
Brief Announcement: Distributed 3/2-Approximation of the
Diameter

Preliminary version of a brief announcement to appear at DISC’14

Stephan Holzer∗
MIT

holzer@mit.edu

David Peleg †
Weizmann Institute

david.peleg@weizmann.ac.il

Liam Roditty ‡
Bar-Ilan University
liamr@macs.biu.ac.il

Roger Wattenhofer
ETH Zurich

wattenhofer@ethz.ch

Contact: Stephan Holzer, +1-617-258-8682, http://people.csail.mit.edu/holzer/

Abstract
We present an algorithm that computes a 3/2-approximation of the diameter of a graph.

This algorithm takes time O(
√
n logn + D) in the CONGEST model, where in each syn-

chronous round, every node can transmit a different (but short) message to each of its
neighbors. Due to a lower bound stated for graphs of small diameter in [2] this algorithm is
optimal. We extend this algorithm to compute a (3/2 + ε)-approximation of the diameter
in time O(

√
n

Dε logn+D).

1 Introduction

The diameter is one of the most fundamental properties of a graph. This is true especially in
distributed computing, where it is used to define which problems are local (as their runtime is
independent of the diameter) and problems that are global (as their runtime is lower bounded
by the diameter). Independently of each other the authors of [3] and [7] presented algorithms
that compute the diameter in time O(n). This runtime matches a lower bound of [2] stated
for networks of small diameter. Besides this algorithm, the authors of [3] and [7] also state
algorithms to approximate the diameter. E.g. [3] provides a 3/2-approximation in time O(n3/4+
D) that was later improved by [5] to O(

√
n logn+D). This matches a lower bound of Ω̃(

√
n+D)

derived in [2] for any (3/2 − ε)-approximation in small diameter networks (and constant ε).
However, when the (3/2 − ε)-approximation lower bound of [2] is analyzed in more detail and
generalized to networks of arbitrary diameter (and arbitrary ε) it turns into a Ω(

√
(n/D)ε+D)

lower bound.
In this brief announcement we present an algorithm to 3/2-approximate the diameter in time

O(
√
n logn+D) that we obtain by combining results of [3, 7] with ideas from [8]. This solution

is a factor
√

logn faster than the one achieved in [5] and uses a different approach. Our different
approach is of interest as we show how to extend it to compute a (3/2 + ε)-approximation to
the diameter in time O(

√
n/(Dε) logn+D). Thus we essentially match the Ω(

√
(n/D)ε+D)

lower bound (when the approximation factor is allowed to differ by a small value).
∗Part of this work has been done at ETH Zurich. At MIT the author was supported by the following grants:

AFOSR Contract Number FA9550-13-1-0042, NSF Award 0939370-CCF, NSF Award CCF-1217506, NSF Award
number CCF-AF-0937274.
†Supported in part by grants from the Israel Science Foundation, the United-States - Israel Binational Science

Foundation and the Israel Ministry of Science.
‡Work supported by the Israel Science Foundation (grant no. 822/10)

1

2 Model and Basic Definitions

Model: The CONGEST model [6] is a message passing model with limited bandwidth. In
this model a network is represented by an undirected unweighted graph G = (V,E) where
nodes V correspond to processors (computers or routers). Two nodes are connected by an edge
from set E if they can communicate directly with each other. Each node in V has a unique
identifier (ID) in the range of {1, . . . , 2O(log |V |)}. Nodes initially know the IDs of nodes in their
immediate neighborhood. Communication over edges in E is synchronous. Every node can send
B = O(log |V |) bits of information over all its edges in one round of communication. A node
can send different messages of size B to each of its neighbors and receive different messages from
each of its neighbors in every round. We are interested in time complexity, i.e., the number of
communication rounds required by a distributed algorithm to solve a problem. Subsequently,
internal computations are neglected.

