
Pilotfish: Distributed Execution for
Scalable Blockchains

Quentin Kniep1, Lefteris Kokoris-Kogias2,3, Alberto Sonnino3,4,
Igor Zablotchi3, and Nuda Zhang5

1 ETH Zurich qkniep@ethz.ch
2 IST Austria

3 Mysten Labs {lefteris,alberto,igor}@mystenlabs.com
4 University College London (UCL)

5 University of Michigan nudzhang@umich.edu

Abstract. Scalability is a crucial requirement for modern large-scale
systems, enabling elasticity and ensuring responsiveness under varying
load. While cloud systems have achieved scalable architectures, blockchain
systems remain constrained by the need to over-provision validator ma-
chines to handle peak load. This leads to resource inefficiency, poor
cost scaling, and limits on performance. To address these challenges,
we introduce Pilotfish, the first scale-out transaction execution engine
for blockchains. Pilotfish enables validators to scale horizontally by dis-
tributing transaction execution across multiple worker machines, allow-
ing elasticity without compromising consistency or determinism. It inte-
grates seamlessly with the lazy blockchain architecture, completing the
missing piece of execution elasticity. To achieve this, Pilotfish tackles sev-
eral key challenges: ensuring scalable and strongly consistent distributed
transactions, handling partial crash recovery with lightweight replication,
and maintaining concurrency with a novel versioned-queue scheduling
algorithm. Our evaluation shows that Pilotfish scales linearly up to at
least eight workers per validator for compute-bound workloads, while
maintaining low latency. By solving scalable execution, Pilotfish brings
blockchains closer to achieving end-to-end elasticity, unlocking new pos-
sibilities for efficient and adaptable blockchain systems.

1 Introduction

A crucial property required by modern large-scale computing is scalability [14],
which refers to a system’s ability to dynamically adapt its performance as load
changes, ensuring that the system remains responsive despite varying load. Scal-
ability is fundamental because it is an essential requirement for elasticity [35],
and thus in turn for a good user experience (e.g., responsiveness) at a sustain-
able cost. Without elasticity, systems either risk being overwhelmed during peak
loads, leading to poor performance and user dissatisfaction, or they incur exces-
sive costs during low-load periods by maintaining unnecessary resources.

Over the past decades, significant effort has been devoted to developing scal-
able software architectures for cloud-based systems [5]. However, the situation is
starkly different for blockchain systems. Among core blockchain tasks, transac-
tion execution is particularly challenging with respect to scalability. The current

2 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

dominant approach to transaction execution in blockchain involves ensuring that
validator machines are sufficiently powerful to handle peak loads [8,53,58]. This
approach is scalable up to a point, but has limitations: (1) it leads to resource
inefficiency, as validators remain over-provisioned during low-load periods; (2) it
has a resource ceiling, as even the most powerful single machine will eventually
be insufficient if the load is high enough; (3) it has poor cost scaling, as high-end
machines are expensive and limited to a few vendors.

In response to these challenges, we introduce Pilotfish, the first scale-out
transaction execution engine for blockchain. The core idea of Pilotfish is to run
each validator on multiple mutually trusting machines or workers, as opposed
to running a single machine per validator. Each worker is only responsible for a
subset of the validator’s state, and only executes a subset of transactions. This
approach opens the way toward elasticity, as it allows scaling each validator out
and in as the load increases and decreases.

Pilotfish is designed to integrate seamlessly with the lazy blockchain archi-
tecture, which is increasingly used by modern blockchains [3,11,12,15,20,30,32,
44,45,56]: as of the time of writing, lazy blockchains account for over $20 billion
in market capitalization [18].Lazy blockchains separate the problems of trans-
action dissemination, ordering, and execution. They provide a scalable solution
to two of the three core blockchain tasks: dissemination (ensuring that client
transactions are available at a quorum of validators) and ordering (establishing
a reliable total order over transactions, also known as consensus). However, as
mentioned above, state-of-the-art lazy blockchains do not solve the execution
scalability problem: their execution is still designed to run on a single machine.

Pilotfish must address several challenges to achieve this. First (i), it must
solve the distributed transaction problem, since the validator state is sharded
across multiple worker machines, and transactions may span multiple shards.
This is especially challenging since blockchains need to guarantee strong consis-
tency (serializability) and determinism, without compromising on latency or
throughput. Most existing approaches to distributed transactions cannot di-
rectly be applied to our setting: (1) the two-phase commit approach [41] guar-
antees strong consistency but is not scalable; (2) the relaxed consistency ap-
proach [19, 38] is scalable but sacrifices strong consistency, which is crucial for
blockchain; (3) the restricted transaction approach [2, 22] is both scalable and
strongly consistent, but sacrifices transaction generality. The most promising ex-
isting solution for our needs is that of deterministic databases [60], which balance
scalability, consistency, and transaction generality. We borrow techniques from
distributed databases and leverage the fact that in lazy blockchains, consensus
precedes—and is decoupled from—execution, so by execution time, validators
have agreed on a permanent ordering of transactions.

Secondly (ii), Pilotfish needs to tolerate workers crashing and recovering. To
address this, Pilotfish maintains sufficient state among workers as checkpoints
to allow recovering machines to catch up with the rest. A straightforward so-
lution would be to resort to strong (and expensive) consensus-based replication
techniques among workers internal to the validator [39, 46, 60]. However Pilot-
fish avoids such overhead by observing that consistency and availability of the
commit sequence are already provided by the blockchain protocol. Thus, Pilot-

Pilotfish: Distributed Execution for Scalable Blockchains 3

fish optimistically does lightweight, best-effort replication between workers, and
relies on recovery from other validators only if optimistic replication fails.

Finally (iii), Pilotfish aims to support a simpler programming model where
transactions may only partially specify their input read and write set (e.g., as
required for Move [43]). This, however, creates an additional challenge for Pi-
lotfish, as objects that might be accessed dynamically at execution time can
be located in different workers. This means that objects cannot be overwritten
until all previous transactions have finished, effectively reverting to sequential
execution and enforcing write-after-write dependencies. This limitation would
reduce the parallelizability of the workload. Pilotfish circumvents this issue by
leveraging its enforced determinism, allowing in-memory execution to be lost
and safely recovered in the event of crashes. Pilotfish relies on a novel versioned-
queue scheduling algorithm that allows transactions with write-after-write con-
flicts to execute concurrently. We couple this with our crash recovery mechanism,
which only persists consistent states. As a result, upon a crash, Pilotfish simply
re-executes a few transactions, but thanks to the deterministic nature of the
blockchain this does not pose any inconsistency risks.

We evaluate Pilotfish by studying its latency and throughput, while varying
the number of workers per validator, the computational intensity, and the degree
of contention of the workload. We find that Pilotfish scales linearly to at least
8 workers per validator when the workload is compute-bound, while keeping
latency under 50 ms.

Discussion. While this work focuses on a scalable protocol for distributed
blockchain transactions, achieving full elasticity poses additional challenges, par-
ticularly in dynamically scaling up and down workers and repartitioning objects.
These aspects, while critical to practical implementations, are well-explored in
existing literature on elastic systems: dynamic workload partitioning [23, 51],
load-aware worker scaling [10,51], and online object migration [19,51].

2 System Model

Pilotfish implements a blockchain validator, composed internally of a black-box
Primary machine, as well as a set of worker machines, simply called workers.
The Primary is responsible for communicating with (the Primaries of) other
validators in order to agree on an ordered sequence of transactions. The workers
collectively execute the ordered sequence of transactions and update the valida-
tor’s state accordingly.

Objects and Transactions. Pilotfish validators replicate the state of the
blockchain represented as a set of objects [57]. Transactions can read and write
(mutate, create, and delete) objects, and reference every object by its unique
identifier oid. A transaction is an authenticated command that references a set
of objects (by their unique identifier oid), and an entry function into a smart
contract call identifying the execution code. The transaction divides the objects
it references into two disjoint sets, (i) the read set R referencing input objects
that the transaction may only read, and (ii) the write set W referencing objects
that the transaction may mutate. In most cases, the identifier oid of each object
of the read and write sets can be computed using only the information provided
by the transaction, without the need to execute it or access any object’s data.

4 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

In these cases, Pilotfish has complete knowledge of the read and write sets of
the transaction. However, Pilotfish also supports dynamic accesses (Section 6)
where the read and write set of a transaction is discovered only upon attempting
to execute the transaction, adopting the execution model of Sui [13].

Network Model. We assume that the Primary and workers communicate by
sending messages over the network through point-to-point connections. We as-
sume that the network is fully connected and reliable: each message sent by a
correct process (i.e., non-faulty machine) to a correct process is eventually deliv-
ered. Furthermore, we assume authenticated channels: the receiver of a message
is aware of the sender’s identity.

Synchrony Model. We consider the standard partially synchronous environ-
ment [25]. Specifically, there exists an unknown Global Stabilization Time (GST)
and a positive known duration δ such that message delays are bounded by δ af-
ter GST: a message sent at time τ is received by time max(τ,GST) + δ. It has
been shown that in partial synchrony, crash failures can eventually be perfectly
detected [1, 17], thus we assume an eventually perfect failure detector.

Threat Model. We assume that each validator is controlled by a single en-
tity, or by a set of mutually trusting entities. This implies that the Primary
and workers trust each other, and we therefore only consider crash failures for
components internal to the validator (a validator as a whole may still exhibit
Byzantine behavior in its interaction with other validators, but tolerating such
failures is handled by the blockchain protocol, which is outside the scope of this
work). For this reason, we do not require any cryptography assumptions, other
than the authenticated channels.6 For pedagogical reasons, for the first part of
the paper we assume that workers cannot fail. Later in Section 5, we expand
each logical worker to have a set of ne = 2fe + 1 replicas such that as long as
for each worker there are fe + 1 replicas available the system remains live and
safe.7 In case this threshold is breached the validator can still synchronize with
the rest of the validators of the lazy blockchain through a standard recovery
procedure [20] that is out of scope.

Core Properties. Appendix B proves that Pilotfish guarantees serializability,
determinism, and liveness. Intuitively, serializability means that Pilotfish exe-
cution produces the same result as a sequential execution. Determinism means
that every correct validator receiving the same sequence of transactions performs
the same state transitions. Liveness means that all correct validators receiving
a sequence of transactions eventually execute it.

Definition 1 (Pilotfish Serializability). A correct validator executing the
sequence of transactions [Tx1, . . . ,Txn] holds the same state as if the transactions
were executed sequentially, in the given order.

6 Our network, synchrony, trust and cryptography assumptions only apply internally
to the validator. By contrast, the outer blockchain protocol, which governs how
validators interact with each other, may make entirely different assumptions on syn-
chrony and types of failures and thus may require stronger cryptography primitives.

7 Here, fe refers to the number of replicas that may crash per logical worker, internally
to the validator ; in particular, fe may be different from the number of validators in
the blockchain that may be Byzantine (usually denoted by f).

Pilotfish: Distributed Execution for Scalable Blockchains 5

Definition 2 (Pilotfish Determinism). No two correct validators that exe-
cuted the same sequence of transactions [Tx1, . . . ,Txn] have different states.

Definition 3 (Pilotfish Liveness). Correct validators receiving the sequence
of transactions [Tx1, . . . ,Txn] eventually execute all transactions Tx1, . . . ,Txn.

3 Existing Designs & Pilotfish Overview

3.1 Previous Designs

Previous designs for scaling execution in lazy blockchains fall into two categories.
The first is parallel execution [13, 31, 47], where each validator uses a high-end
server to handle increased load. This approach lacks elasticity: the cost of running
a powerful validator remains high regardless of actual load, leading to inefficiency
during low usage and performance ceilings due to finite server resources.

The second category employs inter-validator sharding [4, 6, 9, 21, 33, 34, 37,
54, 56], in which the blockchain state is split into shards, with a subset of the
validators handling each shard in parallel. However, inter-validator sharding has
limitations related to security and performance. Firstly, sharding requires a sam-
pling process from the full validator set to subsets of validators per shard, such
that each shard has more than 2/3 honest members. These systems are thus
less robust to adversarial attacks. For example Omniledger [37] assumes a 25%
Byzantine adversary in order to provide sufficient 34% security in all the sub-
sampled shards. In the same vein, the adversary’s adaptivity should be limited to
once an epoch, as otherwise the adversary could target all its power in a single
shard and compromise it. Finally, sharding is also challenging from a perfor-
mance perspective, as transactions that span multiple shards require expensive
and slow Byzantine-resilient atomic commit protocols [54].

3.2 Intravalidator Sharding with Pilotfish

Through Pilotfish, we instead propose intravalidator sharding, as illustrated
in Figure 1. Each validator consists of multiple SequencingWorkers that col-
lect transaction data based on the commit sequence from the Primary, similar
to transaction dissemination workers in lazy blockchains like Tusk [20], Bull-
shark [32], and Shoal [55]. Pilotfish innovates by distributing transaction exe-
cution on several ExecutionWorkers. Each ExecutionWorker stores a subset of
the state, executes a subset of the transactions, and contributes its memory and
storage to the system.

In Pilotfish, the Primary only manages metadata (agreement on a sequence
of batch digests) allowing it to scale to large volumes of batches and transac-
tions [20]. Actual batch storage is distributed among a potentially large num-
ber of SequencingWorkers. The key insight is that transaction execution is also
distributed among numerous ExecutionWorkers, enabling horizontal scaling. As
workers are added, the capacity to store state and process transactions increases.

Sharding strategy. Pilotfish uses its SequencingWorkers and its Execution-
Workers to operate two levels of sharding. (i) Pilotfish shards transaction data
among its SequencingWorkers. Transactions batches (and thus clients’ transac-
tions) are assigned to SequencingWorkers deterministically based on their digest.

6 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

SequencingWorker

SequencingWorker

SequencingWorker

Primary

ExecutionWorker

ExecutionWorker

ExecutionWorker

Primaries of other
validators

Txs

Committed sequence Committed sequence

State

State

Fig. 1: Pilotfish validator’s components. Each validator is composed of several Sequenc-
ingWorkers to fetch and persist the client’s transaction, one Primary to run Byzantine
agreement on metadata, and several ExecutionWorkers to execute transactions. Each
component may run on dedicated machines or be collocated with other components.
Dotted arrows indicate internal messages exchanged between the components of the
validator (localhost or LAN) and solid arrows indicate messages exchanged with the
outside world (WAN).

SequencingWorker can be seen as architecturally equivalent to the worker ma-
chines used by lazy blockchains to decouple dissemination (performed by work-
ers) from ordering (performed by the Primary). All transactions of a batch are
persisted by the same SequencingWorker. Each SequencingWorker maintains a
key-value store Batches[BatchId]→ Batchmapping the batch digests BatchId to
each batch handled by the SequencingWorker. (ii) Additionally, Pilotfish shards
its state among its ExecutionWorkers. Each ExecutionWorker is responsible for
a disjoint subset of the objects in the system (composing the state); objects are
assigned to ExecutionWorkers based on their collision-resistant identifier oid.
Every object in the system is handled by exactly one (logical) ExecutionWorker.

4 The Pilotfish System

Figure 2 shows the transaction life cycle in Pilotfish, from sequencing to execu-
tion. The Primary sends the committed sequence to all SequencingWorkers and
ExecutionWorkers (➊). Below, we outline the core Pilotfish protocol at steps ➋,
➌, ➍, and ➎ of Figure 2. Appendix A presents the full algorithms.

ExecutionWorkers maintain the following key-value stores:
– Objects[oid] → o making all the objects handled by the ExecutionWorker

accessible by their unique identifier.
– Pending[oid]→ [(op, [Tx])] mapping each object to a list of pending trans-

actions [Tx] referencing oid in their read or write set and that are awaiting
execution. The operation op indicates whether the transaction may only
Read (R) the object or whether it may also write (W) it. This map is used
as a ‘locking’ mechanism to track dependencies and determine which trans-
actions can be executed in parallel. Entries relating to a transaction are
removed from this map after its execution.

