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ABSTRACT
Current peer-to-peer (P2P) systems often suffer from a large frac-
tion of freeriders not contributing any resources to the network.
Various mechanisms have been designed to overcome this problem.
However, the selfish behavior of peers has aspects which go beyond
resource sharing. This paper studies the effects on the topology of a
P2P network if peers selfishly select the peers to connect to. In our
model, a peer exploits locality properties in order to minimize the
latency (or response times) of its lookup operations. At the same
time, the peer aims at not having to maintain links to too many other
peers in the system. We show that the resulting topologies can be
much worse than if peers collaborated. Moreover, the network may
never stabilize, even in the absence of churn.

1. INTRODUCTION

The power of peer-to-peer (P2P) computing arises from the col-
laboration of its numerous constituent parts, the peers. If all the
participating peers contribute some of their resources—for instance
bandwidth, memory, or CPU cycles—, highly scalable decentral-
ized systems can be built which significantly outperform existing
server based solutions. Unfortunately, in reality, many peers are
selfish and strive for maximizing their own utility by benefiting
from the system without contributing much themselves. Hence
the performance—and thus its success in practice!—of a P2P sys-
tem crucially depends on its capability of dealing with selfishness.
A well-known mechanism designed to cope with this freeriding
problem is the tit-for-tat policy, as for instance employed by the
file-distribution tool BitTorrent.

However, selfish behavior in peer-to-peer networks has numerous
important implications even beyond the peer’s unwillingness to
contribute bandwidth or memory. For example, in unstructured P2P
systems—the predominant P2P architectures in today’s Internet—
, a peer can select to which and to how many other peers in the
network it wants to connect. With a clever choice of neighbors, a
peer can attempt to optimize its lookup performance by minimizing
the latencies—or more precisely, the stretch—to the other peers in
the network. Achieving good stretches by itself is of course simple:
A peer can establish links to a large number of other peers in the
system. Because the memory and maintenance overhead of such a
neighbor set is large, however, egoistic peers try to exploit locality as
much as possible, while avoiding to store too many neighbors. It is
this fundamental trade-off between the need to have small latencies
and the desire to reduce maintenance overhead that governs the
decisions of selfish peers.

This paper investigates the impact of selfish neighbor selection
on the quality of the resulting network topologies. An appropriate
tool to study such selfish behavior is game theory. In particular, this
paper studies the Price of Anarchy of P2P overlay creation, which
is the ratio between an optimal solution obtained by perfectly col-
laborating participants compared to a solution generated by peers
that act in an egoistic manner, optimizing their individual benefit.
The importance of studying the Price of Anarchy in peer-to-peer

systems stems from the fact that it quantifies the possible degra-
dation caused by selfishness. Specifically, a low Price of Anarchy
indicates that a system does not require an incentive-mechanism
(such as tit-for-tat), because selfishness does not overly bog down
the overall system performance. If the Price of Anarchy is high,
however, specific cooperation incentives (whose goal is to reduce
the Price of Anarchy) need to be enforced in order to ensure that the
system can perform efficiently. In peer-to-peer systems therefore,
the Price of Anarchy is a measure that helps explaining the necessity
(or non-necessity) of cooperation mechanisms in various aspects of
these systems.

The contribution of this paper is twofold. First, we show that the
topologies of selfish, unstructured P2P systems can be much worse
than in a scenario in which peers collaborate. More precisely, we
show that the Price of Anarchy is Θ(min(α, n)), where α is a
parameter that captures the tradeoff between lookup performance
(low stretches) and the cost of neighbor maintenance, and n is the
number of peers in the system, respectively. Thereby, the upper
bound O(min(α, n)) holds for peers located in arbitrary metric
spaces, including the popular growth-bounded and doubling met-
rics. On the other hand, intriguingly, this bound is tight even in
such a simple metric space as the 1-dimensional Euclidean space.
As a second contribution, we prove that the topology of a static
peer-to-peer system consisting of selfish peers may never converge
to a stable state. That is, links may continuously change even in
environments without churn (causing the network to be inherently
instable).

