
Theory of Computing Systems manuscript No.
(will be inserted by the editor)

Self-stabilizing Byzantine Clock Synchronization
with Optimal Precision

Pankaj Khanchandani · Christoph Lenzen

Received: date / Accepted: date

Abstract In the Byzantine-tolerant clock synchronization problem, the goal is to
synchronize the clocks of n fully connected nodes. The clocks run at rates between 1
and ϑ > 1, and messages have a delay (including computation) between d−U and
d. Moreover, up to f < n/3 of the nodes can fail by deviating arbitrarily from the
protocol, i.e., are Byzantine. Despite this interference, correct nodes need to generate
distinguished events (or pulses) almost simultaneously and periodically. The quality
of the solution is measured by the skew, which is the maximum real time difference
between corresponding pulses. In the self-stabilizing setting, in addition we allow for
transient failures, possibly of all nodes. Once transient faults have ceased and at most
f nodes remain faulty, the system should start generating synchronized pulses again.

We design a self-stabilizing solution to this problem with asymptotically optimal
skew. We achieve our goal by refining and extending the protocol of Lynch and Welch
and make the following contributions in the process.

– We give a simple analysis of the Lynch and Welch protocol with improved bounds
on skew and tolerable difference in clock rates by rebuilding upon the main
ingredient of their protocol, called approximate agreement.

– We give a modified version of the protocol so that the frequency and amount of
communication between the nodes is reduced. The modification adds a step to
adjust the clock rates by another application of approximate agreement. The skew
bound achieved is asymptotically optimal for suitable choices of parameters.

– We present a method to add self-stabilization to the above protocols while pre-
serving their skew bounds. The heart of the method is a coupling scheme that
leverages a self-stabilizing protocol with a larger skew.

Keywords distributed algorithm, stabilization time, phase and frequency correction

Pankaj Khanchandani
ETH Zurich
E-mail: kpankaj@ethz.ch

Christoph Lenzen
Max Planck Institute for Informatics, Saarland Informatics Campus
E-mail: clenzen@mpi-inf.mpg.de

2 Pankaj Khanchandani, Christoph Lenzen

1 Introduction

When designing a synchronous distributed system, the most fundamental question is
how to generate a system clock at all the n nodes, i.e., how to periodically generate
a distinguished event or pulse at each node so that the actual time of the ith pulse at
each node is close to the actual time of the ith pulse of any other node. This clock
synchronization problem is easily solved if each node is reliable and equipped with an
accurate clock. However, neither is always the case. For instance, in space applications
accurate clocks such as quartz oscillators are prone to failure, so less accurate electronic
oscillators are preferable, and nodes are subject to radiation-induced transient faults.
Thus, nodes have to frequently adjust their clocks by sending and receiving messages
and executing a suitable algorithm. The inaccuracy in the clocks is modelled by
assigning a clock rate or frequency that varies at each node, but within fixed bounds.
We measure the precision of the algorithm by skew, which is the maximum over all
pulses i and pairs of (correct) nodes of the time difference between the ith pulses of
the respective nodes.

The clock synchronization task is mission critical, both in terms of performance
and reliability. Therefore, fault-tolerant distributed clock synchronization algorithms
have found their way into real-world systems with high reliability demands. For exam-
ple, the Time-Triggered Protocol (TTP) [13] and FlexRay [9, 10] tolerate Byzantine
failure (i.e., arbitrary out-of-spec behavior) of less than n/3 nodes and are utilized
in cars and airplanes. This means that these algorithms guarantee that correct nodes
continue to generate synchronized pulses. They are based on the classic Byzantine
clock synchronization algorithm by Lynch and Welch [19].

Another application domain with even more stringent requirements is hardware for
spacecraft and satellites. Here, a reliable system clock is in demand despite frequent
transient failure of any number of nodes due to radiation. The property to recover from
an unknown state once the transient failures have stopped is known as self-stabilization.
This is essential for the space domain, but also highly desirable in the systems utilizing
TTP or FlexRay. This claim is supported by the presence of various mechanisms that
monitor the nodes and perform resets in case of observed faulty behavior in both
protocols. Thus, it is of interest to devise synchronization algorithms that stabilize
on their own, instead of relying on monitoring techniques: these need to be highly
reliable as well, or their failure may bring down the system due to erroneous detection
of or response to faults.

Thus, self-stabilizing Byzantine clock synchronization algorithms with small
skew have critical and useful applications and, accordingly, have received significant
attention in the past (e.g., [2, 8]). However, existing algorithms cannot achieve asymp-
totically optimal skew. Our key motivation and main goal is to build a self-stabilizing
Byzantine clock synchronization algorithm with asymptotically optimal skew.

Our Contribution. We achieve our main goal by building upon and extending the
approach given by Lynch and Welch [19] to solve the Byzantine clock synchronization
problem. The approach uses approximate agreement [7] repeatedly to adjust the time
of the next clock pulse. In the process of achieving our goal, we make the following
contributions.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 3

1. We present a simplified analysis of the Lynch-Welch algorithm. We show that
the algorithm converges to a steady-state error E ∈ O((ϑ − 1)d +U) , where
hardware clock rates are between 1 and ϑ and messages take between d−U and
d time to arrive at their destination. This works even for very inaccurate clocks:
it suffices if ϑ ≤ 1.1, although the skew bound goes to infinity as ϑ approaches
the critical value.1 However, for, e.g., ϑ ≤ 1.01, Theorem 1 bounds the skew by
E(ϑ ,d,U)≤ 2.222(ϑ −1)d +4.533U .

2. We give a conceptually simple extension of the previous algorithm that, in addition
to changing the (logical) clock values, also adjusts the clock rates using approx-
imate agreement. If the clocks are sufficiently stable, i.e., the maximum rate of
change ν of clock rates is sufficiently small, then we can significantly increase the
nominal round length T and decrease the frequency of communication without sub-
stantially affecting skew. Concretely, if ϑ ≤ 1.01, max{F,U}� T (where nodes’
clocks are initialized within F of each other), and max{(ϑ − 1)2T,νT 2} �U ,
it is possible to guarantee a skew of O(U) (see Corollary 12 and subsequent
explanation), which is asymptotically optimal.

3. We introduce a generic scheme that enables making either of these algorithms self-
stabilizing. The scheme couples one of the above (non-stabilizing) algorithms with
a self-stabilizing Byzantine clock synchronization algorithm of larger skew 2d.2

The coupled algorithm is both self-stabilizing and has the original smaller skew
of the non-stabilizing algorithm (Theorem 4 and Theorem 5). The self-stabilizing
Byzantine clock synchronization algorithm that we utilize is FATAL [4, 5], which
already offers a suitable interface to our coupling mechanism.

On the technical side, the first two results require little innovation compared to prior
work. However, it proved challenging to obtain simple algorithms that also achieve
tight skew bounds. The effort spent was worthwhile for two reasons.

1. A prototype FPGA implementation [12] strongly indicates that these algorithms
are also easy to implement in hardware.3

2. There is no mathematical analysis of a clock rate or frequency correction scheme
in the literature that can be readily applied to yield accurate bounds for simple
algorithms. We provide such a tailored analysis of our second algorithm.

To clarify the second point, we first note that the framework in [16, 17] does address
frequency correction, but would require substantial specialization, including its mat-
hematical analysis, to achieve good constants in the bounds. Second, the FlexRay
algorithm also adjusts frequencies, but differs from our second algorithm in a crucial
point. In order to avoid that the approximate agreement scheme is rendered inef-
fective because nodes reach the imposed limits on adjusting their frequency,4 we add

1 For comparison, the critical value in [19] is smaller than 1.025, i.e., we can handle a factor 4 weaker
bound on ϑ −1. Non-quartz oscillators used in space applications, where temperatures vary widely, may
have ϑ close to this value, cf. [1].

2 All prior self-stabilizing algorithms have at least this skew. It should also be noted that d involves
computational delay and turns out to be larger for FATAL, due to issues related to implementation.

3 The prototype implementation achieves 182ps skew [12], which is suitable for generating a system
clock.

4 Constraining feasible clock rates is necessary to avoid that measurement errors result in clocks speeding
up or slowing down arbitrarily over time.

4 Pankaj Khanchandani, Christoph Lenzen

a correction slowly pulling back nodes’ frequencies to the nominal rate. Without this
provision, it is straightforward to construct executions in which, e.g., the majority of
the nodes run too fast for another node to sufficiently adjust its clock rate to match
their speed. This means that, in the worst case, FlexRay’s frequency correction is
futile.

In contrast to the above contributions, the coupling scheme we use to combine our
non-stabilizing algorithms with the FATAL algorithm showcases a novel technique of
independent interest. We leverage FATAL’s clock “beats” to effectively (re-)initialize
the synchronization algorithm we couple it to. Here, care has to be taken to avoid such
resets from occurring during regular operation of the non-stabilizing algorithms, as this
could result in large skews or even spurious clock pulses. The solution is a feedback
mechanism that enables the synchronization algorithm to actively trigger the next beat
of FATAL at the appropriate time. FATAL stabilizes regardless of how these feedback
signals behave, while actively triggering beats ensures that all nodes pass the checks
which, if failed, trigger the respective node being reset. While a specific interface
is required from the stabilizing algorithm to permit this approach, it seems likely
that most, if not all, self-stabilizing synchronization algorithms could be modified to
provide it. Thus, we consider the technique a highly useful separation of the tasks to
achieve small skews and to ensure (fast) stabilization.

Organization of the paper. After presenting related work and the model, we pro-
ceed in the order of the contributions listed above: simplified phase synchronization
(Section 4), frequency synchronization (Section 5), and finally the coupling scheme
adding self-stabilization (Section 6). Section 7 concludes the paper.

2 Related Work

TTP [13] and FlexRay [9, 10] are both implemented in software (barring minor har-
dware components). This is sufficient for their application domain, in which synchro-
nous communication between hardware components at frequencies in the megahertz
range is required. Solutions fully implemented in hardware are of interest for two
reasons. First, having to implement the full software abstraction dramatically increases
the number of potential reasons for a node to fail – at least from the point of view
of the synchronization algorithm. A slim hardware implementation is thus likely to
result in a substantially higher degree of reliability of the clocking mechanism. Second,
if higher precision of synchronization is required, the significantly smaller delays
incurred by dedicated hardware make it possible to meet these demands.

Apart from these issues, the complexity of a software solution renders TTP and
FlexRay unsuitable as fault-tolerant clocking schemes for VLSI circuits. The DARTS
project [3, 11] aimed at developing such a scheme, with the goal of coming up
with a robust clocking method for space applications. Instead of being based on the
Lynch-Welch approach, it implements the fault-tolerant synchronization algorithm
by Srikanth and Toueg [18]. Unfortunately, DARTS falls short of its design goals in
two ways. On the one hand, the Srikanth-Toueg primitive achieves skews of Θ(d),
which tend to be significantly larger than those attainable with the Lynch-Welch

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 5

approach.5 Accordingly, the operational frequency DARTS can sustain (without large
communication buffers and communication delays of multiple logical rounds) is in the
range of 100MHz, i.e., about an order of magnitude smaller than typical system speeds.
Moreover, DARTS is not self-stabilizing. This means that DARTS – just like TTP and
FlexRay – is unlikely to successfully cope with high rates of transient faults. Worse,
the rate of transient faults will scale with the number of nodes (and thus sustainable
faulty nodes). For space environments, this implies that adding fault-tolerance without
self-stabilization cannot be expected to increase the reliability of the system at all.

These concerns inspired a follow-up work called FATAL, which seeks to overcome
the downsides of DARTS. From an abstract point of view, FATAL [4, 5] can be
interpreted as another incarnation of the Srikanth-Toueg approach. However, FATAL
combines tolerance to Byzantine faults with self-stabilization in O(n) time with
probability 1− 2−Ω(n); after recovery is complete, the algorithm maintains correct
operation deterministically. Like DARTS, FATAL and the substantial line of prior work
on Byzantine self-stabilizing synchronization algorithms (e.g., [2, 8]) cannot achieve
better clock skews than Θ(d). The key motivation for the present paper is to combine
the better precision achieved by the Lynch-Welch approach with the self-stabilization
properties of FATAL.

Concerning frequency correction, little related work exists. A notable exception is
the extension of the interval-based synchronization framework to rate synchroniza-
tion [16, 17]. In principle, it seems feasible to derive similar results by specialization
and minor adaptions of this powerful machinery to our setting. Unfortunately, apart
from the technical hurdles involved, an educated guess (based on the amount of ne-
cessary specialization and estimates that need to be strengthened) results in worse
constants and more involved algorithms, and it is unclear whether our approach to
self-stabilization can be fitted to this framework. However, it is worth noting that
the overall proof strategies for our (non-stabilizing) phase and frequency correction
algorithms bear notable similarities to the generic framework: separately deriving
bounds on the precision of measurements, plugging these into a generic convergence
argument, and separating the analysis of frequency and phase corrections.

Coming to lower bounds and impossibility results, the following is known.
– In a system of n nodes, no algorithm can tolerate dn/3e Byzantine faults. All men-

tioned algorithms are optimal in that they tolerate dn/3e−1 Byzantine faults [6].
– To tolerate this number of faults, Ω(n2) communication links are required.6 All

mentioned algorithms assume full connectivity and communicate by broadcasts
(faulty nodes may not adhere to this). Less well-connected topologies are outside
the scope of this work.

– The worst-case precision of an algorithm cannot be better than (1−1/n)U in a
network where communication delays may vary by U [15]. In the fault-free case
and with ϑ−1 sufficiently small, this bound can be almost matched (cf. Section 4);
all variants of the Lynch-Welch approach match this bound asymptotically, granted
sufficiently accurate local clocks.

5 The maximum delay d tends to be at least one or two orders of magnitude larger than the delay
uncertainty U .

6 If a node has fewer than 2 f +1 neighbors in a system tolerating f faults, it cannot distinguish whether
it synchronizes to a group of f correct or f faulty neighbors.

6 Pankaj Khanchandani, Christoph Lenzen

– Trivially, the worst case precision of any algorithm is at least (ϑ −1)T if nodes
exchange messages every T time units. Moreover, a simple indistinguishability
argument shows a lower bound of (ϑ −1)d, regardless of T . In the fault-free case,
this is essentially matched by our phase correction algorithm as well.

– With faults, the upper bound on the skew of the algorithm increases by factor
1/(1−α), where α ≈ 1/2 if ϑ ≈ 1. It appears plausible that this is optimal under
the constraint that the algorithm’s resilience to Byzantine faults is optimal, due to
a lower bound on the convergence rate of approximate agreement [7].

Overall, the resilience of the presented solution to faults is optimal, its precision
asymptotically optimal, and it seems reasonable to assume that there is little room for
improvement in this regard. In contrast, no non-trivial lower bounds on the stabilization
time of self-stabilizing fault-tolerant synchronization algorithms are known. Very
recently, it has been shown that stabilization time O(logn) can be achieved, and that
stabilization time polylogn is possible with nodes broadcasting only polylogn bits per
time unit [14]. The same coupling strategy as presented in this work could be applied
to these algorithms, achieving much faster overall stabilization.

3 Model

We assume a fully connected system of n nodes, up to f := b(n−1)/3c of which may
be Byzantine faulty (i.e., arbitrarily deviate from the protocol). We denote by V the set
of all nodes and by C ⊆V the subset of correct nodes, i.e., those that are not faulty.

Communication is by broadcast of “pulses,” which are messages without content:
the only information conveyed is when a node transmitted a pulse. Nodes can distin-
guish between senders; this is used to distinguish the case of multiple pulses being sent
by a single (faulty) node from multiple nodes sending one pulse each. Note that faulty
nodes are not bound by the broadcast restriction, i.e., may send a pulse to a subset
of the nodes only. The system is semi-synchronous. A pulse sent by node v ∈C at
(Newtonian) time pv ∈R+

0 is received by node w∈C at time tvw ∈ [pv+d−U, pv+d];
we refer to d as the maximum message delay (or, chiefly, delay) and to U as the delay
uncertainty (or, chiefly, uncertainty).

For these timing guarantees to be useful to an algorithm, the nodes must have a
means to measure the progress of time. Each node v ∈C is equipped with a hardware
clock Hv, which is modeled as a strictly increasing function Hv : R+

0 →R+
0 . We require

that there is a constant ϑ > 1 such that the following holds for all times t < t ′.

t ′− t ≤ Hv(t ′)−Hv(t)≤ ϑ(t ′− t)

In other words, the hardware clocks have bounded drift.7 We remark that our results
can be easily translated to the case of discrete and bounded clocks.8 We refer to Hv(t)
as the local time of v at time t.

7 It is common to define the drift symmetrically, i.e., (1−ρ)(t ′−t)≤Hv(t ′)−Hv(t)≤ (1+ρ)(t ′−t) for
some 0 < ρ < 1. For ρ� 1 and ϑ ≈ 1, up to minor order terms this is equivalent to setting ρ := (ϑ −1)/2
and rescaling the real time axis by factor 1−ρ . The one-sided formulation results in less cluttered notation.

8 Discretization can be handled by re-interpreting the discretization error as part of the delay uncertainty.
All our algorithms use the hardware clock exclusively to measure bounded time differences.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 7

Executions are event-based, where an event at node v is the reception of a message,
a previously computed (and stored) local time being reached, or the initialization of
the algorithm. A node may then perform computations and possibly send a pulse. For
simplicity, we assume that these operations take zero time; adapting our results to
account for computation time is straightforward.

Problem. A clock synchronization algorithm generates distinguished events or clock
pulses at times pv(r) for r ∈ N and v ∈C so that the following conditions are satisfied
for all r ∈ N.

1. ∀v,w ∈C : |pv(r)− pw(r)| ≤ e(r)
2. ∀v ∈C : Amin ≤ pv(r+1)− pv(r)≤ Amax

The first requirement is a bound on the synchronization error between the rth clock
ticks; naturally, it is desired that e(r) is as small as possible. The second requirement
is a bound on the time between consecutive clock ticks, which can be translated to
a bound on the frequency of the clocks; here, the goal is that Amin/Amax ≈ 1. The
precision of the algorithm is measured by the steady state error9

E := lim
r′→∞

sup
r≥r′
{e(r)} .

3.1 Model for Frequency Correction Algorithms

In order for frequency corrections to be useful, we need to assume that hardware
clock rates do not change faster than the algorithm can adjust to keep the effective
frequencies aligned.

Accordingly, in Section 5, we additionally require that clock rates satisfy a Lip-
schitz condition as well. There, we assume that Hv is differentiable (for all v ∈C) with
derivative hv, where hv satisfies for t, t ∈ R+

0 that

|hv(t ′)−hv(t)| ≤ ν |t ′− t| (1)

for some ν > 0. Note that we maintain the model assumption that hardware clock
rates are close to 1 at all times, i.e., 1≤ hv(t)≤ ϑ for all t ∈ R+

0 .

3.2 Self-stabilization

An algorithm is self-stabilizing, if it (re)establishes correct operation from arbitrary
states in bounded time. If there is an upper bound on the time this takes in the worst
case, we refer to it as the stabilization time.

In Section 6, we will make use of a self-stabilizing pulse synchronization algorithm
to “reset” the system from inconsistent initial states. Starting the analysis only from
this point, we have a consistent labeling of the pulses (modulo some M ∈ N) that is
shared by all correct nodes. For this special case, we can still apply the above problem
formulation (w.r.t. this labeling).

9 Typically, e(r) is a monotone sequence, implying that simply E = limr→∞ e(r).

8 Pankaj Khanchandani, Christoph Lenzen

4 Phase Synchronization Algorithm

In this section, we give a basic algorithm for byzantine clock synchronization and
show its guarantees in Theorem 1. The basic algorithm is a variant of the one by Lynch
and Welch [19], which synchronizes clocks by simulating perpetual synchronous
approximate agreement [7] on the times when clock pulses should be generated. We
diverge only in terms of communication: instead of round numbers, nodes broadcast
content-free pulses. Due to sufficient waiting times between pulses, during regular
operation received messages from correct nodes can be correctly attributed to the
respective round. In fact, the primary purpose of transmitting round numbers in the
Lynch-Welch algorithm is to add recovery properties. Our technique for adding self-
stabilization (presented in Section 6) leverages the pulse synchronization algorithm
from [4, 5] instead, which requires to broadcast constant-sized messages only.

Before presenting the algorithm and its analysis in Sections 4.2 and 4.3, respecti-
vely, we revisit some basic properties of the approximate agreement technique [7].
The results in this section are derivatives of the ones from [7, 19], but adapting them to
our setting and notation is essential for deriving our main results in Sections 5 and 6.

4.1 Properties of Approximate Agreement Steps

Abstractly speaking, the synchronization performs approximate agreement steps in
each (simulated synchronous) round. In approximate agreement, each node is given
an input value and the goal is to let nodes determine values that are close to each other
and within the interval spanned by the correct nodes’ inputs.

In the clock synchronization setting, there is the additional obstacle that the
communicated values are points in time. Due to delay uncertainty and drifting clocks,
the communicated values are subject to a (worst-case) perturbation of at most some
δ ∈ R+

0 . We will determine δ later in our analysis of the clock synchronization
algorithms; we assume it to be given for now. The effect of these disturbances is
straightforward: they may shift outputs by at most δ in each direction, increasing the
range of the outputs by an additive 2δ in each step (in the worst case).

Algorithm 1 describes an approximate agreement step from the point of view
of node v ∈ C. When implementing this later on, we need to make use of timing
constraints to ensure that (i) correct nodes receive each other’s messages in time to
perform the associated computations and (ii) correct nodes’ messages can be correctly
attributed to the round to which they belong. Figure 1 depicts how a round unfolds
assuming that these timing constraints are satisfied.

Denote by x the |C|-dimensional vector of correct nodes’ inputs, i.e., (x)v = xv for
v ∈C. The diameter ‖x‖ of x is the difference between the maximum and minimum
components of x. Formally,

‖x‖ := max
v∈C
{xv}−min

v∈C
{xv}.

We will use the same notation for other values, e.g. y and ‖y‖. For simplicity, we
assume that |C|= n− f in the following; all statements can be adapted by replacing
n− f with |C| where appropriate.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 9

Algorithm 1: Approximate agreement step at node v ∈ C (with synchronous
message exchange).
1 // node v is given input value xv;
2 broadcast xv to all nodes (including self);
3 // if w ∈C, the received value x̂wv ∈ [xw−δ ,xw +δ];
4 receive first value x̂wv from each node w (x̂wv := xv if no message from w received);
5 Sv←{x̂wv |w ∈V};
6 denote by Sk

v the kth element of Sv w.r.t. ascending order;

7 yv←
S f+1

v +Sn− f
v

2
;

8 return yv;

S f+1
v Sn− f

v

S f+1
w Sn− f

w

yw = (S f+1
w +Sn− f

w)/2

v

w

‖x‖+2δ

‖y‖ ≤ ‖x‖/2+2δ

yv = (S f+1
v +Sn− f

v)/2
median

Fig. 1 An execution of Algorithm 1 at nodes v and w of a system consisting of n = 4 nodes. There is a
single faulty node and its values are indicated in red. Note that the ranges spanned by the values received
from non-faulty nodes are almost identical; the difference originates in the perturbations of up to δ .

Consider the special case of δ = 0. Intuitively, Algorithm 1 discards the smallest
and largest f values each to ensure that values from faulty nodes cannot cause outputs
to lie outside the range spanned by the correct nodes’ values. Afterwards, yv is
determined as the midpoint of the interval spanned by the remaining values. Since
f < n/3, i.e., n− f ≥ 2 f +1, the median of correct nodes’ values is part of all intervals
computed by correct nodes. From this, it is easy to see that ‖y‖ ≤ ‖x‖/2, see Figure 1.
For δ > 0, we simply observe that the resulting values yv, v ∈C, are shifted by at most
δ compared to the case where δ = 0, resulting in ‖y‖ ≤ ‖x‖/2+2δ . We now prove
these properties.

Lemma 1
∀v ∈C : min

w∈C
{xw}−δ ≤ yv ≤max

w∈C
{xw}+δ .

Proof As there are at most f faulty nodes, for v ∈C we have that

S f+1
v ≥min

w∈C
{x̂wv} ≥min

w∈C
{xw}−δ .

Analogously, Sn− f
v ≤maxw∈C{xw}+δ . We conclude that

min
w∈C
{xw}−δ ≤ S f+1

v ≤ S f+1
v +Sn− f

v

2
= yv ≤ Sn− f

v ≤max
w∈C
{xw}+δ .

10 Pankaj Khanchandani, Christoph Lenzen

Corollary 1 maxv∈C{|yv− xv|} ≤ ‖x‖+δ .

Lemma 2 ‖y‖ ≤ ‖x‖/2+2δ .

Proof We show the claim for δ = 0 first, i.e., x̂wv = xw for all v,w ∈C. Denote by xk

the kth element of x w.r.t. ascending order. Since f < n/3, we have that n− f ≥ 2 f +1.
Hence, for all v ∈C,

x1 ≤ S f+1
v ≤ x f+1 ≤ S2 f+1

v ≤ Sn− f
v ≤ xn− f .

For any v,w ∈C, it follows that

yv− yw =
S f+1

v −S f+1
w +Sn− f

v −Sn− f
w

2

≤ x f+1− x1 + xn− f − x f+1

2
=

xn− f − x1

2

=
‖x‖

2
.

Symmetrically, we have that yw−yv ≤ ‖x‖/2 and thus |yv−yw| ≤ ‖x‖/2. As v,w ∈C
were arbitrary, this yields ‖y‖ ≤ ‖x‖/2 (under the assumption that δ = 0).

For the general case, observe that S f+1
v , S f+1

w , Sn− f
v , and Sn− f

w each can be changed
by at most δ . This can affect (S f+1

v −S f+1
w +Sn− f

v −Sn− f
w)/2 by at most 4δ/2 = 2δ ;

the claim follows.

4.2 Algorithm

Algorithm 2 shows the pseudocode of the phase synchronization algorithm at node
v ∈C. It implements iterative approximate agreement steps on the times when to send
pulses. The algorithm assumes that the nodes are initialized within a (local) time
window of size F . In each round r ∈ N, the nodes estimate the phase offset of their
pulses10 and then compute an according phase correction ∆v(r). Figure 2 illustrates
how a round of the algorithm plays out.

To fully specify the algorithm, we need to determine how long the waiting periods
in each round are (in terms of local time), which will be given as τ1(r), τ2(r), and
T (r)−∆(r)− τ1(r)− τ2(r). Here, we must ensure for all r ∈ N that

1. for all v,w ∈C, the message that v broadcasts at time tv(r−1)+ τ1(r) is received
by w at a local time from [Hw(tw(r−1)),Hw(tw(r−1))+ τ1(r)+ τ2(r)] and

2. for all v ∈C, T (r)−∆v(r)≥ τ1(r)+ τ2(r), i.e., v computes Hv(tv(r)) before time
tv(r).

10 Note that we divide the measured local time differences by factor (ϑ + 1)/2, the average of the
minimum and maximum clock rates. This is an artifact of our more notation-friendly “one-sided” definition
of hardware clock rates from [1,ϑ]; in an implementation, one simply reads the hardware clocks (which
exhibit symmetric error) without any scaling.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 11

Algorithm 2: Phase synchronization algorithm, code for node v ∈C. Time
tv(r), r ∈ N0, is the time when round r+1 starts.
1 // Hw(0) ∈ [0,F) for all w ∈V
2 wait until time tv(0) with Hv(tv(0)) = F ;
3 foreach round r ∈ N do
4 start listening for messages;
5 wait until local time Hv(tv(r−1))+ τ1(r); // all nodes are in round r
6 broadcast clock pulse to all nodes (including self);
7 wait until local time Hv(tv(r−1))+ τ1(r)+ τ2(r); // correct nodes’ messages arrived
8 for each node w ∈V do
9 τwv := Hv(twv), where first message from w received at twv (τwv := ∞ if none received);

10 Sv←{2(τwv− τvv)/(ϑ +1) | w ∈V} (as multiset);
11 let Sk

v denote the kth smallest element of Sv;

12 ∆v(r)←
S f+1

v +Sn− f
v

2
;

13 // T (r) denotes the nominal length of round r
14 wait until time tv(r) with Hv(tv(r)) = Hv(tv(r−1))+T (r)−∆v(r);

v

w

τ1(r) τ2(r)

T (r)

pv(r) tvv

twv

|∆v(r)|

pw(r)

twwtvw

tv(r−1) tv(r)

tw(r−1) tw(r)

Fig. 2 A round of Algorithm 2 from the point of view of nodes v and w. Note that the durations marked on
the horizontal axis are measured using the local hardware clock.