– Missing[oid]→ [Tx] mapping objects that are missing from Objects to the
transactions that reference them. It is used to track transactions that cannot

Pilotfish: Distributed Execution for Scalable Blockchains 7

primary

dispatch

dispatch

schedule
schedule
schedule
schedule

dispatch
dispatch

exec
exec
exec
exec

1 2 3 4

w1

w2

w3

w\4

consensusvalidator

result
result
result
result

5

validator
validator

validator

Fig. 2: Pilotfish overview. Every validator runs with 5 machines: one machine running
the Primary and 4 machines running workers. Each worker machine collocates 1 Se-
quencingWorker and 1 ExecutionWorker. The Primary runs a Byzantine agreement
protocol to sequence batch digests (➊). SequencingWorkers receive the committed se-
quence and load the data of the corresponding transactions from their storage (➋).
Each ExecutionWorkers receiving these transactions assigns a lock to each object ref-
erenced by the transaction to schedule their execution (➌). A deterministically-selected
ExecutionWorker eventually receives the object’s data referenced by the execution and
executes it (➍). Finally, the ExecutionWorker signals all SequencingWorkers to update
their state with the results of the transaction’s execution (➎).

(yet) be executed because they reference objects that are not yet available.
It is cleaned after execution.

Step ➋: Dispatch transactions. At a high level, each SequencingWorker i
observes the commit sequence and loads from storage all the batches referenced
by the committed sequence that they hold in their Batchesi store (and ignores
the others). The SequencingWorker then parses each transaction of the batch (in
the order specified by the batch) to determine which objects it contains. At the
end of this process, SequencingWorker i composes one ProposeMessage for each
ExecutionWorker j of the validator: ProposeMessagei,j ← (BatchId,BatchIdx,
T). The message contains the batch digest BatchId, an index BatchIdx uniquely
identifying the batch in the global committed sequence and a list of transactions
T referencing at least one object handled by worker j. If no transactions affect
worker j, the worker still receives an empty message so it can proceed.

Step ➌: Schedule execution. Each ExecutionWorker j awaits one ProposeMessage
from each SequencingWorker. It then parses every transaction Tx included (in
order) and extracts objects in Tx’s read set Rj and write set Wj managed by
ExecutionWorker j (and ignores the other objects that it does not handle).

Figure 3 illustrates an example snapshot of the Pendingj store of a valida-
tor. ExecutionWorkers append every object of the write set Wj to their local
Pendingj indicating that Txmay mutate oid:Pendingj [oid]← Pendingj [oid]∪
(W,Tx). The position of Tx in the Pendingj indicates that Tx can only write oid
after all transactions appended before in Pendingj [oid] are executed, essentially
indicating a write-after-write (or write-after-read) dependency.

ExecutionWorkers additionally register reads performed by Tx on an object
id by looking at the latest entry in Pendingj [oid]. If the entry is a write then
they append a new entry: Pendingj [oid]← Pendingj [oid]∪(R,Tx), indicating a
read-after-write dependency. However, if the entry is a read then the transaction

8 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

W, [Tx1]
W, [Tx2]

R, [Tx3, Tx4] W, [Tx2]
W, [Tx5]

O1 O2 O3

Tx1

R: {O1}
W: {O1}

Tx2

R: {O1}
W: {O1, O3}

Tx3

R: {O1, O2}
W: {O4}

Tx4

R: {O2, O3}
W: {O4}

Tx5

R: {O1, O3}
W: {O2, O3}

W, [Tx3]

O4

R, [Tx3, Tx5]
R, [Tx4]
W, [Tx5]

W, [Tx4]

Fig. 3: Example snapshot of the Pending queues of an ExecutionWorker. Pilotfish
schedules the execution of the sequence [Tx1,Tx2,Tx3,Tx4,Tx5]. The ExecutionWorker
stores Tx1 as (W, [Tx1]) in the queue of oid1 as it only mutates oid1. Tx2 then mutates
oid1 and writes oid3; it is thus store in the queue of oid1 (implicitly taking Tx1 as
dependency) and oid3. Tx3 schedules a read for both oid1 and oid2 and a write for oid4.
Tx4 reads oid2 (it can thus read oid2 in parallel with Tx3, registering (R, [Tx3,Tx4]) in
the queue of oid2) and oid3, and writes oid4. Finally Tx5 reads oid1 (it can thus read
oid1 in parallel with Tx3), writes oid2 and mutates oid3.

Tx may be executed in parallel with any other transaction Tx′ also reading oid.
ExecutionWorkers thus modify the latest entry of the storage to reflect this
possibility by setting Tx and Tx′ at the same height in the Pendingj store:
Pendingj [oid][−1]← (R, [Tx′,Tx]).

A transaction Tx is ready to be executed when it reaches the head of the pend-
ing lists of all the objects it references. At this point, the ExecutionWorker loads
from itsObjectsj store all the objects data it handles:Oj ← {Objects[oid] s.t.
oid ∈ HandledObjects(Tx)}. It then composes a ReadyMessage for the ded-
icated ExecutionWorker that was selected to execute Tx: ReadyMessagej ←
(Tx, Oj). The message contains the transaction Tx to execute, and a list of
object data (Oj) referenced by the part of the read and write set of Tx handled
by ExecutionWorker j.

If an object referenced by Tx is absent from the ExecutionWorker’s local
Objectsj store, the ExecutionWorker waits until it all transactions sequenced
before Tx are executed and then sends ⊥ instead of the object’s data. This signals
that Tx is malformed and references non-existent objects or objects that should
have been created but the origin transaction failed.

Step ➍: Execute transactions. Upon receiving a ReadyMessage message, an
ExecutionWorker waits for one ReadyMessage from all other ExecutionWork-
ers handling at least one object referenced by Tx. At this point, the set of
ReadyMessage provides the ExecutionWorker with the objects’ data behind all
objects referenced by Tx (or⊥ if missing). If all object data are available, Tx is ex-
ecuted; otherwise, it is aborted. Executing a transaction produces a set of objects
to mutate or create O and a set of object ids to delete I: (O, I)← exec(Tx, O′).
The ExecutionWorker then prepares a ResultMessage for all ExecutionWorkers.
For ExecutionWorkers whose objects are not affected by Tx this serves as a heart-
beat message whereas for those whose objects are mutated, created or deleted by

Pilotfish: Distributed Execution for Scalable Blockchains 9

the transaction execution it informs them to update their object store Objects
accordingly. If Tx aborts, the worker sends a ResultMessage with empty O, I.

Step ➎: Handle results. When an ExecutionWorker receives a ResultMessage,
it: (i) persists locally the fact that the transaction has been executed by advanc-
ing a watermark keeping track of all executed transactions; (ii) updates each
object into its local Objects store including deletions; and (iii) removes all oc-
currences of the transaction from its Pending store. It then tries to trigger the
execution of the next transactions in the queues.

5 Crash Fault Tolerance

Section 4 presents the design of Pilotfish assuming all data structures are in-
memory. However, critical validator components inevitably fail over time. To
handle this, Pilotfish adopts a simple replication architecture, dedicating mul-
tiple machines to each ExecutionWorker. This internal replication allows the
validator to continue operating despite crash faults. Pilotfish does not replicate
the Primary, which handles only lightweight operations (and holds the signing
key), nor does it replicate SequencingWorkers, which perform stateless work and
can be rebooted from the latest persisted sequence number. We briefly detail
our replication protocol here and defer more details to Appendices C and D.

5.1 Internal Replication

Figure 4 illustrates the replication strategy of Pilotfish. Each ExecutionWorker
is replaced by ne = 2fe+1 ExecutionWorkers. Pilotfish tolerates up to fe simul-
taneous crash faults in a set of ne replicated ExecutionWorkers. These replicas
form a grid: each column represents replicas of a single shard; each row is a clus-
ter containing exactly one replica from each shard. Within each cluster, workers
exchange reads and maintain a consistent view of the object store.

The näıve way to achieve such reliability would be to run a black-box replica-
tion engine like Paxos [39] which is also the proposal of the state-of-the-art [60].
Pilotfish however greatly simplifies this process by leveraging (i) the Primary as
a coordinator between the workers’ replicas, (ii) external validators holding the
blockchains state and the commit sequence, and (iii) the fact that execution is
deterministic (given the commit sequence).

5.2 Normal Operation

Within each cluster, replicated ExecutionWorkers run the same core protocol as
the unreplicated case. Inter-cluster communication is minimal, except for check-
point updates. To enable recovery, each worker keeps: (1) a buffer of outgoing
ReadyMessage instances (the reads it has served), which can be replayed if mes-
sages are lost, and (2) a set of checkpoints, each representing a consistent, on-disk
snapshot of the local object store. Checkpoints are the only persistent state.

Garbage collection. Once a checkpoint is deemed stable—i.e., a quorum of
fe + 1 replicas in every shard confirm they have persisted a checkpoint after a
certain transaction index—old checkpoints and buffered messages prior to that
index are garbage-collected.

Bounding memory use. Even with garbage collection, differences in execution
speeds of workers can prevent checkpoints from being safely garbage-collected,

10 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

EW
1-1

EW
2-1

EW
p-1

EW
1-n

EW
2-n

EW
p-n

checkpointed
messaged

cluster 1

cluster n

shard 1 shard p

Fig. 4: Replication scheme for ExecutionWorkers. The object store is partitioned into
shards, and each shard is replicated ne-fold. Each row represents a cluster, and Ex-
ecutionWorkers within a cluster coordinate to process transactions. During normal
operation, the only communication between clusters is the sending of checkpoints.

and thus lead to unbounded memory use. To prevent this, Pilotfish enforces a
maximum of c checkpoints per worker. If a worker reaches this limit (e.g., c = 2),
it must pause execution until it can safely discard an older checkpoint. This
prevents unlimited checkpoint buildup and ensures that clusters can proceed
without one shard outpacing the others indefinitely. Typically, c = 2 strikes a
balance between performance and resource usage, letting faster clusters keep
going as long as they are within one checkpoint boundary of slower ones.

5.3 Failure Recovery

Pilotfish uses two mechanisms to recover from failures: (1) reconfiguration, a
rapid process that does not reduce the system’s throughput, but requires roughly
synchronized clusters; and (2) checkpoint synchronization, a slower procedure
that coordinates multiple clusters if reconfiguration fails. If both approaches
fail, the system can still recover from other blockchain validators.

Recovery through reconfiguration.When an ExecutionWorker crashes, work-
ers which rely on it for reads may be unable to proceed. They detect the crash and
establish a new connection with a replacement replica. Typically, this requires
just two round trips: one to identify a new node that can provide reads, and
another to complete the handshake. Other clusters keep executing, so through-
put remains unaffected as long as the failure threshold fe is not exceeded. Ap-
pendix D contains the full algorithm.

Recovery through checkpoint synchronization. If a worker is too far be-
hind for reconfiguration alone, it triggers a synchronization process for itself and
its peers, which fetch the latest checkpoint from an up-to-date replica. Once
all peers reach the same state, the worker re-establishes missing members in its
cluster (via reconfiguration). This cascades recovery across clusters that depend
on the slow worker, ensuring no cluster loses liveness if another shard “fast-
forwards” its state.

Disaster recovery. If an entire cluster is lost beyond the threat model of Sec-
tion 2, the system can recover by booting a new cluster with the same peers
set. This new cluster retrieves the system state from other validators, which

Pilotfish: Distributed Execution for Scalable Blockchains 11

store stable checkpoints. Though it requires wide-area network communications
and is slower, this worst-case path ensures Pilotfish remains operable even with
minimal replication (e.g., fe = 1).

6 Dynamic Reads and Writes

In most deterministic execution engines [27,29,47,60], transactions must specify
the exact data they read and write. This constraint limits developers and en-
courages the over-prediction of read/write sets to ensure successful execution. In
distributed execution, the problem is exacerbated by the need to transmit the
data between ExecutionWorkers. This means that we might need to transmit
large read/write sets between computers in order to access a single item (e.g.,
transfer a full array to dynamically access one cell).

Pilotfish supports dynamic reads/writes but confines them to parent-child
object hierarchies. A child object is an object that is owned by another object,
the parent. An example parent-child relationship is that between a dynamically
allocated array and its individual cells.

In Pilotfish, a child object can only be accessed if the root object (the top-
level object in a hierarchy of potentially numerous parents) is included in the
transaction and the transaction has permission to access the root. This setup
avoids overpredictions by allowing transactions to handle unexpected data ac-
cesses with minimal algorithmic changes.

One of the required modifications is to retain the reads in the queues until the
transaction execution is completed. However, this leads to a loss of parallelism
since we are unable to write a new version of an object until all transactions
reading the previous version have finished. We resolve this false sharing situation
without bloating memory usage in two ways. First, we treat every version of
an object as a new object; this means that the queues in Figure 3 are per
(oid,Version) instead of per oid. Therefore, each queue consists of a single write
as the initial transaction, followed by potentially several reads. This resolves
the false sharing as future versions of an object initialize new queues and can
proceed independently of whether the previous version is still locked because of
a dynamic read operation. Unfortunately, this leads to objects potentially being
written out of order, which could pollute our state and make consistent recovery
from crashes impossible. For this reason, our second modification is buffering
writes so that they are written to disk in order by leveraging the crash-recover
algorithm in Section 5. Appendix E provides further details on how we handle
child objects, complete algorithms, and formal proofs.

Algorithm modifications. Pilotfish handles the state of child objects like any
other object: they are assigned to ExecutionWorkers that maintain their pend-
ing queues. The ExecutionWorkers schedule the execution of root objects as
usual after processing a ProposeMessage (Algorithm 2) by updating the queues
of all the objects that the transaction directly references. This means that they
update the queues of (potentially) root objects as well as the queues of (poten-
tially currently undefined) child objects. The security of this process is ensured
by following the same procedure as for object creation. Hence, the Execution-
Worker will either create these objects or garbage-collect them. Finally, when
the transaction is ready for execution, either a previous transaction would have

12 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

transferred ownership of child objects to the parent or the transaction would
abort at execution.

On receiving a ReadyMessage, the ExecutionWorker starts execution. If it
detects a new child object, it pauses and sends a UpdateProposeExec carrying an
augmented transaction Tx+, which includes the child objects ID in its read/write
sets. This UpdateProposeExec message is sent to shards handling one of the
(newly discovered) child objects. This is safe because the parent is already locked,
implicitly locking the child. If the transaction is not done, subsequent parent
writes go to distinct queues, enabling on-demand multi-version concurrency.

Upon receiving UpdateProposeExec with Tx+ , the ExecutionWorker replaces
Tx in its queues with Tx+ and adds Tx+ to the queues of any newly discovered
child objects. When Tx+ reaches the front of every involved queue, it re-attempts
execution. Eventually, the protocol identifies every child object that the trans-
action dynamically accesses, and Tx+ contains their explicit ids. At this point,
the transaction execution can terminate successfully.

7 Implementation

We implement a networked multi-core Pilotfish execution engine in Rust on
top of the Sui blockchain [42]. As a result, our implementation supports Sui-
Move [43]. We made this choice because Sui-Move is a simple and expressive
language that is easy to reason about, provides a well-documented transaction
format explicitly exposing the input read and write set, and supports dynamic
reads and writes. Our implementation uses tokio [62] for asynchronous network-
ing across the Pilotfish workers, utilizing low-level TCP sockets for communica-
tion without relying on any RPC frameworks. While all network communications
in our implementation are asynchronous, the core logic of the execution worker
runs synchronously in a dedicated thread. This approach facilitates rigorous test-
ing, mitigates race conditions, and allows for targeted profiling of this critical
code path. In addition to regular unit tests, we created a command-line util-
ity (called orchestrator) designed to deploy real-world clusters of Pilotfish with
workers distributed across multiple machines. The orchestrator has been instru-
mental in pinpointing and addressing efficiency bottlenecks. We will open-source
our Pilotfish implementation along with its orchestration utilities.8.

8 Evaluation

We evaluate the performance of Pilotfish through experiments on Amazon Web
Services (AWS) to show that given a sufficiently parallelizable compute-bound
load, the throughput of Pilotfish linearly increases with the number of Execution-
Workers without visibly impacting latency. In order to investigate the spectrum
of Pilotfish, we (a) run with transactions of increasing computational load and
(b) create a contented workload that is not ideal for Pilotfish as it (i) increases
the amount of communication among ExecutionWorkers and (ii) might increase
the queuing delays in order to unblock later transactions. We show the perfor-
mance improvements of Pilotfish over the baseline execution engine of Sui [42].

8 https://github.com/mystenlabs/sui/tree/sharded-execution

https://github.com/mystenlabs/sui/tree/sharded-execution

Pilotfish: Distributed Execution for Scalable Blockchains 13

0 20k 40k 60k 80k
Throughput (tx/s)

0

20

40
La

te
nc

y
(m

s)

1 EW
2 EW

4 EW
8 EW

(a)

1 2 4 8
Execution Workers

0K

20K

40K

60K

Th
ro

ug
hp

ut
 (

tx
/s

) Pilotfish Sui Baseline

(b)

Fig. 5: Pilotfish latency vs throughput (a) and scalability (b) with simple transfers.

0 5k 10k 15k
Throughput (tx/s)

0

50

100

150

200

La
te

nc
y

(m
s)

1 EW
2 EW

4 EW
8 EW

(a) Fib-2500

0 2k 4k 6k 8k 10k
Throughput (tx/s)

0

50

100

150

200

La
te

nc
y

(m
s)

1 EW
2 EW

4 EW
8 EW

(b) Fib-5000

0 1k 2k 3k 4k 5k
Throughput (tx/s)

0

50

100

150

200

La
te

nc
y

(m
s)

1 EW
2 EW

4 EW
8 EW

(c) Fib-10000

Fig. 6: Pilotfish latency vs. throughput for the heavy computation workloads.

8.1 Experimental Setup

We deploy Pilotfish on AWS, using m5d.8xlarge within a single datacenter (us-
west-1). Each machine provides 10 Gbps of bandwidth, 32 virtual CPUs (16
physical cores) on a 2.5GHz, Intel Xeon Platinum 8175, 128GB memory, and
runs Linux Ubuntu server 22.04. We select these machines because they provide
decent performance, and are in the price range of ‘commodity servers’.

In all graphs, each data point represents median latency/throughput over
a 5-minute run. We instantiate one benchmark client collocated with each Se-
quencingWorker submitting transactions at a fixed rate for a duration of 5 min-
utes. We experimentally increase the load of transactions sent to the systems,
and record the throughput and latency of executed transactions. As a result, all
plots illustrate the ‘steady state’ latency of all systems under low load, as well as
the maximal throughput they can serve, after which latency grows quickly. We
vary the types of transactions throughout the benchmark to experiment with
different contention patterns.

When referring to latency, we mean the time elapsed from when the client
submits the transaction until the transaction is executed. By throughput, we
mean the number of executed transactions over the entire duration of the run.

8.2 Simple Transfer Workload

In this workload, each transaction is a simple transfer of coins between objects.
No two transactions conflict; each transaction operates on a different set of ob-
jects from the other transactions. Thus, this workload is completely paralleliz-
able. Figure 5a shows latency vs throughput of Pilotfish on this workload with

14 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

1 2 4 8
Execution Workers

0K

5K

10K

15K

Th
ro

ug
hp

ut
 (

tx
/s

)

F2500
F5000
F10000

Sui Baseline F2500
Sui Baseline F5000
Sui Baseline F10000

(a)

1 2 4 8
Execution Workers

0K

10K

20K

30K

40K

Th
ro

ug
hp

ut
 (

tx
/s

)

Cont-10
Cont-100
Cont-1000

(b)

Fig. 7: (a) Pilotfish scalability with computationally heavy transactions. F{X} means
that each transaction computes the X-th Fibonacci number. The horizontal lines show
the single-machine throughput of the baseline on the same workloads. (b) Pilotfish
scalability with condended transaction. Each transaction increments a counter. Cont-X
means that for each counter we submit X increment transactions.

0 10k 20k 30k
Throughput (tx/s)

0

20

40

La
te

nc
y

(m
s)

1 EW
2 EW

4 EW
8 EW

(a) 10 transactions/counter

0 10k 20k 30k
Throughput (tx/s)

0

50

100

150

200

La
te

nc
y

(m
s)

1 EW
2 EW

4 EW
8 EW

(b) 100 transactions/counter

0 10k 20k 30k
Throughput (tx/s)

0

200

400

600

La
te

nc
y

(m
s)

1 EW
2 EW

4 EW
8 EW

(c) 1000 transactions/counter

Fig. 8: Pilotfish latency vs throughput for the contended workloads. Please note the
different y axis ranges between the three cases.

1, 2, 4 and 8 ExecutionWorkers, and Figure 5b shows how Pilotfish’s maximum
throughput scales when varying the number of ExecutionWorkers.

Figure 5b includes as baseline the throughput of the Sui execution engine.9

Since the Sui transaction manager currently relies on stable storage, whereas Pi-
lotfish is in-memory, this baseline is a lower bound on the expected performance
of our system, when using a single ExecutionWorker.

We observe that in all cases, Pilotfish maintains a 20ms latency envelope for
this workload. Note that latency exhibits a linear increase as the workload grows
for a single ExecutionWorker, primarily because of transaction queuing. More
specifically, we see that a single machine does not have enough cores to fully
exploit the parallelism of the workload, so some transactions must wait to get
scheduled. This effect no longer exists for higher numbers of ExecutionWorkers,
showing that more hardware has a beneficial effect on service time.

Pilotfish scales up to around 60k tx/s. In contrast, the Sui baseline can only
process around 20k tx/s as it cannot leverage the additional hardware. Pilotfish
thus exhibits a 3× throughput improvement over the baseline.

9 We obtain the baseline by running Sui’s single node benchmark with the
with-tx-manager option.

Pilotfish: Distributed Execution for Scalable Blockchains 15

Pilotfish’s scalability is not perfectly linear in this workload; in particular, it
becomes less steep after 2 ExecutionWorkers. This is because the simple trans-
fers workload is computationally light, and so the system is not compute-bound.
Thus adding more resources no longer improves performance proportionally. Sec-
tion 8.3 illustrates the advantages of increasing the number of ExecutionWorkers
further when the workload is compute-bound.

8.3 Computationally-Heavy Workload

We study the scenario when the workload remains compute-bound even at higher
numbers of ExecutionWorkers. In this workload, transactions are computation-
ally heavy. To achieve this, each transaction merges two coins and then iteratively
computes the Xth Fibonacci number, where X is a configurable parameter. We
study the behavior of Pilotfish for X ∈ {2500, 5000, 10000}. This workload is
also perfectly parallel: transactions operate on disjoint sets of coins and thus do
not conflict. Figure 6 and Figure 7a show the results: latency vs throughput and
throughput scalability of Pilotfish, respectively. Figure 7a includes the behavior
of Sui on the same workloads, as a baseline.

As expected the performance of Pilotfish is on par with the Sui baseline for
all three computation intensities when running on a single ExecutionWorker.
However, when computing resources are the bottleneck, Pilotfish scales linearly
as more resources are added to the system. As a result, Pilotfish can process
20k, 10k, and 5k tx/s when setting X = 2500, X = 5000, and X = 10000,
respectively, while maintaining the latency at around 50 ms. In contrast, the
throughput of the baseline execution engine of Sui remains set to a maximum of
2,5k, 1k, and 500 tx/s (with respectively X = 2500, X = 5000, and X = 10000)
as it is unable to take advantage of the additional hardware. As a result, Pilotfish
can process about 10x more transactions than the Sui baseline.

8.4 Contended Workload

We study the behavior of Pilotfish when the workload is no longer perfectly
parallelizable. To achieve this, we introduce contention by making transactions
operate on non-disjoint sets of objects. More concretely, in this workload each
transaction increments a counter; for each counter, we generate a configurable
number Y of transactions that increment it. Thus, on average, each transaction
needs to wait behind Y/2 other transactions in its counter’s queue, before being
able to execute. In our experiments, Y ∈ {10, 100, 1000}. The results are shown in
Figure 8 and Figure 7b. Pilotfish reaches a throughput of 35k, 30k, and 22k tx/s
for Y = 10, Y = 100, and Y = 1000 when operating with 4 ExecutionWorkers.
For this workload, for technical reasons,10 we could not include a Sui baseline.

As expected, we observe that as we increase contention, latency increases due
to queueing (up to 500ms for Y = 1000) and throughput decreases. Nonetheless,
Pilotfish is able to scale to 4 ExecutionWorkers. Similarly to the simple transfer
workload (Section 8.2), this workload is not compute-bound, so adding compute
beyond 4 ExecutionWorkers no longer improves performance proportionally.

10 In Sui, each transaction expects object references for all input objects. Each object
reference is computed based on the last transaction to modify the object. Therefore,
it is difficult to pre-generate more than one valid transaction for the same object,
before the experiment starts, because correct object references cannot be predicted.

16 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Table 1: Comparison against existing deterministic approaches

Distributed
Crash

Tolerance
Dynamic
RW Set

No CC
Aborts

Bohm [27] ✗ ✗ ✗ ✓
PWV [28] ✗ ✓ ✗ ✓
QueCC [49] ✗ ✗ ✗ ✓
SLOG [50] ✓ ✓ ✗ ✗
Q-Store [48] ✓ ✓ ✗ ✓
Calvin [61] ✓ ✓ ✗ ✓
Aria [40] ✓ ✓ ✓ ✗
Lotus [63] ✓ ✓ ✓ ✗

Pilotfish (this work) ✓ ✓ ✓ ✓

9 Related Work

Parallel blockchain executors. The main proposals in this area are those of
Solana [52], Aptos [31], and Sui [13]. Solana [52] requires every transaction to
fully specify its read and write sets, so it cannot support dynamic accesses in
the same way as Pilotfish. Aptos uses the Block-STM [31] system for parallel
transaction execution. Block-STM is designed with a focus on single-machine,
multi-threaded performance, and it is unclear how or if its design can be ex-
tended to the scale-out, distributed deployment that Pilotfish targets. For in-
stance, Block-STM executes transactions speculatively, and retries transactions
which fail validation. This approach works well in a shared memory environment,
where retries are relatively inexpensive, but it is not clear if it can be applied
in a distributed environment, where retries are much more costly due to higher
communication latency. Futhermore, BlockSTM focuses on a per-block execu-
tion model which requires large blocks to optimize throughput, at the expense of
latency. By contrast, Pilotfish uses a streaming execution model that allows for
low latency regardless of throughput. Finally, Sui [13] implicitly handles synchro-
nization and scheduling through the tokio runtime [62]: a tokio task is spawned
for each Sui transaction; this task waits for the transaction’s dependencies to be
satisfied (i.e. the required object versions to be available), and then executes the
transaction in parallel with other tasks. It is unclear how to directly extend this
approach to multiple machines, as required by Pilotfish.

Deterministic databases. Pilotfish is similar to deterministic database sys-
tems [59] that employ an order-then-execute approach. Table 1 summarizes the
main differences between Pilotfish and existing deterministic approaches. As
Table 1 shows, Pilotfish is the first distributed, crash fault tolerant determin-
istic execution engine that tolerates partially unspecified read/write sets and
eliminates concurrency-control-related aborts. The closest works to Pilotfish are
Calvin [60], Aria [40] and Lotus [63]. Calvin [61] proposes the use of consensus
to address crashes, which in our setting is overkill since the blockchain already
provides sufficient determinism to recover without strong coordination. Aria and
Lotus differ from Pilotfish by not establishing a total order on transactions be-
fore execution, which can lead to some transactions aborting due to conflicts;
such transactions have to be retried later, increasing latency.

Pilotfish: Distributed Execution for Scalable Blockchains 17

References

1. Aguilera, M.K., Chen, W., Toueg, S.: Failure detection and consensus in the crash-
recovery model. Distributed Comput. 13(2), 99–125 (2000)

2. Aguilera, M.K., Merchant, A., Shah, M.A., Veitch, A.C., Karamanolis, C.T.: Sinfo-
nia: A new paradigm for building scalable distributed systems. ACM Trans. Com-
put. Syst. 27(3), 5:1–5:48 (2009). https://doi.org/10.1145/1629087.1629088,
https://doi.org/10.1145/1629087.1629088

3. Al-Bassam, M.: Lazyledger: A distributed data availability ledger with client-side
smart contracts. arXiv preprint arXiv:1905.09274 (2019)

4. Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., Danezis, G.: Chainspace: A
sharded smart contracts platform. arXiv preprint arXiv:1708.03778 (2017)

5. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Elasticity in cloud computing:
State of the art and research challenges. IEEE Trans. Serv. Comput. 11(2), 430–
447 (2018)

6. Amiri, M.J., Agrawal, D., Abbadi, A.E.: Sharper: Sharding permissioned
blockchains over network clusters. In: SIGMOD ’21: International Conference on
Management of Data, Virtual Event, China, June 20-25, 2021. pp. 76–88. ACM
(2021), https://doi.org/10.1145/3448016.3452807

7. Aptos: Aptos. https://aptoslabs.com (2024)
8. Aptos Node Requirements. https://aptos.dev/en/network/nodes/validator-

node/node-requirements, accessed: 2024-08-02
9. Avarikioti, Z., Desjardins, A., Kokoris-Kogias, L., Wattenhofer, R.: Divide & scale:

Formalization and roadmap to robust sharding. In: International Colloquium on
Structural Information and Communication Complexity. pp. 199–245. Springer
(2023)

10. Automatically manage Amazon ECS capacity with cluster auto scaling.
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-
auto-scaling.html, accessed: 2024-08-02

11. Babel, K., Chursin, A., Danezis, G., Kokoris-Kogias, L., Sonnino, A.: Mysticeti:
Low-latency dag consensus with fast commit path. arXiv preprint arXiv:2310.14821
(2023)

12. Bagaria, V., Kannan, S., Tse, D., Fanti, G., Viswanath, P.: Prism: Deconstruct-
ing the blockchain to approach physical limits. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. pp. 585–602
(2019)

13. Blackshear, S., Chursin, A., Danezis, G., Kichidis, A., Kokoris-Kogias, L., Li, X.,
Logan, M., Menon, A., Nowacki, T., Sonnino, A., et al.: Sui lutris: A blockchain
combining broadcast and consensus. arXiv preprint arXiv:2310.18042 (2023)

14. Bondi, A.B.: Characteristics of scalability and their impact on performance. In:
Second International Workshop on Software and Performance, WOSP 2000, Ot-
tawa, Canada, September 17-20, 2000. pp. 195–203. ACM (2000). https://doi.
org/10.1145/350391.350432, https://doi.org/10.1145/350391.350432

15. Celestia: The first modular blockchain network. https://celestia.org (2022)
16. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving

consensus. J. ACM 43(4), 685–722 (jul 1996). https://doi.org/10.1145/234533.
234549, https://doi.org/10.1145/234533.234549

17. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (mar 1996). https://doi.org/10.1145/226643.
226647, https://doi.org/10.1145/226643.226647

18. CoinMarketCap. http://www.coinmarketcap.com, accessed: 2024-08-02
19. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P.,

