,
2023. doi: 10.1109/TKDE.2022.3187455.

[10] B. Ibarz, V. Kurin, G. Papamakarios, K. Nikiforou, M. Bennani,
R. Csordás, A. J. Dudzik, M. Bošnjak, A. Vitvitskyi, Y. Rubanova,
A. Deac, B. Bevilacqua, Y. Ganin, C. Blundell, and P. Veličković. A
generalist neural algorithmic learner. In B. Rieck and R. Pascanu, ed-
itors, Proceedings of the First Learning on Graphs Conference, vol-
ume 198 of Proceedings of Machine Learning Research, pages 2:1–
2:23. PMLR, 09–12 Dec 2022. URL https://proceedings.mlr.press/
v198/ibarz22a.html.

[11] D. Johnson, H. Larochelle, and D. Tarlow. Learning graph structure
with a finite-state automaton layer. Advances in Neural Information
Processing Systems, 33:3082–3093, 2020.

[12] D. D. Johnson, H. Larochelle, and D. Tarlow. Learning graph struc-
ture with a finite-state automaton layer. In Proceedings of the 34th
International Conference on Neural Information Processing Systems,
NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

[13] C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent. Learning
TSP Requires Rethinking Generalization. In L. D. Michel, editor, 27th
International Conference on Principles and Practice of Constraint Pro-
gramming (CP 2021), volume 210 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 33:1–33:21, Dagstuhl, Germany,
2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-
3-95977-211-2. doi: 10.4230/LIPIcs.CP.2021.33. URL https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.33.

[14] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

[15] A. Loukas. What graph neural networks cannot learn: depth vs width. In
8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=B1l2bp4YwS.

[16] C. L. Lucchesi and T. Kowaltowski. Applications of finite automata
representing large vocabularies. Softw. Pract. Exper., 23(1):15–30, jan
1993. ISSN 0038-0644. doi: 10.1002/spe.4380230103. URL https:
//doi.org/10.1002/spe.4380230103.

[17] C. Marr and M.-T. Hütt. Outer-totalistic cellular automata on graphs.
Physics Letters A, 373(5):546–549, jan 2009. doi: 10.1016/j.physleta.
2008.12.013. URL https://doi.org/10.1016%2Fj.physleta.2008.12.013.

[18] A. Mordvintsev. Differentiable finite state machines, 2022. URL https:
//google-research.github.io/self-organising-systems/2022/diff-fsm/.

[19] A. Mordvintsev, E. Randazzo, E. Niklasson, and M. Levin. Growing

neural cellular automata. Distill, 2020. URL https://distill.pub/2020/
growing-ca/.

[20] P. Müller, L. Faber, K. Martinkus, and R. Wattenhofer. Graphchef:
Learning the recipe of your dataset. In ICML 3rd Workshop on In-
terpretable Machine Learning in Healthcare (IMLH), 2023. URL
https://openreview.net/forum?id=ZgYZH5PFEg.

[21] P. A. Papp and R. Wattenhofer. A theoretical comparison of graph neu-
ral network extensions. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepes-
vari, G. Niu, and S. Sabato, editors, Proceedings of the 39th Interna-
tional Conference on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pages 17323–17345. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/papp22a.html.

[22] R. Sato, M. Yamada, and H. Kashima. Learning to sample hard in-
stances for graph algorithms. In W. S. Lee and T. Suzuki, editors,
Proceedings of The Eleventh Asian Conference on Machine Learning,
volume 101 of Proceedings of Machine Learning Research, pages 503–
518. PMLR, 17–19 Nov 2019. URL https://proceedings.mlr.press/v101/
sato19a.html.

[23] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfar-
dini. The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, 2009. doi: 10.1109/TNN.2008.2005605.

[24] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill.
Learning a SAT solver from single-bit supervision. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Or-
leans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https:
//openreview.net/forum?id=HJMC_iA5tm.

[25] H. Tang, Z. Huang, J. Gu, B.-L. Lu, and H. Su. Towards scale-
invariant graph-related problem solving by iterative homogeneous
gnns. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 15811–15822. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
b64a70760bb75e3ecfd1ad86d8f10c88-Paper.pdf.

[26] P. Veličković, A. P. Badia, D. Budden, R. Pascanu, A. Banino, M. Da-
shevskiy, R. Hadsell, and C. Blundell. The CLRS algorithmic reason-
ing benchmark. In K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari,
G. Niu, and S. Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Ma-
chine Learning Research, pages 22084–22102. PMLR, 17–23 Jul 2022.
URL https://proceedings.mlr.press/v162/velickovic22a.html.

