)

Check for
updates

Fast Agent-Based Simulation Framework
with Applications to Reinforcement
Learning and the Study of Trading

Latency Effects

Peter Belcak®™) | Jan-Peter Calliess, and Stefan Zohren

Oxford-Man Institute of Quantitative Finance, University of Oxford, Oxford, UK
peter.belcak@st-hildas.ox.ac.uk, jan-peter.calliess@oxford-man.ox.ac.uk,
stefan.zohren@eng.ox.ac.uk

Abstract. We introduce a new software toolbox for agent-based simu-
lation. Facilitating rapid prototyping by offering a user-friendly Python
API, its core rests on an efficient C++ implementation to support simu-
lation of large-scale multi-agent systems. Our software environment ben-
efits from a versatile message-driven architecture. Originally developed
to support research on financial markets, it offers the flexibility to sim-
ulate a wide-range of different (easily customisable) market rules and
to study the effect of auxiliary factors, such as delays, on the market
dynamics. As a simple illustration, we employ our toolbox to investigate
the role of the order processing delay in normal trading and for the sce-
nario of a significant price change.

Owing to its general architecture, our toolbox can also be employed
as a generic multi-agent system simulator. We provide an example of
such a non-financial application by simulating a mechanism for the coor-
dination of no-regret learning agents in a multi-agent network routing
scenario previously proposed in the literature.

Keywords: Multi-agent systems - Reinforcement learning - Software
toolbox - Model prototyping + Latency * Colocation - Simulation

1 Motivation

Complementing the classical methods of statistical analysis and mathematical
modelling, agent-based modelling (ABM) of financial markets has recently been
gaining traction [4,9,11,12]. In particular, applications of this paradigm to mar-
ket microstructure [2] have attracted increasing attention. To name but a few,
they include the study of statistical properties of limit order books [3], (non-)
strategic behavior of a collective of traders [10] when modelled via the flow of
their orders, as well as research into market bubbles and crashes [13]. With the
ever-increasing importance of automated trading in finance and the rising popu-
larity of artificial intelligence in academic and industrial research, the importance
of the ABM approach in the study of electronic markets is likely to grow further.

© Springer Nature Switzerland AG 2022
K. H. Van Dam and N. Verstaevel (Eds.): MABS 2021, LNAI 13128, pp. 42-56, 2022.
https://doi.org/10.1007/978-3-030-94548-0_4


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-94548-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-94548-0_4

Fast Agent-Based Simulation Framework with Applications 43

The diversity of use cases of ABM in finance and economics is reflected by
the recent proliferation of a variety of software tools tailored to the particu-
larities of their respective applications, as can be seen in the aforementioned
sources. What is missing is an efficient code base implementing a general, all-
encompassing multi-agent exchange framework that can be easily adapted to
simulate scalable ABMs based on any particular exchange as a special case.
Among many other conceivable use cases, such a software environment could
serve as a flexible toolbox allowing its users to investigate a range of research
questions. Such could include, but are not limited to, the following:

— The impact of different matching algorithms on the (learned) behaviour and
revenues of (adaptive) trader agents inhabiting a given limit order book
(LOB);

— The amount of strategic decision making required to explain some of the
important statistical properties of these LOBs;

— The response of strategic trader agent behavior to a change in the rules of
the order matching, as well as to changing infrastructural effects such as
communication delays.

— Conversely to the above, the impact of different learning behaviors of the
trading agents on the ensuing market dynamics.

To address the need for such a toolbox, we introduce the Multi-Agent
eXchange Environment (MAXE), a general code environment for the simula-
tion of agent-based models, with a database ready-to-use agents for simulation
of electronic exchanges and other financial markets. For convenience, MAXE also
provides a Python API to facilitate rapid prototyping of artificial agents. How-
ever, since the meaningfulness of ABMs often rests on the capability to simulate
large agent populations, the core of the implementation was written in C++,
with an eye for computational and memory efficiency, as well as for support
for native multi-threading for execution of separate simulation instances (with
possibly varying parameters) in parallel.