The remainder of the paper is organized as follows. In Section 2,
we present our model and introduce the game theoretic approach.
Related work is reviewed in Section 3. In the subsequent Section
4 we give tight bounds on the Price of Anarchy of P2P topologies.
Then, in Section 5, we show that a system consisting of selfish peers
may never stabilize, even if there is no churn. Finally, Section 6
concludes the paper.

2. MODEL

We model the peers of a P2P network as points in a metric space
M = (V, d), where d : V × V → [0,∞) is the distance function
which describes the underlying latencies between all pairs of peers.

The effects of selfish peer behavior is studied from a game-
theoretic perspective. We consider a set of n peers

V = {π0, π1, . . . , πn−1}.
A peer can choose to which subset of other peers it wants to store
pointers (IP addresses). Formally, the strategy space of a peer
πi is given by Si = 2V \{πi}, and we will refer to the actually
chosen links as πi’s strategy si ∈ Si. We say that πi maintains or
establishes a link to πj if πj ∈ si. The combination of all peers’
strategies, i.e., s = (s0, ..., sn−1) ∈ S0 × · · · × Sn−1, yields a
(directed) graph G[s] = (V,∪n−1

i=0 ({πi} × si)), which describes
the resulting P2P topology.

Selfish peers exploit locality in order to maximize their lookup



performance. Concretely, a peer aims at minimizing the stretch to
all other peers. The stretch between two peers π and π′ is defined
as the shortest distance between π and π′ using the links of the
resulting P2P topology G divided by the direct distance, i.e., for a
topology G, stretchG(π, π′) = dG(π, π′)/d(π, π′). Clearly, it is
desirable for a peer to have low stretch to other peers in order to keep
its latency small. By establishing a link to all peers in the system,
a peer reaches every peer with minimal stretch 1, and the potential
lookup performance is optimal. However, storing and especially
maintaining a large number of links is expensive.1 Hence, the
individual cost ci(s) incurred at a peer π is composed not only of
the stretches to all other peers, but also of its degree, i.e., the number
of its neighbors:

ci(s) = α · |si| +
∑
i�=j

stretchG[s](πi, πj).

Note that this cost function captures the classic P2P trade-off be-
tween the need to minimize latencies and the desire to store and
maintain only few links, as it has been addressed by many existing
systems, for example Pastry [11]. Thereby, the relative importance
of degree costs versus stretch costs is expressed by the parameter
α.

The objective of a selfish peer is to minimize its individual cost. In
order to evaluate the topologies constructed by such selfish peers—
and compare them with the topologies achieved by collaborating
peers—, we use the notion of a Nash equilibrium. A P2P topology
constitutes a Nash equilibrium if no peer can reduce its individual
cost by changing its set of neighbors given that the connections
of all other peers remain the same. More formally, a (pure) Nash
equilibrium is a combination of strategies s such that, for each peer
πi, and for all alternative strategies s′ which differ only in the ith

component (different neighbor sets for peer πi), ci(s) ≤ ci(s
′).

This means that in a Nash equilibrium, no peer has an incentive
to change its current set of neighbors, that is, Nash equilibria are
stable.

While peers try to minimize their individual cost, the system
designer is interested in a good overall quality of the P2P network.
The social cost is the sum of all peers’ individual costs, i.e.,

C(G) =
∑

i

ci = α|E| +
∑
i�=j

stretchG(πi, πj).

The lower this social cost, the better is the system’s performance.
Determining the parameter α in real unstructured peer-to-peer

networks is an interesting field for study. As mentioned, α measures
the relative importance of low stretches compared to the peers’ de-
grees, and thus depends on the system or application: For example,
in systems with many lookups where good response times are cru-
cial, α is smaller than in distributed archival storage systems consist-
ing mainly of large files.2 In the sequel, we denote link and stretch
costs by CE(G) = α|E| and CS(G) =

∑
i�=j stretchG(πi, πj),

respectively.
Typically, a given distribution of peers in a metric space can

result in different Nash equilibria, depending on the order in which
peers change their links. To gain an understanding of the impact
of selfishness on the social cost, we are particularly interested in
the social cost of the worst possible Nash equilibrium. That is, we
study topologies in which no selfish peer has an incentive to change
its neighbors, but in which all peers together could be much better

