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Abstract
We present a randomized coloring algorithm for the unstruc-
tured radio network model, a model comprising autonomous
nodes, asynchronous wake-up, no collision detection and
an unknown but geometric network topology. The current
state-of-the-art coloring algorithm needs with high probabil-
ity O(∆·logn) time and uses O(∆) colors, where n and ∆ are
the number of nodes in the network and the maximum de-
gree, respectively; this algorithm requires knowledge of a lin-
ear bound on n and ∆. We improve this result in three ways:
Firstly, we improve the time complexity, instead of the loga-
rithmic factor we just need a polylogarithmic additive term;
more specifically, our time complexity is O(∆+log ∆ · logn)
given an estimate of n and ∆, and O(∆ + log2 n) without
knowledge of ∆. Secondly, our vertex coloring algorithm
needs ∆ + 1 colors only. Thirdly, our algorithm manages to
do a distance-d coloring with asymptotically optimal O(∆)
colors for a constant d.
Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems – computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory –graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory – network
problems

General Terms
Algorithms, Theory
Keywords
Ad Hoc Networks, Sensor Networks, Unstructured Radio
Networks, Unit Disk Graphs, Growth Bounded Graphs,
Bounded Independence Graphs, Local Algorithms, Parallel
Algorithms, Distributed Algorithms, Coloring

1. INTRODUCTION
Wireless networks have become omnipresent; there are

different architectures available, e.g. GSM-driven mobile
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phones, or laptops equipped with 802.11 WLAN. A chal-
lenging network architectures are so-called wireless multi-
hop networks, e.g., ad hoc, sensor, or mesh networks. In
these networks, the participating nodes themselves provide
the infrastructure. This lack of already available infrastruc-
ture expresses itself primarily during the start-up phase of
the wireless multi-hop network, as nodes need to establish
their own infrastructure before being able to communicate.
For instance, upon deployment the nodes act independently,
as they are unaware of each other. In this stage commu-
nication is unreliable and slow. A major problem is that
messages might be lost due to collisions, i.e. if nodes u and
w concurrently transmit a message, a node v being in the
transmission range of both u and w might not receive any
message correctly, or v might not even detect that there
was a transmission. Coordinating the nodes in a distributed
manner to achieve efficient and reliable communication is a
time consuming task – in particular in multi-hop networks,
where the exchange of messages among nodes requires the
help of intermediate nodes.

Once a wireless network is fully operational, it runs a re-
liable Media Access Control (MAC) scheme, for instance
Time Division Multiple Access (TDMA). In TDMA, time
is slotted, and individual time slots are assigned to different
nodes, such that potentially interfering nodes do not share a
common time slot. Algorithmically speaking this boils down
to a coloring problem: Assign colors to nodes such that
“close-by” nodes do not share the same color. Depending
on the application the term “close-by” may have a different
meaning: direct neighbors, or also two-hop neighbors (since
two-hop neighbors u and w share a common neighbor v that
will be affected by a concurrent transmission of u and w),
or more generally k-hop neighbors for some constant k.1 To
achieve a high throughput in the wireless network, we must
aim for a coloring that minimizes the number of colors. As
the number of colors makes a significant impact in practice,
constants do matter.

The current state of the art by Moscibroda et al. [13]
needs with high probability O(∆ · logn) time and uses O(∆)
colors in a unit disk graph, where n and ∆ are the num-
ber of nodes in the network and the maximum degree, re-
spectively; the algorithm requires a linear bound on n and
∆. Similarly to the journal version of [13] we generalize
the network topology from unit disk graph to bounded-

1Strictly speaking even that is a simplification because physical

radio signals do not comply to graph-based models; however, in
practice graph-based models are used, and do usually work al-

right.



independence graph (sometimes also called growth-bounded
graphs2) [9]. Bounded-independence graphs restrict for any
node the maximum size of a set of independent nodes in
its neighborhood. In a unit disk graph nodes are points in
the plane, with two nodes u, v being neighbors if and only if
their Euclidean distance is at most 1. We improve the result
of [13] in three ways:

1. We reduce the time complexity, instead of the loga-
rithmic factor we just need a polylogarithmic addi-
tive term; more specifically, our time complexity is
O(∆ + log ∆ · logn) given an estimate of n and ∆,
and O(∆ + log2 n) without any knowledge of ∆.

2. For a simple (one-hop) coloring, our algorithm needs
∆ + 1 colors only. As in prior work, the number of
actual colors used depends only on the local density of
the nodes.

3. Our algorithm can be adapted to compute a distance-d
coloring with O(∆) colors for any constant d.

On the road to our main results we also encounter a special
type of broadcasting problem, which we call the distance-d
broadcasting problem: A message should be delivered from
an originator to all nodes within some (hop) distance d but
(ideally) to no node further away. We present a solution
that is time-optimal for constant distances such that only
nodes at distance d+ 1 might receive the message.

2. RELATED WORK
Coloring a graph with as few colors as possible is a dif-

ficult problem – even deriving an approximate solution is
NP-hard [7]. In contrast, computing a (∆ + 1)-coloring is
straightforward using a greedy algorithm as long as one has
full knowledge of the graph. Deriving a (∆ + 1)-coloring
in a distributed manner is more challenging, even in the
LOCAL model, where each node can concurrently send a
(distinct) message to each neighbor and also concurrently
receive a message from each neighbor without facing a col-
lision. For instance, for arbitrary graphs, a (∆ + 1)-coloring
can be computed deterministically in time O(∆ + log∗ n)
[3], in time O(∆ · logn) [15], or in time O(logn) [12]. Dis-
tributed coloring has also been studied in special graph
classes. In bounded-independence graphs, for instance, col-
oring only needs time Θ(log∗ n) [16], deterministically and
without knowledge of the network topology.

However, these fast algorithms are not applicable in our
setting, as they presume an established and powerful com-
munication framework. In this paper we deal with un-
structured radio networks (interfering transmissions, asyn-
chronous wake-up) [10]. In this harsher model algorithms
without at least a little topology information, i.e. the num-
ber of nodes n, are inherently slow [6]. Efficient determin-
istic algorithms are often hard or impossible to design. For
instance, for the broadcasting problem there is an exponen-
tial gap in the time complexity between any deterministic
and randomized algorithm [8]. Still, an algorithm achieving
an O(∆)-coloring in time O(∆ · logn) with probability 1− 1

n
for unit disk graphs was presented by Moscibroda et al. [13].
In that algorithm knowledge about the network topology is

2In some publications growth-bounded refers to the growth of
the number of neighbors and in other publications it denotes the

growth of the number of (maximum) possible independent nodes.

limited to a bound on n and ∆. The algorithm computes a
set of leaders which grant a color range for all other nodes
(so called slaves). This general idea has also been followed
previously, e.g. [5], however in a simpler model allowing for
powerful communication.3 Likewise, distributed coloring for
TDMA has been studied several times, however, always in
different settings (single-hop network, stronger communica-
tion models, etc.); for a detailed treatment we refer to the
discussion of related work in [13].

There is also an ample body of work on asynchronous
wake-up. In the so-called wake-up problem [6], the goal is
to wake up all nodes in the graph as quickly as possible.
The assumption is that a node is woken up by an incoming
message. While the algorithmic problems resulting from this
assumption are interesting, multi-hop wake-up radios are
currently technically infeasible.