We denote the number |V | of nodes of a graph by n, and the number |E| of its edges by m.
For simplicity, for u ∈ V , we sometimes use u also to refer to u’s ID, when this is clear from the
context. Let us denote by d(u, v) the (hop-)distance of nodes u and v in G, which is the length
of a shortest u-v path in G. A k-dominating set for a graph G is a subset DOM of vertices
with the property that for every v ∈ V there is some u ∈ DOM at distance of at most k to v.

Definition 1 (Eccentricity, diameter). The eccentricity of a node u ∈ V is ecc(u) :=
maxv∈V d(u, v), namely, the maximum distance to any other node in the graph. The diame-
ter D := maxu∈V ecc(u) = maxu,v∈V d(u, v) of a graph G is the maximum distance between any
two nodes of the graph.

Definition 2 (Approximation). Given an optimization problem P , denote by OPT the value
of the optimal solution for P and by solA the value of the solution of an algorithm A for P .
Let ρ ≥ 1. We say A computes a ρ-approximation (multiplicative approximation) for P if
OPT ≤ solA ≤ ρ ·OPT for any input.

Definition 3 (APSP, S-SP). Let G = (V,E) be a graph. The all pairs shortest paths (APSP)
problem is to compute the shortest paths between any pair of vertices in V ×V . In the S-Shortest
Paths (S-SP) problem, we are given a set S ⊆ V and need to compute the shortest paths between
any pair of vertices in S × V .

3 A 3/2-Approximation to the Diameter

We describe an O(
√
n logn + D)-time algorithm that computes a 3/2-approximation to the

diameter. This algorithm is based on a sequential algorithm that was recently presented in [8]
which in turn extends an algorithm of Aingworth et al. [1].

Let Ck(w) denote the set of k closest vertices to w visited by a (partial) BFS starting in
w that stops after visiting k nodes (ties are broken arbitrarily, e.g. by lexicographical order in
the tree’s topology). This set Ck(w) is computed only for a single vertex w (e.g. with smallest
ID). Algorithm 1 presented below is a distributed version of the non-distributed algorithm of
[8]. The authors of [8] provide more intuition behind Algorithm 1 and a proof of correctness.

Theorem 1. Algorithm 1 computes a 3/2-approximation of the diameter w.h.p. in O(
√
n logn+

D) time.

Proof. In [8], Theorem 1, it is stated that Algorithm 1 of [8] computes the desired approximation.
Our Algorithm 1 is Algorithm 1 of [8] adapted to the distributed setting. We analyze the runtime
of our algorithm: The first step can be done locally by every node and w.h.p. creates a set S
of size Θ((n/s) logn). In step two, we compute S-SP in time O(|S|+D) = O((n/s) logn+D)
by using the S-SP algorithm from Section 6.1. in [3]. The results of this can be used by each

2

Algorithm 1 Distributed version of [8] as executed by each node v ∈ G.
Output: 3/2-approximation to the diameter of G

1: each node v joins set S with probability log n
s ;

2: compute a BFS from each node in S;
3: for every v ∈ V , compute pS(v) := the closest node in S to v;
4: w := arg maxv∈V d(v, pS(v));
5: compute a BFS tree from w as well as Cs(w);
6: for every v ∈ Cs(w), compute a BFS tree from v;
7: return the maximum depth of any BFS tree that was computed;

node internally to solve step 3 without communication. The node w in Line 4 can be found by
max-aggregation in time O(D). Computing BFSw and Cs(w) in Line 5 can be done in O(D)
as well. To compute Cs(w) node w essentially aggregates information on how many nodes are
in each level of the BFSw as e.g. done in Algorithm Diam DOM in [4]. From this information w
computes an i such that |Ni(w)| < s ≤ |Ni+1(w)|. Next each node at level i tells its parent how
many nodes at level i+ 1 are in its subtree. Accordingly the nodes in level i− 1 proceed in the
same way and so on. Based on this information, exactly s − |Ni(w)| nodes can be selected in
level i+ 1 in time O(D).

The next line can be realized by computing Cs(w)-SP in time O(s+D). The return value
can be found by a max-aggregation in time O(D). Thus the total time complexity is O(s +
(n/s) logn+D). By choosing s :=

√
n logn we obtain the desired runtime of O(

√
n logn+D).