If these conditions are satisfied at all correct nodes, we say that round r is executed
correctly, and we can interpret the round as an approximate agreement step in the
sense of Section 4.1. We will show in the next section that the following condition is
sufficient for all rounds to be executed correctly.

Condition 1 Define e(1) := F +(1−1/ϑ)τ1(1) and inductively for all r ∈ N that

e(r+1) :=
2ϑ 2 +5ϑ −5

2(ϑ +1)
e(r)+(3ϑ −1)U +

(
1− 1

ϑ

)
(T (r)+ τ1(r+1)− τ1(r)) .

We require for all r ∈ N that

τ1(r)≥ ϑe(r)

τ2(r)≥ ϑ(e(r)+d)

T (r)≥ τ1(r)+ τ2(r)+ϑ(e(r)+U) .

12 Pankaj Khanchandani, Christoph Lenzen

Here, e(r) is a bound on the synchronization error in round r, i.e., we will show that
‖p(r)‖ ≤ e(r) for all r ∈ N, provided Condition 1 is satisfied. Condition 1 cannot
be satisfied for arbitrary ϑ > 1 such that e(r) is bounded independently of r. The
intuition is that rounds must be long enough to ensure that all pulses from correct
nodes are received (i.e., at least ϑe(r)), but during this time additional error is built up
by drifting clocks; if the approximate agreement step cannot overcome this relative
skew increase, round r+1 has to be even longer, and so on. However, any ϑ ≤ 1.1
can be sustained.

Lemma 3 Condition 1 can be satisfied such that limr→∞ e(r)< ∞ if

α :=
6ϑ 2 +5ϑ −9

2(ϑ +1)(2−ϑ)
< 1 .

In this case, we can achieve

lim
r→∞

e(r) =
(ϑ −1)d +(4ϑ −2)U

(2−ϑ)(1−α)
.

Proof By plugging e(1) into the inequality for τ1(1), we see that we may choose
τ1(1)< ∞ if and only if ϑ < 2. Assuming that this is the case, we choose to satisfy all
inequalities with equality, yielding for r ∈ N that

τ1(r) = ϑe(r)

T (r) = ϑ(3e(r)+d +U)

e(r+1) =
6ϑ 2 +5ϑ −9

2(ϑ +1)(2−ϑ)
e(r)+

(ϑ −1)d
2−ϑ

+
(4ϑ −2)U

2−ϑ

= αe(r)+
(ϑ −1)d +(4ϑ −2)U

2−ϑ
.

Thus,

lim
r→∞

e(r) = lim
r→∞

(
α

r−1e(1)+
r−1

∑
r′=0

α
r′
(
(ϑ −1)d +(4ϑ −2)U

2−ϑ

))

=
(ϑ −1)d +(4ϑ −2)U

(2−ϑ)(1−α)
,

where the second equality holds because α < 1. Because α < 1 is a stricter constraint
on ϑ than ϑ < 2, this completes the proof.

Several remarks are in order.

– α goes to 1/2 as ϑ goes to 1. For ϑ = 1.01, we already have that α ≈ 0.55. Thus,
the approach can support fairly large phase drifts.

– For ϑ ≈ 1, we have that limr→∞ e(r) ≈ 4U +2(ϑ −1)d. From Corollary 2, one
can see that if (ϑ −1)d�U , this can be reduced to limr→∞ e(r)≈ 2U .

– The lower bound by Lynch and Welch [15] shows that this is optimal up to factor 2.
It is straightforward to verify that in the fault-free case with ϑ = 1, the algorithm
attains the lower bound.

– The convergence is exponential, i.e., for any ε > 0 we have that e(r) ≤ (1+
ε) limr→∞ e(r) for all r ≥ rε ∈Θ(logF/(ε limr→∞ e(r))).

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 13

4.3 Analysis

In this section, we prove that Condition 1 is indeed sufficient to ensure that ‖p(r)‖ ≤
e(r) for all r ∈ N. In the following, denote by p(r), r ∈ N0, the vector of times when
nodes v ∈C broadcast their rth pulse, i.e., Hv(pv(r)) = Hv(tv(r−1))+ τ1(r). If v ∈C
takes note of the pulse from w∈C in round r, the corresponding value τwv−τvv can be
interpreted as inexact measurement of pw(r)− pv(r). This is captured by the following
lemma, which provides precise bounds on the incurred error.

Lemma 4 Suppose v ∈C receives the pulses from both w ∈C and itself in round r at
a time from [Hv(tv(r−1)),Hv(tv(r−1))+ τ1(r)+ τ2(r)]. Then∣∣∣∣2(τwv− τvv)

ϑ +1
− (pw(r)− pv(r))

∣∣∣∣< ϑU +
ϑ −1
ϑ +1

‖p(r)‖ ,

where τwv and τvv denote the values of the respective variables in the algorithm in
round r.

Proof Denote by tuv the time when v receives the pulse from u ∈ {v,w}. The commu-
nication model guarantees that tuv ∈ [pu(r)+d−U, pu(r)+d]. Thus,

τuv = Hv(tuv) ∈ [Hv(pu(r)+d−U),Hv(pu(r)+d)]⊆ Hv(pu(r)+d−U/2)± ϑU
2

.

(2)
Moreover, if pw(r)− pv(r)≥ 0, the bounds on the hardware clock speed guarantee
that

2(pw(r)− pv(r))
ϑ +1

≤ 2(Hv(pw(r)+d−U/2)−Hv(pv(r)+d−U/2))
ϑ +1

≤ 2ϑ(pw(r)− pv(r))
ϑ +1

and thus

(1−ϑ)(pw(r)− pv(r))
ϑ +1

≤ 2(Hv(pw(r)+d−U/2)−Hv(pv(r)+d−U/2))
ϑ +1

− (pw(r)− pv(r))

≤ (ϑ −1)(pw(r)− pv(r))
ϑ +1

.

Since |pw(r)− pv(r)| ≤ ‖p(r)‖ by definition, this yields that∣∣∣∣2(Hv(pw(r)+d−U/2)−Hv(pv(r)+d−U/2))
ϑ +1

− (pw(r)− pv(r))
∣∣∣∣

≤ ϑ −1
ϑ +1

‖p(r)‖ . (3)

14 Pankaj Khanchandani, Christoph Lenzen

This bound also holds in case pw(r)− pv(r)< 0, as we can switch the roles of v and
w in the above inequalities. We conclude that∣∣∣∣2(τwv− τvv)

ϑ +1
− (pw(r)− pv(r))

∣∣∣∣
≤ 2

ϑ +1
(|τwv−Hv(pw(r)+d−U/2)|+ |τvv−Hv(pv(r)+d−U/2)|)

+

∣∣∣∣2(Hv(pw(r)+d−U/2)−Hv(pv(r)+d−U/2))
ϑ +1

− (pw(r)− pv(r))
∣∣∣∣

(2),(3)
< ϑU +

ϑ −1
ϑ +1

‖p(r)‖ .

We remark that if (ϑ −1)d <U and U is known, it is beneficial to refrain from having
v send a message to itself. Instead it estimates the arrival time of the message using its
hardware clock, yielding the following corollary.

Corollary 2 Suppose v ∈C receives the pulse from w ∈C in round r at a time from
[Hv(tv(r−1)),Hv(tv(r−1))+ τ1(r)+ τ2(r)]. Then∣∣∣∣2(τwv−Hv(pv(r)))

ϑ +1
−
(

d−U
2

)
− (pw(r)− pv(r))

∣∣∣∣< ϑU
2

+
ϑ −1
ϑ +1

(‖p(r)‖+d) ,

where τwv denotes the value of the respective variable in the algorithm in round r.

Proof By repeating the proof of Lemma 4, where the term |τvv−Hv(pv(r)+d−U/2)|
gets replaced by∣∣∣∣Hv(pv(r))+

(ϑ +1)(d−U/2)
2

−Hv

(
pv(r)+d−U

2

)∣∣∣∣
≤max

{∣∣∣∣ϑ +1
2
−1
∣∣∣∣ , ∣∣∣∣ϑ +1

2
−ϑ

∣∣∣∣}(d−U
2

)
=

ϑ −1
ϑ +1

(
d−U

2

)
<

ϑ −1
ϑ +1

d .

In the sequel, we use the bounds provided by Lemma 4. However, the reader should
keep in mind that in case (ϑ − 1)d �U and sufficiently precise bounds on U are
known, Corollary 2 shows how to effectively cut the influence of the uncertainty in
half.

Using Lemma 4, we can interpret the phase shifts ∆v(r) as outcomes of an approx-
imate agreement step, yielding the following corollary.

Corollary 3 Suppose in round r ∈N, it holds for all v,w ∈C that v receives the pulse
from w ∈C and itself in round r during [Hv(tv(r−1)),Hv(tv(r−1))+ τ1(r)+ τ2(r)].
Then

1. |∆v(r)|< ϑ(‖p(r)‖+U) and

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 15

2. maxv,w∈C{pv(r)−∆v(r)− pw(r)+∆w(r)} ≤ (5ϑ −3)‖p(r)‖/(2(ϑ +1))+2ϑU.

Proof By Lemma 4, we can interpret the values 2(τwv−τvv)/(ϑ +1) as measurements
of pw(r)− pv(r) with error δ = ϑU +(ϑ −1)‖p(r)‖/(ϑ +1). Note that shifting all
values by pv(r) in an approximate agreement step changes the result by exactly pv(r),
implying that pv(r)−∆v(r) equals the result of an approximate agreement step with
inputs pw(r), w ∈C, and error δ at node v. Thus, the claims follow from Corollary 1
and Lemma 2, noting that 1/2+2(ϑ −1)/(ϑ +1) = (5ϑ −3)/(2(ϑ +1)).

To derive a bound on ‖p(r + 1)‖, it remains to analyze the effect of the clock
drift between the pulses. To this end, we examine how an established timing relation
between actions of two correct nodes deteriorates due to measuring time using the
inaccurate hardware clocks.

Lemma 5 Suppose Hv(t ′v)−Hv(tv) = hv ≥ 0 and Hw(t ′w)−Hv(tw) = hw ≥ 0. Then

tv− tw +
hv

ϑ
−hw ≤ t ′v− t ′w ≤ tv− tw +hv−

hw

ϑ
.

Proof Since hardware clocks are increasing, t ′v ≥ tv and t ′w ≥ tw. The inequalities
follow because hardware clock rates are between 1 and ϑ ≥ 1.

This readily yields a bound on ‖p(r+1)‖ – provided that all nodes can compute
when to send the next pulse on time.

Corollary 4 Assume that round r ∈ N is executed correctly. Then

‖p(r+1)‖ ≤ 2ϑ 2 +5ϑ −5
2(ϑ +1)

‖p(r)‖+(3ϑ −1)U +

(
1− 1

ϑ

)
T (r) .

Proof For v,w ∈C, assume w.l.o.g. that pv(r+1)− pw(r+1)≥ 0. By Lemma 5 and
Corollary 3, we have that

pv(r+1)− pw(r+1)
≤ pv(r)− pw(r)+T (r)−∆v(r)+ τ1(r+1)− τ1(r)

− T (r)−∆w(r)+ τ1(r+1)− τ1(r)
ϑ

≤ pv(r)−∆v(r)− (pw(r)−∆w(r))+
(

1− 1
ϑ

)
(T (r)+ τ1(r+1)− τ1(r)+ |∆w(r)|)

≤ 2ϑ 2 +5ϑ −5
2(ϑ +1)

‖p(r)‖+(3ϑ −1)U +

(
1− 1

ϑ

)
(T (r)+ τ1(r+1)− τ1(r)) .

This bound hinges on the assumption that the round is executed correctly. We next
establish sufficient conditions for this to be the case.

Lemma 6 Suppose that

τ1(r)≥ ϑ(‖p(r)‖− (d−U))

τ2(r)≥ ϑ(‖p(r)‖+d)

T (r)≥ τ1(r)+ τ2(r)+ϑ(‖p(r)‖+U) .

Then round r is executed correctly.

16 Pankaj Khanchandani, Christoph Lenzen

Proof Suppose v,w∈C. Denote by tvw ∈ [pv(r)+d−U, pv(r)+d] the time when this
message is received by w. We have that

tvw ≥ pv(r)+d−U ≥ pw(r)−‖p(r)‖+d−U

≥ tw(r−1)+
τ1(r)

ϑ
− (‖p(r)‖− (d−U))

≥ tw(r−1) ,

showing that Hw(tvw)≥Hw(tw(r−1)), i.e., w starts listening for the pulse of v on time.
Similarly,

tvw ≤ pv(r)+d ≤ pw(r)+‖p(r)‖+d ≤ pw(r)+
τ2(r)

ϑ
,

implying that Hw(tvw)≤Hw(pw(r))+ τ2(r) = Hw(tw(r−1))+ τ1(r)+ τ2(r). Thus, w
receives the pulse from v before it stops listening, and the first requirement of correct
execution of round r is met for all v,w ∈C.

It remains to prove that for each v ∈C, it holds that T (r)−∆v(r)≥ τ1(r)+ τ2(r).
By the preconditions of the lemma, this is satisfied if ∆v(r)≤ ϑ(‖p(r)‖+U). As we
already established the precondition of Corollary 3 for round r, the corollary shows
that this inequality is satisfied.

We have almost all pieces in place to inductively bound ‖p(r)‖ and determine
suitable values for τ1(r), τ2(r), and T (r). The last missing bit is an anchor for the
induction, i.e., a bound on ‖p(1)‖.

Corollary 5 ‖p(1)‖ ≤ F +(1−1/ϑ)τ1(1) = e(1).

Proof Since Hv(0)∈ [0,F) for all v∈C, tv(0)∈ [0,F) for all v∈C. The claim follows
by applying Lemma 5.

Theorem 1 Suppose that Condition 1 is satisfied. Then, for all r ∈ N, it holds that
‖p(r)‖ ≤ e(r). If α = (6ϑ 2 +5ϑ −9)/(2(ϑ +1)(2−ϑ))< 1 (which holds for ϑ ≤
1.1), we can choose the parameters such that the condition holds and Algorithm 2 has
steady state error

E = lim
r→∞

e(r) =
(ϑ −1)d +(4ϑ −2)U

(2−ϑ)(1−α)
.