Finally, there is a connection of our work to broadcasting
in radio networks. In [2] a broadcasting scheme was pro-
posed performing a broadcast in time O(D · logn+ log2 n).
Essentially each node broadcasts O(logn) times with the
same probability 1

2i
for 1 ≤ i ≤ logn, starting with prob-

ability 1
2
, heading towards 1

n
, and then restarting again

with 1
2
. This broadcasting algorithm was improved to

Θ(D · log n
D

+ log2 n) in [4], which is optimal due to lower
bounds in [1, 11]. The key idea is to choose high sending
probabilities more often. Both algorithms rely on a global
clock. Furthermore, these algorithms are not straightfor-
ward to adjust such that they solve the distance-d broad-
casting problem, where a message should be broadcast to all
nodes up to hop distance d but not further. For instance,
just adding a time-to-live variable to a message does not
solve the problem. Our broadcasting algorithm in Section
4 uses the same transmission probabilities as [2, 4], but is
independent of a global clock.

3. MODEL AND DEFINITIONS
We assume that nodes have clocks running at the same

speed.4 We assume that time is divided into discrete syn-
chronized time intervals (also called time slots); this is not a
restriction [17]. The time complexity of an algorithm corre-
sponds to the number of intervals needed to finish its task.
However, we do not assume the existence of a global clock,
i.e. each node v might have a different value tv for its clock.
Upon wake-up tv := 1, tv increases by 1 with every passed
time slot.

The communication network is modeled with a graph G =
(V,E). For a node v its neighborhood Nd(v) represents
all nodes within d hops of v (not including v itself). A
message transmitted by node v might only be received by its
direct neighbors u ∈ N(v). Nodes do not feature a collision
detection mechanism. More specifically, if nodes u and w
concurrently transmit a message, a node v ∈ N(u) ∩ N(w)
suffers from a collision and will either (i) receive nothing,
(ii) u’s message, (iii) v’s message or (iv) detect a collision.
The actual outcome is determined by an adversary, i.e. for
each collision the outcome is chosen to maximize the time

3Specifically: Synchronous start, and each node can sense the

presence of a signal. If the medium is free, it has a constant

chance of transmitting without collision.
4A TDMA schedule only makes sense given reasonably synchro-
nized clocks since otherwise no node is able to follow the schedule

for long.



complexity of the algorithm. Thus to be sure that a node
v correctly receives a message, there must be exactly one
sender u ∈ N(v). For a distance-d coloring, it holds that no
two nodes within (hop) distance d have the same color or
equivalently, for each node v every node u ∈ Nd(v) has a
different color than v. A coloring simply refers to a distance-
1 coloring. A set Sd ⊆ V is a maximal independent set
(MIS) of distance d, if any two nodes u, v ∈ Sd have hop
distance more than d and for every node v ∈ V there exists a
node u ∈ Nd(v)∩Sd. A MIS Sd of maximum cardinality, i.e.
|Sd| ≥ maxMIS Td |T d|, is called a maximum independent set
of distance d (MaxIS). We consider bounded-independence
(also known as growth-bounded) graphs:

Definition 1. A graph G = (V,E) is of bounded-
independence if there is a polynomial bounding function f(r)
such that for each node v ∈ V , the size of a MaxIS in the
neighborhood Nr(v) is at most f(r), ∀r ≥ 0.

In particular, this means that for a constant c the value
f(c) is also a constant. A subclass of bounded-independence
graphs are (quasi) unit disk graphs, which are often used to
model wireless communication networks and have f(r) ∈
O(r2).

We assume that all nodes are sleeping initially. A sleeping
node can neither transmit nor receive any messages. Nodes
wake up asynchronously at any time. The wake-up of a
node is not triggered by incoming messages but is assumed
to occur spontaneously at an unpredictable point in time.

A node does not have any topology information except
for a polynomial bound of the number of nodes n in the
network.5 Without an estimate of n, every algorithm re-
quires at least time Ω( n

logn
) until one single message can be

transmitted without collision [6].
The value log∗ n describes how often one has to take the

logarithm of an initial value n to end up with at most 2.
Every node v has an IDv ∈ {0, 1, ..., n}.6 For convenience,

if the meaning is clear in the context, we use v instead of
IDv.

4. ALGORITHM BROADCAST
Algorithm Broadcast is an essential part of the coloring

algorithm given in the next section. It performs a broadcast
of the content msgw created by node w, which is delivered
to all nodes u ∈ Nh(w) up to distance h with probability at
least 1 − ε. The message might also be received by (some)
nodes u ∈ Nh+1(w) \ Nh(w) at distance h + 1, but not by
nodes at distance more than h+1. The algorithm still works
correctly if up to 5 ·f(h) (see Definition 1) nodes u ∈ Nh(w)
perform a broadcast concurrently.

Nodes forward a message in a synchronized manner, mean-
ing that all nodes having received a message by w, trans-
mit (sufficiently often) with the same probabilities. To
achieve a synchronized behavior of the broadcasting nodes,
each forwarding node u determines the same schedule rw
for a message originator w.7 The value rw[i] denotes the

5The bound can be different for each node.
6The same asymptotic time complexity holds also for much larger

intervals, e.g. for IDv ∈ {0, 1, ..., nn} since log∗(nn) = O(log∗ n).
Thus the IDs might as well be randomly chosen out of an interval

[0, nn] without altering the time complexity of the algorithm.
7It would also be possible to let w determine the schedule rw and

transmission probability of the ith time-slot in the sched-
ule. Only a fraction 1

c
with c := 5 · f(h) of all transmis-

sion probabilities are larger than 0. More precisely, for ev-
ery interval [c · i, c · (i + 1) − 1] of length c, one time slot
with non-zero probability is chosen uniformly at random.
For illustration consider the following example with c = 2:
[0, > 0, 0, > 0, > 0, 0, 0, > 0, ...].8 The non-zero probabilities
themselves can be chosen such as in [2] or [4]. For our pur-
poses it suffices to stick to the simpler sequence [2], which
starts with probability 1

2
, then 1

4
, followed by 1

8
a.s.o. un-

til 1
∆

.9 Then the sequence repeats starting with probability
1
2
. An example of a schedule with ∆ = 8 and c = 2 is

[0, 1
2
, 0, 1

4
, 1

8
, 0, 0, 1

2
, 0, 1

4
, ...]. For a schedule rw the sequence

1
2
, 1

4
, .., 1

∆
is repeated e7 ·f(h) ·h · log 1

ε
times. Since only one

slot out of c = 5 · f(h) slots is non-zero the length |rw| of
the schedule rw becomes e7 · 5 · f(h)2 ·h · log ∆ · log 1

ε
, where

e denotes the Euler constant.
A node u having received a message originated at w must

transmit according to the schedule rw. In our coloring al-
gorithm (Section 5) a node u might have to forward sev-
eral messages originating from up to 5 · f(h) different nodes
w ∈ Nh(u). Therefore it is supposed to transmit according
to multiple schedules at the same time. Unfortunately, it
might be that two (or more) schedules overlap, i.e. there
is a time slot where at least two schedules have non-zero
transmission probability. In such a case a node transmits
according to an arbitrary non-zero transmission probability.
Furthermore, if a node u received a message from node w
then it cannot just start transmitting according to the sched-
ule upon reception of a message. Due to collisions neighbors
of w might receive the message at different times and thus
the schedule would not be followed synchronously. Thus, a
node v broadcasting according to rw appends the current
position within the schedule, i.e. if it transmits with proba-
bility rw[i], it appends i. A node receiving a message waits
until the sender completed the schedule (i.e. for |rw| − i
time slots) before starting to transmit according to schedule
rw. Summing up, an actual message used in the protocol
consists of three elements: a message msg, a time to live
h stating how many hops a message will still be forwarded
and finally the current slot in r. A node v keeps track of all
messages it still has to broadcast using the set Mv.

5. ALGORITHM FASTCOLORING
We present the main ideas of our coloring approach in Sec-

tion 5.1 assuming synchronous wake-up and a given estimate
of the maximal degree ∆. This simplifies the algorithm, al-
lows to focus on the main ideas, and permits to directly
relate our time complexity to previous work. In Section 5.2
we remedy these assumptions. Finally, in Section 5.3 we
show how to get a distance-d coloring.

5.1 Synchronous wake-up, ∆ known
Algorithm FastColoring roughly iterates two main steps.

First, a set of (independent) leaders is elected that control all

append it to the message. Furthermore, the schedule could be

changed for every broadcast initiated by w.
8Since the schedule rw must be the same for all nodes, each node

creating rw must make the same random choices. From a practi-
cal point of view, this could be achieved by initializing a pseudo

random number generator with the ID of w.
9In case ∆ is not known, it is approximated using n.



Algorithm Broadcast(hops h, message msgw, failure
probability ε)

For each node v ∈ V
1: |r| := e7 · 5 · f(h)2 · h · log ∆ · log 1

ε
2: if v = w then Mv := {(msgw, h+ 1, 0, Started)} else
Mv := {} end if

3: for i = 0..h · |r| do
4: mC := (msgu, h − 1, t) for some entry (msgu, h, t,

Started) ∈Mv with t < |ru| and transmission proba-
bility > 0 (i.e. ru[t] > 0)

5: if mC 6= {} then
6: Transmit mC with probability ru[t]
7: else
8: Listen for message mL of the form (msgu, h, t)
9: if (received mL) ∧ (@(msgu, ., .) ∈ Mv) ∧ (h > 0)

then
10: Mv := Mv ∪ (msgu, h, t,NotStarted)
11: end if
12: end if
13: Replace all entries (msgu, ., t, NotStarted) ∈ Mv

with t = |ru| by (msgu, ., 0, Started) and all others
by (msgu, ., t+ 1, Started)

14: end for

other nodes within distance 6. Second, these leaders assign
colors to their (direct) neighbors.

In order to get the set of leaders S6 we first compute a
MIS S1 using algorithm [14] and then extend it using [16].
After the MIS S1 is computed, all nodes are synchronized,
i.e. nodes in the MIS wait until all nodes within 6 hops have
completed algorithm [14] and tell (by broadcasting message
InMIS) all nodes N6(v)\S1 to stop and wait until the com-
putation of S6 is over. Next, a node v ∈ S1 gets to know all
nodes u ∈ N6(v)∩S1 ⊆ IS6(v) within 6 hops in the indepen-
dent set S1. The algorithm presented in [16] requires IS6(v)
and computes S6. All leaders in S6 ensure that they are
not disturbed during their color assignment by broadcast-
ing messages DoNotTransmit and DoNotTryMIS. Then
a leader v ∈ S6 and its neighbors u ∈ N(v) repeatedly
execute 3 synchronized time slots. In the first slot every un-
colored node u might apply for the permission to choose a
color. If leader v received a request, it grants the request.
Node u chooses an available color c. In the third slot node
u informs its neighbors that color c is used.

Let us go through the algorithm in more detail. The
broadcast of message InMIS following the computation of
MIS S1 serves the purpose of telling nodes v /∈ S that the
computation of the MIS S1 is over and that they must wait
before (re)starting algorithm TryMIS until all nodes in S1

have finished the computation of S6 (Lines 21 and 22). Ad-
ditionally, using the InMIS messages a node v gets to know
all neighbors u ∈ (N6(v)∩S), i.e. set IS6(v), (Lines 3 to 6)
that joined S1 in parallel with v, i.e. before having received
a message InMIS. For communication nodes in the MIS
S1 use algorithm Broadcast (Section 4). Unfortunately, if
a node u received a message msgv broadcast by v, then v
might not receive a message msgu even if both broadcast up
to the same hop distance h, i.e. call Broadcast(.,h,.,.). Thus
per se the set IS6(v) is not symmetric, i.e. if u ∈ IS6(v)
then not necessarily v ∈ IS6(u). However, symmetry is re-
quired in [16] to get set S6 and therefore guaranteed (with

high probability) in lines 7 to 8. The set S6 is computed on
the (undirected) graph G′ = (V ′ = {u|u ∈ S} = S,E′ =
{{u, v}|u, v ∈ V ′, v ∈ IS6(u)}) using algorithm [16]. The
algorithm presented in [16] assumes that a node v ∈ V ′

knows all nodes u ∈ V ′ with {v, u} ∈ E′, i.e. v knows
the set IS6(v) and that communication among nodes is re-
liable, i.e. no message is lost. Therefore, in case a node v
misses some information of a node u ∈ IS6(v), e.g. due to
a collision, it continuously sends a request to u asking for a
retransmission. Furthermore, communication between two
nodes u, v ∈ V ′ is not just a simple transmission between
direct neighbors in G, since their hop distance in G is up to
7. Thus we use Algorithm Broadcast with parameters h = 7
and ε = 1√

2
. Once a node starts executing algorithm [16], it

will execute it for a fixed number of steps, i.e. c5 ·log ∆·logn
for some constant c5. With high probability the computa-
tion of S6 has finished by then. In case a node terminates
the algorithm prior to the allowed number of steps it simple
waits for the remaining time slots.

In the second step every node v ∈ S6 assigns colors
to all uncolored neighbors u ∈ N(v). To begin with,
nodes v ∈ S6 ensure that all nodes within 3 hops remain
quiet, while they are busy assigning colors. A node re-
ceiving a notification DoNotTransmit(v) forwards the mes-
sage DoNotTransmit(v) and then must not transmit un-
til it received a message TransmitAndTryMIS(v). All
messages InMIS or MIS6 are ignored by a node while
it is not allowed to transmit, in particular it will also
not forward them once it is allowed to transmit again.
Any interrupted broadcast of a message DoNotTryMIS
or TransmitAndTryMIS originated at some node w is
restarted from scratch, i.e. the schedule rw is executed from
slot 0 onwards such that the forwarding nodes still trans-
mit synchronized. More precisely, assume a node u received
message DoNotTransmit(v) at time tDoNotu , when execut-
ing slot j of rw and TransmitAndTryMIS(v) at time tCanu .
Node u will transmit again at time (tDoNotu −j)+i·|rw|, such
that i is the smallest positive integer with (tDoNotu − j) + i ·
|rw| > tCanu . If a node u received a broadcast message while
not being able to transmit and was supposed to start the
broadcast at time tu, it will start it at time tu + i · |rw| such
that i is the smallest positive integer with tu+i·|rw| > tCanu .
The message DoNotTryMIS(v) ensures that only nodes in
S6 within 8 hops from v execute algorithm TryMIS while
node v is assigning colors. In particular, the broadcast
of messages DoNotTryMIS and DoNotTransmit ensures
that if a node v assigns colors to its neighbors all neigh-
bors are allowed to transmit and will get a color. A node
u keeps track of all received messages DoNotTryMIS and
DoNotTransmit using the set WaitFor(u).