The remainder of this paper is structured as follows: After placing our tool-
box into the context of previous, related simulator packages in Sect. 2, Sect. 3
proceeds with introducing the architecture of MAXE. We present different use
cases of our framework. Section4 contains an illustration of a simple study of
the effects of communication delays. Section 5 shows how MAXE can be utilised
in the general context of agent-based modelling, and Sect. 6 compares MAXE’s
performance in a simple simulation scenario to that of a contender. Concluding
remarks can be found in Sect. 7.

2 Related Work

Beyond simple market replay approaches, there still is a need for publicly avail-
able ABM software sufficiently generic to be capable of simulating the markets
and many other environments at scale. Our toolbox was designed to meet this
demand. The most closely related toolboxes we are aware of include Adaptive



44 P. Belcak et al.

Modeler [7], Swarm [18], NetLogo [17], Repast [8], and ABIDES [5]. In what is
to follow, we briefly summarise the features of these packages in relation to ours.

Adaptive Modeler [7] is a “freemium” specialized market simulator first
released in 2003 and still maintained. At the core of the software is a virtual mar-
ket featuring a predefined set of classes of agents that may be further adjusted
by the user by changing various parameters such as the population sizes, agent
wealth, or class mutation probability. Once an environment consisting of traders
and traded assets is specified, the user may start the simulation whilst keeping
track of outputs such as the event log, quotes, or various economic statistics. All
of these functionalities are — or can easily be — implemented in MAXE as well.
In addition however, MAXE also allows the creation of completely customised
agents with arbitrary behavior and simulate them on an arbitrary timescale, as
the unit time step is not bound to any physical measure of time and can thus
be chosen to represent an arbitrarily small fraction of a second.

Swarm [18] is an open-source ABM package for simulating the interaction of
agents and their emergent collective behaviour. First released in 1999, it remains
maintained today. Whilst not directly designed for financial modelling, it has
been used to create the Santa Fe Artificial Stock Market [14] that, for the first
time, reproduced a number of stylized facts about the behaviour of traders and
further emphasized the importance of modelling of financial markets. Unlike
swarm, MAXE comes with an incorporated time-tracking unit that takes care
of the delivery of messages between the agents involved and the advancement
of simulation time. This allows for a transparent unified channel of inter-agent
communication, enabling simple scheduling of agent tasks (as outlined in an
example in Fig. 1) and greatly simplifying output generation and debugging.

NetLogo [17] and RePast [8] are general-purpose software frameworks for
agent-based modelling. On top of simulation capabilities, both of these tools
feature components enabling easy display of data, and have extensively been
used for research in social sciences. They have been previously used for small-
scale simulation of financial markets, though their distributions do not feature
readily available agents for market simulation. In comparison to the extensive
constraints placed on the agent interface by either, MAXE places no constraints
on the design of the agent, apart from requiring that the agents conform to the
minimal messaging structure, for which there are template agent classes readily
available.

JADE [1] is an open-source software framework for peer-to-peer agent based
applications. It is fully implemented in Java, and as such suffers from the memory
limitations and reliance on garbage collecting as it exists in a managed environ-
ment. It, however, benefits from the platform of choice by being runnable on
every operating system supporting the Java runtime binaries, and even allows
its users to run simulations across multiple devices simultaneously.

ABIDES [5] is the newest open source market modelling tool. Released as
recently as 2019, it was specifically designed for LOB simulation. Aimed to
closely resemble NASDAQ by implementing the NASDAQ ITCH and OUCH
messaging protocols it hopes to offer itself as a tool for facilitation of Al research



Fast Agent-Based Simulation Framework with Applications 45

on the exchange. Just as MAXE, ABIDES and allows users to implement their
own agents in Python. However, since MAXE also allows specification in C++
we expect that MAXE has an edge in terms of the execution efficiency and
scalability. Moreover, MAXE, being based on a compiled binary core interact-
ing directly with the operating system allows for multi-threaded execution of
simulations, which becomes an advantage when simulating a range of similar
simulations differing only in a number of input parameters. Apart from that,
MAXE comes with the implicit support for the trading at multiple exchanges at
once and for limit order books matched with different matching algorithms, in
particular pro-rata matching. MAXE is also highly modular due to the option
to develop a database of agents first, and then configure a set of simulations via
an XML configuration file.

