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Abstract. We study a version of the online min-cost perfect matching
with delays (MPMD) problem recently introduced by Emek et al. (STOC
2016). In this problem, requests arrive in a continuous time online fash-
ion and should be matched to each other. Each request emerges from one
out of n sources, with metric inter-source distances. The algorithm is al-
lowed to delay the matching of requests, but with a cost: when matching
two requests, it pays the distance between their respective sources and
the time each request has waited from its arrival until it was matched.
In this paper, we consider the special case of n = 2 sources that captures
the essence of the match-or-wait challenge (cf. rent-or-buy). It turns out
that even for this degenerate metric space, the problem is far from triv-
ial. Our results include a deterministic 3-competitive online algorithm
for this problem, a proof that no deterministic online algorithm can have
competitive ratio smaller than 3, and a proof that the same lower bound
applies also for the restricted family of memoryless randomized algo-
rithms.

1 Introduction

The abundance of hand held devices and the ease of application development
is fueling the increasing popularity of online games. With that, the demand for
head-to-head competition or players teaming up to complete a mission is growing
fast. Ranging from classic games like Chess to car racing games like Asphalt 8,
users wish to be matched with suitable opponents. The online gaming platform
tries to find a match for each player while conflicted between two desired criteria:
find a worthy opponent and find it fast. It is not hard to imagine a situation where
the only available opponents are a poor match either due to a large difference
between the players’ skills and experience or due to the network distance between
the players which may lead to significant communication delays. Should the
platform wait, risking bored (and thus, dissatisfied) users? For how long?

Emek et al. [88] recently formalized this challenge in terms of the min-cost
perfect matching with delays (MPMD) problem. In this problem requests arrive
in an online fashion at the points of a finite metric space (known in advance).
The online algorithm serves the requests by matching them to each other (i.e.,
partitioning the request set into pairs), where each match incurs a space cost



equal to the metric distance between the locations of the matched requests. The
crux of this problem is that it is not mandatory to serve the requests immediately;
rather, the online algorithm is allowed to delay its matching commitments, but
this incurs an additional time cost.

Some online gaming platforms will match a pending human player with a vir-
tual (computer) opponent if a suitable human opponent cannot be found within
a reasonable time frame. On the positive side, this allows the platform to shorten
the waiting times of its users, but on the negative side, a player matched with a
virtual opponent may be slightly disappointed: after all, it is more enjoyable to
compete with your peers. This imposes an additional algorithmic challenge on
behalf of the gaming platform: For how long should the platform wait before it
matches a pending user to a virtual opponent? The challenge faced by a gaming
platform that is allowed to match a human player to a virtual opponent is cap-
tured by a variant of the MPMD problem, referred to in [88] as MPMDfp, where
the algorithm can serve a pending request without matching it to another re-
quest, paying a fixed penalty (hence the ‘fp’ abbreviation). Among other results,
Emek et al. showed that the MPMDfp problem on an n-point metric space can
be reduced to the MPMD problem on a (2n)-point metric space.

In this paper, we focus on a special case of the MPMD problem, referred
to as 2-MPMD, where the metric space consists of only two points with a unit
distance between them, that is, the requests emerge from one of two possible
sources. It turns out that even for this degenerate metric space, the problem
is far from trivial. Moreover, the 2-MPMD problem generalizes the MPMDfp
problem on a single point that corresponds to an online game in which all (user-
to-user) matches are considered equally good and it is only the waiting times
and penalties paid for matching users with a virtual opponent that affect the
platform’s total cost. This problem is interesting by its own right as it captures
the essence of the wait-or-match question (cf. rent-or-buy) while abstracting
away the space cost component arising from the distances in the metric space.

1.1 Model

An instance of the 2-source minimum cost perfect matching with delays (2-
MPMD) problem consists of two sources (denoted a and b) and a set R of
requests. Each request r ∈ R is characterized by its source x(r) ∈ {a, b} and its
arrival time t(r) ∈ R≥0. The request set R is provided to the algorithm in a
continuous time online fashion so that request r ∈ R is reported at time t(r).

