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Abstract. Assume a set of distributed nodes which are equipped with
a sensor device. When nodes sense an event, they want to know (the
size of) the connected component consisting of nodes which have also
sensed the event, in order to raise—if necessary—a disaster alarm. This
paper presents distributed algorithms for this problem. Concretely, our
algorithms aim at minimizing both the response time as well as the
message complexity.

1 Introduction

Governments and organizations around the world provide billions of dollars each
year in aid to regions impacted by disasters such as tornadoes, flooding, vol-
canos, earthquakes, bush-fires, etc. In order to recognize disasters early and in
order to limit the damage, endangered environments are often monitored by
a large number of distributed sensor devices. The idea is that when these de-
vices sense an event, an alarm should be raised, e.g., to inform helpers in the
local community. Unfortunately, in practice, the sensor devices may sometimes
wrongfully sense events, and of course false alarms can be quite costly as well.
Therefore, nodes sensing an event should make sure that there are other nodes
in their vicinity which have sensed the same event. Clearly, as sensor nodes
may only be equipped with a limited energy-source (e.g., a small battery), the
number of messages transmitted by a distributed alarming protocol should be
minimized. As a second objective, the algorithm should have a small latency: If
there is a disaster, it is of prime importance that the alarm is raised as soon as
possible.

This paper investigates protocols for distributed disaster detection and alarm-
ing. We speak of a disaster when more than a given number of nodes is involved,
and assume that the more nodes sensing an event the more severe the potential
damage. For example, in a sensor network application, an alarm should be raised
when more than a given number of sensor nodes detects a certain event, and the
alarm message should include the magnitude of the disaster.

Apart from wireless systems, the disclosure of disasters is important in wired
systems as well, for instance, to respond fast to worm propagations through the
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Internet and trigger appropriate defense mechanisms when many machines show
signs of infection. Disasters with a large impact do not necessarily have to be
globally distributed, but are often local in nature. For example, a bush-fire, or
the emission of toxic chemicals, or even a computer virus, may mostly impact a
certain region of the world.

In this paper we tackle the disclosure of such disasters from a viewpoint of
distributed computing. Our goal is to minimize the communication overhead for
computing the disaster’s dimension, and the time until detection. Concretely, we
consider a network G = (V, E) of n sensor nodes. There may be several events
going on simultaneously in the network. However, although our algorithms allow
to detect them individually, for ease of presentation we will assume here that
there is just one event which affects an arbitrary set of nodes V ′ ⊆ V .

When a node senses an event (event-node), it seeks to find out how many of the
nodes in its vicinity sensed it as well; more concretely: a node aims at aggregating
information about the connected component of event-nodes it is in, e.g., at com-
puting the component’s size. If the component’s size exceeds a certain threshold,
at least one node of the component should raise a disaster alarm and report the
component’s magnitude. In this paper, we assess the quality of a distributed al-
gorithm using the classic quality measures time and message complexity, that is,
the running time of the algorithm, and the total number of messages transmitted.

There are twomajor algorithmic challenges.The first challengewe call theneigh-
borhood problem: After a node has sensed an event, it has no clue which of its neigh-
bors (if any) are also event-nodes. Distributed algorithms where event-nodes sim-
ply ask all their neighbors already leads to a costly solution: If G is the star graph
Sn and the star’s center node is the only node in V ′, the message complexity is Θ(n)
while the size of the disaster component is one. Observe that the simple trick to let
nodes only ask the neighbors of higher degree does not work either: While it would
clearly be a solution for the star graph, it already fails for dense graphs such as the
clique graph Kn. Indeed, it may at first sight seem that Θ(n) is a lower bound for
any algorithm for Kn, as an event-node has no information about its neighbors!
We will show, however, that this (naive) intuition is incorrect.

The second challenge concerns the coordination of the nodes during the ex-
ploration of the component. In a distributed algorithm where all nodes start
exploring the component independently at the same time, a lot of redundant
information is collected, resulting in a too high message complexity. As a lower
bound, we know that the time required to compute the disaster component’s size
is at least linear in the component’s diameter d, and the number of messages
needed by any distributed algorithm is linear in the component’s size s. We are
hence striving for distributed algorithms which are output-sensitive and thus
competitive to these lower bounds.