Jacobsen, H., Puz, N., Weaver, D., Yerneni, R.: PNUTS: yahoo!’s hosted data

https://doi.org/10.1145/1629087.1629088
https://doi.org/10.1145/1629087.1629088
https://doi.org/10.1145/1629087.1629088
https://doi.org/10.1145/3448016.3452807
https://aptoslabs.com
https://aptos.dev/en/network/nodes/validator-node/node-requirements
https://aptos.dev/en/network/nodes/validator-node/node-requirements
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://doi.org/10.1145/350391.350432
https://celestia.org
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/234533.234549
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
http://www.coinmarketcap.com

18 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

serving platform. Proc. VLDB Endow. 1(2), 1277–1288 (2008). https://doi.org/
10.14778/1454159.1454167, http://www.vldb.org/pvldb/vol1/1454167.pdf

20. Danezis, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Narwhal and tusk: a
dag-based mempool and efficient bft consensus. In: Proceedings of the Seventeenth
European Conference on Computer Systems. pp. 34–50 (2022)

21. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E., Lin, Q., Ooi, B.C.: Towards
scaling blockchain systems via sharding. In: Proceedings of the 2019 Interna-
tional Conference on Management of Data, SIGMOD Conference 2019, Ams-
terdam, The Netherlands, June 30 - July 5, 2019. pp. 123–140. ACM (2019),
https://doi.org/10.1145/3299869.3319889

22. Das, S., Agrawal, D., Abbadi, A.E.: ElasTraS: An elastic, scalable, and self-
managing transactional database for the cloud. ACM Trans. Database Syst.
38(1), 5 (2013). https://doi.org/10.1145/2445583.2445588, https://doi.
org/10.1145/2445583.2445588

23. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proceedings of the 21st ACM Symposium on Operating
Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October 14-
17, 2007. pp. 205–220. ACM (2007). https://doi.org/10.1145/1294261.1294281,
https://doi.org/10.1145/1294261.1294281

24. Docs: Move VM. https://docs.dfinance.co/move_vm (2023)
25. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-

chrony. Journal of the ACM (JACM) 35(2), 288–323 (1988)
26. Ethereum Foundation: Ethereum Virtual Machine (EVM). https://ethereum.

org/en/developers/docs/evm/ (2023)
27. Faleiro, J.M., Abadi, D.J.: Rethinking serializable multiversion concurrency con-

trol. Proc. VLDB Endow. 8(11), 1190–1201 (jul 2015). https://doi.org/10.
14778/2809974.2809981, https://doi.org/10.14778/2809974.2809981

28. Faleiro, J.M., Abadi, D.J., Hellerstein, J.M.: High performance trans-
actions via early write visibility. Proc. VLDB Endow. 10(5), 613–624
(jan 2017). https://doi.org/10.14778/3055540.3055553, https://doi.org/10.
14778/3055540.3055553

29. Fuel: The World’s Fastest Modular Execution Layer. https://www.fuel.network
(2024)

30. Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J., Zhang, Z.: Dumbo-ng: Fast asynchronous
bft consensus with throughput-oblivious latency. In: Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (2022)

31. Gelashvili, R., Spiegelman, A., Xiang, Z., Danezis, G., Li, Z., Malkhi, D., Xia,
Y., Zhou, R.: Block-stm: Scaling blockchain execution by turning ordering curse
to a performance blessing. In: PPoPP ’23. p. 232–244. Association for Comput-
ing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3572848.
3577524, https://doi.org/10.1145/3572848.3577524

32. Giridharan, N., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Bullshark: Dag
bft protocols made practical. arXiv preprint arXiv:2201.05677 (2022)

33. Hellings, J., Hughes, D.P., Primero, J., Sadoghi, M.: Cerberus: Minimalistic Multi-
shard Byzantine-resilient Transaction Processing. J. Syst. Res. 3(1) (2023), https:
//doi.org/10.5070/sr33161314

34. Hellings, J., Sadoghi, M.: ByShard: sharding in a Byzantine environment. VLDB
J. 32(6), 1343–1367 (2023), https://doi.org/10.1007/s00778-023-00794-0

35. Herbst, N.R., Kounev, S., Reussner, R.H.: Elasticity in cloud computing: What it
is, and what it is not. In: Kephart, J.O., Pu, C., Zhu, X. (eds.) 10th International
Conference on Autonomic Computing, ICAC’13, San Jose, CA, USA, June 26-28,
2013. pp. 23–27. USENIX Association (2013)

https://doi.org/10.14778/1454159.1454167
https://doi.org/10.14778/1454159.1454167
https://doi.org/10.14778/1454159.1454167
https://doi.org/10.14778/1454159.1454167
http://www.vldb.org/pvldb/vol1/1454167.pdf
https://doi.org/10.1145/3299869.3319889
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/2445583.2445588
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://docs.dfinance.co/move_vm
https://ethereum.org/en/developers/docs/evm/
https://ethereum.org/en/developers/docs/evm/
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.14778/3055540.3055553
https://www.fuel.network
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.1145/3572848.3577524
https://doi.org/10.5070/sr33161314
https://doi.org/10.5070/sr33161314
https://doi.org/10.1007/s00778-023-00794-0

Pilotfish: Distributed Execution for Scalable Blockchains 19

36. Howard, H., Malkhi, D., Spiegelman, A.: Flexible paxos: Quorum intersection re-
visited (2016)

37. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niledger: A secure, scale-out, decentralized ledger via sharding. In: 2018 IEEE
symposium on security and privacy (SP). pp. 583–598. IEEE (2018)

38. Lakshman, A., Malik, P.: Cassandra: structured storage system on a P2P net-
work. In: Tirthapura, S., Alvisi, L. (eds.) Proceedings of the 28th Annual ACM
Symposium on Principles of Distributed Computing, PODC 2009, Calgary, Al-
berta, Canada, August 10-12, 2009. p. 5. ACM (2009). https://doi.org/10.1145/
1582716.1582722, https://doi.org/10.1145/1582716.1582722

39. Lamport, L.: Paxos made simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001) pp. 51–58 (2001)

40. Lu, Y., Yu, X., Cao, L., Madden, S.: Aria: A fast and practical deterministic oltp
database. Proc. VLDB Endow. 13(12), 2047–2060 (jul 2020). https://doi.org/
10.14778/3407790.3407808, https://doi.org/10.14778/3407790.3407808

41. Mohan, C., Lindsay, B.G., Obermarck, R.: Transaction management in the r* dis-
tributed database management system. ACMTrans. Database Syst. 11(4), 378–396
(1986). https://doi.org/10.1145/7239.7266, https://doi.org/10.1145/7239.
7266

42. Mysten Labs: Build without boundaries. https://sui.io (2022)
43. Mysten Labs: Move Concepts. https://docs.sui.io/concepts/sui-move-

concepts (2023)
44. Neu, J., Tas, E.N., Tse, D.: Ebb-and-flow protocols: A resolution of the availability-

finality dilemma. In: 2021 IEEE Symposium on Security and Privacy (SP). pp.
446–465. IEEE (2021)

45. Neu, J., Tas, E.N., Tse, D.: The availability-accountability dilemma and its reso-
lution via accountability gadgets. In: International Conference on Financial Cryp-
tography and Data Security. pp. 541–559. Springer (2022)

46. Ongaro, D., Ousterhout, J.: The raft consensus algorithm. Lecture Notes CS 190,
2022 (2015)

47. Protocol, S.: What Is SVM - The Solana Virtual Machine. https://squads.so/
blog/solana-svm-sealevel-virtual-machine (2024)

48. Qadah, T., Gupta, S., Sadoghi, M.: Q-store: Distributed, multi-partition trans-
actions via queue-oriented execution and communication. In: Proceedings of the
23rd International Conference on Extending Database Technology, EDBT 2020,
Copenhagen, Denmark, March 30 - April 02, 2020. pp. 73–84. OpenProceedings.org
(2020), https://doi.org/10.5441/002/edbt.2020.08

49. Qadah, T.M., Sadoghi, M.: QueCC: A queue-oriented, control-free concurrency
architecture. In: Proceedings of the 19th International Middleware Conference,
Middleware 2018, Rennes, France, December 10-14, 2018. pp. 13–25. ACM (2018),
https://doi.org/10.1145/3274808.3274810

50. Ren, K., Li, D., Abadi, D.J.: SLOG: serializable, low-latency, geo-replicated trans-
actions. Proc. VLDB Endow. 12(11), 1747–1761 (2019). https://doi.org/10.
14778/3342263.3342647, http://www.vldb.org/pvldb/vol12/p1747-ren.pdf

51. Serafini, M., Mansour, E., Aboulnaga, A., Salem, K., Rafiq, T., Minhas, U.F.:
Accordion: Elastic scalability for database systems supporting distributed trans-
actions. Proc. VLDB Endow. 7(12), 1035–1046 (2014), http://www.vldb.org/
pvldb/vol7/p1035-serafini.pdf

52. Solana Foundation: Sealevel—parallel processing thousands of smart contracts.
https://solana.com/news/sealevel---parallel-processing-thousands-of-
smart-contracts (2019)

53. Solana Validator Requirements. https://docs.solanalabs.com/operations/
requirements, accessed: 2024-08-02

https://doi.org/10.1145/1582716.1582722
https://doi.org/10.1145/1582716.1582722
https://doi.org/10.1145/1582716.1582722
https://doi.org/10.1145/1582716.1582722
https://doi.org/10.1145/1582716.1582722
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.1145/7239.7266
https://doi.org/10.1145/7239.7266
https://doi.org/10.1145/7239.7266
https://doi.org/10.1145/7239.7266
https://docs.sui.io/concepts/sui-move-concepts
https://docs.sui.io/concepts/sui-move-concepts
https://squads.so/blog/solana-svm-sealevel-virtual-machine
https://squads.so/blog/solana-svm-sealevel-virtual-machine
https://doi.org/10.5441/002/edbt.2020.08
https://doi.org/10.1145/3274808.3274810
https://doi.org/10.14778/3342263.3342647
https://doi.org/10.14778/3342263.3342647
https://doi.org/10.14778/3342263.3342647
https://doi.org/10.14778/3342263.3342647
http://www.vldb.org/pvldb/vol12/p1747-ren.pdf
http://www.vldb.org/pvldb/vol7/p1035-serafini.pdf
http://www.vldb.org/pvldb/vol7/p1035-serafini.pdf
https://solana.com/news/sealevel---parallel-processing-thousands-of-smart-contracts
https://solana.com/news/sealevel---parallel-processing-thousands-of-smart-contracts
https://docs.solanalabs.com/operations/requirements
https://docs.solanalabs.com/operations/requirements

20 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

54. Sonnino, A., Bano, S., Al-Bassam, M., Danezis, G.: Replay attacks and defenses
against cross-shard consensus in sharded distributed ledgers. In: 2020 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P). pp. 294–308. IEEE (2020)

55. Spiegelman, A., Aurn, B., Gelashvili, R., Li, Z.: Shoal: Improving dag-bft latency
and robustness. arXiv preprint arXiv:2306.03058 (2023)

56. Stefo, C., Xiang, Z., Kokoris-Kogias, L.: Executing and proving over dirty ledgers.
In: International Conference on Financial Cryptography and Data Security. pp.
3–20. Springer (2023)

57. Sui: Object Model. https://docs.sui.io/concepts/object-model, accessed:
2024-08-02

58. Sui Validator Node Configuration. https://docs.sui.io/guides/operator/
validator-config, accessed: 2024-08-02

59. Thomson, A., Abadi, D.J.: The case for determinism in database systems. Proc.
VLDB Endow. 3(1–2), 70–80 (sep 2010). https://doi.org/10.14778/1920841.
1920855, https://doi.org/10.14778/1920841.1920855

60. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Calvin:
Fast distributed transactions for partitioned database systems. In: Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data.
p. 1–12. SIGMOD ’12, Association for Computing Machinery, New York, NY,
USA (2012). https://doi.org/10.1145/2213836.2213838, https://doi.org/10.
1145/2213836.2213838

61. Thomson, A., Diamond, T., Weng, S.C., Ren, K., Shao, P., Abadi, D.J.: Fast
distributed transactions and strongly consistent replication for oltp database sys-
tems. ACM Trans. Database Syst. 39(2) (may 2014). https://doi.org/10.1145/
2556685, https://doi.org/10.1145/2556685

62. Tokio is an asynchronous runtime for the Rust programming language. https:
//tokio.rs/, accessed: 2024-10-04

63. Zhou, X., Yu, X., Graefe, G., Stonebraker, M.: Lotus: Scalable multi-partition
transactions on single-threaded partitioned databases. Proc. VLDB Endow.
15(11), 2939–2952 (2022), https://www.vldb.org/pvldb/vol15/p2939-zhou.pdf

APPENDIX

A Algorithms

This section complements Section 4 by providing detailed algorithms for the core
components of Pilotfish.

A.1 Detailed Algorithms

The function Handle(oid) of Algorithm 1 returns the ExecutionWorker that
handles the specified object identifier oid. The function Index(Tx) in Algo-
rithm 3 returns the index of the transaction Tx in the global committed sequence.
The function ID(o) in Algorithm 5 returns the object id oid of the object o.

A.2 Running in Constant Memory

The algorithms described above leverage several temporary in-memory struc-
tures that need to be safely cleaned up to make the protocol memory-bound.
The maps Pending and Missing are respectively cleaned up as part of normal
protocol operations at Line 34 (empty queues are deleted) and Line 10 of Algo-
rithm 5. All indices i′ < i of the list B (Algorithm 2) can be cleaned after Line 9

https://docs.sui.io/concepts/object-model
https://docs.sui.io/guides/operator/validator-config
https://docs.sui.io/guides/operator/validator-config
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.14778/1920841.1920855
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/2556685
https://doi.org/10.1145/2556685
https://doi.org/10.1145/2556685
https://doi.org/10.1145/2556685
https://doi.org/10.1145/2556685
https://tokio.rs/
https://tokio.rs/
https://www.vldb.org/pvldb/vol15/p2939-zhou.pdf

Pilotfish: Distributed Execution for Scalable Blockchains 21

Algorithm 1 Process committed sequence (step ➋ of Figure 2)

// Called by SequencingWorkers upon receiving the committed sequence.
1: procedure ProcessSequencedBatch(BatchId,BatchIdx)
2: // Ignore batches for other workers.
3: if Handler(BatchId) ̸= Self then return

4:
5: // Make one propose message for each ExecutionWorker.
6: Batch← Batches[BatchId]
7: for w ∈ ExecutionWorkers do
8: T ← [Tx ∈ Batch s.t. ∃oid ∈ Tx s.t. Handler(oid) = w]
9: ProposeMessage← (BatchIdx,BatchId, T)
10: Send(w,ProposeMessage)

Algorithm 2 Process ProposeMessage (step ➌ of Figure 2)

1: i← 0 ▷ All batch indices below this watermark are received
2: B← [] ▷ Received batch indices

// Called by ExecutionWorkers upon receiving a ProposeMessage.
3: procedure ProcessPropose(ProposeMessage)
4: // Ensure we received one message per SequencingWorker
5: (BatchIdx,BatchId, T)← ProposeMessage
6: B[BatchIdx]← B[BatchIdx] ∪ (BatchId, T)
7: while len(B[i]) = |SequencingWorkers| do
8: (, T)← B[i]
9: i← i + 1
10:
11: // Add the objects to their pending queues
12: for Tx ∈ T do
13: for oid ∈ HandledObjects(Tx) do ▷ Defined in Algorithm 3
14: if oid ∈ W(Tx) then
15: Pending[oid]← Pending[oid] ∪ (W, [Tx])
16: else ▷ oid ∈ R(Tx)
17: (op, T ′)← Pending[oid][−1]
18: if op = W then Pending[oid]← Pending[oid] ∪ (R, [Tx])
19: else Pending[oid][−1]← (R, T ′ ∪ Tx)

20:
21: // Try to execute the transaction
22: TryTriggerExecution(Tx) ▷ Defined in Algorithm 3

of Algorithm 2 as they are no longer needed. Similarly, any transactions Tx with
index Index(Tx) < j can be removed from the set E (Algorithm 3) after Line 39
of Algorithm 3. Finally, any transaction Tx can be removed from the map R
(Algorithm 4) after Line 5 of Algorithm 4.

B Security Proofs

We show that Pilotfish satisfies the properties of Section 2.

B.1 Serializability

We show that Pilotfish satisfies the serializability property (Definition 1 of Sec-
tion 2). Intuitively, this property states that Pilotfish executes transactions in a
way that is equivalent to the sequential execution of the transactions as it comes
from consensus (Definition 4). The argument leverages the following arguments:
(i) Pilotfish builds the pending queues Pending by respecting the transactions
dependencies dictated by the consensus protocol (i.e., the sequential schedule),
(ii) Pilotfish accesses objects in the same order as the sequential schedule, and
(iii) Pilotfish executes transactions in the same order as the sequential schedule.

Definition 4 (Sequential Schedule). A sequential schedule is a sequence of
transactions [Tx1, . . . ,Txn] where each transaction Txi is executed after Txi−1.

22 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Algorithm 3 Core functions

1: j← 0 ▷ All Tx indices below this watermark are executed
2: E← ∅ ▷ Executed transaction indices

3: function TryTriggerExecution(Tx)
4: // Check if all dependencies are already executed
5: if HasDependencies(Tx) then return

6:
7: // Check if all objects are present
8: M ← MissingObjects(Tx)
9: if M ̸= ∅ then
10: for oid ∈M do Missing[oid]← Missing[oid] ∪ Tx

11: return
12:
13: // Send object data to a deterministically-selected ExecutionWorker
14: worker ← Handler(Tx) ▷ Worker handling the most objects of Tx
15: O ← {Objects[oid] s.t. oid ∈ HandledObjects(Tx)} ▷ May contain ⊥
16: ReadyMessage← (Tx, O)
17: Send(worker,ReadyMessage)
18:
19: // Remove read-locks from the pending queues
20: for oid ∈ R(Tx) do
21: T ′ ← AdvanceLock(Tx, oid)
22: for Tx′ ∈ T ′ do TryTriggerExecution(Tx′)

23: function HasDependencies(Tx)
24: I ← HandledObjects(Tx)
25: return ∃oid ∈ I s.t. Tx /∈ Pending[oid][0]

26: function MissingObjects(Tx)
27: I ← HandledObjects(Tx)
28: return {oid s.t. oid ∈ I and Objects[oid] =⊥ and j < Index(Tx)− 1}

29: function HandledObjects(Tx)
30: return {oid s.t. oid ∈ Tx and Handler(oid) = Self}

31: function AdvanceLock(Tx, oid)
32: // Cleanup the pending queue
33: (op, T)← Pending[oid][0]
34: (op, T ′)← (op, l \ Tx)
35: Pending[oid][0]← (op, T ′)
36: return T ′

37: function TryAdvanceExecWatermark(Tx)
38: E← E ∪ Index(Tx)
39: while (j + 1) ∈ E do j← j + 1

Definition 5 (Conflicting Transactions). Two transactions Txi and Txj
conflict on some object oid if both Txi and Txj reference oid in their read or
write set and at least one of Txi or Txj references oid in its write set.

Pending queues building. We start by arguing point (i), stating that Al-
gorithm 2 builds the pending queues Pending by respecting the transaction
dependencies dictated by the consensus protocol (i.e., the sequential schedule).

Lemma 1 (Sequential Batch Processing). Pilotfish processes the batch with
index Batchj after processing the batch with index Batchi if j > i.

Proof. Let’s assume by contradiction that Algorithm 2 processes the ProposeMessage
referencing transactions of the batch with index Batchj before processing the
ProposeMessage referencing transactions of the batch with index Batchi while

Pilotfish: Distributed Execution for Scalable Blockchains 23

Algorithm 4 Process ReadyMessage (step ➍ of Figure 2)

1: R← {} ▷ Maps Tx to the object data it references (or ⊥ if unavailable)

// Called by the ExecutionWorkers upon receiving a ReadyMessage.
2: procedure ProcessReady(ReadyMessage)
3: (Tx, O)← ReadyMessage
4: R[Tx]← R[Tx] ∪O
5: if len(R[Tx]) ̸= len(R(Tx)) + len(W(Tx)) then return

6:
7: ResultMessage← (Tx, ∅, ∅)
8: if !AbortExec(Tx) then
9: (O, I)← exec(Tx,ReceivedObj[Tx]) ▷ O to mutate and I to delete
10: for w ∈ ExecutionWorkers do
11: Ow ← {o ∈ O s.t. Handler(o) = w}
12: Iw ← {oid ∈ I s.t. Handler(oid) = w}
13: ResultMessage← (Tx, Ow, Iw)

14: Send(w,ResultMessage)

// Check whether the execution should proceed.
15: function AbortExec(Tx)
16: return ∃o ∈ R[Tx] s.t. o =⊥

Algorithm 5 Process ResultMessage (step ➎ of Figure 2)

// Called by the ExecutionWorkers upon receiving a ResultMessage.
1: procedure ProcessResult(ResultMessage)
2: (Tx, O, I)← ResultMessage
3: TryAdvanceExecWatermark(Tx) ▷ Defined in Algorithm 3
4: UpdateStores(Tx, O, I)
5:
6: // Try execute transactions with missing objects
7: for o ∈ O do
8: oid← Id(o)
9: for Tx← Missing[oid] do TryTriggerExecution(Tx)

10: Delete Missing[oid] ▷ Prevent duplicate execution

11:
12: // Try executing the next transaction in the queues
13: for oid ∈ Tx do
14: T ′ ← AdvanceLock(Tx, oid)
15: for Tx′ ∈ T ′ do TryTriggerExecution(Tx′)

16: function UpdateStores(Tx, O, I)
17: for o ∈ O do Objects[Id(o)]← o

18: for oid ∈ I do Delete Objects[oid]

j > i. This means that Algorithm 2 processes Batchj at Line 12 before process-
ing Batchi at Line 12. However, the check of Algorithm 2 at Line 7 ensures that
Batchj can only be processed after all the batches with indices k ∈ [0, . . . , j[.
Since j > i, it follows that i ∈ [0, . . . , j[, and thus Batchj can only be processed
after Batchi. Hence a contradiction.

Lemma 2 (Transactions Order in Queues). Let’s assume two transactions
Txj ,Txi such that j > i conflict on the same oid; Txj is placed in the queue
Pending[oid] after Txi.

Proof. We first observe that if two transactions Txj and Txi are conflicting on
object oid then they are placed in the same queue Pending[oid]. Indeed, both
Txi and Txj are embedded in a ProposeMessage by Algorithm 1. They are then
placed in the queue Pending[oid] by Algorithm 2 at Line 15 (if they reference
oid in their write set) or Line 18 (if they reference oid in their read set).

24 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

We are thus left to prove that Txj is placed in Pending[oid] after Txi. Since
j > i we distinguish two cases: (i) both Txj and Txi are part of the same batch
with index BatchIdx and (ii) Txj and Txi are part of different batches with indices
Batchj and Batchi respectively. In the first case (i), Txj and Txi are referenced in
the same ProposeMessage by Algorithm 1 at Line 8 and Line 9 but respecting the
order j > i. As a result, Txj is processed after Txi by the loop Line 12, and placed
in the queue Pending[oid] (at Line 15 or Line 18) after Txi. In the second case
(ii), Txj and Txi are referenced in different ProposeMessage by Algorithm 1 at
Line 9 but Lemma 1 ensures that the ProposeMessage referencing transactions of
Batchj is processed after the ProposeMessage referencing transactions of Batchi.
As a result, Txj is placed in the queue Pending[oid] after Txi (at Line 15 or
Line 18).

Sequential objects access. We now argue point (ii), namely that Algorithm 3
accesses objects in the same order as the sequential schedule.

Lemma 3 (Unlock after Access). If a transaction T is placed in a queue
Pending[oid], it can only be removed from that queue after accessing Objects[oid].

Proof. We argue this lemma by construction of the algorithms of Pilotfish. Trans-
action T accesses Objects[oid] only at Line 15 (Algorithm 3) and can only be
removed from Pending[oid] following a call to AdvanceLock(T, oid). This call
can occur only in two places. It can first occur (i) at Line 21 of Algorithm 3 which
happens after the access to Objects[oid] (Line 15 of the same algorithm). It
can then occur (ii) at Line 14 of Algorithm 5 which can only be triggered upon
receiving a ResultMessage referencing T , which in turn can only be created af-
ter creating a ReadyMessage embedding T . However, creating the latter message
only occurs at Line 17 of Algorithm 3, thus after accessingObjects[oid] (Line 15
of that same algorithm).

Lemma 4 (Sequential Object Access). If a transaction Txj is placed in a
queue Pending[oid] after a transaction Txi, then Txj accesses oid after Txi.

Proof. Let’s assume that Txj and Txi are respectively placed at positions j′

and i′ of the queue Pending[oid], with j′ > i′. Let’s assume by contradic-
tion that Txj accesses oid before Txi. Access to oid is only performed by Al-
gorithm 3 at Line 15 after successfully passing the ‘dependencies’ check at
Line 5. Lemma 3 thus ensures that Txi is still in Pending[oid] when the call to
HashDependecnies(Txj) at Line 5 returns False. This is however a direct con-
tradiction of the check at Line 25 which ensures that HasDependecnies(Txj)
returns False only if Txj is in the Pending[oid] at position j′ = 0. However,
since Txi is still in Pending[oid], it follows that 0 ≤ i′ < j′, thus a contradiction.

Sequential transaction execution. We finally argue point (iii), namely that
Algorithm 4 executes transactions in the same order as the sequential schedule.

Lemma 5 (Execution after Object Access). If a transaction T references
oid in its read or write set, it can only be executed after accessing Objects[oid].

Pilotfish: Distributed Execution for Scalable Blockchains 25

Proof. We argue this lemma by construction of Algorithm 4. Transactions are
executed only at Line 9 of Algorithm 4 and this algorithm is only triggered upon
receiving a ReadyMessage. However, creating the latter message only occurs at
Line 17 of Algorithm 3, thus after accessing Objects[oid] (Line 15 of that same
algorithm).

Theorem 1 (Serializability). If a correct validator executes the sequence of
transactions [Tx1, . . . ,Txn], it holds the same object state S as if the transactions
were executed sequentially.

Proof. Consider some execution E and let G = (V,E) be E’s conflict graph.
Each transaction is a vertex in V , and there is a directed edge Txi → Txj if
(1) Txi and Txj have a conflict on some object oid and (2) Txj accesses oid
after Txi accesses oid. It is sufficient to show that there are no schedules where
Txj is executed before Txi to prove serializability. Let’s assume by contradiction
that there is a schedule where Txj is executed before Txi, where j > i. Since
Txj and Txi conflict on object oid, Lemma 2 ensures that Txj is placed in the
queue Pending[oid] after Txi. Lemma 4 then guarantees that Txj ’s access to oid
occurs after Txi’s access on oid. However Lemma 5 ensures that Txj ’s execution
can only happen after accessing oid. It is then impossible to execute Txj before
Txi, hence a contradiction. Since oid was chosen arbitrarily, the same reasoning
applies to all objects on which Txi and Txj conflict.

B.2 Determinism

We show that Pilotfish satisfies the determinism property (Definition 2 of Sec-
tion 2). Intuitively, this property ensures that all correct validators have the
same object state after executing the same sequence of transactions. The proof
follows from the following arguments: (i) all correct Pilotfish validators build
the same dependency graph given the same input sequence of transaction, (ii)
individual transaction execution is a deterministic process (Assumption 1), (iii)
transactions explicitly reference their entire read and write set (Assumption 2),
and (iv) all validators executing the same transactions obtain the same state.

Assumption 1 (Deterministic Individual Execution) Given an input trans-
action Tx and objects O, all calls to exec(Tx, O) (Line 9 of Algorithm 4) return
the same output.

Assumption 2 (Explicit Read and Write Set) Each transaction Tx explic-
itly references all the objects of its read and write set. That is, the complete read
and write set of Tx can be determined by locally inspecting Tx without the need
for external context.

Assumption 1 is fulfilled by most blockchain execution environments such as
the EVM [26], the SVM [47], and both the MoveVM [24] (used by the Aptos
blockchain [7]) and the Sui MoveVM [43] (used by the Sui blockchain [13]). All
execution engines except the Sui MoveVM also fulfill Assumption 2 (Section 6
and Appendix E remove this assumption to make Pilotfish compatible with Sui).

We rely on the following lemmas to prove determinism in Theorem 2.

26 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Lemma 6. Given the same sequence of transactions [Tx1, . . . ,Txn], all correct
validators build the same execution schedule (that is, they build same queues
Pending).

Proof. We argue this property by construction of Algorithm 1 and Algorithm 2.
Since all validators receive the same input sequence [Tx1, . . . ,Txn] and Algo-
rithm 1 respects the order of transactions (Line 8), all correct validators cre-
ate the same sequence of ProposeMessage. Lemma 1 then ensures that Algo-
rithm 2 processes each ProposeMessage respecting the transaction order. Finally,
Lemma 2 ensures that all correct validators place the transactions in the same
order in the queues. Since this process is deterministic, all correct validators
build the same queues Pending.

Lemma 7. No two correct validators creating the same ResultMessage (Line 13
of Algorithm 4) obtain a different object state Objects.

Proof. We argue this property by construction of Algorithm 5 and by assuming
that the communication channel between all ExecutionWorkers of each valida-
tor preserves the order of messages.11 Once a validator creates a ResultMessage
(Line 13 of Algorithm 4), it is processed by Algorithm 5. This algorithm first
calls TryAdvanceExecWatermark(·) (Line 3) which does not alter the ob-
ject state Objects nor the data carried by the ResultMessage, and then deter-
ministically updates the object state Objects (Line 4) based exclusively on the
content of the ResultMessage. As a result, all correct validators obtain the same
object state

Theorem 2 (Pilotfish Determinism). No two correct validators that ex-
ecuted the same sequence of transactions [Tx1, . . . ,Txn] have different stores
Objects.

Proof. We argue this property by induction. Assuming the sequence of con-
flicting transactions [Tx1, . . . ,Txn−1] for which this property holds, we consider
transaction Txn. Lemma 6 ensures that all correct validators build the same
execution schedule and thus all correct validators execute conflicting transac-
tions in the same order. After scheduling (Algorithm 2), all correct validators
create a ReadyMessage referencing Txn and the set of objects O (Line 17 of Algo-
rithm 3). Since all validators have the same conflict schedule and the application
of the inductive argument ensures that all settled dependencies of Txn led to the
same state Objects across validators, all correct validators load the same set
of objects O and thus create the same ReadyMessage. As a result, all correct
validators run Algorithm 4 with the same input and thus execute the same se-
quence of transactions. By construction of Algorithm 4 and Assumption 2, they
all call calls to exec(Tx, O) (Line 9 of Algorithm 4) with the same inputs Tx and
O. Given that Assumption 1 ensures that all calls to exec(Tx, O) are determinis-
tic, all correct validators thus create the same ResultMessage (Line 13). Finally,
Lemma 7 ensures that all validators creating the same ResultMessage obtain the

11 Our implementation (Section 7) satisfies this assumption by implementing all com-
munication through TCP.

Pilotfish: Distributed Execution for Scalable Blockchains 27

same object state Objects. The inductive base is argued by construction: all
correct validators start with the same object state Objects, and thus create
the same ReadyMessage (Line 17 of Algorithm 3) and ResultMessage (Line 13 of
Algorithm 4) upon executing the first transaction Tx1, which leads to the same
state update across correct validators.