2

4 A (3/2 + ε)-Approximation to the Diameter

Theorem 2. For any 0 < ε ≤ 1/3, a (3/2 + ε)-approximation of the diameter can be computed
w.h.p. in O

(√
n
Dε
−1 logn+D

)
time.

To show this result, we extend and modify Algorithm 1 slightly by using ideas of the al-
gorithm to (1 + ε)-approximate the diameter presented in [3], Section 6.2. First we compute
a 2-approximation D′ of D by executing a BFS from the node with smallest ID . Next we set
ε′ := ε

3/2−ε and compute a ε′

8 D
′-dominating set DOM of size at most 8n/(ε′D′) in Line 3. To

compute this dominating set we can use Algorithm Diam DOM presented in [4]. Now we execute
Algorithm 1 restricted to the nodes in DOM in the sense that other nodes only implicitly par-
ticipate (mainly by forwarding messages) as described below. In more detail, we first compute a
set S ⊂ DOM by asking each node in DOM to join S with probability log n

s , where s is chosen
later. Therefore S is of size Θ

(
|DOM|·log n

s

)
= Θ(n log n

ε′D′s) w.h.p.. Next, for each v ∈ S, we com-
pute BFS(v) in graph G. Based on this information each node v ∈ DOM can compute pS(v),
a closest node in S to v. By a max-aggregation convergecast started in the node with smallest
ID, we can identify a node w ∈ DOM of largest distance to S, that is a node w ∈ DOM such
that d(w, pS(w)) ≥ d(u, pS(u)) for all nodes u ∈ DOM. Next we compute a set CDOMs (w),
which is defined to be a set that consists of s closest nodes in DOM to w. This computation is
done in a similar way to the (partial) BFS in previous section. Then we perform a BFS(u) for
each u ∈ CDOMs (w). The algorithm returns 3

2(1+ε′) times the maximal depth of any BFS that
was computed during the execution.

The proof of Theorem 2 can be found in the appendix and will be included in a full version
of this brief announcement.

3

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and
shortest paths (without matrix multiplication). SIAM Journal on Computing, 28(4):1167–
1181, 1999.

[2] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks Cannot Compute Their Diameter
in Sublinear Time. In Y. Rabani, editor, Proceedings of the 23rd annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012 , pages
1150–1162, 2012.

[3] S. Holzer and R. Wattenhofer. Optimal distributed all pairs shortest paths and appli-
cations. In D. Kowalski and A. Panconesi, editors, Proceedings of the 31st annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2012, Fun-
chal, Madeira, Portugal, July 16-18, 2012, pages 355–364, 2012.

[4] S. Kutten and D. Peleg. Fast distributed construction of small k-dominating sets and ap-
plications. Journal of Algorithms, 28(1):40–66, 1998.

[5] C. Lenzen and D. Peleg. Efficient distributed source detection with limited bandwidth. In
P. Fatourou and G. Taubenfeld, editors, Proceedings of the 32nd annual ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, PODC 2013, Montreal, Que-
bec, Canada, July 22-24, 2013, pages 375–382, 2013.

[6] D. Peleg. Distributed computing: a locality-sensitive approach. Society for Industrial and
Applied Mathematics, Philadelphia, Pennsylvania, USA, 2000.

[7] D. Peleg, L. Roditty, and E. Tal. Distributed algorithms for network diameter and girth. In
A. Czumaj, K. Mehlhorn, A. M. Pitts, and R. Wattenhofer, editors, Automata, Languages,
and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-
13, 2012, Proceedings, Part II, volume 7392 of Lecture Notes in Computer Science, pages
660–672. Springer, Berlin & Heidelberg, Germany, 2012.

[8] L. Roditty and V. V. Williams. Fast approximation algorithms for the diameter and radius of
sparse graphs. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors, Proceedings of the
45th annual ACM Symposium on Theory of Computing, STOC 2013, Palo Alto, California,
USA, June 1-4, 2013, pages 515–524, 2013.