To obtain a color, nodes v ∈ S6 and its uncolored neigh-
bors u ∈ N(v) begin executing algorithm GetColor con-
currently. Essentially, algorithm GetColor repeats a sched-
ule consisting of 3 synchronized time slots, i.e. all nodes
N(v) ∪ v execute the same time slot concurrently. In the
first slot every uncolored node u might apply for a color by
sending a request to color itself. If the node v ∈ S6 per-
forming the assignment, received a message Request(u), it
grants the request by transmitting Grant(u) in the second
slot. Upon reception of message Grant(u), node u chooses
an available color c, transmits Taken(c) in the third slot
to all its neighbors and exits the algorithm. Every uncol-
ored node u keeps track of the used colors in its neighbor-



Algorithm FastColoring

Upon wake-up:
1: TakenColors(v) := WaitFor(v) := {}; colorv := −1

TryMIS():
2: sMIS

v := false
3: Compute MIS[14] S1 {Out: state sMIS

v }
4: if sMIS

v = true then
5: wait until Broadcast(v,6, InMIS(v), 1

n5 ) completed

plus the duration of a Broadcast(.,6, ., 1
n5 )

6: IS6(v) := {u|recv msg InMIS(u)}
7: wait until Broadcast(v,7, MIS6(v, IS6(v)), 1

n5 )

completed plus the duration of a Broadcast(.,7, ., 1
n5 )

8: IS6(v) := IS6(v)∪{u|recv msg with MIS6(u, IS6(u))
∧(v ∈ IS6(u))} {Ensure symmetry of IS6}

9: Calculate MIS [16] S6 on G′ = (V ′ = {u|u ∈ S}, E′ =
{{u, v}|u, v ∈ V ′, v ∈ IS6(u)}) {Out: state sMIS6

v }
10: if sMIS6

v = true then
11: Broadcast(v,8,DoNotTryMIS(v), 1

n5 )

12: Broadcast(v,3,DoNotTransmit(v), 1
n5 )

13: Transmit GrantingColors
14: GetColor() {see Table 1; Out: colorv}
15: Broadcast(v,9, TransmitAndTryMIS(v), 1

n5 )
16: end if
17: end if

At any time:
18: if recv msg GrantingColors then GetColor(); Exit;

end if {see Table 1; Out: colorv}
19: if (sMIS6

v = false)∧(recv msg ∈ {DoNotTransmit(u),
DoNotTryMIS(u)}) then Stop executing TryMIS();
sMIS
v := false;WaitFor(v) := WaitFor(v)∪msg endif

20: if recv msg TransmitAndTryMIS(u) then
WaitFor(v) := WaitFor(v) \ {DoNotTryMIS(u),
DoNotTransmit(u)} end if

21: if (recv msg InMIS) ∧ (sMIS
v = false) then Stop

executing TryMIS() end if
22: if (colorv = −1)∧(WaitFor(v) = {})∧(no msg recv for

the duration constant·log ∆·logn slots) then TryMIS()
end if {duration bounds time from start of broadcast
InMIS until DoNotTryMIS finished}

hood, i.e. TakenColors(u). It also maintains an estimate
of the number of uncolored neighbors ñ(u) (initially ∆)that
might concurrently apply for a color. The probability that
a node transmits a request is given by 1

ñ(u)
. Since more and

more neighbors get colored over time and the estimate might
overshoot the true number of uncolored nodes, the estimate
is updated from time to time, i.e. if out of a sequence of
128 · e2 · logn time slots less than 32 · logn Grant messages
were received the estimate ñ(u) is divided by 2.

5.2 Arbitrary wake-up, ∆ unknown
To bound ∆ we simply use n. If all nodes are known to

wake up within a time span of length t, any newly woken-
up node listens for t time slots and forwards broadcasts but
does not initiate any broadcasts, i.e. algorithm TryMIS is
not started. This way, a node will be fully aware of the state
of the computation; as for synchronous wake-up algorithm
FastColoring can be used.

Because of lack of space, for arbitrary wake-up we only
sketch the algorithm. The main difficulty is that a woken-up
node is unaware of the state of its neighbors. For instance,
a node u might wake up and have multiple leaders as neigh-
bors that all assign colors. If u transmits, it might disturb
the color assignment. Thus a leader v assigning colors, in-
terrupts algorithm GetColor from time to time (say after
O(log2 n) slots) to broadcast messages DoNotTransmit(v)
and DoNotTryMIS(v) again and all nodes that are only
prevented from transmitting by v forward the message.
However, more needs to be done: Assume a node u has
received DoNotTransmit from two or more different lead-
ers. In that case, it cannot forward any message. If a node
w ∈ N(u) wakes-up and node u is its only neighbor, i.e.
N(w) = u, then it does not receive any message and has to
wait very long (i.e. O(n)) to be sure that it can transmit
safely. To remedy this problem, we introduce some empty
slots during the color assignment. More precisely, out of
f(8) slots we only use 1 slot for the color assignment. The
other slots are used for forwarding broadcasts. The leader
determines which slots are used and broadcasts the chosen
slots together with the message DoNotTransmit, such that
a node is not allowed to transmit in the chosen slots. Thus,
there are enough free slots to forward broadcasts. However,
there are two more issues: First, a leader does not neces-
sarily color all its uncolored neighbors. Second, a (newly)
woken-up node is unaware of the previously chosen colors,
but still must avoid deciding on an already chosen color.

We address these two problems by splitting algorithm Get-
Color into a sequence of four repeated phases, each of dura-
tion O(log2 n). Any woken-up node can try to get a color,
whenever the first phase is (re)started. If a node chose a
color, already chosen by node u, then u can place a veto.
More precisely, during the first phase the number of uncol-
ored neighbors of the leader is estimated and used to set the
transmission probability. During the second phase, uncol-
ored nodes apply for a color as before. During the third and
fourth phase all nodes u that faced a color collision, i.e. a
node v chose a color previously selected by a node u, trans-
mit a veto, forcing v to choose another color. During the
third phase, a node u estimates the number of nodes that
also faced a color collision and then uses this estimate to
determine the transmission probability in the veto phase.

The estimate of the number of nodes having a color colli-
sion can be computed as follows. A node w ∈ S6 broadcasts
StartGettingDensity for 2 hops and all nodes in N2(w)
that faced a color collision execute the following protocol
synchronously for O(log2 n) time steps: Transmit Prob( 1

2i
)

with probability 1
2i

and for all i starting from 1 to logn

for O(logn) time slots for each i. The estimate |Ñ(u)| is
given by max{2i|u received O(logn) messages Prob( 1

2i
)}.

The number of uncolored nodes u ∈ N(w) can be estimated
in an analogous way.

5.3 Distance-d coloring
We focus on synchronous wake-up. To compute a

distance-d coloring (for constant d) with O(∆) colors, algo-
rithm FastColoring can be used with minor modifications.
It must be ensured that the distance among nodes assign-
ing colors to their direct neighbors is at least min{d+ 3, 6},
such that nodes with distance at least d + 1 get the same
color. Furthermore, leaders having assigned colors broad-
cast all (newly) assigned colors up to distance d. The



node v ∈ S uncolored node u ∈ N(v)
Initialization colorv := 0 ñ(v) := ∆
Slot 1 Listen Transmit Request(u) with probability 1

ñ(v)

Slot 2
if received Request(u)

Listen
then Transmit Grant(u)

Slot 3 Sleep
if received Grant(u) then
colorv := min{c|c ∈ {1, 2, ..,∆} \ TakenColors(v)}
Transmit Taken(c) and exit else Listen end if

if not received msg Request if received Taken(c) then
for 384 · e2 · logn · (log ∆ + 1) TakenColors(v) := TakenColors(v) ∪ c end if

slots then Exit end if if received < 32 · logn Grant messages and
ñ(v) not altered during the last 384 · e2 logn

time slots then ñ(v) := ñ(v)
2

end if

Table 1: Algorithm GetColor, repeats a schedule of three (synchronized) time-slots

assigned colors can be broadcast together with message
TransmitAndTryMIS. Finally, we have to alter the dis-
tances of the various broadcasts. The broadcast of mes-
sage InMIS is performed with h = max{d + 2, 6}10, of
MIS6 with h = max{d+ 2, 6}+ 1, of DoNotTryMIS with
h = max{d + 2, 6} + 3 and of TransmitAndTryMIS with
h = max{d + 2, 6} + 4. The broadcast of DoNotTransmit
remains unchanged.