3 Architecture

MAXE is based on a message-driven, incremental protocol. Its core logic steps
forward time and delivers messages, and thus while it was developed with the
modelling of financial markets in sight, it can easily be utilised for simulating
many general multi-agent systems unrelated to finance, an example of which
we give in Sect. 5. We will, nevertheless, continue to present MAXE’s features
mainly in the light of market simulation, believing that it will turn out to be its
most popular application.

In MAXE, every relevant entity of a trading system one would wish to model
(e.g. exchanges, traders, news outlets or social media) can be implemented as
an agent. This is different to the usual approach to agent-based modelling of
exchanges where at the centre of the simulation is the exchange concerned and
the communication protocol between the entities of the trading system is made
to resemble the one of the real exchange, often to ease the transition of any
models developed there into production environments. As it is the case with any
common implementation of message-driven frameworks, agents taking part in
the simulation remain dormant at any point in simulation time unless they have
been delivered a message. When a message is due to be delivered, the simulation
time freezes as all agents that have been delivered at least one message begin
to take turns to deal with their inbox. Each agent is given an unlimited amount
of execution time to process the messages they have been delivered and to send
messages on their own. Messages can be dispatched either immediately (i.e. with
zero delay) or scheduled to be delivered later in the future by specifying a non-
negative delay which can be used to, for example, model latency, that we will
show in Sect. 4.

At the beginning of a simulation, each agent is delivered a message that
allows them to take initial actions and possibly schedule a wake-up in the future
by addressing a message to themselves. At the end of the simulation, a message
of similar nature is sent out to all agents to allow them to process and save
any data they might have been gathering up to that point for further analysis
outside the simulation environment. Figure 1 shows an example communication
of an agent that trades based on regular L1 quote data from the exchange.



46 P. Belcak et al.

Aside from its core, MAXE also contains a small initial repository of common
agents that can be expanded upon by its users. This initial repository includes
an exchange agent that can operate a number of different matching mechanism,
as well as a collection of zero-intelligence and other simple agents. An overview
of the top level of the hierarchy of available agents is depicted in Fig. 2. Further
details on the various agents can be found in the code repository [15].

For simplicity and in order to facilitate convenient prototyping of trading sys-
tem models, MAXE has been built with an interactive console interface, designed
to read the simulation configurations from a hand-editable XML file, and is,
despite the overall emphasis on the performance, supplemented with an addi-
tional Python interface. A user of MAXE wishing to quickly try out an idea
for an agent-based model would thus proceed as follows: First, they would con-
sider whether any of the built-in agent types fit their needs. For any agent type
with custom behaviour they would write a Python script, testing it in a ‘mock’

Simulation InvestmentAgent ExchangeAgent

EVENT_SIMULATION_START

Loop

»
! o

Executi
[Execution] LWAKEUP FOR_QUOTE
|
-
| RETRIEVE_L1

»
>

[
[ RESPONSE_RETRIEVE_L1
-

| [Trading]
l PLACE_ORDER_LIMIT

»
>

RESPONSE PLACE_ORDER_LIMIT

EVENT_SIMULATION_STOP

|
I
f
|
|
|
|
|
|
|
|
|
| Trading Decision Logic
|
|
|
|
|
|
|
|
|
|
|

InvestmentAgent ExchangeAgent

Fig. 1. A sequence diagram of an example communication between a trading agent,
exchange agent, and the simulation environment.



Fast Agent-Based Simulation Framework with Applications 47

environment API that is provided. Once satisfied with the scripted behaviour
of individual agents, they would with ease set up the simulation of their model
by writing an XML configuration file, and once satisfied with the overall model,
they would have the option to scale up to hundreds of thousands of agents by
re-implementing the behaviour first scripted in Python in C++4-. Some resource
limits for MAXE when running solely agents implemented in C++ are discussed
in Sect. 6.

4 Example Case Study — Processing Delay in Market
Dynamics

As discussed previously, MAXE can serve as a simulation environment of many
types of multi-agent systems. As a first example related to financial markets,
we demonstrate MAXE’s ability to simulate some aspects of “market physics”.
In particular, we utilise it to examine the effect processing or communication
delays have on various statistics of the market dynamics following a large trade.

<<interface>>
IMessageable

(o} = -~ {mn)
V

1.1
A TradingAgent
0.1

D —

|
C | 1 BouchaudAgent i— R G _IAdaptiveOfferingAgent
TimeProRataBook ] [ PureProRataBook ] 1

A FarmerAgent
PriceTimeBook PriorityProRataBook

Fig. 2. The class diagram of the simulation-agent hierarchy of the simulator.