[27] P. Veličković and C. Blundell. Neural algorithmic reasoning. Pat-
terns, 2(7):100273, 2021. ISSN 2666-3899. doi: https://doi.org/
10.1016/j.patter.2021.100273. URL https://www.sciencedirect.com/
science/article/pii/S2666389921000994.

[28] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio. Graph attention networks. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?
id=rJXMpikCZ.

[29] J. von Neumann and A. W. Burks. Theory of self reproducing automata.
1967. URL https://api.semanticscholar.org/CorpusID:62696120.

[30] B. Weisfeiler and A. Leman. The reduction of a graph to canonical form
and the algebra which appears therein. nti, Series, 2(9):12–16, 1968.

[31] N. H. Wulff and J. A. Hertz. Learning cellular automaton dynamics with
neural networks. In Proceedings of the 5th International Conference on
Neural Information Processing Systems, NIPS’92, page 631–638, San
Francisco, CA, USA, 1992. Morgan Kaufmann Publishers Inc. ISBN
1558602747.

[32] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph
neural networks? In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=ryGs6iA5Km.

[33] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec.
Gnnexplainer: Generating explanations for graph neural networks.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/
d80b7040b773199015de6d3b4293c8ff-Paper.pdf.

http://www.tesisenred.net/handle/10803/129070
http://www.jstor.org/stable/24996654
http://www.jstor.org/stable/24996654
https://doi.org/10.1145/2484239.2484244
https://doi.org/10.1145/2484239.2484244
http://www.jstor.org/stable/24927642
http://www.jstor.org/stable/24927642
https://arxiv.org/abs/2212.04934
https://arxiv.org/abs/2212.04934
https://proceedings.mlr.press/v198/ibarz22a.html
https://proceedings.mlr.press/v198/ibarz22a.html
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.33
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.33
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=B1l2bp4YwS
https://doi.org/10.1002/spe.4380230103
https://doi.org/10.1002/spe.4380230103
https://doi.org/10.1016%2Fj.physleta.2008.12.013
https://google-research.github.io/self-organising-systems/2022/diff-fsm/
https://google-research.github.io/self-organising-systems/2022/diff-fsm/
https://distill.pub/2020/growing-ca/
https://distill.pub/2020/growing-ca/
https://openreview.net/forum?id=ZgYZH5PFEg
https://proceedings.mlr.press/v162/papp22a.html
https://proceedings.mlr.press/v101/sato19a.html
https://proceedings.mlr.press/v101/sato19a.html
https://openreview.net/forum?id=HJMC_iA5tm
https://openreview.net/forum?id=HJMC_iA5tm
https://proceedings.neurips.cc/paper_files/paper/2020/file/b64a70760bb75e3ecfd1ad86d8f10c88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/b64a70760bb75e3ecfd1ad86d8f10c88-Paper.pdf
https://proceedings.mlr.press/v162/velickovic22a.html
https://www.sciencedirect.com/science/article/pii/S2666389921000994
https://www.sciencedirect.com/science/article/pii/S2666389921000994
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://api.semanticscholar.org/CorpusID:62696120
https://openreview.net/forum?id=ryGs6iA5Km
https://proceedings.neurips.cc/paper_files/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d80b7040b773199015de6d3b4293c8ff-Paper.pdf

A Extended dataset descriptions

A.1 Cellular Automata

As a first interesting step towards learning algorithms, we focus on
cellular automata probelms. We consider a variety of different set-
tings such as 1D and 2D automata, these include more well known
instances such as Wireworld or Game of Life, which despite its sim-
ple behaviour is known to be Turing complete.

1D-Cellular Automata The 1D-Cellular Automata dataset con-
sists of one-dimensional cellular automata systems, each defined by
one of the possible 256 rules. Each rule corresponds to a distinct
mapping of a cell’s state and its two neighbors to a new state. Figure
7 provides a graphical illustration of one such automata. Note, that
we need todistinguish between the left and right neighbors in order
to capture all rules in GraphFSA.

111 110 101 100 011 010 001 000

Figure 7. Visualization of 1D CA rule 30 - top row shows different com-
binations (left neighbor state, current cell state, right neighbor state), bottom
row center shows new state value for the cell

Game Of Life The GameOfLife dataset captures the essence of
Conway’s Game of Life that progresses based on its initial state and
a set of simple rules.

The progression of Conway’s Game of Life is dictated by a set of
simple rules applied to each cell in the grid, considering its neigh-
bors. Using the Moore neighborhood, which includes all eight sur-
rounding cells, these rules are as follows:

1. Birth: A cell that is dead will become alive if it has exactly three
living neighbors.

2. Survival: A cell that is alive will remain alive if it has two or three
living neighbors.

3. Death:

(a) Loneliness: A cell that is alive and has fewer than two living
neighbors will die, mimicking underpopulation.