6. ANALYSIS ALGORITHM BROADCAST
Throughout the proof we assume that a broadcast is

only performed up to a constant distance d and for con-
stant f(d). We use the notion of a subschedule rkw ⊆ rw.
The kth subschedule rkw denotes the transmission probabil-
ities of the slots rw[j] with k · d < j ≤ k · (d + 1) with
d := e7 · 5 · f(h)2 · h · log ∆ and 0 ≤ k ≤ log 1

ε
.

The first lemma states that all nodes broadcasting a
message according to schedule rw follow the schedule syn-
chronously, i.e. transmit with the same probability rw[t] for
some 0 ≤ t ≤ |rw| − 1.

Lemma 1. If two nodes u, v ∈ V transmit concurrently
according to schedule rw then both transmit the same mes-
sage (msgw, h, t) with probability rw[t] for some 0 ≤ t ≤
|rw| − 1 at the same time.

Proof. Assume node u received the message from node
s and node v from node t and both s and t execute the
schedule rw synchronously. More precisely, say node v re-
ceived message (msgw, h, tv) at local time ts and node u
received message (msgw, h, tu) x slots later at time ts + x.
Since s and t transmit the schedule synchronously (i.e. are
at the same position in the schedule) and tu gives the cur-
rent position, we have tu = tv + x. Due to the algorithm
node v will start executing schedule rw from slot 0 on-
wards at time ts + |rw| − tv (of node s) and node u at time
ts + x + |rw| − tu = ts + x + |rw| − tv − x = ts + |rw| − tv.
Thus both nodes will start in parallel.

The case when both nodes u, v received the message from
the same node is analogous.

The next lemma shows that if some neighbors of node v
follow (concurrently) one subschedule rkw then the chance
that node v receives a message is constant.

10Distance d + 2 suffices, since the distance between nodes in the

MIS Sd+2 is d + 3.

Lemma 2. Assume neighbors T ⊆ N(v) of node v trans-
mit according to schedule rw. After an execution of some
subschedule rkw with 0 ≤ k ≤ log 1

ε
, node v has received

msgw with probability 1− 1
e2·f(h)·h .

Proof. By definition (Section 4) within distance h of v
at most 5 ·f(h) schedules are allowed to be executed concur-
rently and each schedule only contains one entry with value
larger than 0 out of 5 · f(h) entries. The chance prkw that

all nodes u ∈ N(v) transmit either according to rkw[i] for
some entry rkw[i] > 0 or not at all, is at least the probability
that the (current) entry of all other concurrently executed
schedules (at most 5 · f(h)− 1) is 0:

prkw ≥ (1− 1

5 · f(h)
)5·f(h)−1 ≥ 1

e

The probability pexactly1 that exactly one node u ∈ T trans-
mits if all nodes in T transmit with probability 1

2·|T | ≤
rkw[i] ≤ 2

|T | is

pexactly1 ≥ |T | ·
1

rkw[i]
· (1− rkw[i])|T |−1

≥ |T | · 1

2 · |T | · (1−
2

|T | )
|T |−1 ≥ 1

2
· (1− 2

|T | )
|T |−1 ≥ 1

2 · e2

Thus the total probability that node v receives the mes-
sage within 5 · f(h) slots is prkw · pexactly1 ≥ 1

e4
.

Due to construction schedule rkw with |rkw| = e7 ·5·f(h)2 ·h·
log ∆ contains one entry rkw[i] out of 5·f(h)·log ∆ many with

1
2·|T | ≤ rkw[i] ≤ 2

|T | and 0 < |T | ≤ ∆. Thus when executing

rkw a node transmits e7 · f(h) · h times with probability p
for 1

2·|T | ≤ p ≤ 2
|T | . The chance that all attempt fail is:

(1− 1
e4

)e7·f(h)·h ≤ 1
e2·f(h)·h .

Theorem 3. The probability that a message originated at
w reaches all nodes u ∈ Nh(w) and no node u ∈ Nh+2(w) \
Nh+1(w) within time O(log ∆ · log 1

ε
) is at least 1− ε.

Proof. When a node receives a message (msgw, d, .) it
will transmit (msgw, d − 1, .) as long as d > 0. Since the
originator transmits (msgw, h, .), a message will only reach
nodes up to distance h+ 1.

The neighborhood Nh(w) can be covered by a MIS S1

with |S1| ≤ f(h) (see Definition 1). Clearly, any node v ∈ S1

is reachable by a path P = {w = u0, u1, ..., uh} of length



at most h nodes. Since |S1| ≤ f(h) we need at most f(h)
(distinct) paths to get from w to all nodes v ∈ S1. To ensure
that the message reaches node v, a node ui with 0 ≤ i < h
must have/receive a message (msgw, d, .) with d ≥ h − i.
Clearly, this holds for u0 = w. Assume that for a node ui
all neighbors forward a message (msgw, d, .) with d ≥ h− i.
Then the chance pk that ui receives the message after the
execution of a subschedule rkw is pk := 1− 1

e·f(h)·h (Lemma

2). The chance that a message is forwarded along a path of
length h (i.e. h consecutive times) due to rkw is (p)k

h. The

chance that this happens for at most f(h) paths is (pk)f(h)·h.
Once all nodes v ∈ S1 have the message, they must transmit
it to their neighbors (By definition every node u ∈ Nh(w)
is adjacent to a node v ∈ S1). Thus the total chance that a
message is forwarded to all nodes v ∈ S1 and they transmit
it to their neighbors if a single subschedule rkw is executed
is (pk)f(h)·(h+1) = (1 − 1

e2·f(h)·h )f(h)·(h+1) ≥ 1
2
. Since a

node having received a message starts the execution after its
neighbors have completed all subschedules, we get that the
failure probability after having executed log 1

ε
subschedules

is 1
2

log 1
ε = ε

7. ANALYSIS ALGO. FASTCOLORING

7.1 Synchronous wake-up, ∆ known
After the first three lemmas, we prove the correct-

ness and time complexity of all steps of the algo-
rithm one after the other. We assume that n >
e(log∗ n)c3−1

for some constant c3.11 By MBroad

we denote the set of all broadcasts of any message
msg ∈ {InMIS,MIS6, DoNotTryMIS,DoNotTransmit,
T ransmitAndTryMIS} performed during algorithm Fast-
Coloring.

The upcoming lemma is an extension of Lemma 1 and
shows that despite a delayed start or interruption of a
(broadcast) schedule due to messages DoNotTransmit and
TransmitAndTryMIS nodes still execute any broadcast in
a synchronized manner.

Lemma 4. Lemma 1 holds even if schedule rw got inter-
rupted or its start got delayed.

