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Credit to Nakkiran et al. [6]: The Deep double descent phenomemon : given a fixed dataset
size, a the test performance of a model will plateau as it is scaled past overfitting

Despite being invented in 2015 [7], diffusion image models only came into prominence in
2020. Despite being more computationally intensive to train, such models are more sample
efficient: given a fixed dataset size they can learn to generate much higher quality samples
than their alternatives, provided they have sufficiently large computational resources for
training.

Recently, diffusion models have been applied [1] and scaled on text data, and seem poised
to challenge autoregressive (predict-the-next-token) LLMs for state-of-the-art text genera-
tion. The question we would like to answer with this project is: “Is diffusion pretraining of
LLMs more sample efficient autoregressive pretraining?”.

In the current year of 2025, this question is particularly salient: frontier LLMs are transi-
tioning from a regime where compute is scarce to a regime where data are scarce. Following
the so-called scaling laws, which determine the most compute-efficient dataset sizes to train
autoregressive LLMs, frontier models are now trained on all ~ 15 Trillion useful tokens on
the internet [3], with Ilya Sutskever referring to text data as the “fossil fuel of AI”. Improv-
ing sample efficiency also has implications for capabilities: currently, autoregressive LLMs
struggle to generalize past their vast training dataset, which covers > 10,000x more lan-
guage input than and single person receives in their lifetime. If diffusion models are more
sample efficient than their alternatives for text generation (as they are for image genera-
tion), this could mean that they will exhibit greater capabilities once there exists sufficient
computational resources to scale them to these large sizes.

Practically, this project will look like exploring & replicating results such as the “Kaplan”
[5] and “chinchilla” [4] scaling laws and deep double descent [2, 6] with a small dataset for
both diffusion and autoregressive LLMs to investigate their sample efficiency.
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