Assume throughout that |R| is even. The output of the algorithm is a perfect
matching of R, namely, a partition of R into unordered request pairs. Though
this is computed online, the algorithm is allowed (and often required) to delay
the matching of any request in R. This delay comes with a cost: the time between
the arrival of a request and it being matched is added to the cost incurred by
the algorithm.

Specifically, given two requests r1, r2 ∈ R, we denote a match operation
m(r1, r2, t) as the assignment of r1 and r2 into an unordered pair at time t ≥
max{t(r1), t(r2)}. Match m incurs two types of costs on each request: space cost



and time cost. If r1 and r2 have different sources (i.e., x(r1) 6= x(r2)), referred
to hereafter as matching across, then the space cost for each of the requests is
1/2, otherwise it is 0 (this choice of space cost convention reflects the implicit
assumption that there is a unit distance between the two sources). The time
costs for requests r1 and r2 are t − t(r1) and t − t(r2), respectively. The total
cost of match operation m is denoted cost(m) and is defined to be the sum of
the space and time costs of the two involved requests. For algorithm ALG, we
denote the set of unordered pairs that have been produced by it as MALG and
the total cost incurred by the algorithm, denoted by costALG(R), is defined to
be costALG(R) =

∑
m∈MALG

cost(m).
When request r arrives, it is initially referred to as open; once the algorithm

has matched it with another request, it becomes matched. Notice that this def-
inition is only relevant in the context of a certain algorithm since two different
algorithms may have matched the requests differently or at different times.

Our goal is to minimize the total cost of the match operations that our
algorithm performs. Adhering to the common practice in the theory of online
algorithms [44], the quality of the algorithmic solutions is measured in terms of
their competitive ratio: Online algorithm ALG is said to be α-competitive if there
exists a universal constant β such that costALG(R) ≤ α · costOPT (R) + β for
every (even size) request sequence R, where OPT is an optimal offline algorithm
(the cost is taken in expectation if ALG is randomized). We notice that ALG
has no a priori knowledge of R.

1.2 Related Work

Matching is a classic problem in graph theory and combinatorial optimization
since the seminal work of Edmonds [77,66]. The matching problem has been stud-
ied in the context of online computation as well, starting with the classic paper
of Karp, Vazirani, and Vazirani [1111] that ignited the interest in online match-
ing and attracted a lot of attention to the different versions of this problem
[1010,1212,1414,1515,33,99,11,55,1313,1616,1717]. In these online versions, it is usually assumed that
the requests belong to one side of a bipartite graph whose other side is given in
advance.

Emek et al. [88] recently introduced the MPMD problem which differs from the
previously studied online matching versions in that the underlying graph (or met-
ric space) is known in advance and the algorithmic challenge stems from the un-
known locations and arrival times of the requests (whose number is unbounded).
They present a randomized algorithm with competitive ratio O(log2 n+ log∆),
where n is the number of points in the metric space and ∆ is the aspect ratio.
Wang and Wattenhofer [1818] show that the algorithm of [88] can be modified to
treat the bipartite version of the MPMD problem (left outside the scope of the
present paper), obtaining the same competitiveness. Azar et al. [22] devise an-
other online MPMD algorithm with an improved logarithmic competitive ratio.
They also prove that no (randomized) online MPMD algorithm can have com-

petitive ratio better than Ω(
√

log n) in the all-pairs version and Ω(log1/3 n) in
the bipartite version.



1.3 Our Contribution

The general case of the online MPMD problem received a lot of attention in the
last year, narrowing the asymptotic gap between the upper and lower bounds on
the competitiveness of this problem [88,1818,22]. The algorithms presented in [88] and
[22] clearly imply a constant upper bound on the competitiveness of the 2-MPMD
problem, but the analyses in these papers are not necessarily tailored to optimize
this constant: the upper bound guaranteed by the analysis in [22] is 5; the upper
bound guaranteed by the analysis in [88] is even larger, however, examining [88]’s
randomized online algorithm (its 2-MPMD restriction) more carefully reveals
that its competitive ratio is at most 3. Is this optimal? Can one ensure the same
upper bound with a deterministic online algorithm?

