Distributed Complexity Theory

Roger Wattenhofer

Thanks to my (former) students...

Fabian Kuhn

Thomas Moscibroda

Yvonne Anne Pignolet

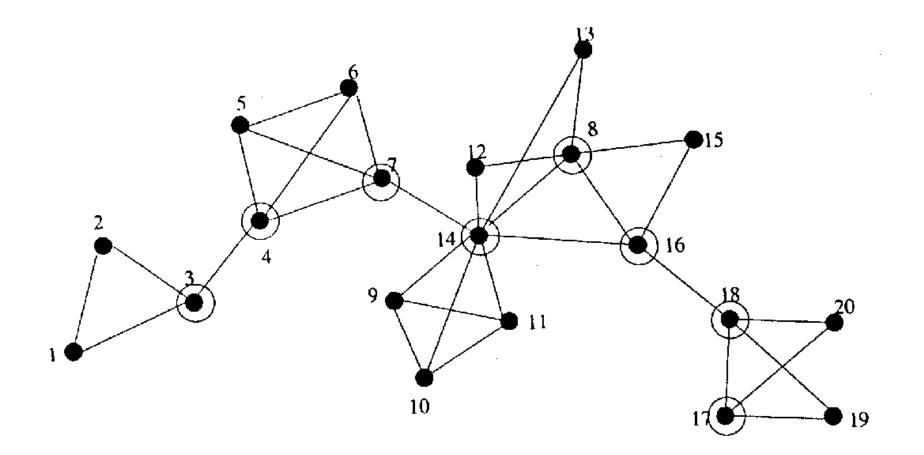
Christoph Lenzen

Johannes Schneider

Stephan Holzer

... and colleagues for pushing the area!

1 3/9+(2)2+(3/4)4 3/9+(2)2 3-19+A 13-2-2-18/X+



Distributed Complexity Theory

Complexity Theory

Can a Computer Solve Problem *P* in Time *t*?

Distributed **Complexity Theory

Can a Computer Solve Problem P in Time t?

Distributed *Complexity Theory

Can a Computer Solve Problem P in Time t?

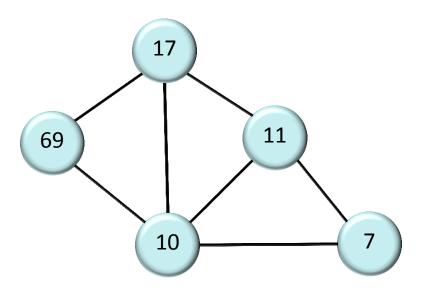
P: Approximation of Minimum Dominating Set

t: Arbitrary parameter, e.g. constant

[Kuhn, W, PODC 2003]

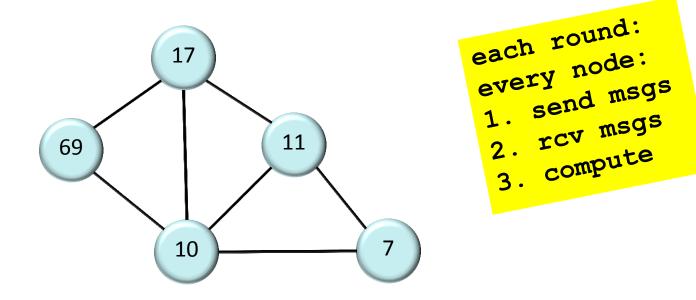
Distributed (Message-Passing) Algorithms

 Nodes are agents with unique ID's that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.



Distributed (Message-Passing) Algorithms

 Nodes are agents with unique ID's that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.



Distributed (Time) Complexity: How many rounds does problem take?

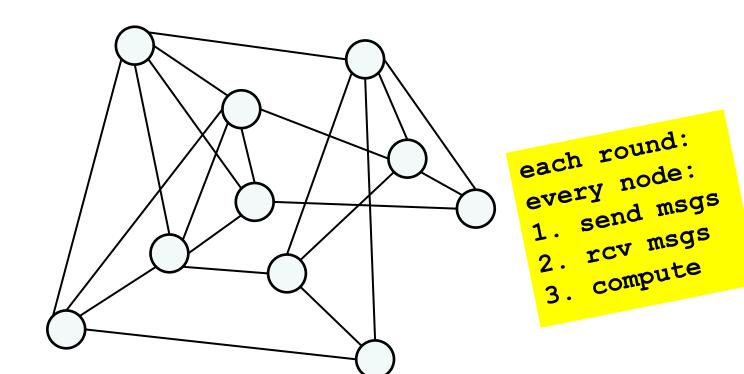
An Example

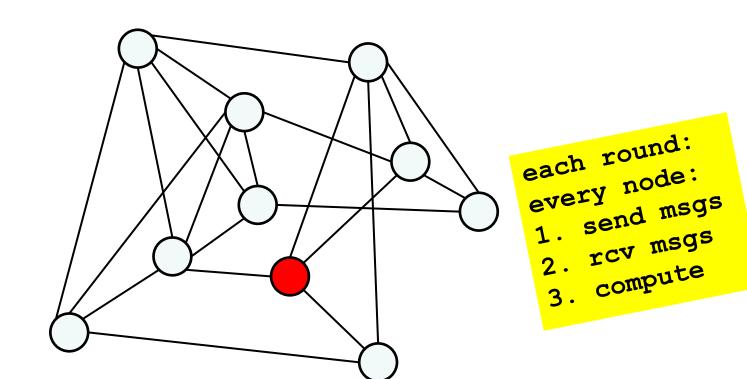
each round: every node:

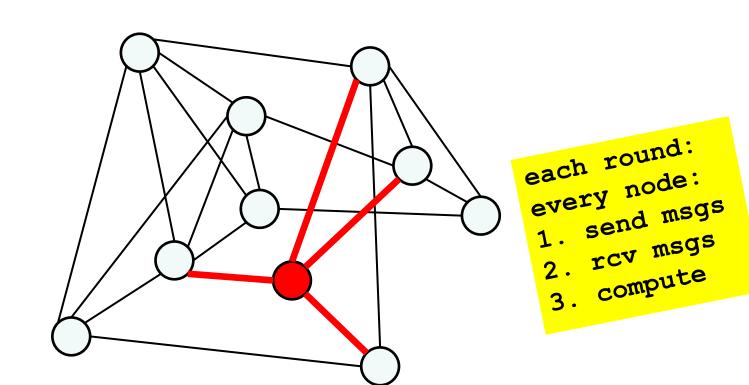
1. send msgs

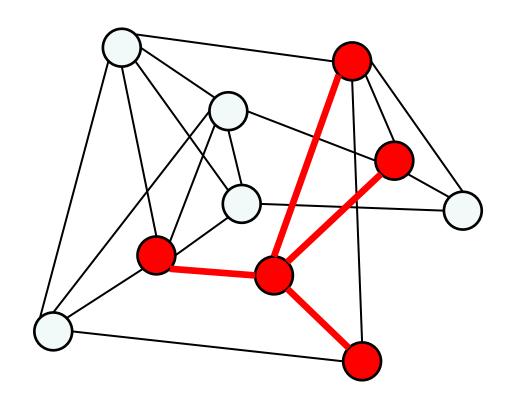
2. rcv msgs

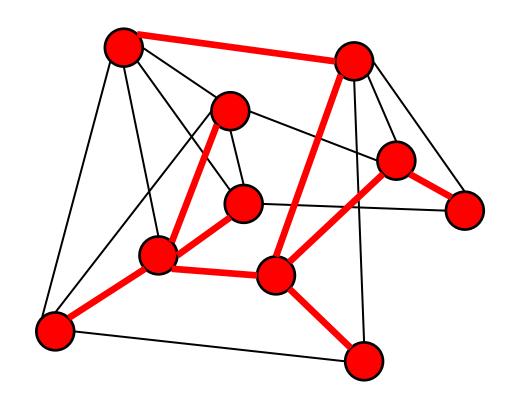
3. compute

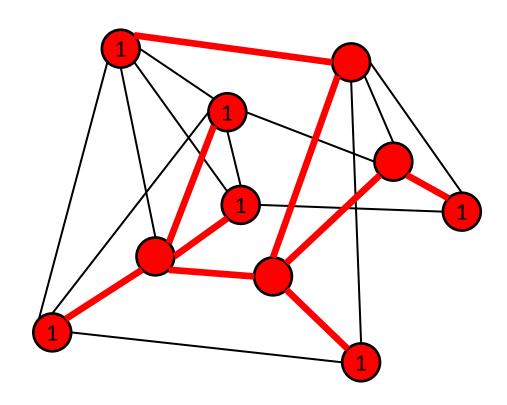


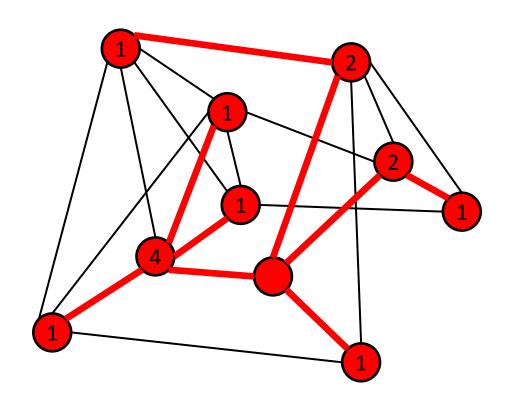


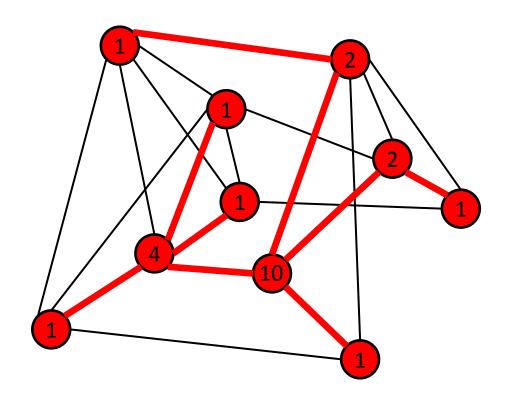




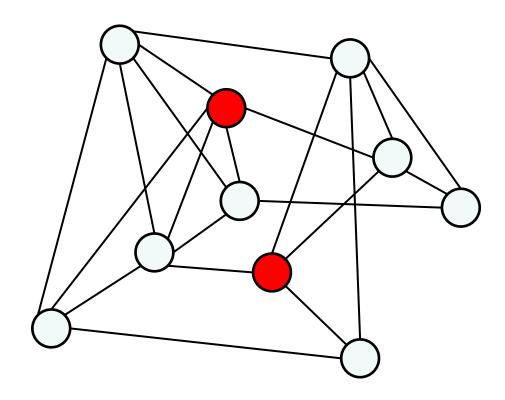




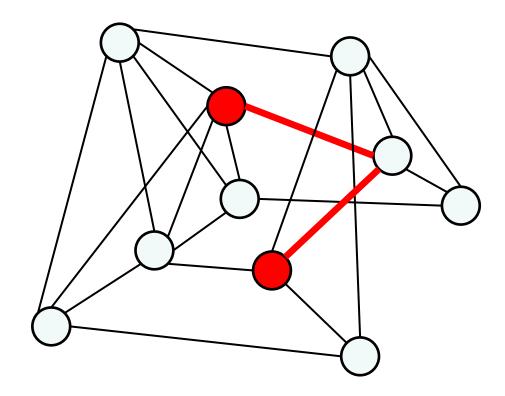




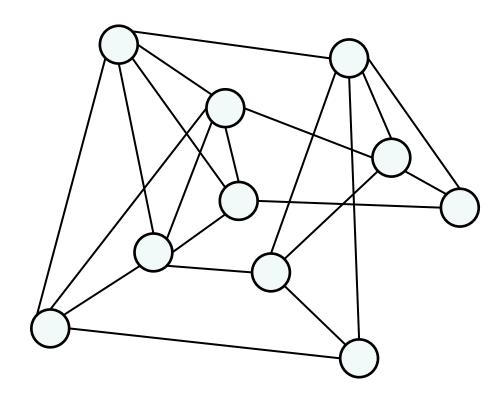
With a simple flooding/echo process, a network can find the number of nodes in time O(D), where D is the diameter (size) of the network.



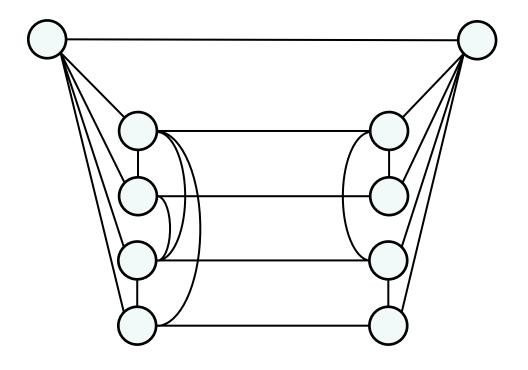
Distance between two nodes = Number of hops of shortest path

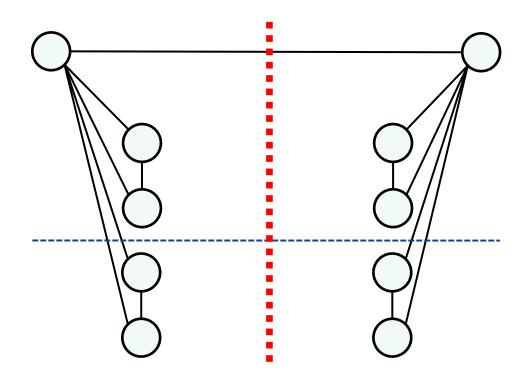


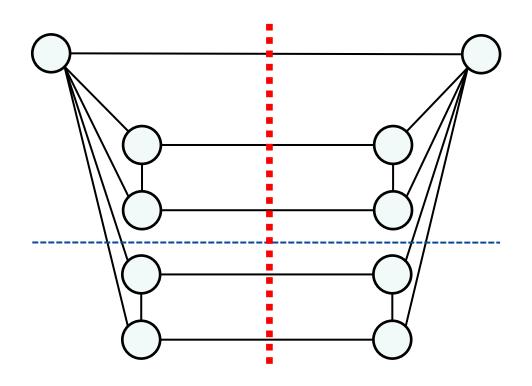
Distance between two nodes = Number of hops of shortest path

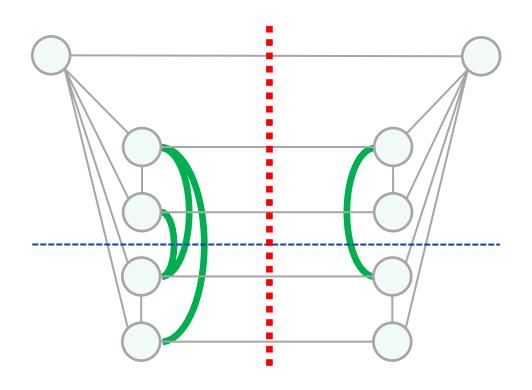


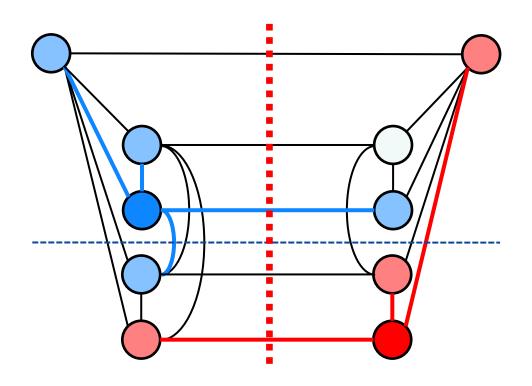
- Distance between two nodes = Number of hops of shortest path
- Diameter of network = Maximum distance, between any two nodes