1For instance, the maintenance of a link may involve periodic pings
to verify whether the neighbor is still alive.
2If α is in the order of Θ(

√
n), for instance, P2P topologies in

which the latency stretch between all pairs of peers is bounded by a
constant, and in which every peer has at most degree O(

√
n) can be

shown to be asymptotically optimal. This trade-off has for example
been achieved by the Tulip system proposed in [1].

off if they collaborated. More precisely and using the terminology
of game theory, we are interested in the Price of Anarchy, the ratio
between the social cost of the worst Nash equilibrium and the social
cost of the optimal topology.

3. RELATED WORK

The lack of cooperation in traditional P2P file-sharing systems
has been well-documented over the last years [3, 13], and research
on the causes and possible counter-measures is very active, e.g., [5]
and [9]. Most of the current literature focuses on the issue of free
resource consumption, freeriding. In contrast, the impact of other
aspects of selfishness has received much less attention. In fact,
to the best of our knowledge, this is the first paper to take a step
towards studying the consequences of selfish neighbor selection on
the topologies of P2P networks.

The first paper to study the creation of networks from a game-
theoretic point of view is due to Fabrikant et al. [8]. In this paper,
the authors analyze the Internet’s architecture as built by economic
agents, e.g., by Internet providers or autonomous systems. Recent
subsequent work on network creation in various settings includes
[4, 6, 7]. In contrast to all these works, our model takes into account
many of the intrinsic properties of P2P systems. For instance, it
captures the important locality properties of P2P systems, i.e., the
desire to reduce the latencies (expressed as the stretch) experienced
when performing look-up operations. Furthermore, the fact that
a peer can decide to which other peers it wishes to store pointers
yields a scenario with directed links.

Building structured systems that explicitly exploit locality prop-
erties has been a flourishing research area in networking and P2P
computing (e.g. [1, 11, 12]). In early literature on distributed hash
tables (DHT), the major measure of system quality has been the
number of hops required for look-up operations. While this hop-
distance is certainly of importance, it has been argued that the delay
of communication (i.e., the stretch between pairs of peers) is a more
relevant quality measure. Based on results achieved in [10], systems
such as [1, 2, 11, 14] guarantee a provably bounded stretch with a
limited number of links per peer. All of these systems are struc-
tured and peers are supposed to participate in a carefully predefined
topology. Our paper complements this line of research by analyzing
topologies as they are created by selfish peers, which are interested
only in optimizing their individual trade-off between locality and
maintenance overhead.

4. PRICE OF ANARCHY

The Price of Anarchy is a measure to bound the degradation of
a globally optimal solution caused by selfish individuals. In this
section, we show that the topologies created by selfish peers de-
teriorate more (compared to collaborative networks) as the cost of
maintaining links becomes more important (larger α). Concretely,
in Section 4.1 we prove that for arbitrary metrics—thus, including
the important and well-studied growth-bounded and doubling met-
rics—, the Price of Anarchy never exceeds O(min(α, n)). We then
show in Section 4.2 that this bound is tight even in the “simplest”
metric space, the 1-dimensional Euclidean space.

4.1 Upper Bound
Assume the most general setting where n peers are arbitrarily

located in a given metric space M, and consider a peer π which
has to find a suitable neighbor set. Clearly, the maximal stretch
from π to any other peer π′ in the system is at most α + 1: If
stretch(π, π′) > α + 1, π could establish a direct link to π′,
reducing the stretch from more than α + 1 to 1, while incurring



Figure 1: Example topology G where the Price of Anarchy is
Θ(min (α, n)) for 3.4 ≤ α.

a link cost of α. Therefore, in any Nash equilibrium, no stretch
exceeds α + 1. Because there are at most n(n − 1) directed links
(from each peer to all remaining peers), the social cost of a Nash
equilibrium is O(αn2). Since the optimum social costs is clearly
lower bounded by Ω(αn + n2), we have the following result.

THEOREM 4.1. For any metric space M, the Price of Anarchy
is O(min(α, n)).