(b) Overpopulation: A cell that is alive and has more than three
living neighbors will die, representing overpopulation.

Toroidal vs. non-toroidal For this dataset, we consider both
toroidal and non-toroidal variations:

1. Toroidal: In the toroidal variation, the board’s edges wrap around,
creating a continuous, closed surface. This means cells on the edge
have neighbors on the opposite edge.

2. Non-Toroidal: In the standard, non-toroidal variation, cells on the
board’s edge only consider neighbors within the boundary.

Our dataset consists of input/output pairs where we randomly ini-
tialize the grid and then apply the Game of Life rules for a fixed
number of steps. We represent this dataset through grid graphs and
use the Moore neighborhood.

Hexagonal Game Of Life The Hexagonal Game Of Life intro-
duces a variation where cells are hexagonal as opposed to the tradi-
tional square grid. This change in cell structure offers a fresh set of
neighbour cells, which can lead to distinct patterns and evolutions. A
visual representation can be found in Figure 4.

WireWorld The WireWorld dataset revolves around the cellular
automaton ’WireWorld’ where cells can take one of four states:
empty, electron head, electron tail, and conductor. It’s especially
renowned for its capability to implement digital circuitry. In the
dataset, we observe the evolution of a given cellular configuration
over specified iterations.

A.2 Graph algorithms

Taking inspiration from the datasets utilized by Grötschla et al. [7],
we create datasets for various classical graph problems. To ensure
versatility and scalability, we generate new graphs for each problem
instance and compute the corresponding ground truth during dataset
creation. This approach enables us to construct datasets that not only
encompass graphs of specific sizes but also facilitate evaluation on
larger extrapolation datasets. We explore the following graph prob-
lems that helps us to explore different capabilities of our model.

A.2.1 Distance

The distance problem involves determining whether each node in the
graph has an even or odd distance from the root node. To formulate
this problem, we define input values for each problem instance, rep-
resenting each node’s state in the graph. Among these nodes, one
is designated as the root, while the others are marked as non-root
inputs. The output is assigned a binary value (0 or 1) for each node
based on distance mod 2 from the root, where “distance” represents
the length of the shortest path between the root and a node.

A.2.2 RootValue

In the root value problem, we want to propagate a value from the
root throughout a path graph. One node in the graph is assigned a
root label and a binary value (0,1). The objective is to propagate this
binary value from the root across the entire graph.

A.2.3 PathFinding

The PathFinding problem determines whether a given node lies on
the path between two marked nodes within a tree. The dataset com-
prises different trees, and two nodes are explicitly marked as relevant
nodes within each tree. The objective is to predict whether a specific
node in the tree, which is not one of the labeled nodes, lies on the
path connecting these two marked nodes.

A.2.4 PrefixSum

The PrefixSum Dataset involves paths represented as sequences of
nodes where each has an initial binary feature (either 1 or 0). The
task is to predict the sum of all initial features to the right of each
node in the path, considering modulo two arithmetic.

B Additional model evaluation
B.1 1D cellular automata

We evaluate the models on 1D Cellular Automata evaluation for the
different baselines and consider a larger graph during and multiple
timesteps t for our evaluation. We report the results in Table 3 for
models that were trained on t = 1 and in Table 4 for models trained
on t = 2.

Table 3. 1D Cellular Automata evaluation for the different baselines, we
consider a path of size 10 for the extrapolation data, and t indicates the num-
ber of times the CA rule has been applied. We report accuracy and all models
were trained for t = 1.

Model t = 1 t = 2 t = 5 t = 10 t = 20 t = 50 t = 100

GNCA 0.75 ± 0.00 0.66 ± 0.05 0.71 ± 0.08 0.79 ± 0.17 0.78 ± 0.17 0.77 ± 0.18 0.77 ± 0.18
Recurrent GNN 0.75 ± 0.00 0.50 ± 0.08 0.47 ± 0.17 0.47 ± 0.29 0.47 ± 0.30 0.47 ± 0.30 0.47 ± 0.30

Diff-FSA 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 4. 1D Cellular Automata evaluation for the different baselines, we
consider a path of size 10 for the extrapolation data, and t indicates the num-
ber of times the CA rule has been applied. We report accuracy and all models
were trained for t = 2.