Proof. Due to Lemma 9 we can assume that,initially, all
nodes u, v ∈ V execute schedule rw synchronously. Assume
a node u received message (DoNotTransmit(s), ., yDoNotu )
at time tDoNotu and TransmitAndTryMIS(s) at time tCanu .
Say, x slots later, node v got (DoNotTransmit(z), ., yDoNotv )
and TransmitAndTryMIS(z) at time tCanv . Since yDoNotv

gives the current position in the schedule, which advanced
by x slots since (DoNotTransmit(w), ., yDoNotu ) has been
transmitted, we have yDoNotv = yDoNotu + x.

Node u starts rw at time (tDoNotu − yDoNotu ) + iu · |rw|,
such that iu is the smallest positive integer with (tDoNotu −
yDoNotu )+ iu · |rw| > tCanu . Node v restarts at time (tDoNotu +
x − yDoNotv ) + iv · |rw| = (tDoNotu − yDoNotu ) + iv · |rw| >
tCanv , such that for integer iv holds (tDoNotu − yDoNotu ) +
iv · |rw| > tCanv . Thus either iv equals iu and both nodes
start synchronously or in case they are distinct they execute
schedule rw sequentially.

The proof for a delayed start is analogous.

11The assumption can be dropped changing the overall time com-

plexity from O(∆ + log ∆ · log n) to O(∆ + log ∆ · log n · log∗ n).

The next two lemmas show that all nodes assigning colors
have distance at least 7. The first lemma proves the claim if
all nodes are allowed to transmit. The second lemma shows
that the claim holds even if some nodes are not permitted
to transmit.

Lemma 5. Assuming that no broadcast in MBroad fails
and all nodes are allowed to transmit, S6 and S1 are com-
puted (correctly) in time O(log ∆ · logn), then no nodes with
distance less than 7 will ever assign colors at the same time.

Proof. Assume that two nodes u, v with v ∈ N6(u) have
joined the MIS S6 while all nodes are allowed to transmit
(i.e. @DoNotTransmit ∈ WaitFor(s) for all s ∈ V ). As-
sume u has joined first. Node v must have joined S1 be-
fore the broadcast of InMIS(u) could have reached v. If
InMIS(u) reached v before it joined S1, it would have
stopped executing algorithm TryMIS upon reception of a
message InMIS and would have waited with the restart
for at least constant · log ∆ · logn slots. Since S6 is com-
puted in time O(log ∆ · logn) (Lemma 8) and a broadcast
is also in O(log ∆ · logn) (Lemma 3), the constant can be
chosen such that for any node u that joined S6 the message
DoNotTryMIS(u) will have reached all nodes within dis-
tance 8 of u before they (re)start algorithm TryMIS. Clearly,
after the reception of DoNotTryMIS(u) a node must wait
until it received a message TransmitAndTryMIS and thus
no node v ∈ N6(u) is able to join S6, while u assigns
colors. Thus node v must have joined S1 before it re-
ceived DoNotTryMIS(u) or InMIS(u). Since u broad-
casts InMIS(u) directly after it joined, node v must have
joined while the broadcast was still going on. Thus, node v
will receive the broadcast of InMIS(u) and add u to its set
IS6(v). But also u must receive InMIS(v) since u waits for
the duration of a broadcast InMIS after it completed the
broadcast InMIS(u). With the same argument node v will
receive IS6(u) and node u receives IS6(v) before it starts
the computation of S6. Therefore, we have that u ∈ IS6(v)
and v ∈ IS6(u) and by assumption S6 is computed cor-
rectly given a correct input to algorithm [16] and thus all
nodes have distance 7.

Lemma 6. Assuming that no broadcast in MBroad fails,
S6 and S1 are computed (correctly) in time O(log ∆ · logn),
then no nodes with distance less than 7 will ever assign colors
at the same time.

Proof. Due to Lemma 5 the statement is true, if
all nodes are allowed to transmit. For the proof we
require that a message DoNotTryMIS(v) is received
by some node u before (or concurrently) it received
DoNotTransmit(v). We refrain from the lengthy proof and
remark that the two separate broadcasts of DoNotTryMIS
and DoNotTransmit can be replaced by a single
Broadcast(v, {DoNotTransmit(v), DoNotTryMIS(v)}, 8,
1
n5 ). If a node has received ({DoNotTransmit(v),

DoNotTryMIS(v)}, 5, 1
n5 ), it forwards the message

without DoNotTransmit(v).
Consider a node v ∈ S1 (possibly also in S6) for which

some nodes in T ⊆ N6(v) did not receive a broadcast initi-
ated by v, i.e. the broadcast got interrupted due to nodes
that are not allowed to transmit. Let set W ⊆ S6 be the set
of nodes which caused the nodes not to transmit, i.e. each
node w ∈ W broadcast DoNotTransmit and some node
s ∈ N6(v) ∩N4(w) received the message.



For every node u ∈ T ⊆ N6(v) and every path from v to
u (of length at most 6) there must be a node s that received
a message DoNotTransmit(w) by a node w ∈ W . Other-
wise u would have received the broadcast by v. Let s be the
closest node to u. Since both s and u are on a path of length
at most 6, we have that the distance from s to u is at most
5. Since s is assumed to be the closest non-transmitting
node to u and node s will forward DoNotTryMIS(w) for
5 more hops (see above: DoNotTryMIS is forwarded 5
hops more than DoNotTransmit), node u must have re-
ceived DoNotTryMIS(w). Since a node u will not start
TryMIS for constant log ∆ · logn steps, node u will not ex-
ecute algorithm TryMIS before node v completed its broad-
castsDoNotTryMIS(v) andDoNotTransmit(v) (Same ar-
gument as in proof of Lemma 5).

As long as node u has not received DoNotTryMIS(v),
such a non-transmitting node s must exist and node
u will not execute TryMIS because of a message
DoNotTryMIS(w) with w ∈W .

The following lemma deals with the time complexity of al-
gorithm [14]. In the paper the running time of the algorithm
is O(log2 n) with probability 1 − 1

n
without an estimate of

∆. We briefly show how to increase the success probability
(using more time slots though) and how to make use of the
estimate ∆.

Lemma 7. Within time O(log ∆ · logn) MIS S1 is com-
puted with probability 1− 1

n5 .

Proof. The success probability can be increased from 1−
1
n

to 1− 1
n5 by using a factor 5 more time slots. Throughout

the proof in [14] bounds of the form ec·logn = 1
nc

are used.
Therefore a multiplying the occurring constants by a factor
of 5 yields the desired result.

With an estimate of ∆ the time complexity can be im-
proved to O(log ∆ · logn) by replacing n in pv by ∆ in
Algorithm 1 in [14], the bound in Line 3 of 4µδ log2 n by
4µδ log ∆ logn, logn by log ∆ in Line 15 and finally δ log2 n
by log ∆ logn in Line 16. 12

The next lemma shows that the set S6 is computed cor-
rectly and efficiently using algorithm [16].

Lemma 8. Assuming that no broadcast in MBroad fails,
algorithm [16] computes a correct S6 within time O(log ∆ ·
logn) with probability 1− 1

n4 .

Proof. Due to Lemma 6 the input for algorithm [16] is
correct, i.e. the set IS6(v) for a node v contains all other
nodes in S1 that might join S6 within distance 6 and is also
symmetric, i.e. if u ∈ IS6(v) then also v ∈ IS6(u).