4.2 Lower Bound
We now show that there are P2P networks in with a Price of

Anarchy of Ω(min(α, n)), which implies that the upper bound
of Section 4.1 is asymptotically tight. Intriguingly, the Price of
Anarchy can deteriorate to Θ(min(α, n)) even if the underlying
latency metric describes a simple 1-dimensional Euclidean space.

Consider the topology G in Figure 1 in which peers are located on
a 1-dimensional Euclidean line, and the distance (latency) between
two consecutive peers increases exponentially towards the right.
Concretely, peer i is located at position αi−1/2 if i is odd, and at
position αi−1 if i is even. The peers of G maintain links as follows:
All peers have a link to their nearest neighbor on the left. Odd peers
additionally have a link to the second nearest peer on their right.
In the following, we prove that G constitutes a Nash equilibrium.
Afterwards, we derive the lower bound on the Price of Anarchy by
computing the social cost of this topology.

LEMMA 4.2. The topology G shown in Figure 1 forms a Nash
equilibrium for α ≥ 3.4.

PROOF. In the following, a proof sketch is given only.
We distinguish between even and odd peers. For both cases, we

show that no peer has an incentive to deviate from its strategy.
Case even peers: Every even peer i needs to link to at least

one peer on its left, otherwise i cannot reach the peers j < i.
A connection to peer i − 1 is optimal, as the stretch to all peers
j < i becomes 1. Observe that every alternative link to the left
would imply a larger stretch to at least one peer on the left without
reducing the stretch to peers on the right. Furthermore, i cannot
reduce the distance to any—neither left nor right—peer by adding
further links to the left. Hence, it only remains to show that i cannot
benefit from adding more links to the right.

By adding a link to the right, peer i shortens the distance to all
peers on the right. However, the cost reduction per peer decreases
as a geometric series, and any such link to the right would strictly
increase i’s costs. To show this, we consider two cases in turn: i
linking to an odd peer on the right, and i linking to an even peer on
the right.

Link to an odd peer: Consider the benefit of i adding a link to its
odd neighbor i + 1. For an odd peer j > i, we define the benefit
Bi,j as the stretch cost reduction caused by the addition of the link
(i, i + 1). We have, for i ≥ 2,

Bi,j = stretchold(i, j) − stretchnew(i, j)

=
d(i, i − 1) + d(i − 1, j)

d(i, j)
− d(i, j)

d(i, j)

=
2 − 1/α

1/2αj−i − 1
.

Similarly, the savings Bi,j for an even peer j > i and i ≥ 2
amount to Bi,j = (2 − 1/α)/(αj−i − 1). Hence, for all α ≥ 3.4,
the total savings Bi for peer i are less than

Bi =
∑

odd j > i

Bi,j +
∑

even j > i

Bi,j

<
∞∑

δ=1

2 − 1
α

1
2
α2δ−1 − 1

+
∞∑

δ=1

2 − 1
α

α2δ − 1

<
4α2 − 1

α2 − 1
<

(α≥3.4)
α + 1.

Therefore, the construction of link (i, i+1) would be of no avail
(benefit smaller than cost). Clearly, the benefit of alternative or
additional links to odd neighbors on the right is even smaller.

Link to an even peer: A link to an even peer j > i entails a stretch
1 to the corresponding peer instead of stretchold(i, j) = (αj −
αj−1+αi−1−αi−2)/(αj−1−αi−1) < α+1 for α > 2. However,
the stretch from i to all other peers remains unchanged, since the
path i � (i− 1) � (i + 1) is shorter than i � (i + 2) � (i + 1):
αi−1 − αi−2/2 + αi/2 − αi−2/2 < αi+1 − αi−1 + αi+1 − αi/2
for α > 1. Therefore, an even peer i has no incentive to build links
to any even peer on its right.

Case odd peers: The proof that an odd peer i has no incentive to
change its neighbor set is similar to the proof for even peers, and it
is omitted here.

Having verified that the topology of Figure 1 is a Nash equilib-
rium, its social cost can be computed.

LEMMA 4.3. The social cost C(G) of the topology G shown in
Figure 1 is C(G) ∈ Θ(αn2).