2 Model

We consider arbitrary undirected graphs G = (V, E) where the nodes V have
unique identifiers. We assume that an arbitrary subset of nodes V ′ ⊆ V senses
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an event. The nodes V ′ are called event-nodes, and the nodes V \ V ′ are called
non-event nodes. We are interested in the subgraph induced by the nodes in V ′,
that is, in the subgraph H = (V ′, E′) with E′ := {{u, v}|u, v ∈ V ′, {u, v} ∈ E}.
The subgraph H consists of one or more connected components Ci. The total
number of nodes in component Ci will be referred to by size(Ci). When the
component is clear from the context, we will simply use s for size(Ci). Note
that in the following, for ease of presentation, we will often assume that there is
only one type of event. However, all our algorithms can also handle concurrent
events of different types.

After an event has hit a subset of nodes V ′, at least one node in each event
component Ci is required to determine size(Ci). This paper studies distributed
algorithms which try to minimize the message and time complexities. Thereby,
we allow the algorithm designer to preprocess the graph, e.g., to decompose
the network into clusters with desired properties, i.e., to pre-compute network
decompositions [12] (or, more specifically, sparse neighborhood-covers) of the
graph. Note, however, that in this preprocessing phase, it is not clear yet which
nodes will be affected by an event, i.e., V ′ is unknown. Also note that this
preprocessing is done offline and its resulting structure can be reused for all
future events.

During the runtime phase, an arbitrary number of events will hit the nodes,
and each node v ∈ V ′ first has to figure out which of its neighbors also belong
to V ′ (neighborhood problem). In Section 3, we will allow non-event nodes to
participate in the distributed algorithm as well. We will refer to this model as
the on-duty model. It is suited for larger sensor nodes which are attached to
a constant (infinite) energy supply. For smaller (wireless) nodes which rely on
a limited battery, this model may not be appropriate: Typically, in order to
save energy, such nodes are in a parsimonious sleeping mode. Only an event will
trigger these nodes to wake up and participate in the distributed computation.
We will refer to the latter model as the off-duty model. It will be discussed quickly
in Section 4.

This paper assumes a synchronous environment in the sense that events are
sensed by all nodes simultaneously and that there is an upper bound (known by
all nodes) on the time needed to transmit a message between two nodes. The
algorithms are presented in terms of communication rounds.

3 The On-Duty Model

In this section, the model is investigated where the non-event nodes are also
allowed to participate in the distributed computations during runtime.

3.1 A Simple Solution for the Tree

Before discussing the general problem, we quickly review a simple special graph
to acquaint the reader with our problem. Concretely, we look at undirected trees.

Consider an event component Ci of (unknown) size in a tree. If we let all s
nodes start exploring the component, the message complexity grows quickly and
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the overhead is large. In contrast, the following ALGTREE algorithm helps to
organize the nodes in a simple preprocessing phase, such that component detec-
tion at runtime is efficient. Concretely, in the preprocessing phase, ALGTREE

makes the entire tree graph directed and rooted, i.e., each node (except the root)
is assigned a parent node. See Figure 1 (left).

During runtime, when a node senses an event, it will immediately notify its
parent using a dummy packet. This is necessary in order to ensure fast termi-
nation. The computation of the component’s size then works by an aggregation
algorithm on the tree: Leaf nodes—nodes which have not received a notification
from their children—inform their parents that they are the only event-node in
the corresponding subtrees. Inner nodes wait until the sizes of all their children’s
subtrees are known, and then propagate this result to their parent node. After
O(d) many rounds, the root of the component knows the exact value.

Obviously, Algorithm ALGTREE is asymptotically optimal for trees both in
terms of time and message complexity: The time and message complexities for
exploring an event component are O(d) and O(s), respectively, where d is the
diameter of the (event) component, and s is the component’s size.

