Lost in Space or Positioning in Sensor Networks

Michael O'Dell Regina O'Dell Mirjam Wattenhofer Roger Wattenhofer

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Positioning

- What is positioning (a.k.a. localization)?
 - Deduce coordinates
 - GPS "software version"

- Why positioning?
 - Sensible sensor networks
 - Heavy/costly localization hardware
 - Geometric routing benefits
- Idea:
 - (Small) set of anchors
 - Others: location = f(network,communication,measurements)

RealWSN 2005

Sensor Networks

RealWSN 2005

Positioning in Sensor Networks

RealWSN 2005

Positioning in Sensor Networks

Positioning – As We See It

- Lessons
- Future Work

C

RealWSN 2005

Positioning in Sensor Networks

►0

0

RealWSN 2005

Positioning in Sensor Networks

→0

Models of Sensor Networks

- Unit Disk Graph (UDG)
 - [Clark et al, 1990]
 - Widely used abstraction

- Quasi-Unit Disk Graph (qUDG)
 - [Krumke et al, 2001]
 - [Barriere et al, 2003]
 - [Kuhn et al, 2003]
 - More realistic?
- "well-behaved" ⇒ allow proofs

RealWSN 2005

• T[D]oA:time

С

- GPS
- Cricket [Priyantha et al, 2000]
- RSS: signal strength
 - RADAR [Bahl, Padmanabhan, 2000]
- Imply distance
- AoA: angle
 - APS using AoA [Niculescu, Nath, 2003]
- Relative distance to anchors
 - APIT [He et al, 2003]

Positioning Algorithms

- Based on (q)UDG
 - (sometimes) provable statements
 - Abstraction \Rightarrow rough idea
- Virtual Coordinates Algorithm [Moscibroda et al, 2004]
 - Linear programming
 - Complex, time-consuming
 - 100-node network: several minutes on desktop
- GHoST, HS [Bischoff, W., 2004]
 - Dense networks
 - Optimal in 1D
 - UDG crucial

Positioning Algorithms... cont'd

- APS [Niculescu, Nath, 2001 & 2003]
 - Hop or distance based
 - Given distance estimate, use GPS triangulation
 - Least-squares optimization
 - Isotropic network helpful
- General graphs
 - Given inter-node distances
 - Also: Internet graph (latencies)
- Example: Spring Algorithms
 - Internet: Vivaldi [Dabek et al, 2004]
 - Ad hoc [Rao et al, 2003]

Spring Algorithm

- Most practical?
- Originally: graph drawing
- Idea
 - Edge =
 - Rest length =
 - Embedding
- Algorithm
 - Steepest descent, numerical methods
 - Simple:
 - New position = average of neighbors
 - Iterate

spring

distance

RealWSN 2005

minimal power configuration

►O

Local vs. global

Our View = Assumptions

- Minimal hardware
 - Low storage
 - Low computing power
 - Basic RSS measurements
- Short range
 - Few meters
 - (RADAR: building several dekameters)

 \circ

▶0

▶0

0

RealWSN 2005

►O

→0

Hardware Description

• ESB

- scatterweb.com
- 32kHz CPU
- 2kB RAM
- Sensors and actuators

- Desktop:
- 3GHz
- 512MB
- Factor 10⁵

- RSS:
 - Indirectly via packet loss
- New version:
 - Actual RSS measurable at receiver
- "Battery with Antenna"

"software version" RSS

- Older ESB (software) version
 - @sender: vary transmission power
 - Via potentiometer controlling current to tranceiver
 - Value s between 0 and 99
 - Write s into packet
 - Repeat *x* times
 - @receiver: count number received packets
 - per s
 - Measurement: packet loss
- Requirement
 - Distance increase \rightarrow power increase
 - Correlation: to be determined
- New version (software):
 - Direct read out

Future work!

RealWSN 2005

Positioning in Sensor Networks

Original Algorithm

- Spring Embedding
 - Good for "easy" networks
- Power-to-distance
 - Inverse of previous experiments

- Results
 - Unusable!

Experiment 2 - "Room"

- Localization in the plane
 - Rectangle: 4m x 3m
 - 4 anchors: corners
 - Test node: inside
- Each anchor A_i
 - Send packet s = 0..99
 - Next anchor
- Test node N
 - Record packets received

C

▶0

Experiment 2 – "Room" ... Results

0

RealWSN 2005

→0

Experiment 3 - "Network"

- 9 nodes in a room
 - Distances: 1..6m
- 1 sender at a time
 - Send 1 packet at each level
 - Others: record minimum received
 - Report previous minima
- Round robin
- Minima:
 - Good approximation
 - Storage: save factor 100 per round

 \circ

Experiment 3 – "Network" ... Results

- Error
 - Almost 30 units for same distance
 - Exp. 1: "nicer" curve
- Longer range effects?
- Symmetry!

RealWSN 2005

Lessons

- Average minimum
 - Stable
 - Good approximation
 - Saves storage
- Symmetric links
- Power versus Distance
 - Strongly environment dependant
 - Measurements between two nodes
 - ➔ Not generalizable
- RSSI in sensor networks: good, but not for "reasonable" localization

Future Work

- Here: more questions than answers
- Hardware RSS measurements
 Indication given by reviewer -

- Same experiments different hardware
 - Same results/trend?
- Long range vs. short range
- More environments
- New models

RealWSN 2005

Positioning in Sensor Networks