By definition set S6 corresponds to a MIS in the graph
G′ = (V ′ = {u|u ∈ S}, E′ = {{u, v}|u, v ∈ V ′, v ∈ IS6(u)})
on which we run the deterministic algorithm MIS [16]. (The
graph is undirected since for v ∈ IS6(u) also u ∈ IS6(v).)
The proof of the correctness of algorithm [16] in the mes-
sage passing model, where no collisions occur, is given in
[16]. Thus we must show that algorithm [16] receives all re-
quired information despite of lost messages. To compute a
MIS on G′, node v ∈ S1 has to exchange messages with all

12We refrain from restating the full proof from [14], since the im-
provement of the original bound of O(log2 n) to O(log ∆ · log n)

is not of crucial importance.

neighbors u ∈ IS6(v) in G (by the definition of graph G′). In
case node v misses some information of some neighbor u in
G′, it halts the execution of algorithm [16] and asks u (via
a broadcast) to retransmit the data. Thus algorithm [16]
eventually receives all necessary information for the compu-
tation, progresses and finishes outputting a correct result.

The time complexity can be derived as follows. The graph
G′ has constant degree, i.e. the number of neighbors of a
node u ∈ S6 inG′ is bounded by the size of a MIS inG within
7 hops, which is f(7) (by definition of f). The graph G′ is
thus also of bounded-independence with f ′(h) ≤ f(7 · h).
Opposed to the message passing model, a node v cannot
exchange messages with its neighbors v in one round but
needs to use Algorithm Broadcast for it. Algorithm [16] pro-
gresses one step in its computation once every node v ∈ S1

performed a successful broadcast. The number of required
steps is bounded by O(f ′(f ′(2)+1) · log∗ n) = O(log∗ n) due
to the analysis in [16]. This implies that for a node v only a

node u ∈ NO(log∗ n)(v) ∩ S1 can influence v’s computation,
i.e. if such a node u fails to broadcast a message, node v
might be delayed. The number of these neighbors is bounded
by |NO(log∗ n)(v) ∩ S1| = f ′(O(log∗ n)) ≤ c2 · (log∗ n)c1 =
(log∗ n)c3 with constants c1, c2, c3.

Due to Theorem 3 the chance that Algorithm Broadcast
with ε = 1√

2
transmits a message originated at v to all nodes

u ∈ IS6(v) within time O(log ∆)is at least 1√
2
. If a broad-

cast message was not delivered to some node, this node asks
for a retransmission. The chance that both the request
and the retransmission succeed is 1

2
. Let fi be the num-

ber of requests and retransmissions for v until all (log∗ n)c3

nodes that influence the computation of v have performed
one successful broadcast, i.e. algorithm [16] can execute
one of the O(log∗ n) = c0 · log∗ n (for some constant c0)
steps. The chance that for one node out of (log∗ n)c3 the
request and retransmission broadcast fail fi times in a row
is 1 − (1 − 1

2fi
)(log∗ n)c1 , in particular if fi is larger than

g := 2·logn
log∗ n the chance becomes 1− (1− 1

2fi
)(log∗ n)c3 ≤ 1

2
fi
2

for g > (log∗ n)c3 (i.e. n > e(log∗ n)c3−1
). We used

(1 − 1

2
2 logn
log∗ n

)(log∗ n)c3 = (1 − 1

n
2

log∗ n
)(log∗ n)c3 ≤ 1

n
1

log∗ n
.

The probability that more than c4 · logn (with constant c4)

broadcasts are needed (i.e.
∑c0·log∗ n
i=0 fi > c4 · logn) can be

bounded as follows: The total time until algorithm [16] com-
puted MIS Si is estimated from above as follows:

c0·log∗ n∑
i=0

fi ≤
c0·log∗ n∑
i=0,fi≤g

fi +

c0·log∗ n∑
i=0,fi>g

fi

≤
c0·log∗ n∑
i=0

g +

c0·log∗ n∑
i=0,fi>g

fi ≤ O(logn) +

c0·log∗ n∑
i=0,fi>g

fi

Assume we fix a set efixk of values ti > g with 0 ≤ i ≤
c0 · log∗ n arbitrarily, such that the sum of all ti equals

k (
∑c0·log∗ n
i=0,ti>g

ti = k). The chance that an event efixk oc-
curs, i.e. the total delay is k and the number of needed
requests/retransmissions fi are as given by the set efixk (i.e.

fi = ti) is prob(event efixk occurs) =
∏c0·log∗ n
i=0 prob(ti =

fi) ≤
∏c0·log∗ n
i=0

1

2
fi
2

= 1

2
∑c0·log∗ n
i=0

fi
2

= 1

2
k
2

. The number of



events efixk , which add up to a fixed k, can be bounded by

(c0 · log∗ n)! ·
k∑

i0=0

k−i0∑
i1=0

· · ·
k−

∑j−1
s=0 is∑

ij=0

· · ·
k−

∑c0·log
∗ n−1

s=0 is∑
ic0·log∗ n=0

1

= kc0·log∗ n

Therefore the chance that all fail becomes (1− 1

2
k
2

)k
c0·log

∗ n
.

For k ≥ 32 · logn we get (1− 1

2
k
2

)k
c0·log

∗ n
≥ (1− 1

2
k
4

). The

chance none of all possible efixk for any k ≥ 32 · logn occurs
is:
∞∏

k=32·logn

(1− 1

2
k
4

) = 2

∑∞
k=32·logn log(1− 1

2
k
4

)

≥ 2

∑∞
k=32·logn −

1

2
k
4

= 2
− 2·2−

32·logn
4

2−2
3
4 ≥ 2

− 1
n7 ≥ 1− 1

n7

where we used log(1− x) ≥ −x for 0 ≤ x ≤ 0.1.
Thus the chance to have more than O(logn) failures is less

than 1
n7 . The time to perform O(logn) broadcasts with fail-

ure probability 1
2

is O(log ∆ · logn) for n > e(log∗ n)c3−1
.

The next three lemmas deal mainly with algorithm Get-
Color. Lemma 9 guarantees a synchronous start of GetColor
for a node v ∈ S6 and its uncolored neighbors u ∈ N(v).
Lemma 10 proves the correctness of the coloring and Lemma
11 gives a bound on the time complexity of algorithm Get-
Color.

Lemma 9. Given that no broadcast in MBroad fails, a
node v ∈ S6 and all uncolored nodes u ∈ N(v) start and
execute algorithm GetColor concurrently and no neighbor
u ∈ N3(v) \N(v) transmits.

Proof. Due to Lemma 6 and 8 no nodes within distance
6 will assign colors concurrently. Since a node granting
colors broadcasts DoNotTransmit up to 4 hops right be-
fore entering GetColor, for a node v ∈ S6 executing Get-
Color will hold that all nodes N3(v) have received message
DoNotTransmit(v) and will not transmit after forwarding
the message (except for uncolored nodes u ∈ N(v), which
must transmit to get colored). In particular no neighbor
u ∈ N2(v) will transmit, when v transmits GrantingColors
and therefore all uncolored nodes u ∈ N(v) call algorithm
GetColor concurrently.

Lemma 10. Given that no broadcast in MBroad fails, all
uncolored nodes u ∈ N(v) ∪ v with v ∈ S6 will obtain a
(correct) color on termination of algorithm GetColor.

Proof. Due to Lemma 9 all uncolored nodes u ∈ N(v)∪v
execute algorithm GetColor concurrently and no node w ∈
N3(v) \ (N(v) ∪ v) transmits while v executes GetColor.
A color is assigned using three time slots and due to the
synchronous start no collision occurs in slots 2 and 3 of the
schedule of algorithm GetColor.