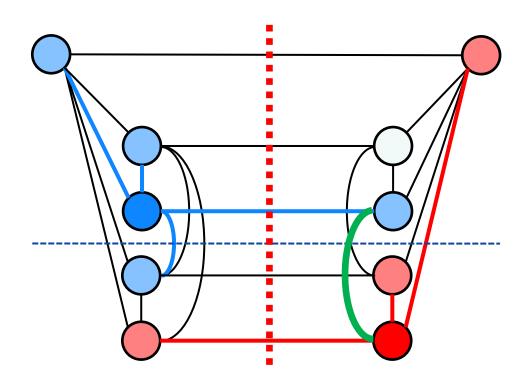


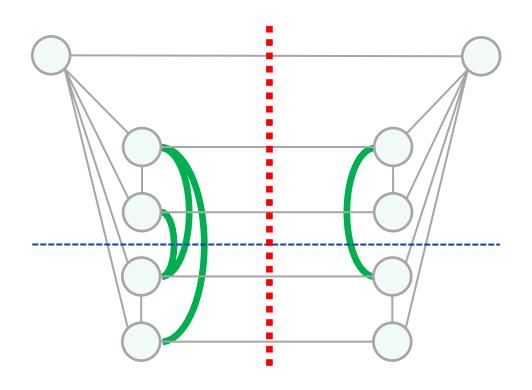






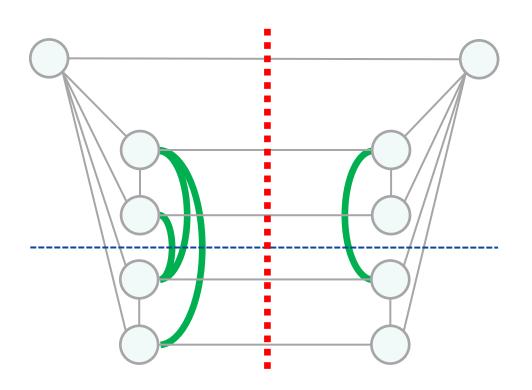






Networks Cannot Compute Their Diameter in Sublinear Time!

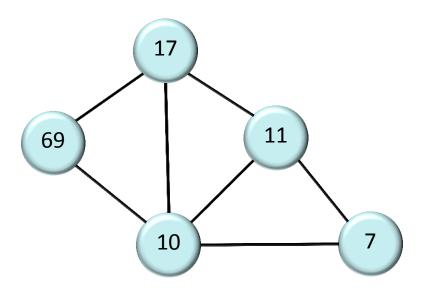
(even if diameter is just a small constant)



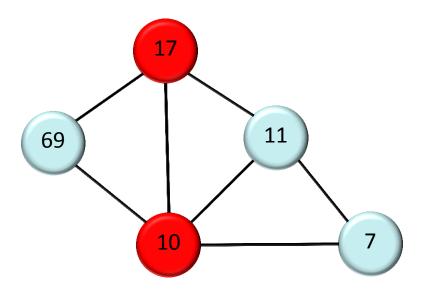
Pair of rows connected neither left nor right? Communication complexity: Transmit $\Theta(n^2)$ information over O(n) edges $\rightarrow \Omega(n)$ time!

What about a "local" task?

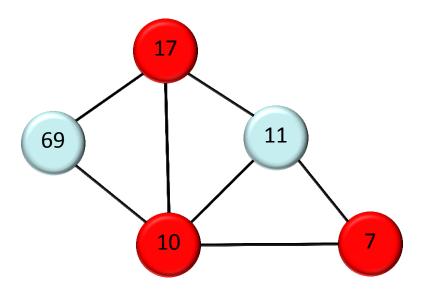
- Given a network with *n* nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC



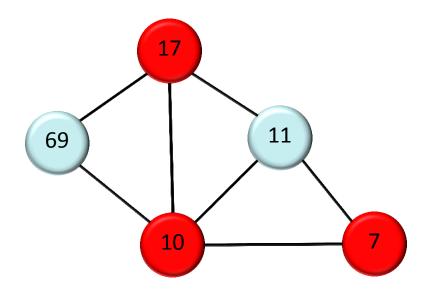
- Given a network with *n* nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC



- Given a network with *n* nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC



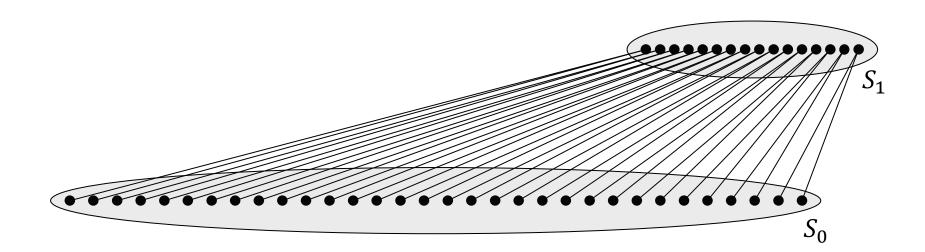
- Given a network with *n* nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
 - a minimum set of nodes such that all edges are adjacent to node in MVC



- Various simple (non-distributed) 2-approximations exist!
- What about distributed algorithms?!?

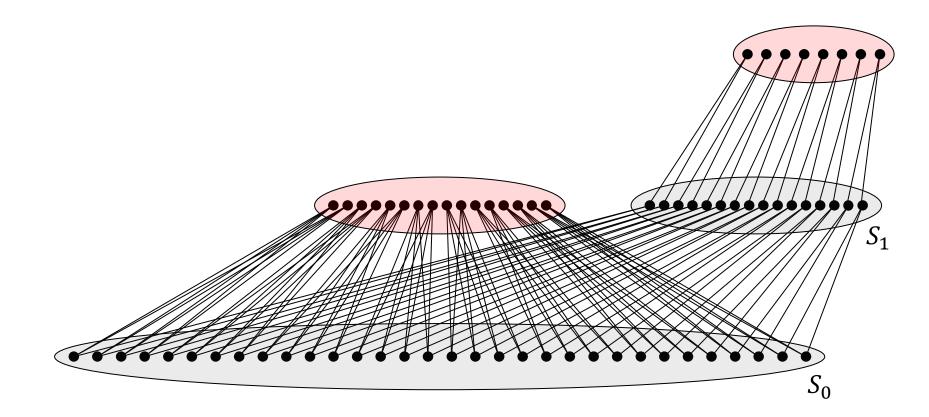
Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $|S_0| = \delta |S_1|$
- The MVC is just all the nodes in S_1
- Distributed Algorithm...