In this paper, we answer these two questions on the affirmative. First, in
Section 22, we introduce a deterministic variant of the online algorithm of [88]
(restricted to the special case of the 2-MPMD problem) and establish an upper
bound of 3 on its competitive ratio. Then, in Section 33, we prove that any
deterministic online 2-MPMD algorithm must have a competitive ratio of at
least 3. Finally, in Section 44, we investigate the competitiveness of memoryless
online 2-MPMD algorithms — a family of randomized algorithms that include
the algorithm of [88] (refer to Section 44 for an exact definition) — proving that
it is at least 3 as well. While the upper bound of Section 22 clearly holds for
the MPMDfp problem on a single point (recall that this is a special case of 2-
MPMD), it is interesting to point out that the lower bounds of Sections 33 and 44
also hold for that problem.

2 An Online 2-MPMD Algorithm

In this section we present a deterministic online 2-MPMD algorithm (Sec-
tion 2.12.1), referred to as delayed matching on 2 sources (DM2), and prove that its
competitive ratio is 3 (Section 2.22.2). A matching lower bound will be established
in Section 33.

2.1 Algorithm DM2

In this section we present our online algorithm DM2. While DM2 is designed for
a continuous time environment, it is more easily understood when described as if
it was operating in a discrete time environment, taking discrete time steps. The
time difference dt between two consecutive steps is taken to be infinitesimally
small so that we can assume without loss of generality that every request arrives
in a separate time step.

The algorithm holds a counter T initialized to 0. For a given time step t and a
request r1 arriving during that time step, if there exists another open request r2
in the same source, then DM2 matches the two requests immediately. If during
this time step, there are two open requests in different sources (arriving in this
time step or in previous ones), then DM2 will increase T by dt. When T reaches
τ , DM2 matches across and resets T back to 0. Refer to Algorithm 11 for a
pseudocode.



Algorithm 1 Algorithm DM2 at time step t.

1: if there exist two open requests r1 6= r2 with x(r1) = x(r2) then
2: match(r1, r2)
3: else if there exist two open requests r1 6= r2 with x(r1) 6= x(r2) then
4: T ← T + dt
5: if T = τ then
6: match(r1, r2)
7: T ← 0
8: end if
9: end if

2.2 Analysis

Our goal in this section is to analyze the competitiveness of the online algorithm
presented in Section 2.12.1, establishing the following theorem.

Theorem 1. Algorithm DM2 is 3-competitive.

We say that an (online or offline) algorithm A is smart if it satisfies the
following property: If request r arrives at a source where there already exists an
open request r′ 6= r, i.e., x(r′) = x(r) and t(r′) < t(r), then A matches r and
r′ immediately, that is, at time t(r). Notice that any smart algorithm will never
have more than two open requests for a positive duration of time. Algorithm
DM2 is clearly smart by definition.

Lemma 1. There exists an online method that transforms any algorithm A into
a smart algorithm Ã without increasing the total cost incurred by the algorithm.

Proof. Let R be the request sequence and consider the first occurrence of two
open requests r1, r2 with x(r1) = x(r2) and t(r1) < t(r2) that algorithm A does
not match immediately (i.e., at time t(r2)). We construct an algorithm A′ that
behaves exactly like A up to time t(r2) and matches r1 with r2 at time t(r2) and
show that the cost incurred by A′ is not greater than that of A. This argument
can then be repeated to turn A into the desired smart algorithm Ã.

Algorithm A′ will match r1 with r2 at time t(r2) and continue as follows. If A
matches r1 with r2 at a later time t′ > t(r2), then all other matching operations
of A′ are identical to those of A. In this case, costA′(R) is clearly smaller than
costA(R). The more interesting case is when A matches r1 to r′1 6= r2 at time
t1 and r2 to r′2 6= r1 at time t2; in this case, A′ will match r′1 with r′2 at time
max{t1, t2}. Again, all other matching operations of A′ are identical to those of
A.

It remains to prove that costA′(R) ