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P: Approximation of Minimum Dominating Set 
t:  Arbitrary parameter, e.g. constant 
[Kuhn, W, PODC 2003] 



Distributed (Message-Passing) Algorithms 

 

• Nodes are agents with unique ID’s that can communicate with neighbors 
by sending messages. In each synchronous round, every node can send a 
(different) message to each neighbor. 
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• Distributed (Time) Complexity: How many rounds does problem take? 
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An Example 



How Many Nodes in Network? 
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With a simple flooding/echo process, a network can find the number  
of nodes in time 𝑂(𝐷), where 𝐷 is the diameter (size) of the network. 
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Diameter of Network? 

 

 

 

 

 

 

 

 

 

 

 

 

• Distance between two nodes = Number of hops of shortest path 
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• Distance between two nodes = Number of hops of shortest path 

• Diameter of network = Maximum distance, between any two nodes 



Diameter of Network? 
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Diameter of Network? 



(even if diameter is just a small constant) 

 

 

 

 

 

 

 

 

 

 

 

Pair of rows connected neither left nor right? Communication complexity: 
Transmit Θ(𝑛2) information over O(𝑛) edges  Ω(𝑛) time! 

[Frischknecht, Holzer, W, 2012] 

Networks Cannot Compute Their Diameter in Sublinear Time! 



What about a “local” task? 



Example: Minimum Vertex Cover (MVC) 

• Given a network with n nodes, nodes have unique IDs. 

• Find a Minimum Vertex Cover (MVC) 

– a minimum set of nodes such that all edges are adjacent to node in MVC 
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Example: Minimum Vertex Cover (MVC) 

• Given a network with n nodes, nodes have unique IDs. 

• Find a Minimum Vertex Cover (MVC) 

– a minimum set of nodes such that all edges are adjacent to node in MVC 

 

 

 

 

 

 

 

 

 

 

• Various simple (non-distributed) 2-approximations exist! 

• What about distributed algorithms?!? 
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𝑆1 

Finding the MVC (by Distributed Algorithm) 

 

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1  

• The MVC is just all the nodes in 𝑆1 

• Distributed Algorithm… 

𝑆0 
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𝑆1 

Finding the MVC (by Distributed Algorithm) 

𝑆0 

 

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1  

• The MVC is just all the nodes in 𝑆1 

• Distributed Algorithm… 



𝑆1 

𝑆0 

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1 

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1) 



𝑆1 

𝑆0 

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1 

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1) Graph is “symmetric”,  
yet highly non-regular! 



Lower Bound: Results 

 

• We can show that for 𝜖 > 0, in 𝑡 time, the approximation ratio is at least 

 

 

 

 

 

 

 

• Constant approximation needs at least Ω(log Δ) and Ω( log 𝑛) time. 

• Polylog approximation Ω(log Δ/ log log Δ) and Ω( log 𝑛/ log log 𝑛). 

 

𝑡 𝑡 

[Kuhn, Moscibroda, W, journal version in submission, also in arXiv] 
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• Constant approximation needs at least Ω(log Δ) and Ω( log 𝑛) time. 

• Polylog approximation Ω(log Δ/ log log Δ) and Ω( log 𝑛/ log log 𝑛). 

 

𝑡 𝑡 

tight for MVC 

[Kuhn, Moscibroda, W, journal version in submission, also in arXiv] 



Lower Bound: Reductions 

 

• Many “local looking” problems need non-trivial t, in other words, the 

bounds Ω(log Δ) and Ω( log 𝑛) hold for a variety of classic problems. 

[Kuhn, Moscibroda, W, journal version in submission, also in arXiv] 



Lower Bound: Reductions 

 

• Many “local looking” problems need non-trivial t, in other words, the 

bounds Ω(log Δ) and Ω( log 𝑛) hold for a variety of classic problems. 

line graph 

cloning 

MVC through MM 

line graph 

[Kuhn, Moscibroda, W, journal version in submission, also in arXiv] 



 
 
 

 
 
 

 
 
 

 
 
 

 
 

Olympics! 



 
 

e.g., dominating 
set approximation 
in planar graphs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

 

 

 

 

 

 

 

 

 

 

 

Distributed Complexity Classification 

1                     log∗ 𝑛                          polylog 𝑛                         𝐷                                poly 𝑛
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„easy“                     „hard“ 



Distributed Complexity 
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[Afek, Alon, Barad, et al., 2011] 



[Afek, Alon, Barad, et al., 2011] 



 



Maximal Independent Set (MIS) 

• Given a network with n nodes, nodes have unique IDs. 

• Find a Maximal Independent Set (MIS) 

– a non-extendable set of pair-wise non-adjacent nodes 
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given: id, degree 
synchronized while (true) { 
     p = 1 /(2*degree); 
     if (random value between 0 and 1 < p) { 
          transmit “(degree, id)”;  
          … 
 



given: id, degree 
synchronized while (true) { 
     p = 1 /(2*degree); 
     if (random value between 0 and 1 < p) { 
          transmit “(degree, id)”;  
          … 
 

?! 
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Distributed Computing  
Without Computing! 





 

Nano-Magnetic  
Computing 



 

Stone Age  
Distributed Computing 



nFSM: networked Finite State Machine 

• Every node is the same finite state machine, e.g. no IDs 

• Apart from their state, nodes cannot store anything 

• Nodes know nothing about the network, including e.g. their degree 

• Nodes cannot explicitly send messages to selected neighbors,  
i.e. nodes can only implicitly communicate by changing their state 

• Operation is asynchronous 

• Randomized next state okay, as long as constant number 

• Nodes cannot compute, e.g. cannot count 



 

One, Two, Many Principle 
Piraha Walpiri 



One, Two, Many Principle 

 

• Not okay 

– while (k < log n) { 

– At least half of neighbors in state s? 

– More neighbors in state s than in state t? 

 

• Okay 

– No neighbor in state s? 

– Some neighbor in state s? 

– At most two neighbors in state s? 
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nFSM solves MIS whp in time O(log2 𝑛) 
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[Emek, Smula, W, in submission, also in arXiv] 



Overview 
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Summary 

 
 
 

                  

 
 
 

 
 
  

 
 

 
 



Thank You! 
Questions & Comments? 
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