B.3 Liveness

We show that Pilotfish satisfies the liveness property (Definition 3 of Section 2).
Intuitively, this property guarantees that valid transactions (Definition 6) are
eventually executed. The proof argues that (i) all transactions are eventually
processed (Definition 7), and (ii) among those transactions, valid ones are not
aborted.

Definition 6 (Valid Transaction). A transaction T with index idx = Index(T)
is valid if all objects referenced by its read and write set are created by a trans-
action T ′ with index idx′ < idx.

Definition 7 (Processed Transaction). A transaction T is said processed
when it is either executed or aborted and the object state Objects is updated
accordingly.

Eventual transaction processing. We start by arguing point (i), that is all
transactions are eventually processed. This argument relies on several prelimi-
nary lemmas leading Lemma 12.

Lemma 8. The Pilotfish scheduling process is deadlock-free (no circular depen-
dencies).

Proof. Consider some execution E and let G = (V,E) be E’s conflict graph.
Each transaction is a vertex in V , and there is a directed edge Txi → Txj if (1)
Txi and Txj have a conflict on some object oid and (2) Txj accesses oid after Txi
accesses oid. It is sufficient to show that G contains no cycles to prove liveness.
That is, it is sufficient to show that G contains no edges Txj → Txi, where j > i.
Let’s assume by contradiction that G has an edge Txj → Txi, where j > i.
Then, by rule (1) of the construction of G, Txj and Txi must conflict on some
object oid. Lemma 2 ensures that Txj is placed in the queue in Pending[oid]
after Txi . Lemma 4 then guarantees that Txj ’s access to oid occurs after Ti’s
access on oid. It is then impossible for G to contain an edge Txj → Txi as this
violates rule (2) of the construction of G, hence a contradiction. Since oid was
chosen arbitrarily, the same reasoning applies to all objects on which Txi and
Txj conflict.

Lemma 9. If a transaction T is processed (Definition 7), it is eventually re-
moved from all queues Pending[oid] where oid is referenced by the read or write
set of T .

Proof. We argue this lemma by construction of Algorithm 3 and Algorithm 5.
Transaction T is removed from all queues Pending[oid] upon callingAdvanceLock(T, oid).

28 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

This call can occur in two places. (i) The first call occurs at Line 21 of Algo-
rithm 3 to effectively release read locks. This call occurs right after creating a
ReadyMessage referencing T (Line 17), a necessary step to trigger Algorithm 4
and thus process T . (ii) The second call occurs at Line 14 of Algorithm 5 to ef-
fectively release write locks. This call occurs right after updating Objects[oid]
and thus terminating the processing of T .

Lemma 10. If the sequence of transactions [Tx1, . . . ,Txn] is processed (Defini-
tion 7), the watermark j (Line 1 of Algorithm 3) is advanced to n.

Proof. The processing of T involves updating the object state Objects (Line 4
of Algorithm 5). However, the watermark j is only updated upon calling

TryAdvanceExecWatermark(Txi)

at Line 3 of this same algorithm. Thus, by construction, the buffer E contains
every processed transaction Txi (Line 38 of Algorithm 3), and once the sequence
[Tx1, . . . ,Txn] is processed, the watermark j is advanced to

j = max{Index(Tx1), . . . , Index(Txn)} = n

(Line 39 of Algorithm 3).

Lemma 11. A transaction T is eventually processed (Definition 7) if it has
neither missing dependencies nor missing objects that could be created by ear-
lier transactions. That is, T is eventually processed if Algorithm 3 creates a
ReadyMessage referencing T .

Proof. We argue this lemma by construction of Algorithm 4 and Algorithm 5.
Algorithm 4 receives a ReadyMessage from all ExecutionWorkers and the check
Line 5 of Algorithm 4 passes. Transaction T is then either executed (if the
check Line 16 passes) or aborted (if the check Line 16 fails), and Algorithm 4
creates a ResultMessage referencing T (Line 13). Algorithm 5 then receives this
ResultMessage and accordingly updates its object Objects (after an infallible
call to TryAdvanceExecWatermark(T) Line 39).

Lemma 12 (Eventual Transaction Processing). All correct validators re-
ceiving the sequence of transactions [Tx1, . . . ,Txn] eventually process (Defini-
tion 7) all transactions Tx1, . . . ,Txn.

Proof. Lemma 8 ensures that the transaction scheduling process is deadlock-free
(no circular dependencies) and Pilotfish thus triggers their execution (Line 3 of
Algorithm 3). We are then left to prove that these scheduled transactions are
processed (Definition 7). Since Theorem 1 ensures the Pilotfish schedule is equiv-
alent to a sequential schedule, we prove liveness of the sequential schedule. We
argue the lemma’s statement by induction. Assuming the sequence of transac-
tions [Tx1, . . . ,Txn−1] for which this statement holds, we consider transaction
Txn. Assuming Txn−1 is processed and a sequential schedule, all transactions Txi
with i < n− 1 are also processed. Lemma 9 thus ensures these transactions are
removed from all queues Pending[·]. As a result, when triggering the execution

Pilotfish: Distributed Execution for Scalable Blockchains 29

of Txn (Line 3 of Algorithm 3), the check HasDependencies(Txn) (Line 5 of
Algorithm 3) returns False (since ∀oid ∈ R(Txn)∪W(Txn) : Pending[oid][0] =
Txn). Furthermore, since all transactions Txi with i ≤ n − 1 are already pro-
cessed, Lemma 10 ensures that the watermark j = n − 1 (Line 1 of Algo-
rithm 3) and thusMissingObjects(Txn) returns ∅. Finally, Algorithm 3 creates
a ReadyMessage referring Txn and thus Lemma 11 ensures Txn is eventually pro-
cessed. We argue the inductive base by observing that the first transaction Tx1
has no dependency (by definition); thus both checks HasDependencies(Tx1)
and MissingObjects(Tx1) pass (respectively at Line 5 and Line 8 of Algo-
rithm 3); and Lemma 11 then ensures Tx1 is processed.

Valid transaction execution. We now argue point (ii), that valid transactions
are not aborted. This argument relies on several preliminary lemmas leading
Lemma 15.

Lemma 13. If a transaction T references an object oid in its write set, it is
only removed from the queue Pending[oid] after it is processed (Definition 7).

Proof. We argue this lemma by construction: Transaction T is removed from
Pending[oid] only upon a call to AdvanceLock(T, oid). However, since oid is
referenced by the write set of T (rather than its read set), this function is called
over oid only at Line 14 of Algorithm 5. This call is thus after Algorithm 5
updates Objects[oid] (at Line 4) and thus after the transaction is processed.

Lemma 14. If a transaction T is valid, the call to Objects[oid] (Line 15 of
Line 39) never returns ⊥, for any oid referenced by the read or write set of T .

Proof. Let’s assume by contradiction that there exists a oid referenced by the
read or write set of a valid transaction T where the call to Objects[oid] (Line 15
of Line 39) returns ⊥. Since T is valid, it means that the object oid is created
by a conflicting transaction T ′ with index idx′ < Index(T) that has not yet
been processed (Definition 7). In which case, Lemma 4 states that both T and
T ′ are placed in the same queue Pending[oid] and Lemma 13 states that T ′ is
still present in the queue Pending[oid]. This is however a direct contradiction
of check HasDependencies(T) ensuring that T does not access Objects[oid]
until it is at the head of the queue Pending[oid] (Line 15 of Algorithm 3).

Lemma 15. A valid transaction T it is never aborted; that is the call AbortExec(T)
(Line 8 of Algorithm 4) returns False.

Proof. Let’s assume by contradiction that AbortExec(T) returns True while
T is valid. This means that the check at Line 16 of Algorithm 4 found at least
one missing object (⊥) referenced in the read or write set of T , and thus that
Algorithm 4 received at least one ReadyMessage message referring ⊥ instead
of an object data. However, Lemma 14 ensures that the call to Objects[oid]
(Line 15 of Algorithm 3) never returns ⊥ if oid is referenced by the read or write
set of a valid transaction, hence a contradiction.

Liveness proof.We finally combine Lemma 12 and Lemma 15 to prove liveness.

30 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

100 200 300 3700

transactions

checkpoint checkpoint checkpoint

not yet
checkpointed

buffered messages

Fig. 9: Example of a snapshot of the local state at an ExecutionWorker. It checkpoints
itsObjects store after every 100 transactions and keeps a buffer of outgoing ReadyMes-
sage.

Theorem 3 (Liveness). All correct validators receiving the sequence of trans-
actions [Tx1, . . . ,Txn] eventually execute all the valid transactions of the se-
quence.

Proof. Lemma 12 ensures that all correct validators eventually process (Defini-
tion 7) all transactions Tx1, . . . ,Txn. Lemma 15 ensures that valid transactions
are never aborted and thus executed.

C Crash Fault Tolerance

C.1 Internal Replication

For the replication protocol, ExecutionWorkers maintains the following network
connections: (i) a constant set of peers, containing the identifier for every worker
in its cluster. Workers in each cluster have the same peers set; (ii) a dynamic
set of read-to, containing the additional identifiers with whom the worker is
temporarily serving reads to; and (iii) a dynamic set of read-from, containing
the additional identifiers with whom the worker is receiving reads from. The
protocol maintains that read-from and read-to relations are symmetric —
Worker a is in worker b’s read-from set if and only if worker b is in a’s read-to
set. Finally, we assume the use of an eventually strong failure detector [16].

C.2 Normal Operation

Dealing with finite memory. The number of checkpoints and buffered mes-
sages held by an ExecutionWorker cannot grow indefinitely. Hence, we introduce
a garbage collection mechanism that deprecates old checkpoints. When an Exe-
cutionWorker completes a checkpoint, it broadcasts a message

CheckpointedMessage← (shard,TxIdx)

to every other ExecutionWorker in every shard, indicating that an Execution-
Worker of shard shard successfully persisted a checkpoint immediately after
executing TxIdx.

Pilotfish: Distributed Execution for Scalable Blockchains 31

garbage collected

100 200 300 3700

transactions

checkpoint
(stable)

checkpoint

not yet
checkpointed

buffered messages

Fig. 10: Example of a snapshot of the local state at an ExecutionWorker. It has received
a quorum of CheckpointedMessage messages from each shard for the transaction at
checkpoint 1. Hence, checkpoint 1 is stable, and the worker safely deletes checkpoints
and buffers before it.

An ExecutionWorker deems a checkpoint at TxIdx as stable after receiving a
quorum of fe+1 CheckpointedMessage12 from each shard. When a worker learns
that a checkpoint is stable, it deletes all checkpoints and buffered messages prior
to that checkpoint. This illustrated in Figure 10.

Bounding strategy. To avoid exhausting resources, each ExecutionWorker also
holds a bounded number c of checkpoints at any time. This number dictates how
far ExecutionWorkers are allowed to diverge in terms of their rate of execution;
the fastest cluster can be ahead of the slowest cluster in its quorum by up to
c− 1 checkpoints.13

A worker pauses processing when creating a new checkpoint, which will ex-
ceed c. This may be a symptom of failures in the system, e.g., many slow or
failed workers or network issues. Hence, pausing provides backpressure to fast
replicas in order for stragglers to catch up. Figure 11 illustrates this mechanism
in a system with three clusters and c = 2. Each worker of each cluster holds
a stable checkpoint at boundary 1. Clusters 1 and 2 are slow and have yet to
reach checkpoint boundary 2. Cluster 3 is fast and hence may execute beyond
checkpoint boundary 2, while maintaining a second (non-stable) checkpoint at
boundary 2. However, because workers are limited to storing two checkpoints,
workers in cluster 3 are blocked from executing past boundary 3 before (i) their
checkpoint at boundary 2 is established as stable and (ii) their checkpoint 1 is
garbage-collected.

By default, we set c = 2 as a good trade-off between performance and stor-
age/memory costs. With a limit of two checkpoints, a fast cluster can execute
past a second checkpoint without waiting for a quorum. As such, different clus-
ters are allowed to progress at different speeds without blocking, as long as they
stay within one checkpoint. The system then progresses, most of the time, at
the speed of the fastest cluster.

12 Quorum sizes can be varied to optimize between normal case disk-usage and recov-
erability during failure, similar to Flexible Paxos [36].

13 Note that ExecutionWorkers within a cluster are always tightly coupled due to the
quorum definition, and can never be apart by 1 or more checkpoints

32 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

not yet
checkpointed

not yet
checkpointed

not yet
checkpointed

checkpoint
boundary 1

checkpoint
boundary 2

checkpoint
boundary 3

cluster 1

cluster 2

cluster 3

Fig. 11: Consider a system with three clusters, and with each ExecutionWorker allowed
to hold up to c = 2 checkpoints. This snapshot of the clusters’ progress shows that
ExecutionWorkers in each cluster have a stable checkpoint at boundary 1. Cluster 3
is fast and hence may execute beyond checkpoint boundary 2 while maintaining a
second (non-stable) checkpoint at boundary 2. However, it is not permitted to create a
checkpoint at boundary 3 or execute past it before it learns that boundary 2 is stable.

C.3 Failure Recovery

Recovery through reconfiguration. When an ExecutionWorker fails, other
workers in its cluster or read-to set may not be able to execute transactions,
as they may no longer be served the necessary reads. To restore transaction
processing, these workers trigger the reconfiguration illustrated by Figure 12. In
order to detect these crashes, we assume the existence of a failure detector [16]
with strong completeness. Ideally, we would use an eventually perfect failure
detector, but an eventually strong one suffices for liveness (but might cause
worse load-balancing on some ExecutionWorkers).

The crux of recovery is as follows: When a worker detects a failure, it tries to
find another worker to get the reads previously managed by the failed worker. In
the normal case, this takes two round trips: one trip to find an appropriate read-
from member and another to establish the relationship with that new member.
Meanwhile, all other clusters except the one with the failed worker operate as
normal. Hence, there is no loss of throughput when failures are within the tol-
erated threshold. We defer the details of the recovery algorithm to Appendix D.

Recovery through checkpoints synchronization. The recovery through re-
configuration may fail when the recovering worker finds itself slow after the first
round trip. It then needs to perform a checkpoint synchronization procedure be-
fore retrying recovery. This synchronization is necessary as there may no longer
be clusters with sufficiently old buffers for the recovering worker to continue
execution through the normal recovery procedure.

The gist of the synchronization procedure is as follows:. (i) The worker in-
structs every peer to perform synchronization; (ii) any node in the slow worker’s
read-to set is instructed to itself perform recovery; (iii) the worker then down-
loads the latest checkpoints from another replica and waits for every peer to
sync to the same state; and (iv) the worker finds replacements for any missing
members in its cluster by running the reconfiguration again. We defer the details
of the synchronization algorithm to Appendix D.

Pilotfish: Distributed Execution for Scalable Blockchains 33

EW
s-1

EW
t-1

EW
s-1

EW
t-2

cluster 1

cluster 2

shard s shard t

temporarily
serve reads

Fig. 12: Failure recovery. Suppose EWs,1 crashes. As a result, EWt,1 cannot receive
reads of shard s from EWs,1. After EWt,1 performs recovery, it establishes a new read
relationship with another replica of shard s, in this case EWs,2, as illustrated by the
dashed arrow. EWt,1 is now in EWs,2’s read-to set, and correspondingly, EWs,2 is in
EWt,1’s read-from set. Otherwise, cluster 2 operates as usual, as represented by the
solid arrow.

The synchronization protocol’s pivotal aspect lies in its ability to activate
synchronization and recovery across all clusters that transitively rely on a slow
worker for reads. This occurs because the clusters, which were dependent on the
slow worker for their reads, may exhibit lag as well. If the slow worker were to
unilaterally fast-forward its state, these clusters could potentially lose liveness.

Disaster recovery. In case of a disaster that affects all ExecutionWorkers of
a cluster and the threat model of Section 2 doesn’t hold, the cluster can be
recovered by booting a new cluster with the same peers set. The new cluster
will then be able to recover the state of the cluster from the other validators
of the blockchain. This is possible because the system state is replicated across
multiple validators, of which at least half are honest. The new cluster can then
download the latest stable checkpoint from the other validators and use it to
perform a recovery through checkpoints. This recovery is slow as it requires WAN
communications, but it is only used in extreme circumstances, and its existence
allows Pilotfish to be reasonably configured with low replication factors (e.g.,
fe = 1).

D Detailed Recovery Protocol

This section completes Appendix C by providing the algorithms allowing Exe-
cutionWorkers to recover from crash-faults and proving the security of Pilotfish
in this setting.

D.1 Recovery Algorithms

Recovery Protocol. Suppose ExecutionWorker x crashes. Any non-faulty worker
e detecting this failure deletes x from its read-from and read-to sets. If x is
e’s peer, or a member of its read-from set, e may no longer be served reads
from x’s shard. In this case, e calls Recover(x), listed in Algorithm 7.

In the algorithm, first the execution worker, denoted as e, initiates the process
by establishing a view on the current execution status of workers in shard x.

34 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Algorithm 6 Process CheckpointedMessage

1: C← {} ▷ Maps TxIdx to checkpoint blob
2: S← {} ▷ Maps TxIdx to set of sent ReadyMessage
3: R← 0 ▷ Counts the received CheckpointedMessage

4: procedure ProcessCheckpointed(CheckpointedMessage)
5: (shard,TxIdx)← CheckpointedMessage
6: R[(shard,TxIdx)]← R[(shard,TxIdx)] + 1
7: if R[(shard,TxIdx)] ≥ fe + 1 then
8: for i← 0; i < TxIdx; i← i + 1 do
9: Delete C[i]
10: Delete S[i]
11: Delete R[(∗,TxIdx)]

This is achieved through a call to (w,TxIdx∗)← GetStatus(x.shard), where w
represents the most up-to-date worker in a quorum of workers within x.shard,
having executed up to at least TxIdx∗.

Subsequently, based on the obtained result, the execution worker e takes one
of two distinct actions. If e’s current execution state is after TxIdx∗, it initi-
ates the NewReader(w,TxIdx∗) operation, requesting w to serve its reads that
were previously handled by x. Otherwise, if e’s current state is before TxIdx∗,
it engages in the synchronization procedure (Algorithm 9) before attempting
recovery. This synchronization step becomes crucial, as there might no longer
be clusters with sufficiently old buffers for the recovering worker e to proceed
through the standard recovery process. In such instances, e employs the synchro-
nization procedure to load the checkpointed state of another cluster, ensuring a
seamless recovery process in the distributed system.

Synchronization Protocol. Synchronize (Algorithm 9) is called by source
e and brings e and its peers up to date through loading the checkpointed state
of another set of workers. This process on a high level works as follows.

Initially, e communicates with its read-from and read-to nodes, issuing
NotifySync messages to prompt the removal of e from their respective commu-
nication sets. Additionally, e notifies its peers to cease normal operations and
engage in synchronization through the Synchronize procedure.

Afterwards, e clears its own read-from and read-to sets and requests the
current status of the worker w in its shard by attempting to download w’s
checkpoint. A synchronization message is sent to w, which responds based on
whether the checkpoint at TxIdx∗ has been deleted or not. If deleted, e retries
the synchronization protocol; otherwise, w sends its state snapshot, and e loads
it using the LoadCheckpoint(w) procedure.

Finally, e brodcasts a synchronization completion messages to all peers and
awaits their responses. If an incoming SyncComplete has a TxIdx greater than
TxIdx∗, then e retries the synchronization protocol to ensure uniformity across
the entire cluster. The procedure concludes when e receives SyncComplete con-
taining TxIdx from all non-suspected peers, allowing it to initiate recovery for
any remaining suspected peers.

D.2 Proofs Modifications

We show that Pilotfish satisfies the security properties defined in Section 4 de-
spite the crash-failure of fe out of 2fe + 1 ExecutionWorkers in all shards.

Pilotfish: Distributed Execution for Scalable Blockchains 35

Algorithm 7 Recovery procedure

// Global states
1: read-to, read-from,peers
2: suspected ▷ set of suspected workers, updated by failure detector
3: curr-txidx ▷ highest txn that is locally executed and persisted
4: my-shard ▷ identifier for the local shard

5: procedure Recover(x) ▷ x ∈ peers ∪ read-from
6: s← x.shard
7: (w,TxIdx∗)← GetStatus(s)
8: if TxIdx∗ ≤ curr-txidx then
9: success← NewReader(w,TxIdx∗)
10: if success then
11: read-from ← read-from ∪ {w}
12: return True ▷ recovery is successful
13: else
14: return False ▷ recovery failed, caller should retry

15: else
16: for p ∈ peers do
17: Send(p,NotifySync)

18: Synchronize()
19: return true ▷ May run recovery for each crashed peer

20: procedure GetStatus(s) ▷ s is a shard identifier
21: for w ∈ shard s do
22: Send(w, Recover)

23: r← receive RecoverOk
24: replies← {r}
25: rh ← r ▷ reply with highest txid
26: while |replies| < f + 1 do
27: r← receive RecoverOk
28: rh ← r if r.txid > rh.txid else rh
29: replies← replies ∪ {r}
30: return (rh.src, rh.txid)

31: procedure NewReader(w,TxIdx∗)
32: NewReader← (TxIdx∗)
33: Send(w, NewReader)
34: reply← receive reply from w
35: if reply = NewReaderOk then
36: return true ▷ reconfiguration success
37: else
38: return false

Assumptions. The security of the recovery protocol relies on the following
assumptions.

Assumption 3 (Correct Majority) At least fe+1 out of 2fe+1 Execution-
Workers of every shard are correct at all times.

Assumption 4 (Eventual Synchrony) The network between ExecutionWork-
ers is eventually synchronous [25].

It has been shown that in eventual synchrony, crash failures can eventually be
perfectly detected [17]. Thus, Assumption 4 implies the following:

Assumption 5 (Eventually Strong Failure Detector) There exists an even-
tually perfect failure detector ♢S with the following properties: (i) Strong com-
pleteness: Every faulty process is eventually permanently suspected by every non-
faulty process. (ii) Eventual strong accuracy: Eventually, correct processes are
not suspected by any correct process.

36 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Algorithm 8 Recovery procedure message handlers

// Global states
1: read-to, read-from,peers
2: stable-txid ▷ txid of locally-stored stable checkpoint
3: buffer ▷ local store of sent ReadyMessage
4: checkpoints ▷ snapshots of local state

5: procedure ProcessRecover(Recover)
6: RecoverOk← (stable-txid)
7: Send(Recover.src, RecoverOk)

8: procedure ProcessNewReader(NewReader)
9: src← NewReader.src
10: TxIdx∗ ← NewReader.txid
11: if TxIdx∗ < stable-txid then
12: Send(src, Abort)
13: else
14: read-to← read-to ∪ {src}
15: Send(src, NewReaderOk)
16: for r ∈ buffer do
17: if r.dst = src ∧ r.txid ≥ stable-txid then
18: Send(src, r) ▷ forward all buffered messages since stable-txid

19: procedure ProcessNotifySync(NotifySync)
20: src←NotifySync.src
21: if src ∈peers then
22: perform Syncrhonize

23: if src ∈read-to then
24: read-to← read-to \ {src}
25: if src ∈read-from then
26: read-from← read-from \ {src}

27: procedure ProcessSync(Sync)
28: src← Sync.src
29: TxIdx∗ ← Sync.txid
30: if TxIdx∗ < stable-txid then
31: Send(src, Abort)
32: else
33: Send(src, checkpoints[TxIdx∗])

Serializability and determinsm proof. We argue both the serializability and
determinism of the protocol by showing that ExecutionWorkers process the same
input transactions regardless of crash-faults. That is, no ExecutionWorker skips
the processing of an input transaction or processes a transaction twice. Both
serializability and determinsm then follow from the proofs of Appendix B.

Lemma 16. No ExecutionWorker skips the processing of an input transaction.

Proof. Let’s assume by contradiction that a worker w with state Objects skips
the processing of the input transaction Txj . This means that (i) w included in
its read-from set a worker w′ with state Objects′, where Objects′ is the
state Objects after the processing of the list of transactions Txi, . . . ,Txj ; and
(ii) that w processes a ResultMessage from w′ referencing transaction Txj . This
is however a direct contradiction of check Line 8 of Algorithm 7 ensuring that
w only includes w′ in its read-from set after its latest processed transaction
curr-txidx is at least Txj (that is, Txj ≤ curr-txidx), hence a contradiction.

Lemma 17. No ExecutionWorker processes the same input transaction twice.

Proof. Let’s assume by contradiction that a worker w with state Objects pro-
cesses the same input transactions Txj twice. This means that (i) w included

Pilotfish: Distributed Execution for Scalable Blockchains 37

Algorithm 9 Synchronization procedure

1: procedure Synchronize
2: for w ∈ read-to ∪ read-from do
3: Send(w, NotifySync)

4: read-from← ∅
5: read-to← ∅
6: while true do
7: (w,TxIdx∗)← GetStatus(my-shard)
8: Sync← (TxIdx∗)
9: Send(w, Sync)
10: reply← receive reply from w
11: if reply ̸= Abort then
12: LoadCheckpoint(w) ▷ Load checkpoint from w
13: for p ∈ peers do
14: SyncComplete← TxIdx∗

15: Send(p, SyncComplete)

16: replies← {} ▷ wait for SyncComplete responses
17: while ̸ ∃r.(r ∈ replies ∧ r.txid > TxIdx∗) do
18: r ← receive SyncComplete
19: if ∀p ∈ peers \ suspected. ∃r.(r ∈ replies ∧ r.src = p ∧ r.txid = TxIdx∗) then
20: return true

in its read-from set a worker w′ with state Objects′, where Objects′ is the
state Objects prior to the processing of the list of transactions Txi, . . . ,Txj ;
and (ii) that w processes a ResultMessage from w′ referencing transaction Txj .
This is however impossible as w could only include w′ in its read-from set after
calling Line 9 (Algorithm 7), and thus after w′ updates its state to Objects by
processing Txi, . . . ,Txj at Line 18 (Algorithm 8). As a result, w could not have
processed a ResultMessage from w′ referencing Txj while its state is different
from Objects.

Lemma 18. ExecutionWorkers process the same set of input transactions re-
gardless of crash-faults.

Proof. This lemma follows from the observation that, despite crash-faults, no
ExecutionWorker skips any transaction (Lemma 16) nor processes any transac-
tion twice (Lemma 17). As a result, ExecutionWorkers process the same set of
input transactions regardless of crash-faults.

Liveness proof. Suppose a worker x crashes. By the strong completeness prop-
erty of the failure detector, a correct worker e eventually detects this failure, and
performs the recovery procedure (Line 5 of Algorithm 7) to find another correct
ExecutionWorker of shard s to replace x.We thus argue the liveness property
in Lemma 22 by showing that the recovery procedure presented at Line 5 of
Algorithm 7 eventually succeeds; that is, it eventually exits at either Line 12 or
Line 19. The protocol then resumes normal operation, and the liveness of the
system follows from the liveness of the normal operation protocol (Appendix B).
As intermediary steps, we show that the procedures GetStatus(·) (Line 20
of Algorithm 7), NewReader(·) (Line 31 of Algorithm 7), and Synchronize
(Algorithm 9) eventually terminate.

Lemma 19. Any call by a correct worker to GetStatus(·) (Line 20 of Algo-
rithm 7) eventually terminates.

38 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Proof. We argue this lemma by construction. Let’s assume an ExecutionWorker
w callsGetStatus(s) on a shard s. It this sends a Recovermessage to all workers
of shards s (Line 22 of Algorithm 7). By Assumption 4, each of these workers
eventually receive the messages, and correct ones reply with a RecoverOkmessage
(Line 5 of Algorithm 8). By Assumption 3, there are at least fe+1 correct workers
in shard s. Worker w thus eventually receives at least fe+1 RecoverOk responses
(Assumption 4). Check Line 26 of Algorithm 7 then succeeds and ensures that
GetStatus(s) returns.

Lemma 20. A call NewReader(w, ·) (Line 31 of Algorithm 7) to a correct
worker w eventually successfully terminates; that is, it returns True.

Proof. Suppose a correct worker calls NewReader(w,TxIdx∗) for a correct
worker w. By construction, the values (w,TxIdx∗) are the result of the prior
call to GetStatus(·) (Line 20 of Algorithm 7). Then, given a period of syn-
chrony where messages are delivered much quicker than checkpoint intervals
(Assumption 4), TxIdx∗ is a valid checkpoint at w. As such w responds to the
caller’s request with NewReaderOk, and the caller successfully terminates.

Lemma 21. Any call to Synchronize (Algorithm 9) eventually terminates.

Proof. We argue this lemma by construction of Algorithm 9. Let w be a correct
worker calling Synchronize. By Lemma 19, the call toGetStatus(my-shard)
(Line 7 of Algorithm 9) eventually returns. Then, w eventually receives a non-
Abort reply (reply ̸= Abort) at Line 10 given sufficiently many executions of the
loop (Line 6) and a period of network synchrony where messages are delivered
much quicker than checkpoint intervals on other clusters (Assumption 4). Worker
w then loads a remote snapshot, and waits for a set of SyncComplete messages
from peers \ suspected. If w receives a message with a larger TxIdx, w retries
the synchronization loop at line 6. By the strong completeness property of the
failure detector (Assumption 5), w eventually suspect all failed peers, and hence
receive all responses from the peers\suspected set. Moreover, once messages are
delivered quicker than the checkpoint intervals within clusters (Assumption 4),
all peers undergoing Synchronize will synchronize to the same TxIdx∗ after
sufficient retries.

Lemma 22. A call to Recover(·) (Line 5 of Line 5) eventually successfully
terminates. That is, it eventually exists at either Line 12 or Line 19

Proof. Consider an ExecutionWorker executing the procedureRecover(x) (Line 5
of Algorithm 7) with x ∈ peers ∪ read-from. The ExecutionWorker first calls
GetStatus(x.shard) (Line 20) which is guaranteed to terminate (Lemma 19).
We then have two cases: (i) the call enters the if-branch (Algorithm 7 Line 8),
and (ii) the call enters the else-branch (Algorithm 7 Line 15). We prove that the
recovery procedure eventually successfully terminates in both cases. In the first
case (i), the ExecutionWorker calls NewReader(w,TxIdx∗) (Line 31) which is
guaranteed to eventually successfully terminate by Lemma 20. The Execution-
Worker then adds w to its read-from set and successfully terminates. In the
second case (ii), Line 17 of Algorithm 7 ensures that every correct peer even-
tually performs the synchronization procedure. Lemma 21 then guarantees that
the call to Synchronize (Line 18) eventually terminates. The ExecutionWorker
then successfully terminates.

Pilotfish: Distributed Execution for Scalable Blockchains 39

Algorithm 10 Core functions (dynamic objects)

1: function TryTriggerExecution(Tx)
2: // Check if all dependencies are already executed
3: if HasDependencies(Tx) then return

4:
5: // Check if all objects are present
6: M ← MissingObjects(Tx)
7: if M ̸= ∅ then
8: for oid ∈M do Missing[oid]← Missing[oid] ∪ Tx

9: return
10:
11: // Send object data to a deterministically-selected ExecutionWorker
12: worker ← Handler(Tx) ▷ Worker handling the most objects of Tx
13: O ← {Objects[oid] s.t. oid ∈ HandledObjects(Tx)} ▷ May contain ⊥
14: ReadyMessage← (Tx, O)
15: Send(worker,ReadyMessage)

E Detailed Dynamic Objects Protocol

This section completes Section 6 by providing the modifications to the algorithms
of Appendix A and proving the security of Pilotfish while supporting dynamic
reads and writes.