Proof To show the first part, inductively use Lemma 6 and Lemma 4 to show that
round r is executed correctly and that ‖p(r+1)‖≤ e(r+1), respectively; the induction
anchor is given by ‖p(1)‖ ≤ e(1) according to Corollary 5. The second part directly
follows from Lemma 3.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 17

5 Phase and Frequency Synchronization Algorithm

In this section, we extend the phase synchronization algorithm to also synchronize
frequencies and give the guarantees of the extended algorithm in Theorem 3; a simpli-
fied statement is provided by Corollary 12. The basic idea is to apply the approximate
agreement not only to phase offsets, but also to frequency offsets. To this end, in each
round the phase difference is measured twice, applying any phase correction only after
the second measurement. This enables nodes to obtain an estimate of the relative clock
speeds, which in turn is used to obtain an estimate of the differences in clock speeds.

Ensuring that this procedure is executed correctly is straightforward by limiting
|µv(r)−1| to be small, where µv(r) is the factor by which node v changes its clock
rate during round r. However, constraining this multiplier means that approximate
agreement steps cannot be performed correctly in case µv(r+ 1) would lie outside
the valid range of multipliers. This is fixed by introducing a correction that “pulls”
frequencies back to the default rate.

Of course, for all this to be meaningful, we need to assume that hardware clock
rates do not change faster than the algorithm can adjust the multipliers to keep the
effective frequencies aligned. We recall the additional model assumption stated in
Section 3.1: we assume that Hv is differentiable (for all v ∈ C) with derivative hv,
where hv satisfies for t, t ∈ R+

0 that |hv(t ′)−hv(t)| ≤ ν |t ′− t| for some ν > 0.

5.1 Algorithm

Algorithm 3 gives the pseudocode of our approach. Mostly, the algorithm can be seen
as a variant of Algorithm 2 that allows for speeding up clocks by factors µv(r)∈ [1,ϑ 2],
where ϑhv(t) is considered the nominal rate at time t.11 For simplicity, we fix all local
waiting times independently of the round length.

The main difference to Algorithm 2 is that a second pulse signal is sent before
the phase correction is applied, enabling to determine the rate multipliers for the
next round by an approximate agreement step as well. A frequency measurement
is obtained by comparing the (observed) relative rate of the clock of node w during
a local time interval of length τ2 + τ3 to the desired relative clock rate of 1. Since
the clock of node v is considered to run at speed µv(r)hv(t) during the measurement
period, the former takes the form µv(r)∆wv/(τ2+τ3), where ∆wv is the time difference
between the arrival times of the two pulses from w measured with Hv. The approximate
agreement step results in a new multiplier µ̂v(r+ 1) at node v; we then move this
result by a (small) value ε in direction of the nominal rate multiplier ϑ and ensure that
we remain within the acceptable multiplier range [1,ϑ 2].

To fully specify the algorithm, we need to determine how long the waiting periods
are (in terms of local time) and choose ε . Here, we must ensure for all r ∈ N that

1. for all v,w∈C, the message v broadcasts at time tv(r−1)+τ1/µv(r−1) is received
by w at a local time from [Hw(tw(r−1)),Hw(tw(r−1))+τ1/µv(r−1)+τ2/µw(r)],

11 Given that hardware clock speeds may differ by at most factor ϑ , nodes need to be able to increase or
decrease their rates by factor ϑ : a single deviating node may be considered faulty by the algorithm, so each
node must be able to bridge this speed difference on its own.

18 Pankaj Khanchandani, Christoph Lenzen

Algorithm 3: Phase and frequency synchronization algorithm, code for
node v ∈C. Time tv(r), r ∈ N0, is the time when round r+1 starts.
1 // Hw(0) ∈ [0,F) for all w ∈V
2 wait until time tv(0) with Hv(tv(0)) = F ;
3 // initialize clock rate multiplier
4 µv(0) := µv(1) := ϑ ;
5 foreach round r ∈ N do
6 // phase correction step
7 start listening for messages;
8 wait until local time Hv(tv(r−1))+ τ1/µv(r−1);
9 broadcast clock pulse to all nodes (including self);

10 wait until local time Hv(tv(r−1))+(τ1 + τ2)/µv(r);
11 for each node w ∈V do
12 τwv := Hv(twv) (first message from w while listening at time twv; τwv := ∞ if none);

13 Sv←{2(τwv− τvv)/(ϑ +1) | w ∈V} (as multiset);
14 let Sk

v denote the kth smallest element of Sv;

15 ∆v(r)←
S f+1

v +Sn− f
v

2
;

16 // frequency correction step
17 start listening for messages;
18 wait until local time Hv(tv(r−1))+(τ1 + τ2 + τ3)/µv(r);
19 broadcast clock pulse to all nodes (including self);
20 wait until local time Hv(tv(r−1))+(τ1 + τ2 + τ3 + τ4)/µv(r);
21 for each node w ∈V do
22 τ ′wv := Hv(t ′wv) (first message from w while listening at time t ′wv; τwv := ∞ if none);
23 ∆wv := Hv(t ′wv)−Hv(twv);

24 Sv←{1−µv(r)∆wv/(τ2 + τ3) | w ∈V} (as multiset);
25 let Sk

v denote the kth smallest element of Sv;

26 ξv(r)←
S f+1

v +Sn− f
v

2
;

27 µ̂v(r+1)← µv(r)+2ξv(r)/(ϑ +1);
28 // pull back towards nominal frequency by ε , ensure minimum and maximum rate
29 if µ̂v(r+1)≤ ϑ then
30 µv(r+1)←max{µ̂v(r+1)+ ε,1};
31 else
32 µv(r+1)←min{µ̂v(r+1)− ε,ϑ 2};
33 wait until time tv(r) with Hv(tv(r))+(T −∆v(r))/µv(r); // nominal round length is T

2. for all v,w ∈C, the message v broadcasts at time tv(r−1)+ τ1/µv(r−1)+(τ2 +
τ3)/µv(r) is received by w at a local time from [Hw(tw(r− 1))+ τ1/µv(r− 1)+
τ2/µw(r),Hw(tw(r−1))+ τ1/µv(r−1)+(τ2 + τ3 + τ4)/µw(r)], and

3. for all v ∈C, T −∆v(r) ≥ τ1/µv(r− 1)+ (τ2 + τ3 + τ4)/µv(r), i.e., v computes
Hv(tv(r)) before time tv(r).

If these conditions are satisfied for r ∈ N, we say that round r was executed correctly.
We now specify the constraints our choices for the parameters must satisfy to

ensure that all rounds are executed correctly and both phase and frequency errors
converge to small values.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 19

Condition 2 Set ϑ̄ := ϑ 3. Define

e(1) := max
{

F +

(
1− 1

ϑ̄

)
τ1,

(1−1/ϑ̄)T +(3ϑ̄ −1)U
1− β̄

}
and, inductively for r ∈ N,

e(r+1) :=
2ϑ̄ 2 +5ϑ̄ −5

2(ϑ̄ +1)
e(r)+(3ϑ̄ −1)U +

(
1− 1

ϑ

)
T .

We require that

τ1 ≥ ϑ̄e(1)
τ2 ≥ ϑ̄(e(1)+d)

τ3 ≥ ϑ̄

(
e(1)+

(
1− 1

ϑ̄

)
(τ1 + τ2)

)
τ4 ≥ ϑ̄

(
e(1)+d +

(
1− 1

ϑ̄

)
(τ1 + τ2)

)
T ≥ τ1 + τ2 + τ3 + τ4 + ϑ̄(e(1)+U)

ε ≥ 2

(
(ϑ −1)(ϑ 3−1)+2ϑ

3
(

1− 1
ϑ 3

)2

+
2ϑ 3U
τ2 + τ3

+2(ϑ 3 +1)νT

)
.

Here, all but the last conditions mimic Condition 1, where the bounds on τ3 and τ4
account for the fact that between the first and the second pulse of each round, the
nodes’ opinion on the “synchronized time” drift apart slowly. The lower bound on ε

ensures that the pull-back of multipliers to the nominal ones is sufficiently strong to
guarantee that, in fact, multipliers will never leave the valid range of [1,ϑ 2]. We now
show that these constraints can be satisfied provided that ϑ is not too large.

Lemma 7 Condition 2 can be satisfied such that limr→∞ e(r)< ∞ if

ᾱ := β̄ +(4ϑ̄ +3)(ϑ̄ −1)< 1 ,

where β̄ := (2ϑ̄ 2 +5ϑ̄ −5)/(2(ϑ̄ +1)). Here, we may choose any T ≥ T0 ∈ O(F +
d +U). In this case,

lim
r→∞

e(r) =
(1−1/ϑ̄)T +(3ϑ̄ −1)U

1− β̄
.

Proof We choose τ1, τ2, τ3, and τ4 minimal such that the respective constraints are
satisfied, and pick any feasible ε . Hence, the remaining constraints are that

T ≥ ϑ̄((4ϑ̄ +3)e(1)+(2ϑ̄ +1)d +U) (4)

and

e(1) = max
{

F +

(
1+

1
ϑ̄

)
e(1),

(1−1/ϑ̄)T +(3ϑ̄ −1)U
1− β̄

}
.

20 Pankaj Khanchandani, Christoph Lenzen

Using that 2− ϑ̄ > 0 (which is a weaker constraint than ᾱ < 1), assuming that e(1)
equals the first term of the maximum would yield that

e(1) =
F

2− ϑ̄
,

and clearly there is a T0 ∈ O(F + d +U) such that (4) is satisfied for any T ≥ T0.
Assuming that e(1) equals the second term in the maximum, (4) becomes

T ≥ ϑ̄

(
(4ϑ̄ +3)

(
(1−1/ϑ̄)T +(3ϑ̄ −1)U

1− β̄

)
+(2ϑ̄ +1)d +U)

)
.

Using that ᾱ < 1, we can resolve this to

T ≥ ϑ̄ · (4ϑ̄ +3)(3ϑ̄ +1)U +(1+ β̄)((2ϑ̄ +1)d +U)

1− ᾱ
∈ O(U +d) .

For the final claim, observe that by induction on r, we have that

lim
r→∞

e(r) = lim
r→∞

(
β̄

r−1e(1)+
r−1

∑
i=1

β̄
i−1
(
(3ϑ̄ −1)U +

(
1− 1

ϑ

)
T
))

=
(1−1/ϑ̄)T +(3ϑ̄ −1)U

1− β̄
.

5.2 Analysis

In the following, denote by p(r) and q(r), r ∈ N, the vectors of times when nodes
v∈C broadcast their first and second pulse in round r, respectively. Thus, we have that
Hv(pv(r)) = Hv(tv(r−1))+τ1/µv(r−1) and Hv(qv(r)) = Hv(tv(r−1))+τ1/µv(r−
1)+(τ2 + τ3)/µv(r).

We will first make use of the analysis we performed for the phase correction
algorithm to show that all rounds are executed correctly. Then we will refine the
analysis by examining the impact of the frequency correction steps.

Phase Correction Steps

Observe that because for all r ∈ N0 and v ∈C, we have that 1≤ µv(r)≤ ϑ 2, for all
times t we have that 1 ≤ µv(r)hv(t) ≤ ϑ 3 = ϑ̄ . Thus, we may interpret the waiting
periods of Algorithm 3 as nodes waiting for τ1, τ2, etc. local time with hardware clocks
of drift ϑ̄ = ϑ 3. Thus, we can make use of the same arguments as in Section 4.3 to
obtain a series of results.

Corollary 6 For all r ∈ N, ‖q(r)‖ ≤ ‖p(r)‖+(1−1/ϑ̄)(τ1 + τ2).

Proof By application of Lemma 5.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 21

Corollary 7 Suppose that

τ1 ≥ ϑ(‖p(r)‖− (d−U))

τ2 ≥ ϑ(‖p(r)‖+d)

τ3 ≥ ϑ(‖q(r)‖− (d−U))

τ4 ≥ ϑ(‖q(r)‖+d)

T ≥ τ1 + τ2 + τ3 + τ4 +ϑ(‖p(r)‖+U) .

Then round r is executed correctly.

Proof As for Lemma 6, where the pulse in the frequency correction step is analyzed
analogously.

Theorem 2 Suppose that Condition 2 is satisfied and that

ᾱ := β̄ +(4ϑ̄ +3)(ϑ̄ −1)< 1 ,

where β̄ := (2ϑ̄ 2 +5ϑ̄ −5)/(2(ϑ̄ +1)) (this is the case for ϑ ≤ 1.011). Then, for all
r ∈ N, it holds that ‖p(r)‖ ≤ e(r) and the algorithm has steady state error

E ≤ (1−1/ϑ̄)T +(3ϑ̄ −1)U
1− β̄

.

In particular, all rounds r ∈ N are executed correctly.

Proof As for Theorem 1, where we replace ϑ with ϑ̄ , Lemma 6 with Corollary 7
and Lemma 3 with Lemma 7. However, the induction step requires that we can apply
Lemma 6 again in step r+1 if we could do so in step r ∈N. This readily follows from
Condition 2 if e(r+1)≤ e(r) for all r ∈ N.

We show this by induction on r. Abbreviate x := (3ϑ̄ −1)U +(1−1/ϑ̄)T . Our
claim is that (i) for r ∈ N, e(r) ≥ x/(1− β̄) and (ii) for r ≥ 2, e(r) ≤ e(r− 1). The
base case r = 1 requires (i) only, which holds by definition of e(1). For the step from
r to r+1, we bound

e(r+1) = β̄e(r)+ x≥ β̄x
1− β̄

+ x =
x

1− β̄

and

e(r)− e(r+1) = (1− β̄)e(r)− x≥ x− x = 0 .

Finally, observe that our reasoning shows as part of the inductive argument that all
rounds are executed correctly.

22 Pankaj Khanchandani, Christoph Lenzen

Frequency Correction Steps

In the following, we assume that the prerequisites of Theorem 2 are satisfied. In
particular, all rounds are executed correctly, i.e., we can assume that correct nodes
receive each others’ pulses. We introduce some notation to capture the behavior of the
(logical) rates of the nodes’ clocks. This notation may seem somewhat cumbersome;
basically, the reader may think of the clock rates hv(t) as being almost constant,
implying that all considered values for a given node v ∈C are essentially the same,
slowly deviating at rate at most ν .

By ρ(r), we denote the vector whose entries are the intervals of clock rate ranges
of nodes v ∈C between the first pulses in rounds r ∈ N and r+1. Concretely,

ρ(r)v :=
[

min
pv(r)≤t≤pv(r+1)

{µv(r)hv(t)}, max
pv(r)≤t≤pv(r+1)

{µv(r)hv(t)}
]
.