Simulation

Agent

4.1 The Model

The core of the model consists of one exchange agent with a modifiable choice of
matching algorithm and a population of zero-intelligence trading agents interact-
ing with the exchange. The exchange agent maintains the limit order book and
executes orders submitted by the trading agents. At the beginning of the simu-
lation, the LOB contains two small orders, one on each side of the book with the
initial bid-ask spread Sy, to serve as the indicators of the opening prices for further
trading.

Following the start of the simulation, traders place orders and are given a
fixed period of time to reconstruct the LOB to match the empirical average shape
from [3] by placing orders in a manner described below. In the simulation runs
focused on statistics not related to the study of impactful trades, the remaining



48 P. Belcak et al.

time is used to measure those. The other type of simulations experiences an
impact agent entering the exchange and making a large trade, following which
more statistics are computed. The simulation runs over a fixed time horizon of
40000t,, chosen by experimentation focused on the setup appearing to have dealt
with the largest of the trades used in our experiment.

The behaviour of our trading agent is similar to the behaviour presented in [3]
that has been previously shown to be able to reconstruct the LOB’s shape to be
resembling the one of real LOBs of highly liquid stocks on the Paris Bourse. The
behavior presented in [3] is further adjusted by some features of the behaviour
presented in [10], which has been shown to be able to explain some of the dynamic
properties of the LOB, including the variance of the bid-ask spread. For a detailed
specification of the agents’ behaviour we refer the reader to [15].

According to the L1 information available to the trader at the time they are
making the decision (which may be outdated due to the communication delay
between the trader and the exchange), each trader places both market and not
immediately marketable limit orders according to a Poisson process with rate rp,
with the fraction of the market orders f,, being a parameter of the simulation.

Each order has lifetime distributed according to the exponential distribution
with mean t; that was a parameter of the simulation. Thus, the stream of the
cancellation orders can be thought of as a marked Poisson process with rate
re = i and where the marking probability is inversely proportional to the
number of orders in the LOB. The price of the order is drawn from the empirical
power-law distribution relative to the best price at the time of observation.

We define the processing delay d, or simply delay to be the duration between the
time the information about the state of the limit order book is produced for trad-
ing agents and the time when the exchange processes the agent’s order against the
LOB. This time includes the two-way latency between the agent and the exchange,
the (simulation) time it takes the exchange to process the queue of incoming orders,
and decision time on the trader’s side. Furthermore, taking the zero-intelligence
approach to model the trading and the limit order book as a whole, the process-
ing delay can also be thought of as encapsulating the time it takes the trader to
decide whether and how to trade and possibly evaluating their strategy given the
information becoming available during that time, and we shall use this fact when
interpreting our findings. We also define greed g to be the size of a large market
order expressed as a fraction of the total volume (i.e., considering the volume of
all price levels) in the queue it is meant to be executed against.

4.2 Findings

When simulating, we treated the placement frequency r, as fixed and looked at
the effects of the other two time-based parameters, r. and d, relative to it. The
observed effects turned out to be independent of the matching algorithm used.
Perhaps somewhat more surprisingly, the cancellation rate r. appeared not to
have had any effect on the statistics considered (see below).



Fast Agent-Based Simulation Framework with Applications 49

Notation: If @ is the quantity we are observing, let e[@] denote the empirical
simulation-time-weighted mean of @ and v[Q)] the empirical simulation-time-
weighted variance of Q).

We found that the mean bid-ask spread e[S] increased linearly with the
fraction of market orders fi, (with a hint of convexity), decreased with d, and
appeared to converge to the bid-ask spread of the initial setup Sy, coming within
a few ticks distance of Sy for all sufficiently large delays d. The relationship
between the parameters involved is depicted in Fig. 3a and fitted (R? = 0.90)

e[S] & So + sofme 1%

The time-weighted variance of the best bid and ask prices (simply the “best”
price B(t) at time ¢ as the behavior is the same for both sides of the queue, see
Fig. 3c) appeared to monotonously decrease with increasing d and, to increase
exponentially with increasing f,,, coming to a negligible distance from 0 for
sufficiently large values of the delay d.