No node picks a color already chosen by a neighbor. A
node v ∈ S6 chooses color 0. Since no node u /∈ S6 chooses
color 0 and node v colors all its uncolored neighbors, no
neighbor of node v will attempt to join S6 after it has exe-
cuted algorithm GetColor. Thus no node u ∈ N(v) will get

color 0. Consider a node u ∈ V \ S6. Whenever a neigh-
bor w ∈ N(u) chooses some color c, there must be a node
v ∈ S6 ∩N2(u) in its 2 hop neighborhood. Since node v has
transmitted DoNotTransmit(v) up to at least 3 hops before
starting to assign colors and only one node w ∈ N(v) trans-
mits in the third slot of algorithm GetColor, node u ∈ N2(v)
will receive any message Taken(c) by a neighbor w ∈ N(u)
and store it in its TakenColors set. Therefore node u won’t
choose an already chosen color.

Since a node u has a neighbor v ∈ S6 (which has color 0),
once it can choose a color, we have that |N(u) \ v| ≤ ∆− 1.
Thus the number of required colors for its neighbors is at
most ∆ and one color remains for u.

Lemma 11. Given that no broadcast in MBroad fails, a
node v ∈ S6 and all uncolored nodes u ∈ T ⊆ N(v) ter-
minate algorithm GetColor within O(∆ + log ∆ · logn) time
slots with probability 1− 1

n4 .

Proof. If a node v ∈ S6 receives a request by a node
u ∈ N(v), it can transmit Grant(u) without collision and
node u can transmit a message Taken without collision due
to Lemma 10. Thus some neighbor u ∈ N(v) gets colored,
if it transmits a request without collision.

For a sequence of ts := 384 · e2 · logn time slots, either
at least 8 · logn nodes got colored (i.e. Grant and Taken
messages were transmitted) or the transmission probabil-
ity 1

ñ(v)
is doubled by each uncolored neighbor u ∈ T .

Assume that (directly) after a doubling of ñ(v) we have
that n(v) ≤ ñ(v) ≤ 2 · n(v). The chance that the trans-
mission probability of an uncolored node gets doubled if
n(v)

2
≤ ñ(v) can be computed as follows. The probability

that a node u ∈ T transmits a request without collision is
1

ñ(v)
· n(v) · (1 − 1

ñ(v)
)n(v)−1 ≥ 1

2
· 1

e2
= 1

2·e2 . Out of the ts

time slots, we use one third (i.e. 128 · e2 logn) for transmit-
ting requests and thus expect at least 64 · logn transmis-
sions of Request messages without collision. Using a Cher-
noff bound, the chance that there are less than 32 · logn
(successful) transmissions is: p(less than 32 · logn Requests

transmitted) ≤ e
1
8 ·64·logn = 1

n8 . Therefore, either a con-
stant fraction of the last ts time slots were used for successful
transmissions or half of the remaining nodes got colored be-
tween two doublings of the transmission probability. Since
ñ(v) ≤ ∆ after the probability is doubled at most log ∆ + 1
times, all nodes have been colored with probability 1− 1

n4 .
If no sequence fails (i.e. ñ(v) is halved despite ñ(v) ≤ n(v)),
then for every sequence of ts slots holds: Either the trans-
mission probability is multiplied by two or 32 · logn nodes
get colored. The number of successful sequences to color all
nodes is given by O(∆ + log ∆ · logn) ∈ O(n). The chance
that all sequences succeed is at least (1 − 1

n8 )c·n ≥ 1 − 1
n4

for some constant c.
The chance that the leader v ∈ S6 exits the algorithm be-

fore having assigned colors to all neighbors, can be computed
as follows. Due to the algorithm, the leader only exists if it
has not received a request for 384 · e2 · logn · (log ∆ + 1) =
ts · (log ∆ + 1) time slots. Within the last ts time slots
either there was at least one transmission without colli-
sion of a message Request or the transmission probability
got doubled with probability at least 1 − 1

n8 (see previous
paragraph). The number of sequences as well as the over-
all success probability become 1 − 1

n4 . Therefore the time
complexity becomes O(∆ + log ∆ · logn) with probability
(1− 1

n4 )2.



Theorem 12. Within time O(∆+log ∆·logn) every node
is colored with probability 1− 1

n3 using ∆ + 1 colors.

Proof. Given that no broadcast in MBroad fails, due to
Lemma 7 MIS S1 is computed within time O(log ∆ · logn).
Thanks to Lemma 8 and 6, algorithm FastColoring correctly
computes a set S6 within time O(log ∆ · logn) with proba-
bility 1 − 1

n4 . A node v ∈ S6 correctly colors its neighbors

within time O(∆ + log ∆ · logn) with probability 1− 1
n4 due

to Lemma 11.
An uncolored node v ∈ V must have a neighbor within

15 hops that is coloring all its uncolored neighbors (i.e.
executing algorithm GetColor) or will do so within time
O(log ∆·logn). If node v is not executing algorithm TryMIS,
then in case it is waiting due to a node v ∈ S6 having trans-
mitted message DoNotTryMIS the statement holds. In
case it is waiting due to message InMIS, i.e. due to a node
u ∈ S∩N7(v) then some neighbor w ∈ N7(u) ⊆ N15(v) will
join S6 within O(∆ + log ∆ · logn).

If a node assigns colors to its neighbors, all uncolored
neighbors get colored (see Lemma 10). Therefore two nodes
u, v ∈ V that assign colors to all their neighbors are inde-
pendent. Within distance 16 any node has at most f(16) in-
dependent nodes (by definition of function f). The time un-
til a node in N16(v) calls algorithm GetColor and finishes is
O(∆+log ∆·logn), thus after time f(16)·O(∆+log ∆·logn)
any node must have a neighbor that assigns colors.

Next we bound the number of necessary broadcasts, i.e.
|Mbroad|. A node can only issue a broadcast, once it executes
TryMIS. Per execution of algorithm TryMIS it issues at most
5 broadcasts. If a node executes algorithm TryMIS then
using the same reasoning as above a node will get colored
after at most f(16) + 1 calls to TryMIS. Therefore overall
at most 5 · (f(16) + 1) · n successful broadcasts are needed.
The chance that no broadcast and no execution of algorithm
MIS [14] fails is (1− 1

n5 )6·(f(16)+1)·n. Due to Theorem 3 the
time for one broadcast is O(log ∆ · logn).

The chance that all executions of algorithm GetColor work
in time O(∆ + log ∆ · logn) (see Lemma 11) is given by
(1 − 1

n5 )n. If a node calls algorithm [16] to compute S6

then after the calculation some neighbor (or itself) within
distance 7 will color all its neighbors. Thus in total there
are at most f(7) · n calls of algorithm [16]. The chance that
all succeed in time O(log ∆ · logn) (see Lemma 8) is given

by (1− 1
n5 )f(7)·n.

The overall probability that all algorithms succeed in the
given time and no broadcasts fails is given by (1− 1

n4 )c4·n ≥
1 − 1

n3 with constant c4. The overall time is bounded by
O(∆ + log ∆ · logn).

7.2 Distance-d coloring
Most of the lemmas and proofs in Section 7.1 hold with

minor modifications. The fact that O(∆) colors are suf-
ficient, can be seen as follows: All nodes within constant
distance d of a node v can be covered by an independent
set S1

d of constant size f(d) (by Definition of f). Thus
any node u ∈ Nd(v) has at least one neighbor in S1

d , thus
the number of nodes |Nd(v)| can be bounded as follows:
|Nd(v)| ≤

∑
u∈S1

d
d(u) ≤ f(d) ·∆ ∈ O(∆).
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