By ‖ρ(r)‖, we denote the difference between maximum and minimum rate in ρ(r),
i.e.,

‖ρ(r)‖ := max
v∈C

max
pv(r)≤t≤pv(r+1)

{µv(r)hv(t)}−min
v∈C

min
pv(r)≤t≤pv(r+1)

{µv(r)hv(t)} .

Furthermore, we denote by ρ̄(r)v := µv(r)hv((pv(r) + pv(r + 1))/2), by ρ̄(r) the
respective vector, and by ‖ρ̄(r)‖ :=maxv∈C{ρ̄(r)}−minv∈C{ρ̄(r)}. Note that ρ̄(r)v ∈
ρ(r)v by definition.

We start by showing that ρ̄(r)v approximates µv(r)hv(t) well for times t between
pulse r and r+1 of v ∈C, i.e., we may see ρ̄(r)v as “the” clock rate of v in round r.

Lemma 8 Let t ∈ [pv(r), pv(r+1)] for some v ∈C and r ∈ N. Then

|µv(r)hv(t)− ρ̄(r)v|< ν
T + τ2

2
.

Proof Using that hardware clock rates are at least 1 and that |∆v(r)|< max{τ1,τ2}=
τ2, we see that∣∣∣∣t− pv(r+1)+ pv(r)

2

∣∣∣∣≤ |pv(r+1)− pv(r)|
2

≤ |T −∆v(r)|
2µv(r)

<
T + τ2

2µv(r)
.

By our assumptions on the hardware clocks, this yields that∣∣∣∣µv(r)
(

hv(t)−hv

(
pv(r+1)+ pv(r)

2

))∣∣∣∣≤ µv(r) ·ν
∣∣∣∣t− pv(r+1)+ pv(r)

2

∣∣∣∣
< ν

T + τ2

2
.

Two corollaries relate the progress of the hardware clocks between (i) pv(r) and qv(r)
and (ii) t ′wv and twv to ρ̄(r)v, respectively.

Corollary 8 For v ∈C and r ∈ N, we have that

|ρ̄(r)v(qv(r)− pv(r))− (τ2 + τ3)|< νT (τ2 + τ3) .

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 23

Proof Let ρ ∈ ρ(r)v such that ρ(qv(r)− pv(r)) = τ2 + τ3. By definition of ρ(r)v and
the mean value theorem, such a ρ exists and ρ = µv(r)hv(t) for some t ∈ [pv(r), pv(r+
1)]. By Lemma 8, |ρ− ρ̄(r)v|< νT . Thus,

|ρ̄(r)v(qv(r)− pv(r))− (τ2 + τ3)|= |ρ− ρ̄(r)v|(qv(r)− pv(r))

= |ρ− ρ̄(r)v|
τ2 + τ3

ρ

< νT (τ2 + τ3) .

Corollary 9 For v,w ∈C and r ∈ N, we have that

|µv(r)(Hv(t ′wv)−Hv(twv))− ρ̄(r)v(t ′wv− twv)|< νT (τ2 + τ3) .

Proof Let ρ̄ ∈ ρ(r)v such that t ′wv− twv = µv(r)(Hv(t ′wv)−Hv(twv). By definition of
ρ(r)v and the mean value theorem, such a ρ exists and ρ = µv(r)hv(t) for some
t ∈ [twv, t ′wv]⊆ [pv(r), pv(r+1)]. By Lemma 8, |ρ− ρ̄(r)v|< ν(T + τ2)/2. Thus,

|µv(r)(Hv(t ′wv)−Hv(twv))− ρ̄(r)v(t ′wv− twv)|= |ρ− ρ̄(r)v|(t ′wv− twv)

< ν
T + τ2

2
(τ2 + τ3 +U)

< νT (τ2 + τ3) ,

where the second last step exploits that t ′wv− twv ≤ qw(r)+ d− (pw(r)+ d−U) ≤
τ2+τ3+U , since clock rates are at least 1, and the final inequality easily follows from
Condition 2.

These results put us in the position to prove that 1−µv(r)∆wv/(τ2 + τ3) is indeed
a good estimate of ρ̄(r)w− ρ̄(r)v. Thus, this (computable) value can serve as a proxy
for the difference between “the” clock rates of w and v in round r.

Lemma 9 For v,w ∈C and r ∈ N, we have that∣∣∣∣ρ̄(r)w− ρ̄(r)v−
(

1− µv(r)∆wv

τ2 + τ3

)∣∣∣∣≤ ϑ
3
(

1− 1
ϑ 3

)2

+
ϑ 3U

τ2 + τ3
+(ϑ 3 +1)νT .

Proof We have

|t ′wv− twv− (qw(r)− pw(r))| ≤U (5)

and by Corollaries 8 and 9 that∣∣∣∣qw(r)− pw(r)
τ2 + τ3

− 1
ρ̄(r)w

∣∣∣∣< νT
ρ̄(r)w

≤ νT (6)∣∣∣∣µv(r)∆wv

t ′wv− twv
− ρ̄(r)v

∣∣∣∣< νT . (7)

24 Pankaj Khanchandani, Christoph Lenzen

Note that |µv(r)∆wv/(t ′wv− twv)| ≤ ϑ 3. Therefore,∣∣∣∣ ρ̄(r)v

ρ̄(r)w
− µv(r)∆wv

τ2 + τ3

∣∣∣∣= ∣∣∣∣ ρ̄(r)v

ρ̄(r)w
− µv(r)∆wv

t ′wv− twv
· t ′wv− twv

qw(r)− pw(r)
· qw(r)− pw(r)

τ2 + τ3

∣∣∣∣
(5)
≤
∣∣∣∣ ρ̄(r)v

ρ̄(r)w
− µv(r)∆wv

t ′wv− twv
· qw(r)− pw(r)

τ2 + τ3

∣∣∣∣+ ϑ 3U
τ2 + τ3

(6)
≤
∣∣∣∣ ρ̄(r)v

ρ̄(r)w
− µv(r)∆wv

t ′wv− twv
· 1

ρ̄(r)w

∣∣∣∣+ ϑ 3U
τ2 + τ3

+ϑ
3
νT

(7)
≤ ϑ 3U

τ2 + τ3
+(ϑ 3 +1)νT .

Moreover,∣∣∣∣ρ̄(r)w− ρ̄(r)v−
(

1− ρ̄(r)v

ρ̄(r)w

)∣∣∣∣= (1− 1
ρ̄(r)w

)
|ρ̄(r)w− ρ̄(r)v|

≤
(

1− 1
ϑ 3

)
(ϑ 3−1) .

We conclude that∣∣∣∣ρ̄(r)w− ρ̄(r)v−
(

1− µv(r)∆wv

τ2 + τ3

)∣∣∣∣≤ ϑ
3
(

1− 1
ϑ 3

)2

+
ϑ 3U

τ2 + τ3
+(ϑ 3 +1)νT .

We remark that the Θ((1− 1/ϑ 3)2) factor is, more precisely, bounded as Θ((1−
1/ϑ 3)‖ρ̄(r)‖). However, for this to be of use, we would have to choose ε depending
on r. Since rule-of-thumb calculations show that this term is unlikely to be significant
in any real system and the improvement would not extend to the self-stabilizing variant
of the algorithm, we refrained from adding this additional complication.

Given that we can bound the “measurement error” of the frequency correction
step by Lemma 9, the results from Section 4.1 can be invoked to show convergence.
First, we analyze the properties of µ̂v(r+1), which Lemma 11 then uses to control
µv(r+1).

Lemma 10 For v ∈C and r ∈N, abbreviate t̄v := (pv(r)+ pv(r+1))/2, i.e., ρ̄(r)v =
µv(r)hv(t̄v). Then, for all v,w ∈C,

|µ̂v(r+1)hv(t̄v)− µ̂w(r+1)hw(t̄w)| ≤
2ϑ −1

2
‖ρ̄(r)‖+ϑε .

Furthermore,

(µ̂v(r+1)− ε)hv(t̄v)≤max
u∈C
{µu(r)hu(t̄u)}−

ε

2

(µ̂v(r+1)+ ε)hv(t̄v)≥min
u∈C
{µu(r)hu(t̄u)}+

ε

2
.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 25

Proof Set δ := ϑ 3(1−ϑ−3)2 +ϑ 3U/(τ2 + τ3)+ (ϑ 3 + 1)νT . Observe that, accor-
ding to Lemma 9, we can interpret ρ̄(r)v+ξv(r), v∈C, as the results of an approximate
agreement step with error δ on inputs ρ̄(r). By Lemma 2, this implies that

|µ̂v(r)hv(t̄v)+ξv(r)− (µ̂w(r)hv(t̄w)+ξw(r))| ≤
‖ρ̄(r)‖

2
+2δ .

By Corollary 1, maxu∈C |{ξu(r)|} ≤ ‖ρ̄(r)‖+δ . Hence, we have for u ∈C that

|µ̂u(r+1)hu(t̄u)− (µ̂u(r)hu(t̄u)+ξu(r))|=
∣∣∣∣2hu(t̄u)

ϑ +1
−1
∣∣∣∣ · |ξu(r)|

≤ ϑ −1
ϑ +1

(‖ρ̄(r)‖+δ) . (8)

Using this bound for both v and w, we conclude that

|µ̂v(r+1)hv(t̄v)− µ̂w(r+1)hw(t̄w)| ≤
‖ρ̄(r)‖

2
+2δ +

2(ϑ −1)
ϑ +1

(‖ρ̄(r)‖+δ)

<
2ϑ −1

2
‖ρ̄(r)‖+(ϑ +1)δ

<
2ϑ −1

2
‖ρ̄(r)‖+ϑε .

For the second claim of the lemma, we apply Lemma 1. Together with (8), this shows
for v ∈C that

µ̂v(r+1)hv(t̄v)< max
u∈C
{µu(r)hu(t̄u)}+δ +

hv(t̄v)−1
2

(‖ρ̄(r)‖+δ)

µ̂v(r+1)hv(t̄v)> min
u∈C
{µu(r)hu(t̄u)}−

(
δ +

hv(t̄v)−1
2

(‖ρ̄(r)‖+δ)

)
,

where we used that 2hv(t̄v)/(ϑ +1)−1≤ (hv(t̄v)−1)/2. By Condition 2 (and because
‖ρ̄(r)‖ ≤ ϑ 3−1),

ε

2
hv(t̄v)≥

(
δ +

(ϑ −1)(ϑ 3−1)
2

)
hv(t̄v)> δ +

hv(t̄v)−1
2

(‖ρ̄(r)‖+δ) .

Combining this with the above inequalities completes the proof.

Lemma 11 For round r ∈ N and v ∈C, abbreviate t̄v := (pv(r)+ pv(r+1))/2, i.e.,
ρ̄(r)v = µv(r)hv(t̄v). For all v,w ∈C, we have that

|µv(r+1)hv(t̄v)−µw(r+1)hw(t̄w)| ≤max
{

2ϑ −1
2
‖ρ̄(r)‖+3ϑε,‖ρ̄(r)‖− ε

2

}
.

Proof Let v ∈ C and w ∈ C maximize and minimize µu(r + 1)hu(t̄u) over u ∈ C,
respectively. By Lemma 10, we have that

|µ̂v(r+1)hv(t̄v)− µ̂w(r+1)hw(t̄w)|<
2ϑ −1

2
‖ρ̄(r)‖+ϑε .

We make a case distinction.

26 Pankaj Khanchandani, Christoph Lenzen

Case 1: µv(r+1)− µ̂v(r+1)≤ ε and µ̂w(r+1)−µw(r+1)≤ ε . Because we have that
max{hv(t̄v),hw(t̄w)} ≤ ϑ , we get

µv(r+1)hv(t̄v)−µw(r+1)hw(t̄w)≤ (µv(r+1)− µ̂v(r+1))hv(t̄v)

+ µ̂v(r+1)hv(t̄v)− µ̂w(r+1)hw(t̄w)

+(µ̂w(r+1)−µw(r+1))hw(t̄w)

≤ 2ϑ −1
2
‖ρ̄(r)‖+3ϑε .

Case 2: µv(r+1)− µ̂v(r+1)> ε . This implies that µv(r+1) = 1≤ µv(r).
a) µ̂w(r+1)≤ ϑ , i.e., we have that µw(r+1)≥ µ̂w(r+1)+ε . Using Lemma 10,

we bound

µv(r+1)hv(t̄v)−µw(r+1)hw(t̄w)≤ hv(t̄v)µv(r)−
(

min
u∈C
{µu(r)hu(t̄u)}+

ε

2

)
≤ ‖ρ̄(r)‖− ε

2
.

b) µ̂w(r+1)> ϑ , yielding that µw(r+1)≥ ϑ − ε . It follows that

µv(r+1)hv(t̄v)−µw(r+1)hw(t̄w)≤ hv(t̄v)− (ϑ − ε)≤ ε .

Case 3: µ̂w(r+1)−µw(r+1)> ε . This implies that µw(r+1) = ϑ 2 ≥ µw(r).
a) µ̂v(r+1)> ϑ , i.e., we have that µv(r+1)≤ µ̂v(r+1)− ε . Using Lemma 10,

we bound

µv(r+1)hv(t̄v)−µw(r+1)hw(t̄w)≤
(

max
u∈C
{µu(r)hu(t̄u)}−

ε

2

)
−hw(t̄w)µw(r)

≤ ‖ρ̄(r)‖− ε

2
.

b) µ̂v(r+1)≤ ϑ , yielding that µv(r+1)≤ ϑ + ε . It follows that

µv(r+1)hv(t̄v)−µw(r+1)hw(t̄w)≤ (ϑ + ε)hv(t̄v)−ϑ
2 ≤ ϑε .

In all cases, we get that

max
u,u′∈C

{|µu(r+1)hu(t̄u)−µu′(r+1)hu′(t̄u′)}

= µv(r+1)hv(t̄v)−µw(r+1)hw(t̄w)

≤ max
{

2ϑ −1
2
‖ρ̄(r)‖+3ϑε,‖ρ̄(r)‖− ε

2

}
.

It remains to take into account that hardware clock speeds change between rounds
using Lemma 8.

Corollary 10 For all r ∈ N,

‖ρ̄(r+1)‖ ≤max
{

2ϑ −1
2
‖ρ̄(r)‖+3ϑε,‖ρ̄(r)‖− ε

2

}
+2ν(T + τ2) .