3.2 The Neighborhood Problem

The neighborhood problem is a first key challenge in distributed disaster disclo-
sure. While for special graphs, e.g., trees, the solution can be straight-forward,
the situation for general graphs is less clear. In this section, we present a network
decomposition approach [1] for the neighborhood problem.

Broadly speaking, the idea of our decomposition is to divide the nodes into
different, overlapping sets or clusters with corresponding cluster heads (e.g., the
node with the largest ID in the cluster). These cluster heads provide a local
coordination point, where nodes can learn which of their neighbors sensed the
event as well.

Before defining our decomposition more formally, we need to introduce the fol-
lowing definition. Two different types of diameters of node sets are distinguished:
the weak and the strong diameters.

Definition 1 (Weak and Strong Diameters). Given a set S of nodes S ⊆ V
of a graph G = (V, E), we call the maximum length of a path between any two
nodes v, u ∈ S the weak diameter diam(S) := maxu,v∈S(distG(u, v)), if the path
is allowed to include nodes from the entire node set V . On the other hand, for the
strong diameter Diam(S) of a set S, Diam(S) := maxu,v∈S(distS(u, v)), paths
are allowed to use nodes from S only. It thus holds that diam(S) ≤ Diam(S).
Henceforth, when the set or cluster S is clear from the context, we will just write
d and D for diam(S) and Diam(S), respectively.

We can now define the notion of a (k,t)-neighborhood cover—a special form of a
network decomposition [12]. In such a cover, each node belongs to at least one,
but at most to k sets or clusters. The overlap of the clusters guarantees that
there is at least one cluster containing the entire t-neighborhood of a node.
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Definition 2 (Sparse (k,t)-neighborhood Cover). [1] A (k,t)-neighborhood
cover is a collection of sets (or clusters) of nodes S1, ..., Sr with the following
properties: (1) ∀ v, ∃ i such that Nt(v) ⊆ Si, where Nt(v) = {u|distG(u, v) ≤ t},
and (2) ∀i, Diam(Si) ≤ O(kt).

A (k,t)-neighborhood cover is said to be sparse if each node is in at most
kn1/k sets. Finally, we will refer to the node with the largest ID in a given set
S as the cluster head of S. In the following, we will sometimes denote a sparse
(k,t)-neighborhood cover by (k,t)-NC.

We will propose a solution to the neighborhood problem which—in the pre-
processing phase—decomposes the network with such a neighborhood cover.
Thereby, we will make use of the following result.

Theorem 1. [1] Given a graph G = (V, E), |V | = n, and integers k, t ≥ 1, there
is a deterministic (and distributed) algorithm which constructs a t-neighborhood
cover in G where each node is in at most O(kn1/k) clusters and the maximum
cluster diameter is O(kt).

The idea for solving the neighborhood problem is to compute a (log n,1)-NC
in the preprocessing phase. At runtime, in the first round, each event-node v
sends a message to all cluster heads of the clusters it belongs to. The cluster
head of one of those clusters will then reply in the second round with the set
of v’s neighbors which are also event-nodes. This algorithm has the following
properties.

Theorem 2. The (log n,1)-NC algorithm solves the neighborhood problem for
any component in time O(log n) and requires O(s log n) many messages, where
n is the total number of nodes in the network, and s is the event component’s
size.

Proof. The time complexity is due to the fact that messages have to be routed
to the cluster heads and back, and that—according to Theorem 1—the diameter
of clusters in the (log n,1)-NC is bounded by O(kt) = O(log n).

As for the message complexity, observe that each of the s nodes in the compo-
nent sends a message to at most O(kn1/k) = O(log n ·n1/ log n) = O(log n) cluster
heads (Theorem 1). The cluster head’s replies add at most a constant factor to
the complexity, and hence we have O(s log n) message transmissions. �

3.3 Hierarchical Network Decomposition

In this section we propose the distributed algorithm ALGDC for exploring the
event components. ALGDC ’s running time is linear in the diameter of the com-
ponent, and the message complexity is linear in the component’s size (both up to
polylogarithmic factors). Obviously, this is asymptotically optimal up to poly-
logarithmic factors, since the exploration of a graph requires at least d time and
requires s messages.