Model t = 1 t = 2 t = 5 t = 10 t = 20 t = 50 t = 100

GNCA 0.49 ± 0.11 0.73 ± 0.03 0.70 ± 0.13 0.86 ± 0.16 0.86 ± 0.16 0.86 ± 0.16 0.86 ± 0.16
Recurrent GNN 0.64 ± 0.15 0.79 ± 0.00 0.58 ± 0.13 0.66 ± 0.26 0.67 ± 0.29 0.67 ± 0.30 0.68 ± 0.30

Diff-FSA 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

B.2 2D cellular automata

0 20 40 60 80 100
t

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Model
Recurrent GNN
Diff-FSA
GNCA

Figure 8. Mean accuracies for Game of Life on a regular grid when learned
with 2 steps and applied for t steps during inference (for 10 seeds each). All
models report high accuracy for the training setup. However, performance
deteriorates during inference when more steps are executed except for Diff-
FSA.

Game of Life results. Specifically, we use a state space of two
for Game of Life and a bounding parameter of five. We let all mod-
els execute 2 steps in order to learn the appropriate transition rules
after two iterations for Game of Life. Further, we investigate the gen-
eralization capabilities and especially the iteration stability of the
learned models. For this, we consider all models which achieve per-
fect training accuracy and let them run on larger 10 node paths for
more timesteps t than during training. The results are depicted in Fig-
ure 8 for the regular Game of Life and in Figure 9 for the hexagonal
variant. Note, that the recurrent GNN deteriorates outside the training
distribution. Similarly, the GNCA baseline struggles to generalize as
it has not learned the correct intermediate transitions for odd num-
ber of rules. The Diff-FSA on the other hand exhibits good iteration
stability across the whole range of iterations.

B.3 Dataset generator

We perform further evaluations on more datasets generated by our
dataset generator GRAB. The groudturth automaton consists of 4
states and we test multiple Diff-FSAwith 4, 5, and 6 states as well
as the baselines over 10 runs. We report the achieved accuracies for
the different experiments in Table 5.

0 20 40 60 80 100
t

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Model
Recurrent GNN
Diff-FSA
GNCA

Figure 9. Mean accuracies for Game of Life on a hexagonal grid when
learned with 2 steps and applied for t steps during inference (for 10 seeds
each). All models report high accuracy for the training setup. However, per-
formance deteriorates during inference when more steps are executed except
for Diff-FSA.
B.4 Algorithms

We evaluate the GraphFSA framework and in particular our Diff-
FSAand the baselines on more challenging algorithmic datasets. We
evaluate on the four datasets Distance, PrefixSum, PathFinding and
RootValue. The report the results in the tables: 6, 8 and 7.

Table 6. Evaluation of learning graph algorithms on the RootValue dataset.
We report the accuracy and standard deviation over 10 runs. All models are
trained on graphs of size at most 10 and then tested for extrapolation on larger
graph sizes n.

Model n = 10 n = 20 n = 50 n = 100

GNCA 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
Recurrent GNN 1.00 ± 0.00 1.00 ± 0.00 0.92 ± 0.16 0.91 ± 0.16

Diff-FSA 1.00 ± 0.02 0.99 ± 0.02 0.99 ± 0.03 0.99 ± 0.04

Table 7. Evaluation of learning graph algorithms on the PathFinding
dataset. We report the accuracy and standard deviation over 10 runs. All mod-
els are trained on graphs of size at most 10 and then tested for extrapolation
on larger graph sizes n.

Model n = 10 n = 20 n = 50 n = 100

GNCA 0.58 ± 0.00 0.73 ± 0.00 0.83 ± 0.00 0.89 ± 0.00
Recurrent GNN 0.97 ± 0.02 0.90 ± 0.03 0.88 ± 0.04 0.89 ± 0.09

Diff-FSA 0.85 ± 0.00 0.85 ± 0.00 0.87 ± 0.00 0.91 ± 0.00

Table 8. Evaluation of learning graph algorithms on the PrefixSum dataset.
We report the accuracy and standard deviation over 10 runs. All models are
trained on graphs of size at most 10 and then tested for extrapolation on larger
graph sizes n.

Model n = 10 n = 20 n = 50 n = 100

GNCA 0.49 ± 0.00 0.50 ± 0.00 0.50 ± 0.00 0.50 ± 0.00
Recurrent GNN 0.97 ± 0.04 0.95 ± 0.06 0.90 ± 0.13 0.84 ± 0.14

Diff-FSA 0.74 ± 0.14 0.67 ± 0.17 0.63 ± 0.20 0.61 ± 0.20

Table 5. Evaluation of GraphFSA on synthetic data provided by GRAB. We report the accuracy and standard deviation over 10 runs. The underlying ground
truth consists of an FSA using 4 states. We can test the in-distribution validation accuracy to see how well a model can fit the data. Moreover, we test extrapolation
to larger graphs to verify that the rules for underlying automata were successfully learned. Our Diff-FSA models generally perform well across all scenarios.
Note that the recurrent GNN performs well but lacks the interpretation and visualization of the learned mechanics as discrete state automata.