E.1 Algorithms Modifications

We specify the modifications to the algorithms of Appendix A to support dy-
namic read and writes.

The main difference between Algorithm 10 and Algorithm 3 of Appendix A
is the removal of Line 22. Instead of immediately clearing the read locks after
accessing the read set’s objects, Algorithm 5 removes all read and write locks
later.

The main change between Algorithm 11 and Algorithm 4 of Appendix A is
the rescheduling of Tx upon discovering a dynamic object. The algorithm first
calls UppdateRWSet(Txoid′) Line 11 to update the read or write set of Tx
with the newly discovered object oid′ and then calls RescheduleTx(Tx, oid′)
at Line 12 to notify all concerned workers that the transaction needs to be re-
scheduled for execution.

Finally, Algorithm 12 updates the queue Pending[oid′] to trigger re-execution
of Tx once oid′ is available.

E.2 Proofs Modifications

We specify the modifications to the proofs of Appendix B to prove the serializ-
ability, determinism, and liveness (Section 4) of the dynamic reads and writes
algorithm. The main modifications arise from the fact that Assumption 2 (Ap-
pendix B) is not guaranteed in the dynamic reads and writes algorithm. We
instead rely on Assumption 6 below.

Assumption 6 (Transaction References Root) If transaction Tx dynami-
cally accesses an object oid′, it explicitly references its root object oid.

The Sui MoveVM [43] (used in our implementation) satisfies this assumption.
As a result, this part of our design is specific to the Sui MoveVM and cannot di-
rectly generalize to other deterministic execution engines unless they implement
it as well.

40 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Algorithm 11 Process ReadyMessage (dynamic objects)

1: R← {} ▷ Maps Tx to the object data it refefrernces (or ⊥ if unavailable)

// Called by the ExecutionWorkers upon receiving a ReadyMessage.
2: procedure ProcessReady(ReadyMessage)
3: (Tx, O)← ReadyMessage
4: R[Tx]← R[Tx] ∪O
5: if len(R[Tx]) ̸= len(R(Tx)) + len(W(Tx)) then return

6:
7: ResultMessage← (Tx, ∅, ∅)
8: if !AbortExec(Tx) then
9: r ← exec(Tx,ReceivedObj[Tx])
10: if r = (⊥, oid′) then
11: UpdateRWSet(Tx, oid′) ▷ Update R(Tx) or W(Tx) with oid′

12: RescheduleTx(Tx, oid′) ▷ Reschedule Tx with discovered oid′

13: return
14: (O, I)← r ▷ O to mutate and I to delete
15: for w ∈ ne do
16: Ow ← {o ∈ O s.t. Handler(o) = w}
17: Iw ← {oid ∈ I s.t. Handler(oid) = w}
18: ResultMessage← (Tx, Ow, Iw)

19: Send(w,ResultMessage)

// Reschedule execution with discovered object.
20: function RescheduleTx(Tx, oid′)
21: AugTx← (Tx, oid′)
22: for w ∈ ne do
23: if ∃oid ∈ Tx s.t. Handler(oid) = w then
24: Send(w,AugTx)

Algorithm 12 Process AugTx (dynamic objects)

1: procedure ProcessAugmentedTx(AugTx)
2: (Tx, oid′)← augmentedtx
3: if oid′ ∈ W(Tx) then
4: Pending[oid′]← Pending[oid′] ∪ (W, [Tx])
5: else ▷ oid′ ∈ R(Tx)
6: (op, T ′)← Pending[oid′][−1]
7: if op = W then Pending[oid′]← Pending[oid] ∪ (R, [Tx])
8: else Pending[oid′][−1]← (R, T ′ ∪ Tx)

9:
10: // Try to execute the transaction
11: TryTriggerExecution(Tx) ▷ Defined in Algorithm 3

Serializability. We replace Lemma 3 (Appendix B) with Lemma 23 below. The
rest of the proof remains unchanged. Intuitively, Pilotfish prevents the processing
of conflicting transactions until all dynamic objects are discovered. This limits
concurrency further than the base algorithms presented in Appendix A but Ap-
pendix E.3 shows how to alleviate this issue by indexing the queues Pending[·]
with versioned objects, that is, tuples of (oid, version), rather than only object
ids.

Lemma 23 (Unlock after Processing). If a transaction Tx is removed from
the pending queue of an object oid then Tx has already been processed (Defini-
tion 7 of Appendix B).

Proof. We argue this lemma by construction of Algorithm 5. By definition (Def-
inition 7), the processing of Tx terminates at Algorithm 5 Line 4. However, the
only way Tx can be removed fromPending[oid] is by a call toAdvanceLock(Tx, oid).
This call only occurs at one place, at Line 14 of that same algorithm, thus after
finishing the processing of tx.

Pilotfish: Distributed Execution for Scalable Blockchains 41

The following corollary is a direct consequence of Lemma 23 and facilitates
the proofs presented in the rest of the section.

Corollary 1 (Simulateous Removal). A transaction Tx is removed from all
queues at Line 14 of Algorithm 5.

Proof. We observe that the proof of Lemma 23 states that the only way to
remove Tx from a queue is by calling AdvanceLock(T, oid) and that this call
occurs only at one place, at Line 14 of Algorithm 5.

Determinism. The call to exec(Tx, O) at Line 9 of Algorithm 4 only completes
when all objects dynamically accessed by Tx are provided by the set O or are
specified as ⊥. Since objects are uniquely identified by id, we need to show that
all honest validators discover the same set of dynamically accessed objects.

Lemma 24 (Consistent Dynamic Execution). If a correct validator suc-
cessfully calls exec(Tx, O) with an dynamically accessed object o′ ∈ O s.t. o′ ̸=⊥
then no correct validators calls exec(Tx, O) with o′ =⊥.

Proof. Let’s assume by contradiction that a correct validatorA calls exec(Txj , O)
(Line 9 of Algorithm 11) with o′ ∈ O s.t. o′ ̸=⊥ while another correct validator B
calls exec(Txj , O) with o′ =⊥. This means that validator A called exec(Txj , O)
after processing a previous transaction Txi that created o′, and that validator B
called exec(Txj , O) before processing Txi. By Assumption 6 both transactions Tx
and Tx′ conflict on the root of o′, named o, and Lemma 2 (Appendix B) ensures
that they are both placed in the same queue Pending[oid] (with oid = Id(o)).
Lemma 6 (Appendix B) ensures that both validator hold Txj and Txi in the same
order in Pending[oid], and since validator A processed Txi before Txj , it means
that both validators placed Txi in the queue Pending[oid] before Txj . However
Lemma 23 ensures that Txi is not removed from Pending[oid] until processed
and thus that validator B executed Txj despite Txi is still in Pending[oid].
However check HasDependencies(Txj) (Line 3 of Algorithm 10) prevents Txj
from accessing object o (since it is not at the head of the queue Pending[oid]).
This is a contradiction of Lemma 5 (Appendix B) stating that Txj cannot be
executed before accessing o. Since o′ was chosen arbitrarily, the same reasoning
applies to all objects dynamically accessed by Txj .

Lemma 24 replaces the reliance on Assumption 2 in the proof of Theorem 2
(Appendix B).

Liveness. Lemma 12 of Appendix B assumes that all calls to exec(Tx, ·) are in-
fallible. However, supporting dynamic objects requires us to modify Algorithm 4
as indicated in Algorithm 11 and make exec(Tx, O) fallible. The final Lemma 27
in this paragraph proves that this change does not compromise liveness, since
all dynamically accessed objects are eventually discovered, and thus all calls to
exec(Tx, ·) eventually succeed.

Lemma 25 (Mirrored Dynamic Object Schedule). If a transaction Txj
is placed in a queue Pending[oid′] of a dynamically accessed object oid′ after a
transaction Txi, then Txj is also placed in the queue Pending[oid] of the root
object oid after Txi.

42 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Proof. Let’s assume by contradiction that Txj is placed in the queuePending[oid′]
of a dynamically accessed object oid′ after a transaction Txi but before Txi is
placed in the queue Pending[oid] of the root object oid. By construction, Txi can
only discover oid′ upon execution (Line 9 of Algorithm 11). However, Lemma 5
ensures that Txi cannot be executed before accessing oid. This means Txi access
oid despite Txj is already in the queue Pending[oid′]. This is however a con-
tradiction of check HasDependencies(Txi) (Line 3 of Algorithm 10) ensuring
that Txi is at head of Pending[oid] and thus placed in that queue before Txj .

Lemma 26 (Dynamic Access at Head of Queue). When discovering a
dynamically accessed object oid′ by executing transaction Txj and adding Txj to
queue of Pending[oid′], Txj is at the head of the queue Pending[oid′].

Proof. Let’s assume by contradiction that there exists a transaction Txi is at
the head of Pending[oid′] while adding Txj to the queue Pending[oid′]. By
Assumption 6, both transactions Txi and Txj conflict on the root of oid′, named
oid, and Lemma 2 (Appendix B) ensures that they are both placed in the same
queue Pending[oid]. Given that Txi is at the head of Pending[oid′] and that
Corollary 1 states that transactions are removed from all queues at the same call,
Txi is also present in the queue Pending[oid]. Furthermore, since Txi is placed in
Pending[oid′] before Txj , Lemma 25 ensures that Txi is also placed in the queue
Pending[oid] before Txj . Since the discovery of the dynamic object oid′ can only
occur upon executing a transaction accessing it (at Line 9 of Algorithm 11) and
Txi is placed in Pending[oid] before Txj , it means that Pilotfish executed Txj
while Txi is still in the queue Pending[oid]. This is a direct contradiction of
check HasDependencies() (Line 3 of Algorithm 10).

Lemma 27 (Unlock after Processing). All objects dynamically accessed by
Tx are eventually discovered. That is, eventually exec(Tx, ·) ̸= (⊥, ·).

Proof. Lemma 23 ensures that when exec(Tx, ·) (Line 9 of Algorithm 11) returns
(⊥, oid′), Tx remains at the head of the queue Pending[oid] (for any oid ∈
Tx). By construction, this only happens when Tx discovers a dynamic access
to object oid′; Tx is then added to the queue Pending[oid′] (Algorithm 12).
Lemma 26 ensures that Tx is at the head of the queue Pending[oid′] and thus
ready for execution by referencing the newly discovered object oid′. As a result,
all dynamically accessed objects are eventually discovered, and thus exec(Tx, ·) ̸=
(⊥, ·).

E.3 Versioned Queues Scheduling

This section shows the necessary changes to the algorithms of Appendix E.1 and
data structures of Appendix A to move from per-object queues to per-object-
version queues. A prerequisite for this is versioned storage of the object data
itself, that is, Objects should be a map Objects[oid,Version] → o instead of
Objects[oid] → o, which keeps old object versions for as long as they are ref-
erenced. Given this, a transaction only writing (not reading) an object does not
have to wait on any transaction reading the previous version. An example of this
new queueing system can be seen in Figure 13. Also, the resulting dependencies

Pilotfish: Distributed Execution for Scalable Blockchains 43

Tx1 Tx2 Tx3 Tx4 Tx5

R: {O1}
W: {O1}

R: {O1}
W: {O1, O3}

R: {O1, O2}
W: {O4}

R: {O2, O3}
W: {O4}

R: {O1, O3}
W: {O2, O3}

O1 (V1) O2 (V1) O3 (V1) O4 (V1)

R, [Tx1]

O1 (V2) O2 (V2) O3 (V2) O4 (V2)

W, [Tx1]
R, [Tx2]

R, [Tx3, Tx4]

W, [Tx5]

W, [Tx3]

W, [Tx4]

W, [Tx2]
R, [Tx4, Tx5]

W, [Tx5]

O1 (V3)

W, [Tx2]
R, [Tx3, Tx5]

Fig. 13: Example of per-object-version queues, the same transactions as in Figure 3.

Tx1 Tx2 Tx3

Tx4

Tx5

O1

O1, O3

O1

O3

Fig. 14: Example of the happens-before/waiting-on relationship resulting from the per-
object-version queues of Figure 13. Edge labels indicate which object is responsible for
the dependency.

between transactions can be seen in Figure 14. Without per-version queues all
five transactions would have to be executed sequentially instead.

One observation with these per-version queues is that each queue now only
contains a single writing transaction (at the very beginning of the queue) and
possibly many reading transactions following it. This makes it straightforward to
keep track of dependencies between transactions directly, without explicitly cre-
ating the queues. We use two maps for this: (a) CurrentWriter[oid]→ TxIdx
keeps track of which transaction is writing the most recent version of any object,
and (b) WaitingOn[TxIdx]→ [TxIdx] keeps for each transaction a list of trans-
actions currently writing object versions it depends on. Additionally, a reverse
mapping WaitedOnBy can be used to enable fast deletion from WaitingOn.
Once WaitingOn is empty for a transaction, it is ready for execution. When en-
queueing a transaction, we can check CurrentWriter for all objects it reads
to see which other transactions it needs to wait on. This process is shown in
detail in Algorithm 13 and Algorithm 14.

44 Q. Kniep, L. Kokoris-Kogias, A. Sonnino, I. Zablotchi, N. Zhang

Algorithm 13 Process ProposeMessage (Split-Queues)

1: i← 0 ▷ All batch indices below this watermark are received
2: B← [] ▷ Received batch indices

// Called by ExecutionWorkers upon receiving a ProposeMessage.
3: procedure ProcessPropose(ProposeMessage)
4: // Ensure we received one message per SequencingWorker
5: (BatchIdx,BatchId, T)← ProposeMessage
6: B[BatchIdx]← B[BatchIdx] ∪ (BatchId, T)
7: while len(B[i]) = ns do
8: (, T)← B[i]
9: i← i + 1
10:
11: // Add the objects to their pending queues
12: for Tx ∈ T do
13: for oid ∈ HandledObjects(Tx) do ▷ Defined in Algorithm 3
14: Tx′ ← CurrentWriter[oid]
15: if oid ∈ W(Tx) then
16: CurrentWriter[oid]← Tx

17: if oid ∈ R(Tx) then
18: WaitingOn[Tx′]←WaitingOn[Tx′] ∪ {Tx}
19: WaitedOnBy[Tx]←WaitedOnBy[Tx] ∪ {Tx′}
20:
21: // Try to execute the transaction
22: TryTriggerExecution(Tx) ▷ Defined in Algorithm 3

Algorithm 14 Core functions (Split-Queues, only modified shown)

1: j← 0 ▷ All Tx indices below this watermark are executed
2: E← ∅ ▷ Executed transaction indices

3: function HasDependencies(Tx)
4: return WaitingOn[Tx] ̸= ∅

5: function AdvanceLock(Tx, oid)
6: // Cleanup the pending queue
7: T ← ∅
8: for oid ∈ W(Tx) do
9: if CurrentWriter[oid] = Tx then ▷ Tx is still the most recent write
10: CurrentWriter[oid]← ⊥
11: for Tx′ ∈WaitedOnBy[Tx] do
12: WaitingOn[Tx′]←WaitingOn[Tx′] \ {Tx}
13: WaitedOnBy[Tx]←WaitedOnBy[Tx] \ {Tx′}
14: if WaitingOn[Tx′] = ∅ then
15: T ← T ∪ {Tx′}
16: return T

	 Pilotfish: Distributed Execution forScalable Blockchains