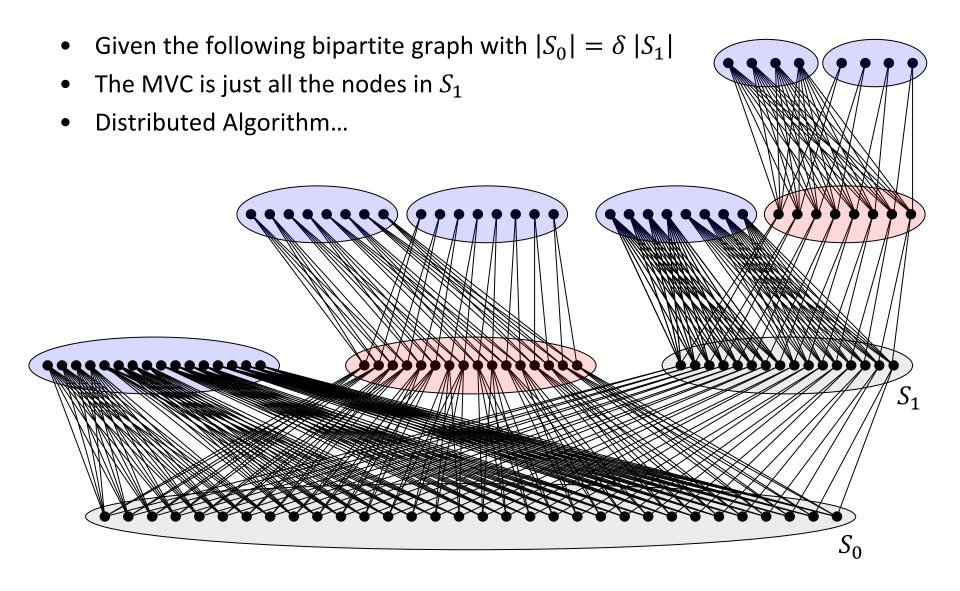


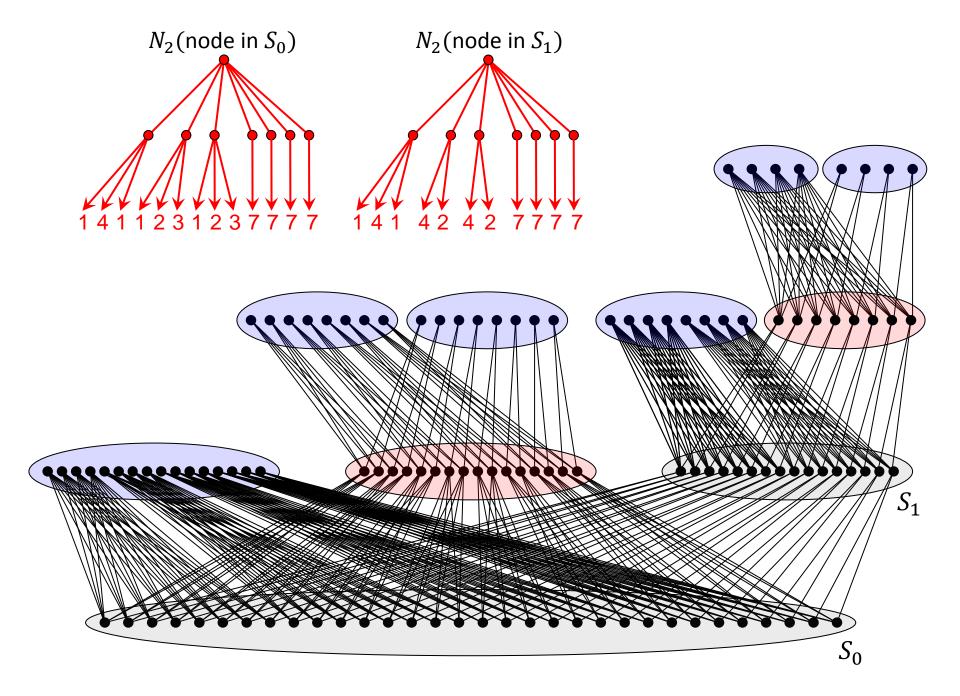
Finding the MVC (by Distributed Algorithm)

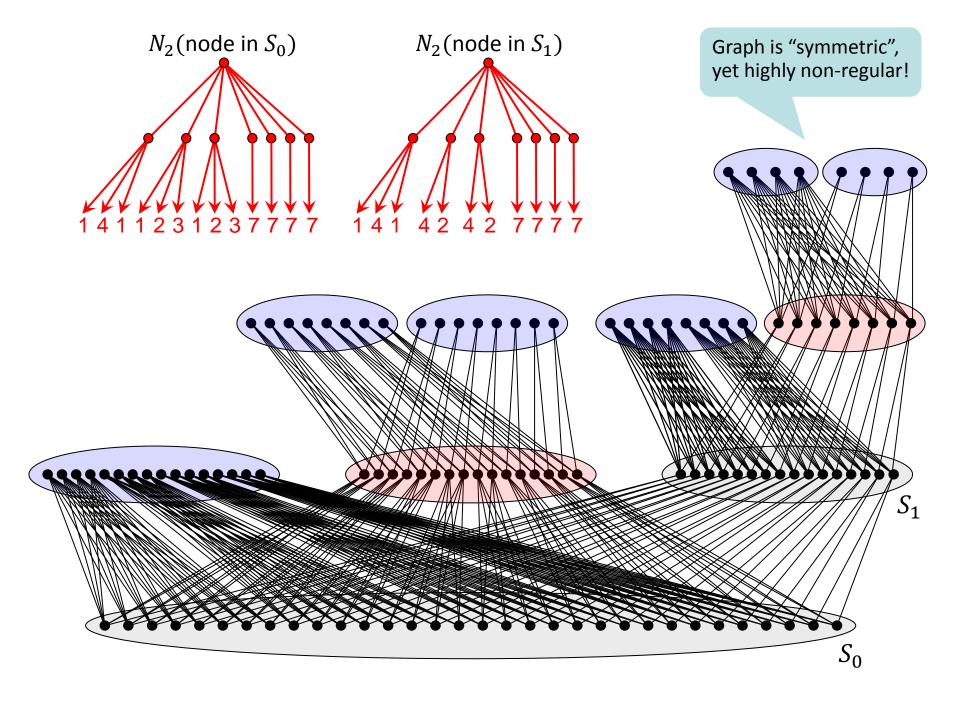
- Given the following bipartite graph with $|S_0| = \delta |S_1|$
- The MVC is just all the nodes in S_1
- Distributed Algorithm...



Finding the MVC (by Distributed Algorithm)







Lower Bound: Results

• We can show that for $\epsilon > 0$, in t time, the approximation ratio is at least

$$\Omega\left(n^{rac{1/4-arepsilon}{t^2}}
ight) \quad and \quad \Omega\left(\Delta^{rac{1-arepsilon}{t+1}}
ight)$$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

Lower Bound: Results

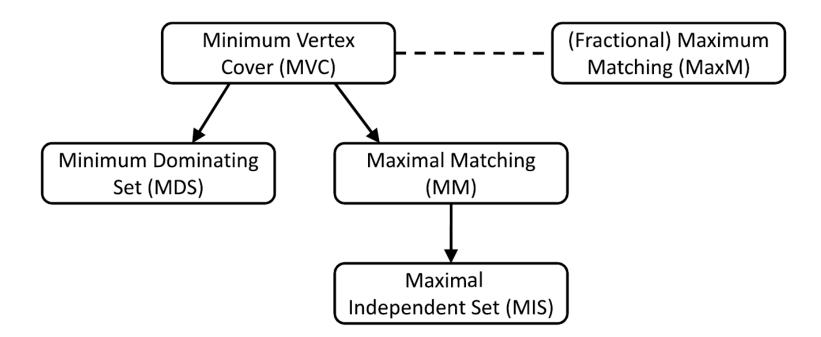
• We can show that for $\epsilon > 0$, in t time, the approximation ratio is at least

 $\Omega\left(n^{\frac{1/4-\varepsilon}{t^2}}\right) \quad and \quad \Omega\left(\Delta^{\frac{1-\varepsilon}{t+1}}\right)$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

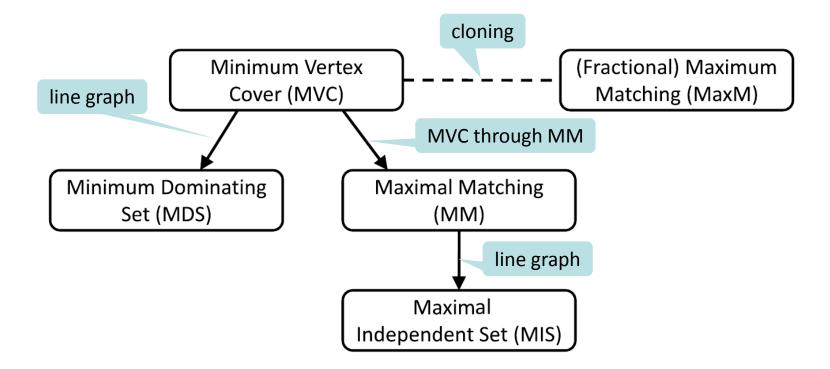
Lower Bound: Reductions

• Many "local looking" problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.