- 350 .
MO fraction MO fraction 10° 3 MO fraction
25 —— 0.05 300 —— 0.05 —— 0.05
- —— 01 g —— 01 ° —— 01
@ 207 —— 015 & 507 —— 015 g —— 015
& — 02 S 5004 — 02 2 1073 P 02
% 15 2 2
. @ @
a - -
2 & 150 g
c 10 1 % B 10!
3 3 100 g 10' 4
£ - 3
- Qo
5 50 1
04 01
T T T T T T T T 10° T T T
0 20 40 60 0 20 40 60 0 20 40 60

Fig. 3. Statistics of the simulation L1 data, namely the mean bid-ask spread, bid-ask
spread variance, and the variance of the best price, plotted against d (in multiples of
tp) for different values of fim.

Shape of the Average Impact Scenario. Turning our attention to the sce-
nario of an impactful trade occurring at time t;, we define the climb C to be
the immediate increase in the best price B following a large (10-100x the size
of average market order) trade against the respective order queue. We further
define F' to be the difference between the highest and the lowest point the best
price attains after ¢;, and I to be the long term impact of the trade, i.e. the
difference between the equilibrium best price prior to the impactful trade and
the equilibrium price to which the best price “settles” long after ¢t;. We expressed
the volume of the large trade considered as a fraction of the volume available on
the respective order queue at the time the trade is executed and denote it by g.

We have found empirically that, irrespective of the volume of the large trade
affecting the best price, e[B](t) seemed to exhibit the same feature of going
through the phases of fall, overreaction, and settlement (see Fig.4). The climb



50 P. Belcak et al.

in the best price itself occurred almost instantly after ¢; in the vast majority of
cases, with the exception when a delayed limit order unaware of the sudden price
movement significantly improved the new best price but was quickly eliminated
by newly incoming marketable orders. The first phase, fall, exhibited a steep
best price fall towards the future equilibrium and its steepness decreased with
increasing latency d. The fall was succeeded by something that could described
as an overreaction, a phase during which the best price dived further below the
future equilibrium price and hit the absolute minimum at the time at which
the bid-ask spread was also minimal. The best bid and ask prices then diverged
again towards their new equilibrium in the settlement phase.

The identification of such patterns has the potential of being of practical
utility. They might endow us with a method for predicting the price at which
the best price will settle after a large trade given the information about the
long-term variance of and current information about the values of the bid-ask
spread.

post-impact price

pre-impact price fall overreaction settlement

Fig. 4. Shown is the shape of the average best price evolution after suffering a large
aggressing trade.

The Large Trade Scenario. We observed that both e[C] and e[F] decreased
linearly for large delays and small delays with small values of g (Fig.5a and
Fig.5b). In addition, large values of g seemed to allow the climb and fall to peak
at a specific small delay.

The long-term impact appeared to be mostly linear with d with the down-
wards slope decreasing with the increasing values of greed, increases linearly with
fm (Fig.5c). Furthermore, it did not seem to exhibit the same peak as climb and
fall do, demonstrating that these two compensated for each other in the long run.
Furthermore, the logarithm of the long term impact increased proportionally to
the volume traded, in keeping with the results presented in [16].

We said that the best price had reached stability if the moving average with

a fixed window of size w had fallen within the distance of @.

Whilst we found significant evidence that the impact of a large trade on the
best price depends on the greed parameters, perhaps surprisingly, the mean and



Fast Agent-Based Simulation Framework with Applications 51

variance of the time did not seem to exhibit any notable dependence on the level
of greed, i.e. the best price appears to converge to stability in time independent
of the size of the large trade nor the share of the marketable orders f,, (Fig.6b).

Further evidence of such behavior was found when producing the results
depicted in Fig. 6¢. Here, we looked at the proportion of the runs of the simulation
in which the price fulfilled the post-impact stability criterion given above before
the simulation was terminated. As can be seen from the plot, simulation runs
for higher values of the parameter f,, would see the price succeed to become
stabilised in the time horizon of the simulation more often than for the lower
values, but the greed parameter had again little to no effect on the proportion
of the runs that would become stabilised for varying values of d. This is further
supported by setting a time limit on convergence in the distant future from
the impactful trade and measuring the convergence success rate, defined as the
proportion of the simulation runs that succeeded in converging before that time
(see Fig. 6¢).