4

Appendix

A Proof of Theorem 2

Algorithm 2 Distributed version of [8] as executed by each node v ∈ G.
Input: accuracy parameter ε Output: (3/2 + ε)-approximation to the diameter of G

1: compute and broadcast D′ := 2 · ecc(IDmin);
2: ε′ := ε

3/2−ε ; k := bε′D′/8c;
3: compute DOM := k-dominating set of size at most max{1, bn/(k + 1)c};
4: v joins set S with probability log n

s ;
5: compute a BFS from each node in S;
6: For every v ∈ V , compute pS(v) := the closest node in S to v;
7: w := arg maxv∈V d(v, pS(v));
8: compute a BFS tree from w as well as CDOMs (w);
9: For every v ∈ CDOMs (w), compute a BFS tree from v;

10: return 3
2(1+ε′) times the maximum depth of any BFS tree that was computed;

We already know from Theorem 5 in [8] that Algorithm 1 produces a 3/2-approximation
when executed on G. We follow along the lines of their proof and adopt it to our modified
algorithm to show that it computes a (3/2 + ε)-approximation to the diameter.

Lemma 1. Let G = (V,E) be a graph with diameter D = 3h+z, where h ≥ 0 and z ∈ {0, 1, 2}.
The maximal depth of any BFS tree that was computed in Algorithm 2 is at least 2h(1 − ε′)
w.h.p..

Proof. Let a, b ∈ V such that d(a, b) = D. Then there are nodes a′, b′ ∈ DOM such that
d(a′, b′) ≥ D−2k = D(1− ε′

2). Let w ∈ DOM be a vertex that satisfies d(w, pS(w)) ≥ d(u, pS(u))
for all nodes u ∈ DOM.

• Case 1, (d(w, pS(w)) ≤ h): Then d(a′, pS(a′)) ≤ h. As the algorithm computes BFS(v)
for every v ∈ S, it follows that BFS(pS(a′)) is computed as well. Since ecc(a′) is at least
D − k = D(1 − ε′/4), it follows that ecc(PS(a′)) ≥ ecc(a′) − h = 2h + z − ε′

4 (3h + z) ≥
2h(1− ε′) as required.

• Case 2, (d(w, pS(w)) > h): We can also assume that ecc(w) < 2h(1−ε′) since the algorithm
computes BFS(w) and if ecc(w) ≥ 2h(1 − ε′) then it computes a BFS tree of depth at
least 2h(1− ε′) as required. Since ecc(w) < 2h(1− ε′) it follows that d(w, b′) < 2h(1− ε′).
Moreover, since d(w, pS(w)) > h we can conclude that S hits CDOMs (w) w.h.p., that is
S ∩ CDOMs (w) 6= ∅. Therefore it must be the case that CDOMs (w) contains a node at
distance greater h from w, and hence Nh(w) ⊆ CDOMs (w). This implies that there is
a vertex w′ ∈ CDOMs (w) on the path from w to b′ such that d(w,w′) = h and hence
d(w′, b′) < 2h(1− ε′)− h = h− 2ε′. Since d(a′, b′) ≥ D(1− ε′

2) = (3h+ z)(1− ε′

2), we also
have that d(a′, w′) ≥ d(a′, b′) − d(w′, b′) > 2h(1 − ε′). The algorithm computes BFS(u)
for every u ∈ CDOMs (w), and in particular, it computes BFS(w′), which has depths at
least d(a,w′) ≥ 2h(1− ε′).

2

Proof. (of Theorem 2). Correctness follows from Lemma 1 combined with the choice of ε′ and
the requirement that ε ≤ 1/3: By multiplying the depth of the deepest BFS performed with

3
2(1−ε′) , we obtain an estimate D̂ such that D ≤ D̂ ≤ (3

2 + ε)D.

5

Analyzing the runtime is almost the same as in Theorem 1. We only need to add O(D) for
computing the k-dominating set in Line 1. The total runtime is O(|S|+s+D) = O(n

ε′D′s +s+D).
Choosing s :=

√
n log n
ε′D′ yields the desired runtime. 2

6