ALGDC makes again use of the sparse (k,t)-NC of Definition 2. However,
instead of using just one decomposition as in the neighborhood problem, we
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build a hierarchical structure for exponentially increasing neighborhood sizes,
i.e., for t = 1, 2, 4, 8, etc.

The detailed preprocessing and runtime phases are now described in turn (see
also Algorithm 1).

ALGDC Preprocessing Phase. In the preprocessing phase, ALGDC con-
structs a hierarchy of sparse (log n,t)-NCs (Definition 2) for exponentially in-
creasing neighborhood sizes, that is, the decompositions D0 := (log n, 1)-NC,
D1 := (log n, 2)-NC, D2 := (log n, 4)-NC, D3 := (log n, 8)-NC, ..., Di :=
(log n, 2i)-NC, ..., Dlog Δ := (log n, Δ)-NC, are constructed, where Δ is the di-
ameter of the graph G.1 Moreover, each node computes the shortest paths to its
cluster heads (e.g., using Dijkstra’s single-source shortest path algorithm [4]).
These paths are allowed to include nodes outside the clusters.

ALGDC Runtime Phase. At runtime, initially, all event-nodes are in the
active state. The event-nodes then contact their cluster heads to learn about
their neighbors which are also event-nodes.

ALGDC then starts with decomposition D0, switches to the level D1 after-
wards, then to level D2, and so on, until level Dlog d. On a general level i, ALGDC

does the following: All event-nodes which are still active inform their cluster
heads in the Di decomposition about the parts of their component which they
already know. Each cluster head h of the clusters C in Di then looks at each
event component it hears about and performs the checks described next: If a
component K is completely contained in C, h computes K’s size and informs
all nodes in K about s. Thereafter, all corresponding nodes are told to change
to the passive state. If, on the other hand, the component K hits the boundary
of C, h determines the node vmax with the largest ID it sees in the component,
and tests whether vmax’s entire 2i-neighborhood is contained in C. If this is the
case, h tells vmax to remain active and provides it with all the event-nodes in
vmax’s component which h knows. If not, vmax does not need to be notified by
this cluster head. All other nodes are told to become passive. Figure 1 (right)
depicts the situation. This scheme is applied recursively for increasingly larger
neighborhood covers.

Theorem 3. ALGDC always terminates with the correct solution.

Proof. In the (log n,d)-NC (the weak diameter is used as clusters may include
nodes outside the disaster component), there are definitively no active event-
nodes left, and ALGDC terminates. It remains to prove that there will always
be at least one active event-node in each component K until a cluster contains the
component completely. To see this, consider the (globally) largest ID node v in
K. According to Theorem 1, there is always a cluster which completely contains
v’s neighborhood. This cluster will instruct v to continue, unless K is covered
completely. �

1 Note that log Δ does not have to be integer. However, in this paper, we simplify the
description by omitting corresponding �·� and �·� operations.
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Fig. 1. Left: In the preprocessing phase, ALGTREE makes the tree rooted and directed.
Information about the event component (shaded) can then efficiently be aggregated at
runtime. Right: Visualization for ALGDC : Components K1 and K3 have nodes which
are outside C, while K2 is completely contained in C. The cluster head of C informs
all nodes in K2 about the component’s size and deactivates them. In K1, the N2i -
neighborhood of the maximal node is completely contained, so v1

max is told to remain
active. In K3, the cluster head instructs all nodes in K3 ∩ C to deactivate, as v3

max is
too close to the boundary.

Theorem 4. ALGDC has a total running time of O(d log n), and requires at
most O(s log d log n) many messages, where n is the size of the network, s is the
number of nodes in the component and d is the component’s weak diameter.