Model Val Acc n=10 n=20 n=50 n=100

Experiment 1

GNCA 0.38 ± 0.00 0.39 ± 0.00 0.40 ± 0.00 0.40 ± 0.00 0.39 ± 0.00
Recurrent GNN 1.00 ± 0.00 0.91 ± 0.10 0.85 ± 0.13 0.82 ± 0.16 0.81 ± 0.16

Diff-FSA (4 states) 0.99 ± 0.02 0.97 ± 0.02 0.96 ± 0.02 0.95 ± 0.03 0.94 ± 0.03
Diff-FSA (5 states) 1.00 ± 0.01 0.98 ± 0.01 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.02
Diff-FSA (6 states) 0.99 ± 0.01 0.98 ± 0.01 0.95 ± 0.02 0.94 ± 0.02 0.94 ± 0.02

Experiment 2

GNCA 0.66 ± 0.00 0.67 ± 0.00 0.66 ± 0.00 0.65 ± 0.00 0.65 ± 0.00
Recurrent GNN 1.00 ± 0.00 0.84 ± 0.02 0.82 ± 0.02 0.81 ± 0.02 0.80 ± 0.02

Diff-FSA (4 states) 1.00 ± 0.00 0.94 ± 0.01 0.93 ± 0.02 0.92 ± 0.02 0.91 ± 0.02
Diff-FSA (5 states) 1.00 ± 0.00 0.93 ± 0.02 0.92 ± 0.02 0.91 ± 0.02 0.90 ± 0.02
Diff-FSA (6 states) 1.00 ± 0.00 0.94 ± 0.02 0.93 ± 0.02 0.92 ± 0.02 0.91 ± 0.02

Experiment 3

GNCA 0.92 ± 0.00 0.95 ± 0.00 0.93 ± 0.00 0.93 ± 0.00 0.93 ± 0.00
Recurrent GNN 0.98 ± 0.03 0.98 ± 0.02 0.96 ± 0.03 0.95 ± 0.03 0.95 ± 0.03

Diff-FSA (4 states) 0.92 ± 0.00 0.95 ± 0.00 0.93 ± 0.00 0.93 ± 0.00 0.93 ± 0.00
Diff-FSA (5 states) 0.91 ± 0.02 0.94 ± 0.03 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01
Diff-FSA (6 states) 0.91 ± 0.02 0.94 ± 0.03 0.92 ± 0.01 0.93 ± 0.01 0.93 ± 0.01

Experiment 4

GNCA 0.56 ± 0.00 0.64 ± 0.00 0.63 ± 0.00 0.64 ± 0.00 0.63 ± 0.00
Recurrent GNN 1.00 ± 0.00 0.98 ± 0.05 0.97 ± 0.05 0.97 ± 0.05 0.97 ± 0.05

Diff-FSA (4 states) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Diff-FSA (5 states) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
Diff-FSA (6 states) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Experiment 5

GNCA 0.54 ± 0.00 0.54 ± 0.00 0.55 ± 0.00 0.54 ± 0.00 0.55 ± 0.00
Recurrent GNN 1.00 ± 0.00 0.97 ± 0.03 0.94 ± 0.03 0.93 ± 0.03 0.93 ± 0.04

Diff-FSA (4 states) 0.98 ± 0.00 0.96 ± 0.00 0.95 ± 0.00 0.93 ± 0.00 0.93 ± 0.00
Diff-FSA (5 states) 0.98 ± 0.00 0.97 ± 0.00 0.95 ± 0.00 0.94 ± 0.00 0.94 ± 0.00
Diff-FSA (6 states) 0.98 ± 0.00 0.96 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.00

	Introduction
	Related work
	The GraphFSA framework
	Formal definition
	Expressiveness
	Visualization and interpretability
	GRAB: The GraphFSA dataset generator

	Empirical evaluation
	Training
	Classical cellular automata problems
	Results

	Evaluation with GRAB
	Graph algorithms

	Limitations and future work
	Conclusion
	Extended dataset descriptions
	Cellular Automata
	Graph algorithms
	Distance
	RootValue
	PathFinding
	PrefixSum

	Additional model evaluation
	1D cellular automata
	2D cellular automata
	Dataset generator
	Algorithms