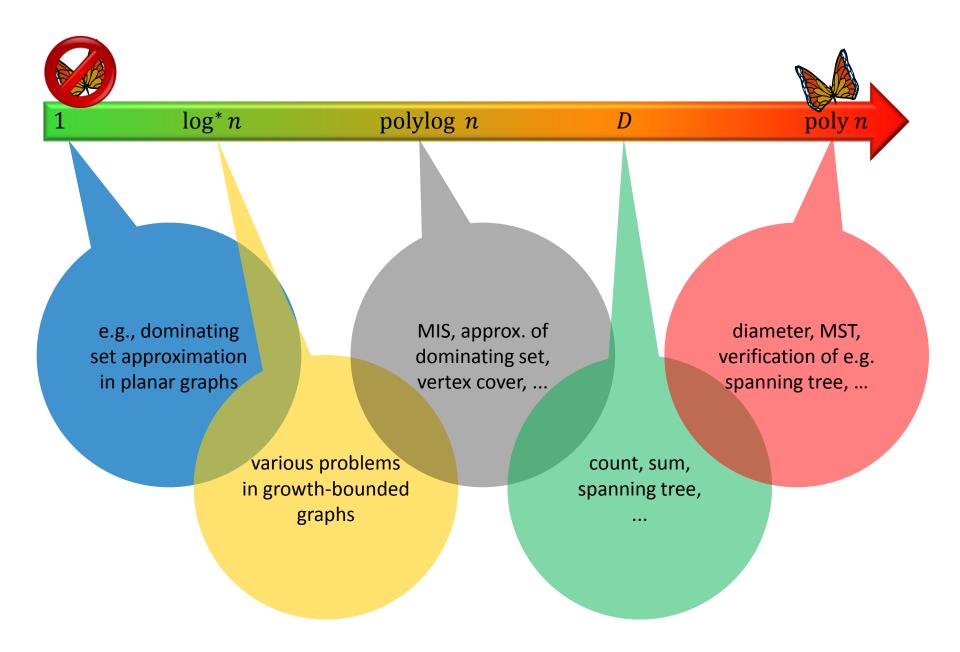
Lower Bound: Reductions

• Many "local looking" problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

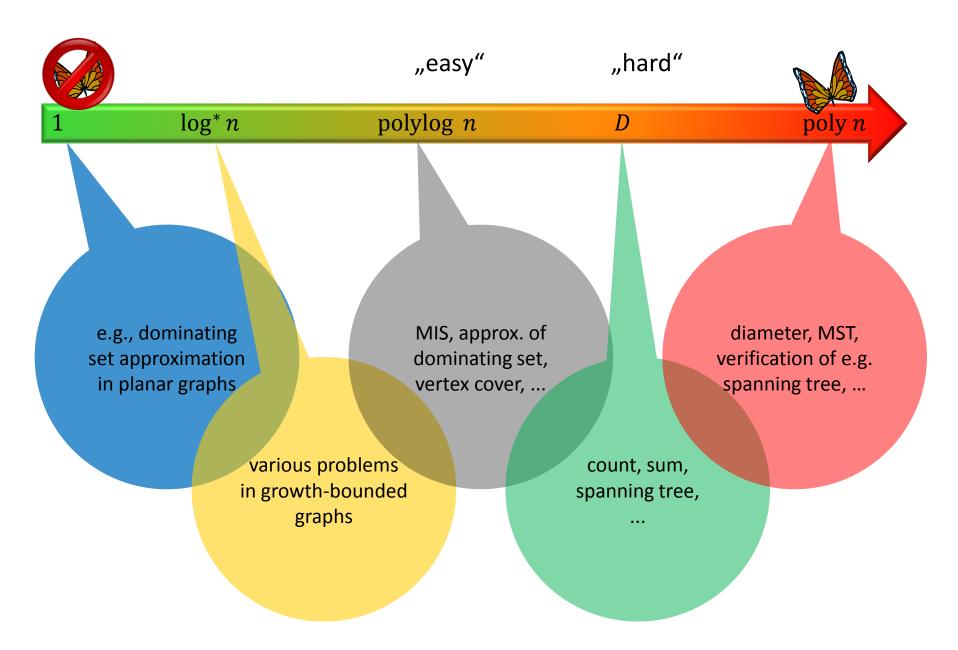


Olympics!