Proof. Time complexity. The execution of ALGDC proceeds through the hier-
archy levels up to level d for exponentially increasing decompositions. For each
level, the active event-nodes are involved in a constant number of message ex-
changes with their cluster heads. On level i, according to Theorem 1, the cluster
diameter is O(2i log n), and hence the time required is O(2i log n) as well. As
∑log d

i=0 2i = O(d), we have a total execution time of O(d · log n).
Message complexity. Consider again the O(log d) many phases through which

ALGDC proceeds on the decomposition hierarchy. First, we show that the num-
ber of active nodes is at least cut in half after each phase. To see this, recall
that according to ALGDC , a node v with maximal identifier can only continue
if it its 2i-neighborhood is completely contained in a cluster, while the entire
component v is in is not yet seen by any cluster head (e.g., component K1 in
Figure 1). This implies that for each node which remains active, at least 2i nodes
have to be passive. Consequently, the maximal number of active nodes is divided
by two after each phase.

Now observe that in the first phase, all s nodes are active, sending O(s log n)
many messages to their cluster heads. The cluster head’s replies are asymptoti-
cally of the same order. In the second phase, the diameters of the clusters have
doubled, but the number of active nodes is divided by two. Thus, again O(s log n)
many messages are sent by ALGDC . Generally, in phase i, the cluster’s diameter
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Algorithm 1 ALGDC

1: (* Global Preprocessing *)
2: for i from 0 to log d:
3: Di := (log n, 2i)-NC;
4: (* Runtime *)
5: i := 1;
6: ∀v ∈ V ′: v.active := true;
7: while (∃v : v.active = true)
8: ∀ active v: notify v’s cluster heads in Di;
9: for all clusters C

10: let K := {K1, ..., Kr} be C’s components;
11: ∀K ∈ K:
12: if (K ⊆ C): output(size(K));
13: else
14: vmax := max{i|i ∈ (K ∩ C)};
15: ∀v ∈ K: v.active := false;
16: if (N2i(vmax) ⊆ C)
17: vmax.active := true;
18: i + +;

is O(2i log n), but only a fraction of O(s/2i) many nodes are active. Therefore,
the message complexity is bounded by O(log d · s log n). �

While ALGDC is asymptotically optimal up to polylogarithmic factors, the main
term contains a factor which is a function of n. The subsequent section presents
a different approach which aims at being more competitive in this respect. More-
over, ALGDC needs large messages up to the size of the component; the message
sizes of the algorithm of Section 3.4 are logarithmic in the number of nodes only.

3.4 Forests and Pointer Jumping

This section presents an alternative distributed algorithm ALGFOREST for dis-
aster detection. It is based on the merging forests paradigm (e.g., [8,10]), and
makes use of pointer jumping techniques [2] in order to improve performance—
both techniques are known, e.g., from union-find data structures [4].

ALGF OREST Preprocessing Phase. ALGFOREST solves the neighborhood
problem by a sparse (log n,1)-NC. No additional decompositions are required for
ALGFOREST .

ALGF OREST Runtime Phase. First, event-nodes perform a lookup operation
at the cluster heads of the (log n, 1)-NC in order to find out their neighbors which
are also event-nodes. Then, each node v selects the node with the largest ID
among its neighbors to become its parent ; in case this ID is smaller than the ID
of v itself, no parent is chosen. As cycles are impossible in parental relationships,
the relationships define a forest among the event-nodes.

The idea of ALGFOREST is to merge these trees efficiently to form one single
tree on which all information about the component can be aggregated. However,
before merging the trees, each tree is transformed to a logical star graph, that is,
each node in the tree will learn about the tree’s root (i.e., the star’s center). This
is achieved by the following randomized pointer jumping technique (cf. Algorithm
2): First, each node in the tree tosses a fair coin resulting in a bit 0 or 1 with
probability 1/2 each. Parents then inform their children about their bit. Let IS
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be the set of nodes consisting of all children having a 0-bit and whose parent
has a 1-bit. The set IS of nodes forms a random independent set on the tree.
The nodes in the IS will then establish a (logical) link to their parent’s parent.
This procedure is repeated until all nodes in the tree have a logical link to the
root. Termination follows immediately from the fact that nodes arriving at the
root will stop.