PROOF. Clearly, the link costs of topology G are CE(G) ∈
Θ(αn). But since the stretch from an odd peer i to an even peer
j > i and the stretch between two even peers i and j > i are
stretch(i, j) > α/2 (for α > 2), the stretch costs are CS ∈
Θ(αn2).

THEOREM 4.4. The Price of Anarchy of the peer topology G
shown in Figure 1 is Θ(min(α, n)).

PROOF. The theorem follows from Theorem 4.1 and Lemmas
4.2 and 4.3, and by the observation that the optimal social cost
of a topology connecting the peers in Figure 1 is upper bounded
by O(αn + n2). For the latter, assume that there are no links in
Figure 1. If every peer connects to the nearest peer on its left and
to the nearest peer on its right, there are 2(n − 1) links, and all
stretches are 1. Thus, the social cost of this resulting topology G̃ is
C(G̃) = α · 2(n − 1) + n(n − 1) ∈ O(αn + n2). The optimal
social cost is at most the social cost of G̃.

5. EXISTENCE OF NASH EQUILIBRIA

In this section, we show that a system of selfish peers may never
converge to a stable state, even in the absence of churn, mobility,
or other sources of dynamism. Interestingly, this result even holds
if we assume latencies to form simple metric spaces, such as a
2-dimensional Euclidean space.

THEOREM 5.1. Regardless of the magnitude of α, there are
metric spaces M, for which there exists no pure Nash equilibrium,
i.e. certain P2P networks cannot converge to a stable state. This is
the case even if M is a 2-dimensional Euclidean space.

Instead of presenting the formal proof, we attempt to highlight
the main ideas only. Assume that the parameter α is a multiple
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Figure 2: Instance Ik has no pure Nash equilibrium when α =
0.6k, where k = n/5. The number of peers in each cluster is k.

of 0.6, i.e., αk = 0.6k for an arbitrary integer k > 0. Given a
specific k, we show that the 2-dimensional Euclidean instance Ik of
Figure 2 has no pure Nash equilibrium. Specifically, Ik constitutes
a situation in which there are peers π1 ∈ Π1 and π2 ∈ Π2 that
continue to deviate to a better strategy ad infinitum, i.e., the system
cannot converge.

The n peers of instance Ik are grouped into five clusters Π1,
Π2, Πa, Πb, and Πc, each containing k = n/5 peers. Within a
cluster, peers are located equidistantly on a line, and each cluster’s
diameter is ε/n, where ε > 0 is an arbitrarily small constant. The
inter-cluster distance d(Πi, Πj) between Πi and Πj is the minimal
distance between any two peers in the two clusters. Distances not
explicitly defined in Figure 2 follow implicitly from the constraints
imposed by the underlying Euclidean plane. A link from a peer
πi ∈ Πi to a peer πj ∈ Πj is denoted by �ij . Clusters Πa, Πb,
and Πc are called top-clusters, Π1 and Π2 are bottom-clusters, and
finally, δ denotes an arbitrarily small positive number such that
δ > 10ε.

The proof unfolds in a series of lemmas that characterize the
structure of the resulting topology G[s] if the strategies s form a
Nash equilibrium in Ik. First, it can be shown that in G[s], two peers
in the same cluster are always connected by a path that does not leave
the cluster. In the absence of such an intra-cluster path, the shortest
path between two peers in the same cluster has length at least 2−4δ
(1−2δ is the minimal inter-cluster distance in Ik). Hence, there is a
stretch of at least 2−4δ

ε/n
between this pair of peers. By constructing

an intra-cluster link at cost α, a peer can significantly reduce these
stretches, rendering such a link worthwhile. Furthermore, it can be
shown that there exists exactly one link in both directions between
clusters Πa and Πb, Πb and Πc, as well as between Π1 and Π2. In
all three cases, the argument is based on the fact that without such
a link, the shortest path between peers in these neighboring clusters
is via a third cluster, thus significantly increasing the stretches.
Specifically, the sum of the stretches from a peer in one cluster to
all peers in the neighboring cluster would exceed k(4−δ1a)

1+δab
. Because

a single link to a peer in this neighboring cluster can reduce each
stretch to roughly 1 + ε, the cost of connecting directly to a peer in
the neighboring cluster is less than α + k(1 + ε). Hence, if there is
no link between two neighboring clusters, a peer has an incentive
to construct such a link.