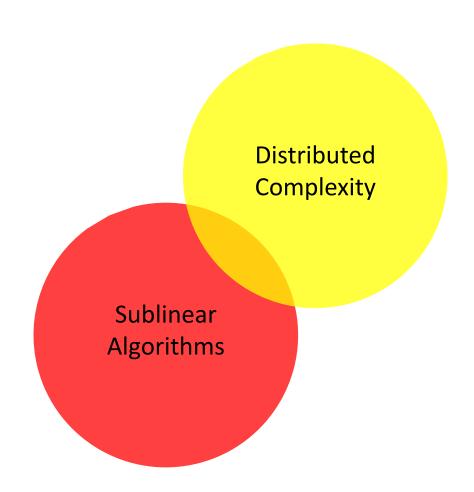
Distributed Complexity Classification

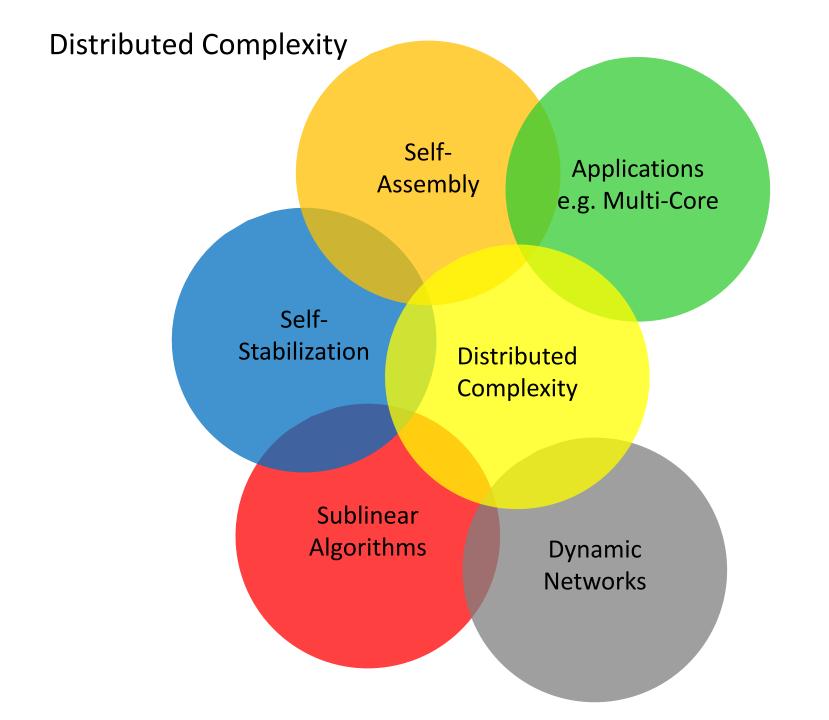


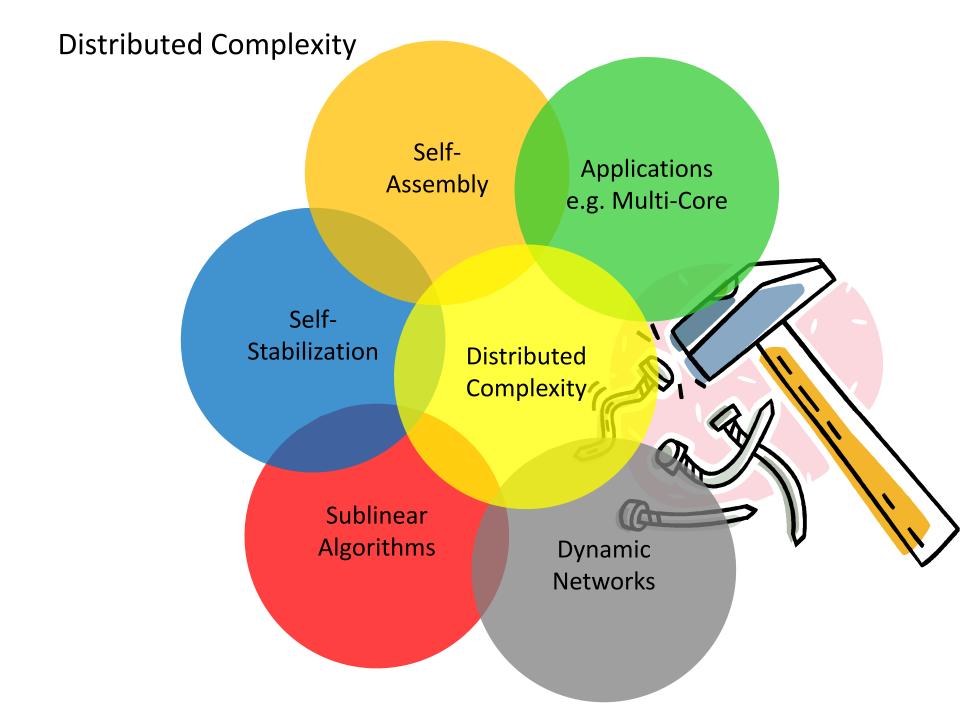
Distributed Complexity Classification

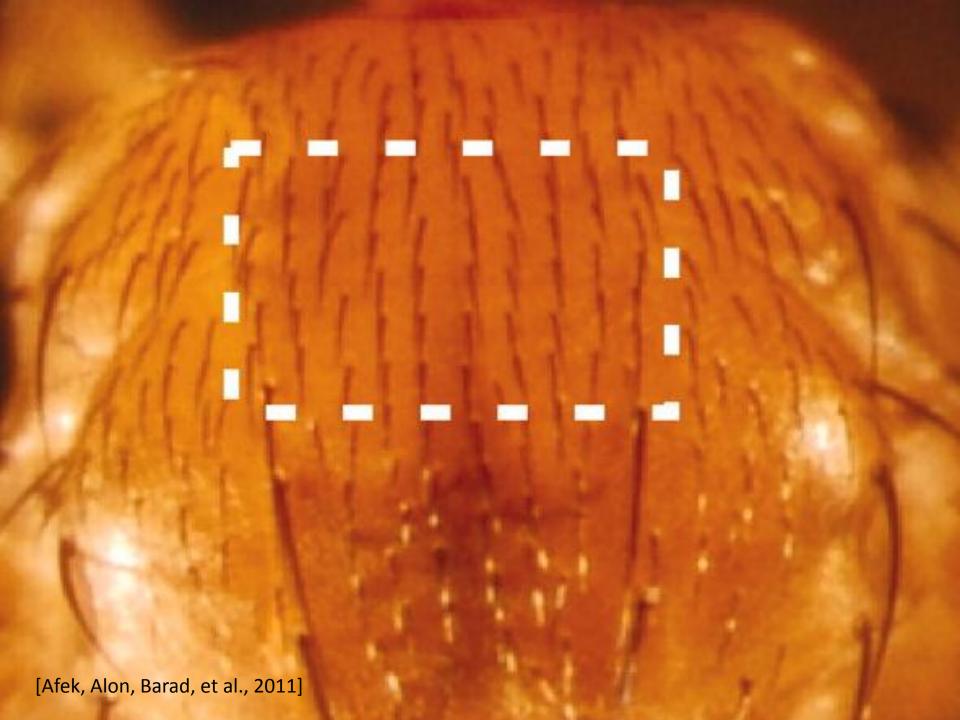


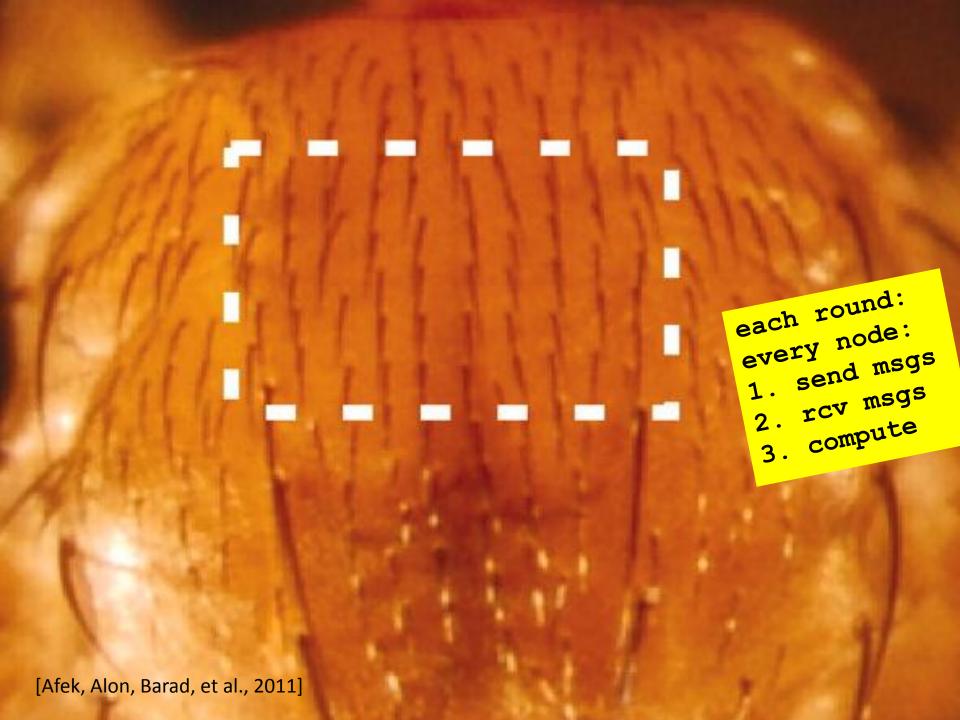
Distributed Complexity







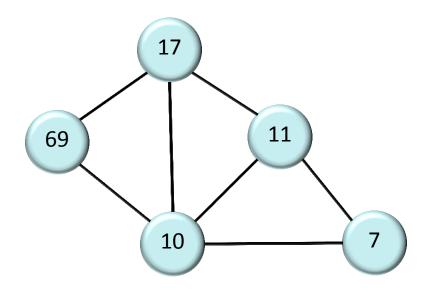






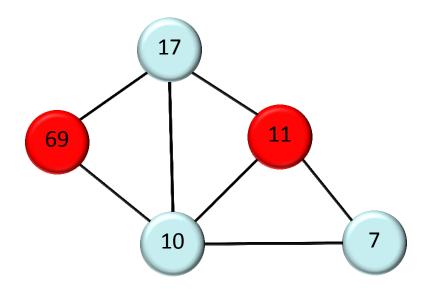
Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes



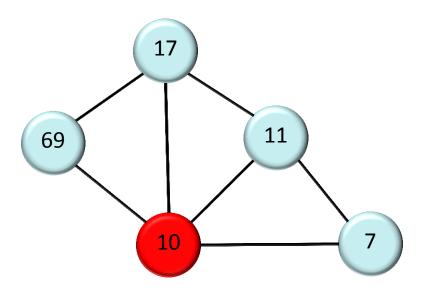
Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes



Maximal Independent Set (MIS)