160 4 greed greed greed
—— 015 —— 04 120 § —— 015 —— 04 80 —— 015 —— 04
—— 03 —a— 045 —— 03 —w— 045 —— 03 —— 045

120 \\\ 100
£ 1004 &0 -
N \

20

mean climb
8§ 8 8
mean fall
5 3
mean long-term impact
8 8

=
S
8
8
o

20 40 60 0 20 40 60
delay delay delay
(a) (b) (c)

Fig.5. Absolute mean climb, mean fall, and mean long-term impact (in price ticks)
plotted against the processing delay d (in multiples of t;) for fixed values of fm and
varying values of greed g.

1600 o 3500

109

MO fraction
—— 0.05
Y —— 01

—— 0.15

—— 0.2

=
=
=3
=3

3000 - i
1200 1 08

1000 A 2500

0.6

mean fist-hit convergence time
mean stability convergence time
stability success convergence rate

8001 2000
600 - MO fraction 0.4
MO fraction —— 0.05
400 4 —— 015 1500 1 —— 01 021
200 —— 0175 1000 ] —— 015
o —— 0.2 —— 02 00 -
0 20 40 60 0 20 40 60 0 20 40 60
delay delay delay
(a) (b) (©)

Fig. 6. Convergence statistics shown against d (as a multiple of ¢;,) for different values
of fm. The time is also expressed as a multiple of the mean order placement rate r.



52 P. Belcak et al.

5 Example Use Case — Market-Based Coordination
of Learning Agents

The generality of MAXE’s architecture allows us to simulate multi-agent systems
with no relation to finance at all. As a specific example we now implement the
experiment presented in [6], concerning a multi-agent mechanism that, under
some assumptions about agents’ rationality, gives plausible solutions for routing
problems.

Consider a finite directed graph G = (V| E), in which each edge e € E has
capacity y(e) and a fixed intrinsic cost ¢ for each unit of flow that is to be
directed through the edge. Suppose that there are players who each want to
send an amount of flow d, from some vertex s to r — that is, player Ps,. wants
to direct dg, from s to r and to that end has an individual plan represented
by a vector fs, = (fS.)ecr. We require the players to plan in such a way that
the resulting flows through the graph conserve flow. The players’ planning is
influenced by two soft constraints: f.(v) = max{0,u.v} where v = f&. — y(e)
is the amount by which the flow directed through e exceeds e’s capacity, and
Bsr(v) = max{0, us-v} where the argument v = —dg, + . f&, is the amount
by which the player’s plan exceeds her demand.

On the implementation side we shall represent every player by an agent.
Then, following the approach of [6] we transform the soft constraints of the
problem by introducing two additional groups of adversarial agents: one for
edge, and one for demand constraints. These agents selfishly choose prices for
exceeding the edge capacities and failing to meet players’ demands, respectively.

In particular, at the beginning of every iteration, each (player-, edge-,
demand-) agent decides on their plan following the Greedy Projection Algo-
rithm [19]. Player-agents decide on how to direct the flow, whereas the adver-
sarial edge- and demand-players decide on the price they are going to charge
the player-agents for their respective constraint violations. Player-agents then
poll the adversarial agents on their prices and store the information for the
decision-making in next iteration of the game.

A simple example of an averaged player plan after a number of iterations is
depicted in Fig. 7. In this experiment, following [6] to the letter, we had a 6-node
network and three players P» 3, P; 4, and P, ¢ with demands 30, 70 and 110. We
set ¢(23) ¢(32) =10, and ¢® = 1 for all other edges e. Edges (5,6) and (6,5) had
capacities of 50, while all other capacities were 100.

Figure 7 also shows the output (the resulting flows) of our simulation run
that ended up being entirely consistent with the solution found in [6].



Fast Agent-Based Simulation Framework with Applications 53

Fig. 7. A graphical representation of the experiment output consistent with the simu-
lation run in [6].

6 A Performance Comparison

Although numerous software packages can be used for simulation of financial
markets, we identified ABIDES as a top contender for MAXE, being extensi-
ble enough to allow for almost arbitrary simulation of limit order books while
featuring a small group of default agent types allowing for an easy simulation
setup.