A third structural characteristic that can be derived for any Nash
equilibrium is that for every i and j, there is at most one directed
link from a cluster Πi to peers in a cluster Πj . Since ε is small and
all peers are linked within their clusters, peer πi ∈ Πi reduces its
cost by dropping its link to cluster Πj , if another peer in Πi also
has a link to a peer in Πj .

To preserve connectivity, some peers in Π1 and Π2 must have
links to top-peers. Based on the above observation that there is at
most one link between two clusters in each direction, Lemma 5.2

1
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Figure 3: Candidates for a Nash equilibrium.

further narrows down the set of possible strategies for connecting
peers in Π1 and Π2 to top-peers.

LEMMA 5.2. In any Nash equilibrium of instance Ik, it holds
that

i) Neither peers in Π1 nor Π2 select three links to top-peers.

ii) There exists a peer π1 ∈ Π1 that establishes a link to Πa.

iii) There is exactly one link from cluster Π2 to either cluster Πb

or Πc, but there is no link to Πa.

Correctness of all three properties is proven by verifying that there
exists some node π1 ∈ Π1 or π2 ∈ Π2 that has an incentive to
change its strategy in case the property is not satisfied. If, for
instance, there are two peers π2, π

′
2 ∈ Π2 that simultaneously

maintain links to Πb and Πc, (e.g. π2 to Πb and π′
2 to Πc, thus

violating case iii)), π′
2 can lower its costs by dropping its link

to Πc. Intuitively, this holds because the sum of the stretches∑
πc∈Πc

stretch(π′
2, πc) entailed by the indirection π′

2 � π2 �
Πb � Πc does not justify the additional cost α.

It can be shown that only the six structures depicted in Figure 3
remain valid candidates for Nash topologies. In each scenario,
however, at least one peer benefits from deviating from its current
strategy.

Case 1: In this case, a peer π1 ∈ Π1 can reduce its cost by adding
a link �1b to a peer in Πb.

Case 2: If the only outgoing link from Π1 to a top-cluster is to
cluster Πa, the peer π2 ∈ Π2 maintaining the link to Πc can be
shown to profit from switching its link from Πc to Πb.

Case 3: The availability of �1b changes the optimal choice of the
above mentioned peer π2 ∈ Π2. Unlike in the previous case, π2

now prefers linking to Πc instead of Πb.

Case 4: Due to the existence of a link from a peer π2 ∈ Π2 to Πc,
the peer π1 ∈ Π1 with the link to Πb has an incentive to drop this
link �1b and instead use the detours via Π2 and Πa to connect to Πc

and Πb, respectively.

Case 5: In this case, the peer π1 ∈ Π1 having the link to Πc reduces
its cost by replacing this link with a link to a peer in Πb.

Case 6: Finally, this case is similar to Case 4 in the sense that
π1 ∈ Π1 with the link to Πb has an incentive to remove �1c.

This proof highlights how the system is ultimately trapped in
an infinite loop of strategy changes, without ever converging to
a stable situation. There is always at least one peer which can
reduce its cost by changing its strategy. For instance, the following
sequence of topology changes could repeat forever (cf. Figure 3):
1 � 3 � 4 � 2 � 1 � 3 . . . In other words, selfish peers will
not achieve a stable network topology.



6. CONCLUSION

In order to gain a thorough understanding of the behavior of
selfish peers, aspects beyond the contribution of resources have to
be taken into account. In this paper, we have studied the impact
of selfishness on the topology of a P2P network, that is, if utility-
maximizing peers select their neighbors such that both latencies
and link maintenance overhead are small. Our results show that
topologies may degrade more severely when selfish peers value
maintenance cost relatively higher than latency costs. Moreover, we
prove that even in the absence of mobility or churn, a P2P network
consisting of selfish peers may never reach a stable state. We
consider this paper as a first step, and hope it sparks further research
in this area. It would be interesting, for instance, to incorporate
aspects such as overlay routing and congestion into our model.
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