- Given a network with *n* nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
 - a non-extendable set of pair-wise non-adjacent nodes



```
given: id, degree
synchronized while (true) {
   p = 1 /(2*degree);
   if (random value between 0 and 1 < p) {
      transmit "(degree, id)";
   ...
```



```
given: id, degree

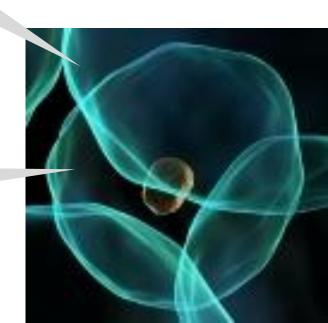
synchronized while (true) {

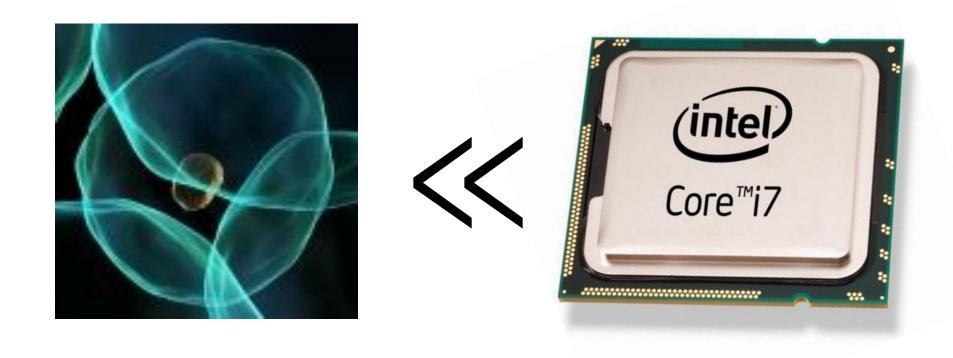
   p = 1 /(2*degree);

   if (random value between 0 and 1 < p) {

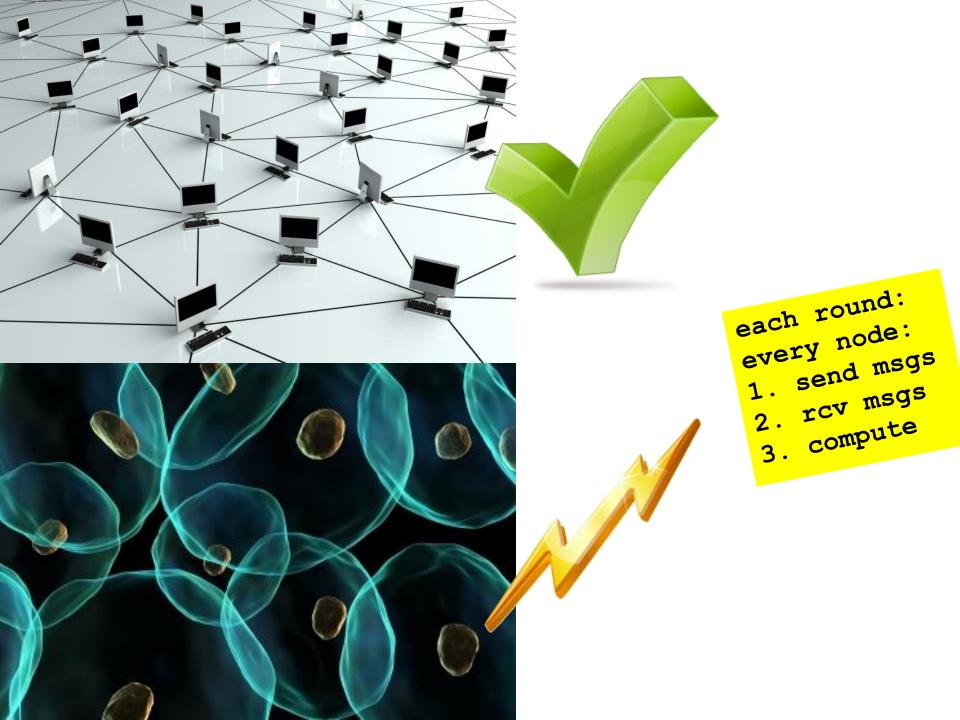
       transmit "(degree, id)";

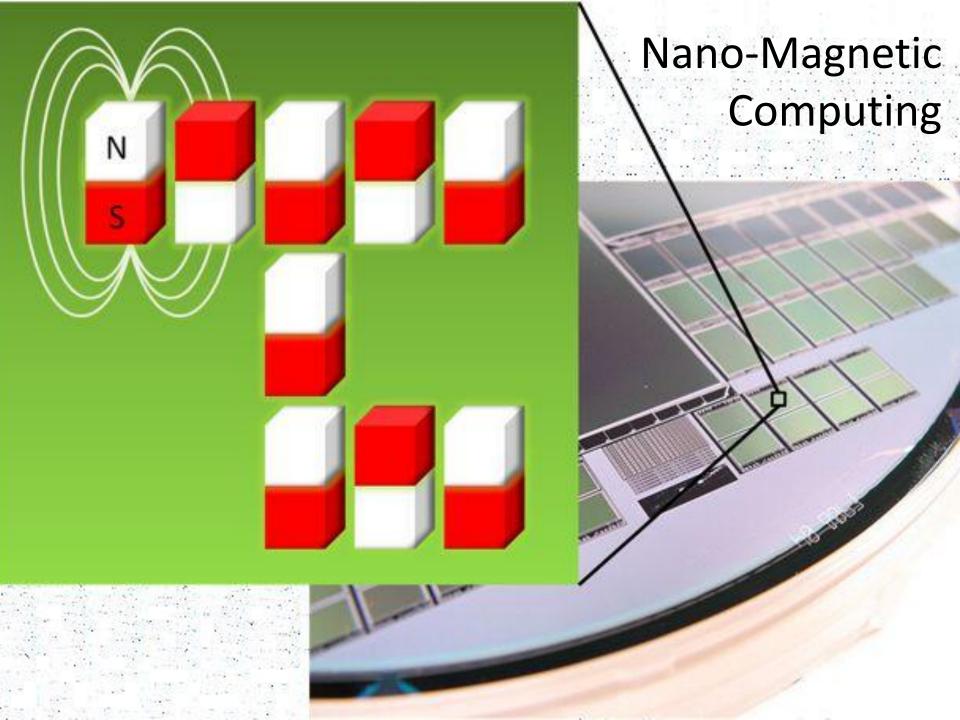
   ...
```



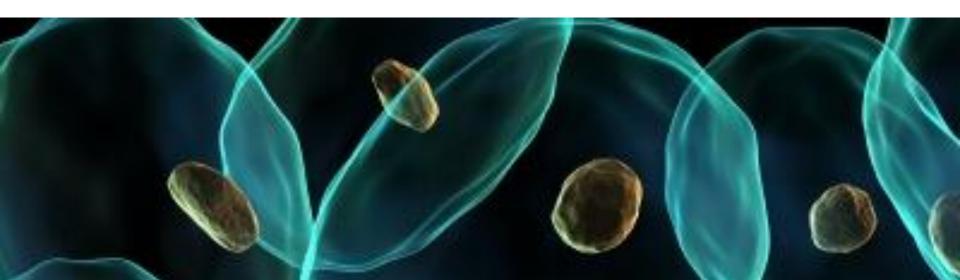
Distributed Computing Without Computing!





nFSM: networked Finite State Machine

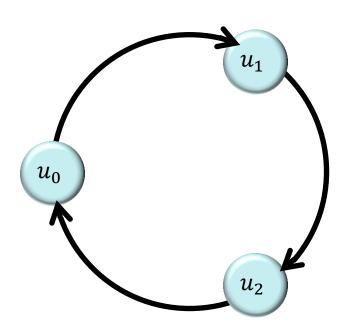
- Every node is the same finite state machine, e.g. no IDs
- Apart from their state, nodes cannot store anything
- Nodes know nothing about the network, including e.g. their degree
- Nodes cannot explicitly send messages to selected neighbors,
 i.e. nodes can only implicitly communicate by changing their state
- Operation is asynchronous
- Randomized next state okay, as long as constant number
- Nodes cannot compute, e.g. cannot count

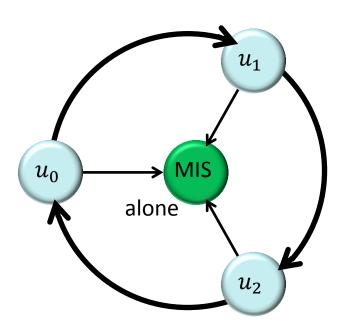


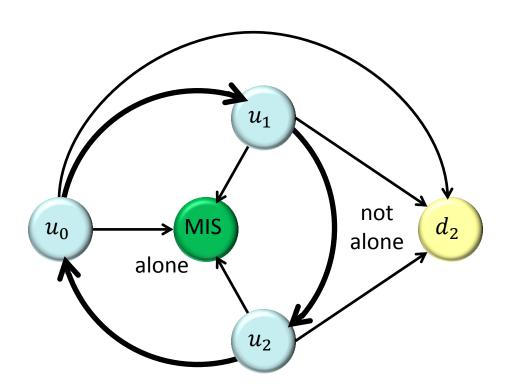
One, Two, Many Principle

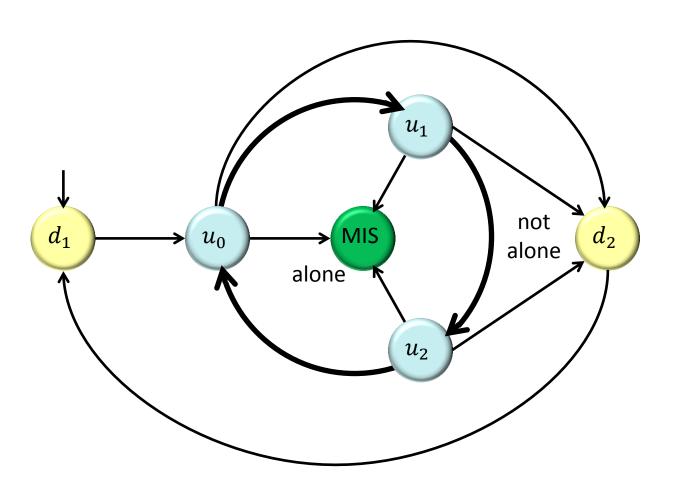
- Not okay
 - while $(k < \log n)$ {
 - At least half of neighbors in state s?
 - More neighbors in state s than in state t?
- Okay
 - No neighbor in state s?
 - Some neighbor in state s?
 - At most two neighbors in state s?