By this pointer jumping technique, trees become rooted stars. From now on,
the roots then become the coordinators of the tree: First, they perform a con-
verge cast operation [12] to learn the size of the tree. Then a root informs its
children about its ID and the tree size. Subsequently, the root tells its children
to determine in which trees their neighboring nodes are by performing a lookup
in the (log n, 1)-NC. Information about the sizes and root IDs of the neighboring
trees is then aggregated to the root. A tree seeks to join the largest neighboring
tree, where “large” is defined with respect to the number of nodes in the tree,
and in case of a tie, with respect to the roots’ IDs. If a tree has no larger tree in
its neighborhood, it will not send any join requests.

Basically, the rooted stars then become the virtual nodes of the new graph,
where the corresponding roots are their coordinators, and the pointer jumping
and merging techniques are applied recursively (cf. Algorithm 3; for simplicity,
although the algorithm is of course distributed as described in the text, it is
here presented in global pseudo-code). The algorithm terminates when stars do
not have any neighboring stars anymore. Moreover, note that the phases of the
trees need not to be synchronized, that is, some trees can be performing pointer
jumping operations while other trees are in a converge cast phase.

Algorithm 2 describes the pointer jumping sub-routine for a tree T .

Algorithm 2 ALGPJ

1: while (∃v s.t. v.parent �= root)
2: ∀v ∈ T :
3: with prob = 1/2 v.bit := 0, else v.bit := 1;
4: ∀v ∈ T :
5: if (v.bit = 0 ∧ v.parent.bit = 1)
6: IS := IS ∪ {v};
7: ∀v ∈ IS:
8: v.parent = v.parent.parent;

Algorithm 3 ALGFOREST

1: ∀v ∈ V : define v.parent;
2: let T := {T1, ..., Tf} be set of resulting trees;
3: while (|T | > 1) do
4: ∀T ∈ T : ALGPJ(T );
5: ∀T ∈ T :
6: Tm := max{X|X ∈ T , adjacent(X, T )};
7: if (T < Tm): merge T � Tm;
8: update T : set of resulting trees;

Lemma 1. Let T be a tree, let h be its height, s its size, and d the weak diameter
of the underlying graph. Applying ALGPJ to T requires expected time O(d log h),
and O(sd log h) many messages on average.

Proof. Time Complexity. Consider an arbitrary node v, and consider its path
to the root. In each round, the length of this path is reduced by a factor 3/4 in
expectation. From this it follows that O(log h) many iterations are enough to find
the root. Moreover, as the virtual links span at most d hops in the underlying
graph, the claim follows.

Message Complexity. The message complexity follows immediately from the
time complexity, as there are at most O(d · log h) many rounds and at most s
nodes. �
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From the description of ALGFOREST it follows that there will never be cycles
in the pointer structure, and that all trees of a given component will eventually
merge. In the following, the algorithm’s performance is analyzed in detail.

Theorem 5. ALGFOREST has an expected total running time of O(d log s +
log s log n), and requires at most O(s log s(d+log n)) many messages on average,
where n is the network’s size, s is the component’s size, and d is the component’s
weak diameter.

Proof. Time Complexity. The time to solve the neighborhood problem using
the network decomposition is of course again O(log n).

By the description of ALGFOREST it follows that a tree always joins a neigh-
boring tree which is of the same size or larger. By a simple induction argument it
can be seen that in phase i, the size of the minimal tree is at least 2i: For i = 0, all
trees have at least one node, and the claim follows. Now, by the induction hypoth-
esis, assume that in phase i, indeed all trees are of size at least 2i. Clearly, each tree
will either join a neighbor, or will be joined by at least one neighbor, or both. In
both cases, the new tree’s size at least doubles. Consequently, ALGFOREST will
form a single tree after at most log s many such phases. In each phase, the tree
has to be converted to a star by ALGPJ , which—according to Lemma 1—requires
expected time O(d · log s). However, due to the exponentially growing tree sizes,
a geometrically declining number of roots performing the pointer jumping oper-
ations exists, and hence the overall costs are O(d · log s) as well. There are two
more operations to be taken into account: First, in each phase, a constant num-
ber of aggregations or converge cast operations have to be performed in the tree,
requiring time at most O(d) per phase. This does not increase the execution time
asymptotically. Second, according to ALGFOREST , in each phase the root asks
its children about the trees of their neighbors. This is done by a lookup operation
in (log n, 1)-NC, which requires time O(log n) in each of the log s many phases.
This gives the second summand in the formula: O(log s log n).