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 27

Proof By applying Lemma 11 and noting that for all u ∈ C, |ρ̄(r)v− ρ̄(r+ 1)v| ≤
ν(T + τ2) by Lemma 8.

We conclude that the steady state frequency error is in O(ε).

Corollary 11 Assume that β := (2ϑ −1)/2 < 1. Then

lim
r→∞

sup
r′≥r
{‖ρ(r′)‖} ≤ 3ϑε +2ν(T + τ2)

1−β
+ν(T + τ2) ∈ O(ε) .

Proof From iterative application of Corollary 10, we get that

lim
r→∞

sup
r′≥r
{‖ρ(r′)‖} ≤ 3ϑε +2ν(T + τ2)

1−β
.

Lemma 8 shows that ‖ρ(r′)‖ ≤ ‖ρ̄(r′)‖+ν(T +τ2). Since Condition 2 holds, 1−β ∈
Ω(1) and the overall error is bounded by O(ε).

Steady State Error with Frequency Correction

To make use of Corollary 11, we need to derive a variant of Corollary 4 that allows for
better control of ‖p(r+1)‖ in case ‖ρ̄(r)‖ is small.

Lemma 12 If round r ∈ N is executed correctly, then

‖p(r+1)‖ ≤ 4ϑ̄ 2 +5ϑ̄ −7
2(ϑ̄ +1)

‖p(r)‖+
(
4ϑ̄ −2

)
U +‖ρ(r)‖T .

Proof For v,w ∈ C, assume w.l.o.g. that pv(r + 1)− pw(r + 1) ≥ 0 (the other case
is symmetric). Denote by ρv ∈ ρ(r)v the average (adjusted) clock rate of v during
[pv(r), pv(r+1)], i.e.,

T −∆v(r) =
Hv(pv(r+1))−Hv(pv(r))

µv(r)
= ρv(pv(r+1)− pv(r)) ;

ρw is defined analogously for w. Recall that 1≤ ρu ≤ ϑ̄ for u ∈ {v,w}. Using this and
Corollary 3 (with ϑ replaced by ϑ̄ = ϑ 3), we conclude that

pv(r+1)− pw(r+1)

= pv(r)− pw(r)+
T −∆v(r)

ρv
− T −∆w(r)

ρw

≤ pv(r)−∆v(r)− (pw(r)−∆w(r))+
ρw−ρv

ρvρw
T

+

(
1− 1

ρv

)
|∆v(r)|+

(
1− 1

ρw

)
|∆w(r)|

≤ 5ϑ̄ −3
2(ϑ̄ +1)

‖p(r)‖+2ϑ̄U +‖ρ(r)‖T +2(ϑ̄ −1)(‖p(r)‖+U)

=
4ϑ̄ 2 +5ϑ̄ −7

2(ϑ̄ +1)
‖p(r)‖+

(
4ϑ̄ −2

)
U +‖ρ(r)‖T .

28 Pankaj Khanchandani, Christoph Lenzen

Plugging this into our machinery we arrive at the main result of this section.

Theorem 3 Suppose that Condition 2 is satisfied and that

ᾱ :=
2ϑ̄ 2 +5ϑ̄ −5

2(ϑ̄ +1)
+(4ϑ̄ +3)(ϑ̄ −1)< 1

(which is the case for ϑ ≤ 1.01). Then, with α := (4ϑ̄ 2 + 5ϑ̄ − 7)/(2(ϑ̄ + 1)) < 1
and β := (2ϑ −1)/2 < 1, Algorithm 3 has steady state error

E ≤ (4ϑ̄ −2)U +ν(T + τ2)T
1−α

+
(3ϑε +2ν(T + τ2))T

(1−α)(1−β)
.

Proof As the preconditions of Theorem 2 are satisfied, all rounds are executed cor-
rectly. By Corollary 11, this implies that

lim
r→∞

sup
r′≥r
{‖ρ(r′)‖} ≤ 3ϑε +2ν(T + τ2)

1−β
+ν(T + τ2) .

We plug this into the bound from Lemma 12, which we apply inductively to show that

E = lim
r→∞

sup
r′≥r
{‖p(r′)‖} ≤

(4ϑ̄ −2)U + limr→∞ supr′≥r{‖ρ(r)‖T}
1−α

≤ (4ϑ̄ −2)U +ν(T + τ2)T
1−α

+
(3ϑε +2ν(T + τ2))T

(1−α)(1−β)
.

Under reasonable assumptions we can obtain a more readable error bound. Intuitively,
we require that (i) ϑ is not too large, so that α ≈ 1/2, (ii) rounds are long enough to
allow for a sufficiently accurate frequency measurement, which is the case if T �
max{F,U}, i.e., rounds are long compared to both the precision F of the initialization
and the uncertainty U , and (iii) rounds remain short enough to not let the drifting
clocks dominate the error. The third condition amounts to two further constraints: we
need that νT 2�U , since the rate of change of the speed of clocks enters the skew
bound quadratically in T , and we also need that (ϑ −1)2T �U , because inaccurate
frequency measurements prevent us from synchronizing frequencies better than up to
a factor of Θ((ϑ −1)2).

Corollary 12 Assume that the prerequisites of Theorem 3 are satisfied (including (1)).
Moreover, suppose that

– α ≈ 1/2,
– ε is chosen minimally such that it satisfies Condition 2,
– T ≈ τ3� τ2, which is feasible whenever T � ϑ̄(e(1)+d), and
– max{(ϑ̄ −1)2T,νT 2}�U.

Then the steady state error of Algorithm 3 is bounded by roughly 28U.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 29

Proof Note that α ≈ 1/2 implies that β ≈ 1/2 and that ϑ̄ ≈ 1. Plugging ε into the
bound from Theorem 3, the steady state error is approximately bounded by

4U +10ν(T + τ2)T +12εT

≈ 4U +10ν(T + τ2)T +12
(

6(ϑ̄ −1)2 +
2U

τ2 + τ3
+4νT

)
T

≈
(

4+
24T

τ2 + τ3

)
U +72(ϑ̄ −1)2T +58νT 2

≈ 28U .

A few remarks:

– Note that that ϑ ≤ 1.01 implies that β < α < 0.55, ϑ̄ < 1.031 and e(1) ≤
max{1.031F,0.07T + 4.65U}. Thus the requirements of the corollary are met
if max{F,U} � T and max{(ϑ̄ −1)2T,νT 2} �U for the minimal choice of ε ,
yielding the claim stated in the introduction.

– Corollary 12 basically states that increasing T is fine, as long as max{(ϑ̄ −
1)2T,νT 2}�U . This improves over Algorithm 2, where it is required that (ϑ −
1)T �U , as it permits transmitting pulses at significantly smaller frequencies.

– While the error bound of roughly 28U is about factor 7 larger than the about
4U Algorithm 2 provides, this is likely to be overly conservative. The source
of this difference is that we assume that in a frequency measurement, the full
uncertainty U may skew the observation of the relative clock speed. However, this
measurement is based on sending two signals in the same direction over the same
communication link in fairly short order. In most settings, the difference in delays
will be much smaller than between messages on different communication links.
Accordingly, the relative contribution of the frequency measurement to the error is
likely to be much smaller in practice.

– If this is not the case, one may extend the time span for a frequency measurement
over multiple rounds to decrease the effect of the uncertainty. This requires that
the accumulated phase corrections do not become so large as to prevent a clear
distinction of the frequency-related pulse (whose sending time must not be altered
due to phase corrections) from phase-related pulses.12 To not further complicate
the analysis, we refrained from presenting this option; it is used in [16, 17].

6 Self-stabilization

In this section, we propose a generic mechanism that can be used to transform Al-
gorithm 2 and Algorithm 3 into self-stabilizing solutions and give the corresponding
main results in Theorem 4 and Theorem 5. An algorithm is self-stabilizing, if it
(re)establishes correct operation from arbitrary states in bounded time. If there is an
upper bound on the time this takes in the worst case, we refer to it as the stabilization
time. We stress that, while self-stabilizing solutions to the problem are known, all of

12 This issue can be circumvented by having a second, dedicated communication link between each pair
of nodes.

30 Pankaj Khanchandani, Christoph Lenzen

them have skew Ω(d); augmenting the Lynch-Welch approach with self-stabilization
capabilities thus enables us to achieve an optimal skew bound of O((ϑ −1)T +U) in
a Byzantine self-stabilizing manner for the first time.

Our approach can be summarized as follows. Nodes locally count their pulses
modulo some M ∈ N. We use a low-frequency, imprecise, but self-stabilizing synchro-
nization algorithm (called FATAL) from earlier work [4, 5] to generate a “heartbeat.”
On each such beat, nodes will locally check whether the next pulse with number 1
modulo M will occur within an expected time (local) window whose size is determined
by the precision the algorithm would exhibit after M correctly executed pulses (in the
non-stabilizing case). If this is not the case, the node is “reset” such that pulse 1 will
occur within this time window.

This simple strategy ensures that a beat forces all nodes to generate a pulse
with number 1 modulo M within a bounded time window. Assuming a value of F
corresponding to its length in Algorithm 2 or Algorithm 3 hence ensures that the
respective algorithm will run as intended—at least up to the point when the next beat
occurs. Inconveniently, if the beat is not synchronized with the next occurrence of a
pulse 1 mod M, some or all nodes may be reset, breaking the guarantees established
by the perpetual application of approximate agreement steps. This issue is resolved by
leveraging a feedback mechanism provided by FATAL: FATAL offers a (configurable)
time window during which a NEXT signal externally provided to each node may
trigger the next beat. If this signal arrives at each correct node at roughly the same
time, we can be sure that the corresponding beat is generated shortly thereafter. This
allows for sufficient control on when the next beat occurs to prevent any node from
ever being reset after the first (correct) beat. Since FATAL stabilizes regardless of
how the externally provided signals behave, this suffices to achieve stabilization of the
resulting compound algorithm.

6.1 FATAL

We summarize the properties of FATAL in the following corollary, where each node
has the ability to trigger a local NEXT signal perceived by the local instance of FATAL
at any time.

Corollary 13 (of [5]) For suitable parameters P,B1,B2,B3,D∈R+, FATAL stabilizes
within O((B1 +B2 +B3)n) time with probability 1−2−Ω(n). Once stabilized, nodes
v ∈ C generate beats bv(k), k ∈ N, such that the following properties hold for all
k ∈ N.

1. For all v,w ∈C, we have that |bv(k)−bw(k)| ≤ P.
2. If no v ∈ C triggers its NEXT signal during [minw∈C{bw(k)}+B1, t] for some

t ≤minw∈C{bw(k)}+B1 +B2 +B3, then minw∈C{bw(k+1)} ≥ t.
3. If all v ∈C trigger their NEXT signals during [minw∈C{bw(k)}+B1 +B2, t] for

some t ≤minw∈C{bw(k)}+B1 +B2 +B3, then maxw∈C{bw(k+1)} ≤ t +P.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 31

Algorithm 4: Interface algorithm, actions for node v ∈ C in response to a
local event at time t. Runs in parallel to local instances of FATAL and either
Algorithm 2 or Algorithm 3. In case Algorithm 2 is used, we assume that
τ1(r), τ2(r), and T (r) do not depend on r ∈ N and omit r from the notation.
1 // algorithm maintains local variable i ∈ {0, . . . ,M−1}
2 if v generates a pulse at time t then
3 i := i+1 mod M;
4 if i = 0 then
5 wait for local time Hv(t)+ϑe(M);
6 trigger NEXT signal;

7 if v generates a beat at time t then
8 if i 6= 0 then
9 // beats should align with every Mth pulse, hence reset

10 reset(R+);

11 else if next pulse would be sent before local time Hv(t)+R− then
12 // reset to avoid early pulse
13 reset(R+− (Hv(t ′)−Hv(t))), where t ′ is the current time;

14 else if next round has not started yet at local time Hv(t)+R+ then
15 // reset to avoid late pulse and start listening for other nodes’ pulses on time
16 reset(0);

17 Function reset(τ)

18 halt local instance of clock synchronization algorithm;
19 wait for τ local time;
20 i := 0;
21 Hv(tv(0)) := Hv(t ′), where t ′ is current time (i.e., tv(0) := t ′);
22 restart loop of clock synchronization algorithm (in round r = 1);

[]

[] [] [] [] []

[]
unstable

p1 p2 pM−1 pM pM+1

B1 B2 B3
‖pM‖+P

unstable

valid time range for pM

beat
could be
triggered
w/o NEXT

signals

spurious
NEXT
signals

b1

b2

Fig. 3 Interaction of the beat generation and clock synchronization algorithms in the stabilization process,
controlled by Algorithm 4. Beat b1 forces pulse p1 to be roughly synchronized. The approximate agreement
steps then result in tightly synchronized pulses. By the time the nodes trigger beat b2 by providing NEXT
signals based on pM , synchronization is tight enough to guarantee that the beat results in no resets.

32 Pankaj Khanchandani, Christoph Lenzen

Denoting by dF the maximum end-to-end delay (sum of maximum message and com-
putational delay) of FATAL, for any φ ≥ 1 and any constant C we can ensure that

P ∈ O(dF)

B1 ≥ P+d

B1 +B2 +B3 ∈Θ(φ · (dF +d))

B3 ≥C(B1 +B2) .

Proof For φ = 1, all statements follow directly from Lemma 3.4 and Corollary 4.16
in [5], noting that nodes will switch from state ready to propose (in the main state
machine) in response to a NEXT signal if their timeout T3 is expired. Once all correct
nodes switched to propose, this results in all nodes switching to accept and generating
a beat within dF time. For φ > 1, one simply needs to observe that multiplying each
timeout for choices satisfying Condition 3.3 in [5] by φ results in another valid choice;
the bound on the stabilization time given in Corollary 4.16 scales accordingly.

6.2 Algorithm

Our self-stabilizing solution utilizes both FATAL and the clock synchronization al-
gorithm with very limited interaction. We already stressed that FATAL will stabilize
regardless of the NEXT signals and note that it is not influenced by Algorithm 4 in
any other way. Concerning the clock synchronization algorithm (either Algorithm 2
or Algorithm 3), we assume that a “careful” implementation is used that does not
maintain state variables for a long time. Concretely, Algorithm 2 will clear memory
between loop iterations, and Algorithm 3 will memorize the new multiplier value
µv(r + 1) only, which is explicitly assigned during round r. If this is satisfied, no
further consistency checks of variables are required, and it will be straightforward to
re-use the analyses from Sections 4.3 and 5.2.