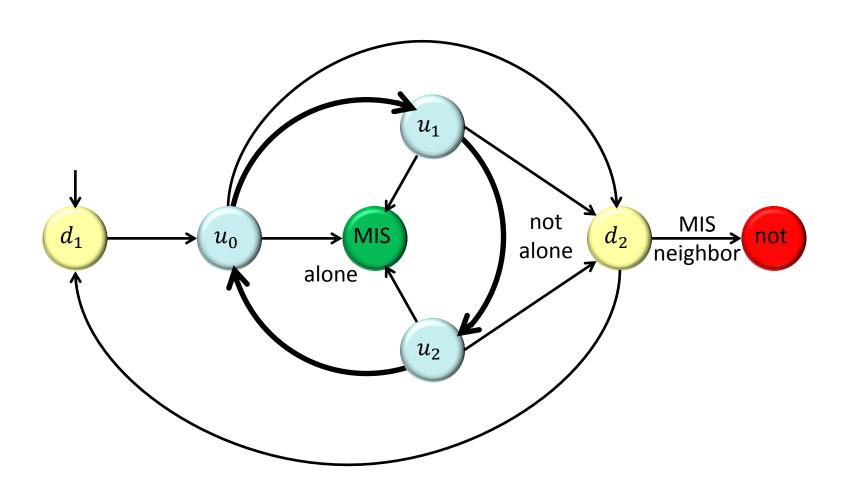
PRIMITIVE CULTURES DEVELOP SESAME STREET.



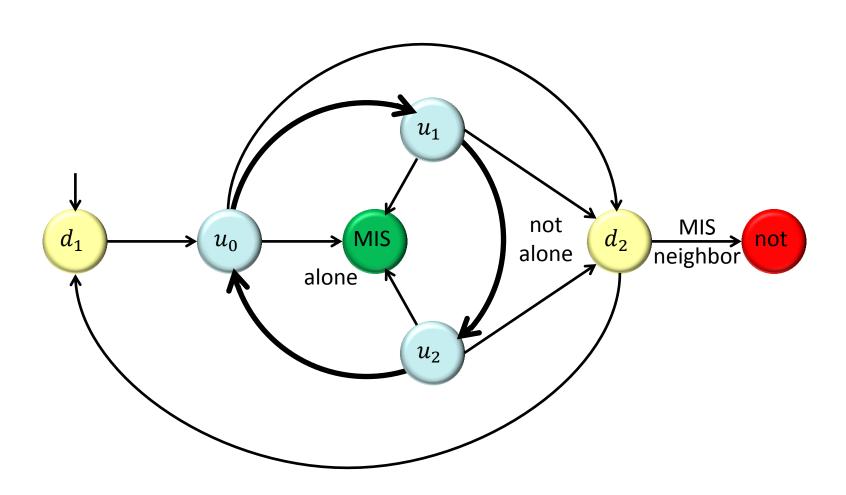






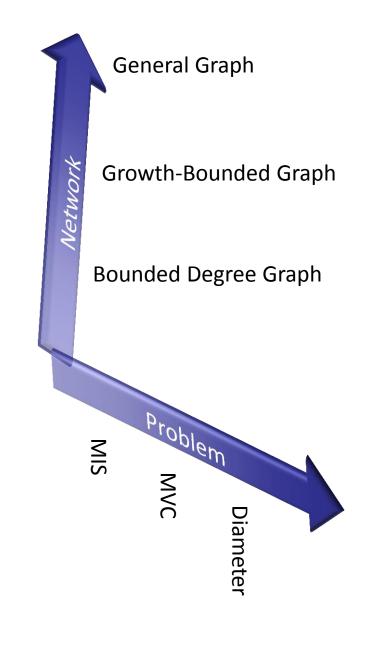


nFSM solves MIS whp in time $O(\log^2 n)$



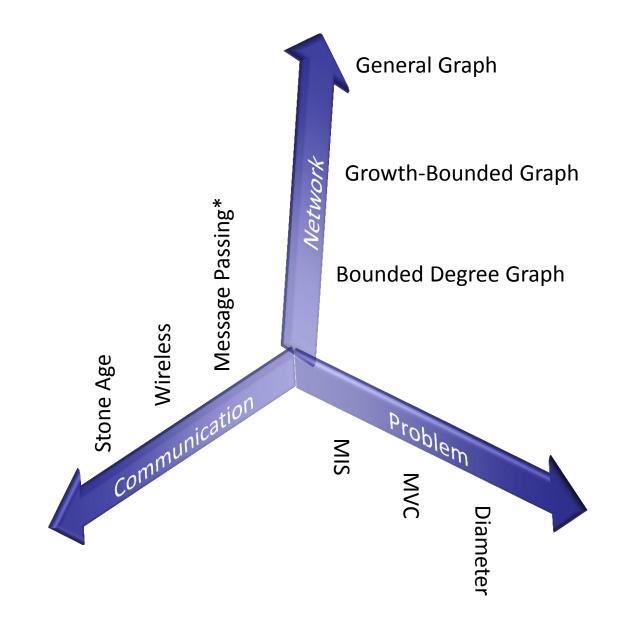
[Emek, Smula, W, in submission, also in arXiv]

Overview

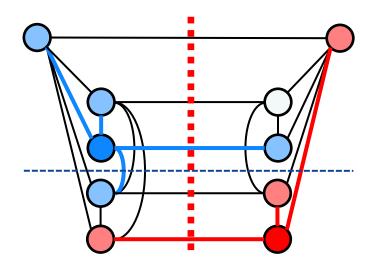


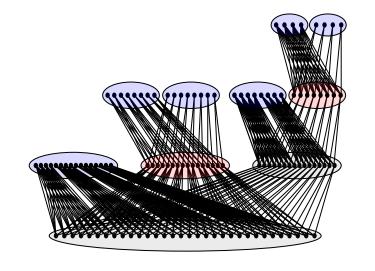
WA)-ABX 0(1)-APX, Planar triangle-free 7 2-Told 0(1) - time (bounded trae-w.) some forbladen ind. subgr. planar COVEY Series-Parallal proj. Sparse plane > planar SOME forbidden sparse, d1, d2, d3 no K313 claw-free shounded arb. trees line graph f(n)-reg. d-regular growthsparse bounded y bounded degree drida 0(1)-APX bounded log* -time 96+ diam. Sparse cliques

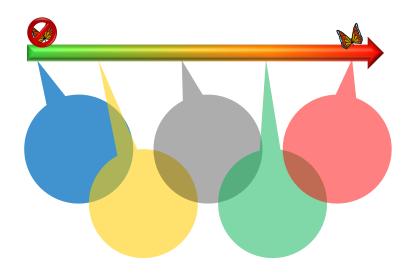
Overview



Summary







Thank You!

Questions & Comments?

Thanks to my co-authors
Yuval Emek
Silvio Frischknecht
Stephan Holzer
Fabian Kuhn
Thomas Moscibroda

Jasmin Smula

www.disco.ethz.ch