MAXE and ABIDES vary fundamentally in how they approach simulation.
While MAXE uses its own, general messaging protocol, ABIDES uses a combi-
nation of NASDAQ ITCH-OUCH protocols and agent wake-up scheduling. To
examine how these two different approaches affect the simulation performance
we considered one of the simplest multi-agent market models conceivable, in
which agents require only very little computation to decide how to act.

Inspired by ABIDES’ RMSCO01 configuration, we thus started with a unit
population for ABIDES consisting of a single market-maker and 25 ABIDES-
default zero-intelligence agents, and a population for MAXE of the same size
consisting of MAXE’s equivalent agents. We scaled the unit population by the
factors of 1, 2,4, 8,16, while examining the average runtime of 1h of simulation
time over 10 attempts for factors 1,2, 4, 8. In the case of the 16-factor, only three
runs were considered due to the large demands on memory and duration of the
program run.

The results of our simulation are shown in Fig.8. We only comment on the
relative runtime performance of ABIDES and MAXE as the agent population
increases.

For small agent populations there does not seem to be a significant differ-
ence in the performance of the two simulators. As the agent population grows,
the runtime of MAXE becomes more clearly separated from that of ABIDES.
This is most likely due to the different methods of agent communication han-
dling employed by the two simulators. Our plot stops at 416 agents, after which
the memory demand of the Python environment running ABIDES exceeded the



54 P. Belcak et al.

16 GiB of memory available in our small workstation and the operating sys-
tem resorted to swapping, significantly hindering the runtime performance of
ABIDES. A test run of ABIDES on 450 agents resulted in a Python Memory
error. We noticed that ABIDES, at present, does not allow for regular flushing of
trading history to the disk, and we believe that a small adjustment to the design
of the simulator, coupled with the employment of an appropriate memory man-
agement strategy, could resolve the memory greediness currently limiting the
feasibility of ABIDES’ use when a larger number of agents is involved. For com-
parison, a simulation consisting of a population of 100,022 agents in MAXE with
the same setup fit comfortably into 100 MiB of memory.

In summary, the plot of Fig. 8 is consistent with our intuition that the design
choices made for the key components of MAXE do indeed result in marked
performance improvements over alternative packages when a larger population
of agents is to be simulated.

MAXE and ABIDES

Zero-intelligence trading simulation performance comparison

I ABIDES
B MAXE ?
103.
i =
B ||
[=]
o
&
; (¢}
E =
]
[ ]
2 [
s
= =
2 =
& 1071
=
=
26 52 104 208 416

Agent count

Fig. 8. A runtime comparison of MAXE and ABIDES.

7 Conclusions

We have introduced a new multi-agent simulation framework for financial market
microstructure, called the Multi-Agent eXchange Environment (MAXE). There



Fast Agent-Based Simulation Framework with Applications 55

are a number of distinctive advantages MAXE offers over alternative simulation
frameworks such as ABIDES [5]. Most notably, our framework was designed to
be fast and flexible; it allows the modelling of different matching rules and can
model latency.

We have demonstrated its potency for research into market dynamics. In
particular, we utilised MAXE to showcase a mini study of the impact the delay
in processing order has on a few LOB statistics and on the behaviour of the
best prices after a large trade is registered with the exchange. We have also
shown that MAXE is suitable for applications beyond the study of financial
markets, as we used it to simulate a multi-agent reinforcement-learning network
routing scenario. As our first evidence provided suggests, MAXE can be used
to simulate markets and multi-agent systems more efficiently than comparable
existing toolboxes. We therefore hope that it will be useful to facilitate research
across different disciplines in need of simulating large-scale agent-based models.

Expanding on our illustrative case studies would be interesting in particular,
given the dearth of studies utilising ABM in the context of pro-rata matching
rules. We hope such inquiries would be greatly aided by our MAXE package,
providing a standardised, scalable, and easily customisable toolbox to support
this kind of research.