Having said this, let us turn to Algorithm 4, which is basically an ongoing con-
sistency check based on the beats that resets the clock synchronization algorithm if
necessary. The feedback triggering the next beat in a timely fashion is implemented
by simply triggering the NEXT signal on each Mth beat, with a small delay ensuring
that all nodes arrive in the same round and have their counter variable i reading 0.
The consistency checks then ask for i = 0 and the next pulse being triggered within
a certain local time window; if either does not apply, the reset function is called,
ensuring that both conditions are met.

Condition 3 lists the constraints on R− (the minimum local time between a beat and
local pulse 1 mod M), R+ (the respective maximum local time), and M (the number
of pulses between beats) – the parameters of Algorithm 4 – need to satisfy so that we
can show that the algorithm is guaranteed to stabilize.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 33

Condition 3 We require that

P+R++ τ1−
R−

ϑ
≤ e(1) (9)

P+R+ ≤ R−

ϑ
(10)

P+R++ τ1 +d ≤ R−+ τ2

ϑ
(11)

P+d ≤ R−− τ1

ϑ
(12)

P+R++T +ϑ(e(1)+U)≤ B1 +B2 (13)
P+ϑe(M)≤ B1 (14)

B1 +B2 ≤ e(M)+(M−1)
(

T
ϑ
− τ1

)
+

R−

ϑ

(15)

ϑe(M)+(M−1)(T +ϑτ1)+P+R++ τ1 ≤ B1 +B2 +B3 (16)

R− ≤ T
ϑ
− ((ϑ +2)e(M)+U +P) (17)

T +ϑ(e(M)+U)− τ1 ≤ R+ . (18)

Intuitively, these constraints ensure the following:

– (9) says that resets on a beat enforce the skew to become bounded by e(1).
– (10) and (11) ensure that correct nodes receive the first pulses from all other correct

nodes after a beat.
– (12) guarantees that these are actually the “round-1” pulses also for nodes that

have been reset, i.e., there are no spurious pulses from before such a reset that are
received during the respective time window.

– (13) and (14) make sure that FATAL will ignore any NEXT signals that may still
be active when a beat occurs and that there is sufficient time for the first round
after the beat to complete.

– (15) and (16) enforce that the (now correctly executing) algorithm will trigger the
NEXT signals and thus the next beat is well-aligned with the time reference it
provides.

– Finally, (17) and (18) imply that such a beat will result in no resets.

We need to show that these constraints can be satisfied in conjunction with the
ones required by the employed synchronization algorithm.

Lemma 13 Conditions 1 and 3 can be simultaneously satisfied such that τ1(r) = τ1,
τ2(r) = τ2 and T (r) = T for all r ∈ N, and limr→∞ e(r)< ∞ if

α =
2ϑ 2 +ϑ

2−ϑ
·
(

1− 1
ϑ 2 +

4(ϑ −1)
1−β

)
< 1 ,

where β = (2ϑ 2 +5ϑ −5)/(2(ϑ +1)). In this case,

lim
r→∞

e(r) =
(1−1/ϑ)T +(3ϑ −1)U

1−β
.

34 Pankaj Khanchandani, Christoph Lenzen

Here, we may choose any T ≥ T0 ∈O((dF +d)/(1−α)) and B1, B2, and B3 such that
FATAL stabilizes in time O(n(dF +d)) with probability 1−2−Ω(n).

Proof We choose R− and R+ such that (17) and (18) are satisfied with equality. Thus,
any choice of

F ≥
(

1− 1
ϑ 2

)
T +2P+4ϑe(M)+2ϑU

satisfies (9), and for (10)–(12) to hold it is sufficient that

F ≤ τ1 ≤
T
ϑ
−3ϑe(M)−ϑd− (ϑ −1)P

ϑF ≤ τ2 .

These lower bounds on τ1 and τ2 are weaker than those imposed by Condition 1, which
demands that min{τ1,τ2} ≥ ϑe(1)> F . Setting τ1 := ϑe(1), τ2 := ϑ(e(1)+d), and
requiring T ≥ ϑ(τ1 + τ2 + e(1)+U) thus guarantees that the above lower bounds on
τ1 and τ2 hold. We get that

T
ϑ

> τ1 +F +ϑd > τ1 +3ϑe(M)+ϑd +(ϑ −1)P ,

and the inequalities of Condition 1 are satisfied for r = 1. Moreover, with x :=
(3ϑ −1)U +(1−1/ϑ)T , we have for r ∈ N that

e(r) = β
r−1e(1)+

1−β r−1

1−β
x ,

i.e., e(r) is a convex combination of e(1) and x/(1− β). We require that e(1) ≥
x/(1−β), i.e.,

F
2−ϑ

= e(1)≥ (3ϑ −1)U +(1−1/ϑ)T
1−β

;

here, we used that 2−ϑ > 0, because α < 1. Thus, e(r)≤ e(1), and we conclude that
Condition 1 holds for

F :=

max
{(

1− 1
ϑ 2

)
T +2P+4ϑe(M)+2ϑU,

(2−ϑ)((3ϑ −1)U +(1−1/ϑ)T)
1−β

}
under the constraint that

T ≥ ϑ(τ1 + τ2 + e(1)+U) = ϑ

(
(2ϑ +1)F

2−ϑ
+ϑd +U

)
.

For any c > 1, sufficiently large M ensures that

e(M)≤ c lim
r→∞

e(r) =
cx

1−β
=

c((3ϑ −1)U +(1−1/ϑ)T)
1−β

,

where the last step uses that 1−β ∈Ω(1) because α < 1.

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 35

Assuming sufficiently large M, the above lower bound on T can hence be met iff

2ϑ 2 +ϑ

2−ϑ
·max

{
1− 1

ϑ 2 +
4(ϑ −1)

1−β
,
(2−ϑ)(1−1/ϑ)

1−β

}
= α < 1 .

In this case, for sufficiently large M the constraint on T is satisfied if

(1−α)T ≥ (1−α)T0 ∈ O
(

max
{

P+
U

1−β
+U,

U
1−β

}
+d +U

)
= O(P+d) ,

where we used that ϑ and thus 1−α and 1−β are constants.
To complete the proof, it remains to show that, for any such choice of T and a

given lower bound on M, we can satisfy Inequalities (13)–(16) such that FATAL has
the claimed guarantees on the stabilization time. Given that all parameters except for
M, B1, B2, and B3 are already fixed independently of these values, it suffices if we can
solve the system

K ≤ B1

B1 +B2 ≤ (M−1)K
ϑMK ≤ B1 +B2 +B3

for an arbitrary K ∈ R+ such that M is sufficiently large. By Corollary 13, we may
choose B1, B2, and B3 such that, e.g., B3 ≥ B1 +B2. Picking φ ≥ 1 in the corollary
sufficiently large, we get that φB1 ≥ K and M := b2(B1 +B2)/(ϑK)c is sufficiently
large and satisfies the second and third inequality (where again we use that 2−ϑ ∈
Ω(1)).

Finally, note that P ∈ O(dF) and all factors occurring in this proof are constants
depending on ϑ only, implying that φ and M are constants as well. The bound on the
stabilization time thus readily follows from Corollary 13 as well.

In the remainder of the section, we assume (i) that the beat generation algorithm
has already stabilized, i.e., the guarantees stated in Corollary 13 hold, (ii) that the
executed clock synchronization algorithm is Algorithm 2, and (iii) that Condition 1
holds. The analysis for Algorithm 3 is analogous, where ϑ̄ = ϑ 3 takes the role of
ϑ and Condition 2 takes the role of Condition 1; this is formalized by the following
corollary and Theorem 5 at the end of this section.

Corollary 14 Conditions 2 and 3 can be simultaneously satisfied with limr→∞ e(r)<
∞ if

ᾱ =
4ϑ̄ 2 +5ϑ̄

2− ϑ̄
·
(

1− 1
ϑ̄ 2 +

4(ϑ̄ −1)
1− β̄

)
< 1 ,

where ϑ̄ = ϑ 3 and β̄ = (2ϑ̄ 2 +5ϑ̄ −5)/(2(ϑ̄ +1)). In this case,

lim
r→∞

e(r) =
(1−1/ϑ̄)T +(3ϑ̄ −1)U

1−β
.

Here, we may choose any T ≥ T0 ∈O((dF +d+U)/(1−α)) and B1, B2, and B3 such
that FATAL stabilizes in time O(n(dF +d)) with probability 1−2−Ω(n).

36 Pankaj Khanchandani, Christoph Lenzen

Proof Analogous to the proof of Lemma 13, but replacing the constraint T ≥ ϑ(τ1 +
τ2 + e(1)+U) by T ≥ τ1 + τ2 + τ3 + τ4 + ϑ̄(e(1)+U)> ϑ̄(τ1 + τ2 + e(1)+U) and
setting τ3 := ϑ̄(e(1)+(1−1/ϑ̄)(τ1+τ2)) and τ4 := ϑ̄(e(1)+d+(1−1/ϑ̄)(τ1+τ2))
in accordance with Condition 2. This results in the requirement that

T ≥ (4ϑ̄ 2 +5ϑ̄)F
2−ϑ

+ ϑ̄d +U ,

which in turn leads to the value for ᾱ .

6.3 Analysis

Our analysis starts with the first correct beat produced by FATAL, which is perceived
at node v ∈ C at time bv(1). Subsequent beats at v occur at times bv(2), bv(3), etc.
We first establish that the first beat guarantees to “initialize” the synchronization
algorithm such that it will run correctly from this point on (neglecting for the moment
the possible intervention by further beats). We use this do define the “first” pulse times
pv(1), v ∈C, as well; we enumerate consecutive pulses accordingly.

Lemma 14 Let b := minv∈C{bv(1)}. We have that

1. Each v ∈C generates a pulse at time pv(1) ∈ [b+R−/ϑ ,b+P+R++ τ1].
2. ‖p(1)‖ ≤ e(1).
3. At time pv(1), v ∈C sets i := 1.
4. w∈C receives the pulse sent by v∈C at a local time from the range [Hw(pw(1))−

τ1,Hw(pw(1))+ τ2].
5. This is the only pulse w receives from v at a local time from the range [Hw(pw(1))−

τ1,Hw(pw(1))+ τ2].
6. Denoting by round 1 the execution of the for-loop in Algorithm 2 during which

each v ∈C sends the pulse at time pv(1), this round is executed correctly.

Proof Assume for the moment that minv∈C{bv(2)} is sufficiently large, i.e., no second
beat will occur at any correct node for the times relevant to the proof of the lemma;
we will verify this at the end of the proof.

From the pseudocode given in Algorithms 2 and 4, it is straightforward to verify
that v∈C generates a pulse at a local time from [Hv(bv(1))+R−,Hv(bv(1))+R++τ1].
Since bv(1) ∈ [b,b+P] by Corollary 13, this shows the first claim. The second follows
immediately, since

‖p(1)‖ ≤ P+R++ τ1−
R−

ϑ

(9)
≤ e(1) .

Note that, until we show the last claim, it is not clear that pv(1) is unique for each
v ∈C. For the moment, let pv(1) be the first pulse v ∈C sends during the local time
interval [Hv(bv(1))+R−,Hv(bv(1))+R++ τ1]. With this convention, the third claim
is shown as follows. Observe that any v∈C that executes the reset function in response
to the beat sets i := 0 when doing so. Hence, it will set i := 1 at time pv(1). Thus,
consider v ∈C that does not execute the reset function. This entails that i = 0 at time

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 37

bv(1) and v generates no pulse during local times from [Hv(bv(1),Hv(bv(1))+R−).
Consequently, v will increase i to 1 at time pv(1).

For the fourth claim, we bound

pv(1)≥ b+
R−

ϑ
≥ bw(1)+

R−

ϑ
−P

(10)
≥ bw(1)+R+ .

Thus, either the next round has already started at node w by time pv(1) or w calls reset
with argument 0, i.e., starts a new round. Either way, we have that w receives the pulse
from v no earlier than local time Hw(pw(1))−τ1. To see that the pulse arrives on time,
we bound

pv(1)+d ≤ pw(1)+P+R++ τ1 +d− R−

ϑ

(11)
≤ pw(1)+

τ2

ϑ
.

As Hw(pw(1)+ τ2/ϑ)≤ Hw(pw(1))+ τ2, the fourth claim follows.
Concerning the fifth claim, observe that v ∈C sends exactly one pulse during the

local time interval [Hv(bv(1)),Hv(pv(1))]. As for w ∈C we have that

bv(1)+d ≤ bw(1)+P+d ≤ pw(1)−
R−

ϑ
+P+d

(12)
≤ pw(1)−

τ1

ϑ
,

no pulse v sent at an earlier local time is received by w at or after local time
Hw(pw(1))− τ1. In particular, the first pulse w receives from v at a local time from
[Hw(pw(1))− τ1,Hw(pw(1))+ τ2] arrives at w at a time tvw ∈ [pv(1)+d−U, pv(1)+
d]. Since we also showed that ‖p(1)‖ ≤ e(1), we conclude that the analysis of
Section 4.3 can be applied to show that any subsequent pulse arrives after the round is
complete at all nodes. Furthermore, we conclude that round 1 is executed correctly.

Recall that in the above reasoning, we assumed that minv∈C{bv(2)} is sufficiently
large. Clearly, this is the case if round 1 ends at all nodes before this time. Accordingly,
we bound for v ∈C

pv(1)+T −∆v(1)− τ1 ≤ bv(1)+R++T −∆v(1)

≤ b+P+R++T +ϑ(e(1)+U)

(13)
≤ b+B1 +B2 ,

where the second last step makes use of Corollary 3. Because no node v ∈C generates
a pulse with i=M during times [bv(1)+ϑe(M), pv(2)], no such node triggers a NEXT
signal during this time interval (cf. Algorithm 4). We have that

bv(1)+ϑe(M)≤ b+P+ϑe(M)
(14)
≤ B1 ,

implying by Corollary 13 that minv∈C{bv(2)} ≥ b+B1 +B2.

Lemma 14 serves as induction anchor for the argument showing that all rounds of
the algorithm are executed correctly. However, due to possible interference of future
beats, for the moment we can merely conclude that this is the case until the next beat;
we obtain the following corollary.