Message Complexity. According to Lemma 1, the pointer jumping algorithm
requires O(s ·d · log d) many messages. Since the tree sizes at least double in each
phase, the amortized amount of messages for the entire execution is O(s ·d· log d)
as well. The total cost for the (log n, 1)-NC lookups are O(s log n) for each of the
log s many phases. Finally, the aggregation costs are in O(s ·d log s). Since s ≥ d,
this supersedes the message cost of the pointer jumping. The claim follows. �	

4 The Off-Duty Model

So far, we have assumed that both event and non-event nodes can participate in
the component’s exploration. While this assumption may be justified in certain
systems, e.g., in wired networks, it may not be realistic for wireless networks
where only the nodes which have sensed an event wake up from energy-saving
mode. In the following, we will briefly discuss this off-duty model.

Clearly, if the number of messages does not matter, the event component can
be explored in optimal time by using a simple flooding algorithm where each
event-node floods the entire graph.
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If we ignore the time complexity and only seek to minimize the total number
of messages, the situation is different: Consider the clique Kn and assume that
there are two event-nodes. Clearly, in order to find out about each other, at least
Ω(n) messages need to be sent: Nodes cannot agree on local coordinators in the
preprocessing phase, as these coordinators may be sleeping at runtime. On the
other hand, for an optimal “offline” algorithm a constant number of messages
is sufficient. Consequently, the message complexity of any distributed algorithm
must be worse by a factor of at least Ω(n).

In contrast to the difficulty of the neighborhood detection, the component
exploration is well understood. Depending on whether time or communication
costs should be optimized, an appropriate distributed leader election algorithm
can be applied to the resulting graph (e.g., [11] for time-optimality).

5 Related Work

Motivated by the at times tragic consequences of nature’s moods, disaster dis-
closure is subject to a huge body of research, and it is impossible to provide
a complete overview of all the proposed approaches. While many systems are
based on (or complemented by) satellite techniques, e.g., for damage estimation
of landslides in the Shihmen Reservoir in Thailand caused by heavy rainfalls,
or for post-earthquake damage detection [6], there are also approaches which
directly deploy sensor nodes in the region, e.g., for detecting the boundaries of a
toxic leach [5]. Distributed event detection also appears in wired environments,
e.g., in the defense against Internet worms [9]. Early warning systems are not
only useful to react to natural catastrophes, but are also employed in interna-
tional politics. Techniques to implement such indicators include expected utility
models, artificial intelligence methods, or hidden Markov models [13].

This paper assumes an interesting position between local and global dis-
tributed computations, as our algorithms aim at being as local as possible and as
global as necessary. While in the active field of local algorithms [12], algorithms
are bound to perform their computations based only on the states of their imme-
diate neighbors, many problems are inherently global, e.g., leader election. Only
recently, there is a trend to look for local solutions for global problems, where
the runtime depends on the concrete problem input [3,7], rather than considering
the worst-case over all possible inputs: if in a special instance of a problem the
input behaves well, a solution can be computed quickly. Similar concepts have
already been studied outside the field of distributed computing, e.g., for sorting
algorithms. Our paper is a new incarnation of this philosophy as performance
mostly depends on the output only.

6 Conclusion

This paper has addressed the problem of distributed alarming and efficient dis-
aster detection. We have presented first solutions for this problem by providing
competitive distributed algorithms. We believe that there remain many inter-
esting problems for future research. For instance, the question of fault-tolerance
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has to be addressed: How can our algorithms be adapted for the case that nodes
may be faulty, yielding disconnected components? Moreover, it would be inter-
esting to investigate asynchronous environments. Finally, our model could also
be extended to incorporate wireless aspects, such as interference.
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