References

1. Bergenti, F., Caire, G., Monica, S., Poggi, A.: The first twenty years of agent-
based software development with JADE. Auton. Agent. Multi-Agent Syst. 34,
1-19 (2020)

2. Bouchaud, J.P., Bonart, J., Donier, J., Gould, M.: Trades, Quotes and Prices:
Financial Markets Under the Microscope. Cambridge University Press, Cambridge
(2018)

3. Bouchaud, J.P., Mézard, M., Potters, M., et al.: Statistical properties of stock order
books: empirical results and models. Quant. Finance 2(4), 251-256 (2002)

4. Buchanan, M.: Meltdown modelling: could agent-based computer models prevent
another financial crisis? Nature 460(7256), 680-683 (2009)

5. Byrd, D., Hybinette, M., Balch, T.H.: ABIDES: towards high-fidelity market sim-
ulation for AI research. arXiv:1904.12066 (2019)

6. Calliess, J.P., Gordon, G.J.: No-regret learning and a mechanism for distributed
multiagent planning. Carnegie-Mellon Univ Pittsburgh PA Machine Learning
Dept, Technical report (2008)

7. Capterra: Adaptive modeler (2019). https://www.capterra.com/p/131204/
Adaptive-Modeler/. Accessed 19 Dec 2019

8. Collier, N.: RePast: an extensible framework for agent simulation. Univ. Chicago’s
Soc. Sci. Res. 36, 2003 (2003)

9. Cont, R.: Volatility clustering in financial markets: empirical facts and agent-based
models. In: Teyssiére, G., Kirman, A.P. (eds.) Long Memory in Economics, pp.
289-309. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-34625-
8_10

10. Farmer, J.D., Gillemot, L., lori, G., Krishnamurthy, S., Smith, D.E., Daniels, M.G.:
A random order placement model of price formation in the continuous double
auction. Econ. Evol. Complex Syst. 3, 133-173 (2006)


http://arxiv.org/abs/1904.12066
https://www.capterra.com/p/131204/Adaptive-Modeler/
https://www.capterra.com/p/131204/Adaptive-Modeler/
https://doi.org/10.1007/978-3-540-34625-8_10
https://doi.org/10.1007/978-3-540-34625-8_10

56

11.
12.

13.

14.

15.

16.

17.

18.

19.

P. Belcak et al.

Tori, G., Porter, J.: Agent-based modelling for financial markets (2012)

Luna, F., Stefansson, B.: Economic Simulations in Swarm: Agent-Based Modelling
and Object Oriented Programming, vol. 14. Springer, Boston (2012). https://doi.
org/10.1007/978-1-4615-4641-2

Paddrik, M., Hayes, R., Todd, A., Yang, S., Beling, P., Scherer, W.: An agent
based model of the E-mini S&P 500 applied to flash crash analysis. In: 2012 IEEE
Conference on Computational Intelligence for Financial Engineering & Economics
(CIFEr), pp. 1-8. IEEE (2012)

Palmer, R., Arthur, W.B., Holland, J.H., LeBaron, B.: An artificial stock market.
Artif. Life Robot. 3(1), 27-31 (1999)

Belcak, P., Jan-Peter Calliess, S.Z.: Maxe github repository (2020). https://github.
com/maxe-team/maxe. Accessed 17 Aug 2020

Potters, M., Bouchaud, J.P.: More statistical properties of order books and price
impact. Phys. A 324(1-2), 133-140 (2003)

Sklar, E.: NetLogo, a multi-agent simulation environment. Artif. Life 13(3), 303—
311 (2007)

Swarm: Swarm main page. http://www.swarm.org/wiki/Swarmmainpage.
Accessed 19 Dec 2019

Zinkevich, M.: Online convex programming and generalized infinitesimal gradient
ascent. In: Proceedings of the 20th International Conference on Machine Learning
(ICML 2003), pp. 928-936 (2003)


https://doi.org/10.1007/978-1-4615-4641-2
https://doi.org/10.1007/978-1-4615-4641-2
https://github.com/maxe-team/maxe
https://github.com/maxe-team/maxe
http://www.swarm.org/wiki/Swarm main page

	Fast Agent-Based Simulation Framework with Applications to Reinforcement Learning and the Study of Trading Latency Effects
	1 Motivation
	2 Related Work
	3 Architecture
	4 Example Case Study – Processing Delay in Market Dynamics
	4.1 The Model
	4.2 Findings

	5 Example Use Case – Market-Based Coordination of Learning Agents
	6 A Performance Comparison
	7 Conclusions
	References