38 Pankaj Khanchandani, Christoph Lenzen

Corollary 15 Denote by N the infimum over all times t ≥ b+B1 at which some v ∈C
triggers a NEXT signal. If minv∈C{pv(M)+e(M)} ≤min{N,b+B1 +B2 +B3}, then
all rounds r ∈ {1, . . . ,M} are executed correctly and ‖p(r)‖ ≤ e(r).

Proof Lemma 14 shows that the first beat “initializes” the system such that ‖p(1)‖ ≤
e(1) and the first round is executed correctly. By Corollary 13, minv∈C{bv(2)} ≥
min{N,b+B1 +B2 +B3}. Hence, after round 1 Algorithm 2 will be executed without
interference from Algorithm 4 until (at least) time minv∈C{pv(M)+ e(M)}. For r ∈
{2, . . . ,M}, the claim thus follows as in Section 4.3.

Next, we leverage this insight to prove that the progress of the synchronization
algorithm – which will operate correctly at least until the next beat – together with
the constraints of Condition 3 ensures the following: the first time when node v ∈C
triggers its NEXT signal after time b+B1 falls within the window of opportunity for
triggering the next beat provided by FATAL.

Lemma 15 For v∈C, denote by Nv(1) the infimum of times t ≥ b+B1 when it triggers
its NEXT signal. We have that Hv(Nv(1)) = pv(M)+ϑe(M) and that

b+B1 +B2 ≤ Nv(1)≤ b+B1 +B2 +B3 .

Proof At time bv(1), v ∈C sets i := 0 (unless it already holds that i = 0). Thus, v will
not trigger the NEXT signal until it sent at least M pulses and waited for ϑe(M) local
time, i.e., Nv(1) ≥ pv(M)+ e(M). As observed in the proof of Lemma 14, we have
that bv(1)≥ b+B1. Thus, we can apply Corollary 15, where

N := min
v∈C
{Nv(1)} ≥min

v∈C
{pv(M)+ e(M)} ,

to conclude that one of the following must hold true: (i) all rounds r ∈ {1, . . . ,M} are
executed correctly or (ii) minv∈C{pv(M)+ e(M)}> b+B1 +B2 +B3.

In the first case, we have that

Hv(Nv(1)) = Hv(pv(1))+ϑe(M)+
M−1

∑
r=1

T −∆v(r) ,

where
M−1

∑
r=1
|∆v(r)| ≤

M1

∑
r=1

e(r)≤ ϑ(M−1)τ1 .

We conclude that

pv(1)+ e(M)+(M−1)
(

T
ϑ
− τ1

)
≤ Nv(1)≤ pv(1)+ϑe(M)+(M−1)(T +ϑτ1).

Applying the first statement of Lemma 14, this yields that

b+ e(M)+(M−1)
(

T
ϑ
− τ1

)
+

R−

ϑ

≤ Nv(1)

≤ b+ϑe(M)+(M−1)(T +ϑτ1)+P+R++ τ1 .

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 39

The claim now follows from (15) and (16).
With respect to the second case, observe that since no NEXT signal is triggered

at any v ∈C after time b+B1 until time b+B1 +B2 +B3, minv∈C{bv(2)} ≥ b+B1 +
B2 +B3 by Corollary 13. Thus, Algorithm 2 runs without interference up to this time.
Using this, we can establish the same bounds as for the first case.

This immediately implies that the second beat occurs in response to the NEXT signals,
which itself are aligned with pulse M.

Corollary 16 For all v ∈C, bv(2) ∈ [pv(M), pv(M)+(ϑ +1)e(M)+P].

Proof By Lemma 15, Nv(1) ∈ [b+B1 +B2,b+B1 +B2 +B3] for all v ∈ C. Thus,
by Corollary 15, ‖p(M)‖ ≤ e(M). As v ∈C triggers its NEXT signal at local time
Hv(pv(M))+ϑe(M), it follows that

pv(M)≤min
w∈C
{pw(M)+ e(M)} ≤min

w∈C
{Nw(1)}

and that

max
w∈C
{Nw(1)} ≤max

w∈C
{pw(M)+ϑe(M)} ≤ pv(M)+(ϑ +1)e(M) .

The claim now follows from the second and third statements of Corollary 13.

Having established this timing relation between b(2) and p(M), we can conclude that
no correct node is reset due to the second beat.

Lemma 16 Node v ∈C does not call the reset function of Algorithm 4 in response to
beat bv(2).

Proof By Corollary 16, bv(2) ∈ [pv(M), pv(M)+(ϑ +1)e(M)+P]. By Corollary 15,
Algorithm 2 has been executed without interruption by beat after time bv(1) up to
this time. Hence, v sets i := M mod M = 0 at time pv(M)≤ bv(2). As also round M
is executed correctly, the earliest time when v could generate pulse M+1 without a
reset is bounded by

pv(M)+
T −∆v(M)

ϑ
≥ pv(M)− (e(M)+U)+

T
ϑ

≥ bv(2)− ((ϑ +2)e(M)+P+U)+
T
ϑ

(17)
≥ bv(2)+R− ,

where in the first step we applied Corollary 3. This implies that node v’s varia-
ble i equals 0 at time bv(2) and v does not generate a pulse at a local time from
[Hv(bv(2)),Hv(bv(2))+R−]. It remains to show that v enters round M+1 at the latest
at local time Hv(bv(2))+R+. To show this, we bound

Hv(pv(M))+T − τ1−∆v(M)≤ Hv(pv(M))+T − τ1 +ϑ(e(M)+U)

≤ Hv(bv(2))+T − τ1 +ϑ(e(M)+U)

(18)
≤ bv(2)+R+ .

40 Pankaj Khanchandani, Christoph Lenzen

Repeating the above reasoning for all pairs of beats b(k), b(k+1), k∈N, it follows that
no correct node is reset by any beat other than the first. Thus, the clock synchronization
algorithm is indeed (re-)initialized by the first beat to run without any further meddling
from Algorithm 4. This implies the same bounds on the steady state error as for the
original synchronization algorithm.

Theorem 4 Suppose that Algorithm 4 is executed with Algorithm 2 as synchronization
algorithm. If

α =
2ϑ 2 +ϑ

2−ϑ
·
(

1− 1
ϑ 2 +

4(ϑ −1)
1−β

)
< 1

(which holds for ϑ ≤ 1.03), where β = (2ϑ 2 +5ϑ −5)/(2(ϑ +1)), then all parame-
ters can be chosen such that the compound algorithm is self-stabilizing and has steady
state error

E ≤ (ϑ −1)T +(3ϑ −1)U
1−β

.

Here, any nominal round length T ≥ T0 ∈ O(dF +d) is possible.

Proof Lemma 13 that Conditions 1 and 3 can be satisfied such that limr→∞ e(r) =
((ϑ −1)T +(3ϑ −1)U)/β and T0 ∈O(dF +d). Hence, we may apply the statements
derived in this section.

By Corollary 13, the beat generation mechanism will eventually stabilize. After-
wards, we can apply Lemma 16 to show that the second (correct) beat results in no
calls to the reset function in Algorithm 4. In fact, this extends to any beat except
for the first: letting beat k ∈ N take the role of beat 1, our reasoning shows that beat
k+1 does not result in a reset at any node. Moreover, applying the same reasoning
to Corollary 15, we conclude that all rounds r ∈ N are executed correctly, and that
‖p(r)‖ ≤ e(r). The bound on E follows.

Observe that, in comparison to Theorem 1, the expression obtained for the steady
state error replaces d by O(dF +d), which is essentially the skew upon initialization
by the first beat. In Algorithm 2, we circumvented any dependence on F by varying
round lengths over time. For the self-stabilizing solution, this is not possible, since
counting rounds locally is not guaranteed to ensure a consistent opinion across all
nodes concerning the nominal length of the current round; we are restricted to counting
rounds mod M ∈ N, so any long round length will reoccur regularly.

It remains to draw the analogous conclusions for using Algorithm 4 with Algo-
rithm 3 as synchronization algorithm.

Theorem 5 Suppose that Algorithm 4 is executed with Algorithm 3 as synchronization
algorithm (where (1) holds). If

ᾱ =
4ϑ̄ 2 +5ϑ̄

2− ϑ̄
·
(

1− 1
ϑ̄ 2 +

4(ϑ̄ −1)
1− β̄

)
< 1

(which holds for ϑ ≤ 1.004), where ϑ̄ = ϑ 3 and β̄ = (2ϑ̄ 2 + 5ϑ̄ − 5)/(2(ϑ̄ + 1)),
then all parameters can be chosen such that the compound algorithm self-stabilizes in

Self-stabilizing Byzantine Clock Synchronization with Optimal Precision 41

O(n) time and has steady state error

E ≤ (4ϑ̄ −2)U +ν(T + τ2)T
1−α

+
(3ϑε +2ν(T + τ2))T

(1−α)(1−β)
,

where α := (4ϑ̄ 2 + 5ϑ̄ − 7)/(2(ϑ̄ + 1)) < 1 and β := (2ϑ − 1)/2 < 1. Here, any
value of T ≥ T0 ∈ O(dF +d) is possible.

Proof As for Theorem 4, with Corollary 14 taking the place of Lemma 13 and noting
that the convergence argument for the frequencies relies on rounds being executed
correctly only (i.e., no assumptions on µv(1), v ∈C, are required).

We remark that despite the stringent requirements on ϑ for the recovery argument to
work (i.e., ᾱ < 1), the actual bound on the precision involves α and β . If ϑ ≤ 1.004,
we have α ≤ 0.512 and β ≤ 0.502. Concerning stabilization, we remark that it takes
O(n) time with probability 1−2−Ω(n), which is directly inherited from FATAL. The
subsequent convergence to small skews is not affected by n, and will be much faster
for realistic parameters, so we refrain from a more detailed statement.

7 Conclusions

The results derived in this paper demonstrate that the Lynch-Welch synchronization
principle is a promising candidate for reliable clock generation, not only in software,
but also in hardware. Apart from accurate bounds on the synchronization error depen-
ding on the quality of clocks, we present a generic coupling scheme enabling to add
self-stabilization properties.

We believe these results to be of practical merit. Concretely, first results from a
prototype Field-Programmable Gate Array (FPGA) implementation of Algorithm 2
show a skew of 182ps [12]. Given the appealing simplicity of the presented algorithms
and this excellent performance, we consider the approach a viable candidate for
reliable clock generation in fault-tolerant low-level hardware and other areas.

Acknowledgements We thank Matthias Függer and Attila Kinali for fruitful discussions, and the anony-
mous reviewers of this and earlier versions for valuable comments.

References

1. Overview of Silicon Oscillators by Linear Technology (retrieved May 2016).
http://cds.linear.com/docs/en/product-selector-card/2PB osccalcfb.pdf

2. Daliot, A., Dolev, D.: Self-Stabilizing Byzantine Pulse Synchronization. Compu-
ting Research Repository abs/cs/0608092 (2006)

3. Distributed Algorithms for Robust Tick-Synchronization (2005–2008). Research
project [retrieved: 05, 2014]. http://ti.tuwien.ac.at/ecs/research/projects/darts.

4. Dolev, D., Függer, M., Lenzen, C., Posch, M., Schmid, U., Steininger, A.: Ri-
gorously Modeling Self-Stabilizing Fault-Tolerant Circuits: An Ultra-Robust
Clocking Scheme for Systems-on-Chip. Journal of Computer and System Scien-
ces 80(4), 860–900 (2014)

http://cds.linear.com/docs/en/product-selector-card/2PB_osccalcfb.pdf
http://ti.tuwien.ac.at/ecs/research/projects/darts

42 Pankaj Khanchandani, Christoph Lenzen

5. Dolev, D., Függer, M., Lenzen, C., Schmid, U.: Fault-tolerant Algorithms for
Tick-generation in Asynchronous Logic: Robust Pulse Generation. Journal of the
ACM 61(5), 30:1–30:74 (2014)

6. Dolev, D., Halpern, J.Y., Strong, H.R.: On the possibility and impossibility of
achieving clock synchronization. Journal of Computer and System Sciences 32(2),
230–250 (1986)

7. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching Approx-
imate Agreement in the Presence of Faults. Journal of the ACM 33, 499–516
(1986)

8. Dolev, S., Welch, J.L.: Self-Stabilizing Clock Synchronization in the Presence of
Byzantine Faults. Journal of the ACM 51(5), 780–799 (2004)

9. FlexRay Consortium, et al.: FlexRay communications system-protocol specifica-
tion. Version 2.1 (2005)

10. Függer, M., Armengaud, E., Steininger, A.: Safely Stimulating the Clock Sy-
nchronization Algorithm in Time-Triggered Systems - a Combined Formal &
Experimental Approach. IEEE Trans. Industrial Informatics 5(2), 132–146 (2009)

11. Függer, M., Schmid, U.: Reconciling Fault-Tolerant Distributed Computing and
Systems-on-Chip. Distributed Computing 24(6), 323–355 (2012)

12. Huemer, F., Kinali, A., Lenzen, C.: Fault-tolerant Clock Synchronization with
High Precision. In: IEEE Symposium on VLSI (ISVLSI), pp. 490–495 (2016)

13. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. Proceedings of the IEEE
91(1), 112–126 (2003)

14. Lenzen, C., Rybicki, J.: Self-stabilising Byzantine Clock Synchronisation is
Almost as Easy as Consensus. In: 31st Symposium on Distributed Computing
(DISC) (2017). To appear

15. Lundelius, J., Lynch, N.: An Upper and Lower Bound for Clock Synchronization.
Information and Control 62(2–3), 190–204 (1984)

16. Schossmaier, K.: Interval-based Clock State and Rate Synchronization. Ph.D.
thesis, Technical University of Vienna (1998)

17. Schossmaier, K., Weiss, B.: An Algorithm for Fault-Tolerant Clock State and Rate
Synchronization. In: 18th Symposium on Reliable Distributed Systems (SRDS),
pp. 36–47 (1999)

18. Srikanth, T.K., Toueg, S.: Optimal Clock Synchronization. Journal of the ACM
34(3), 626–645 (1987)

19. Welch, J.L., Lynch, N.A.: A New Fault-Tolerant Algorithm for Clock Synchroni-
zation. Information and Computation 77(1), 1–36 (1988)

	Introduction
	Related Work
	Model
	Phase Synchronization Algorithm
	Phase and Frequency Synchronization Algorithm
	Self-stabilization
	Conclusions

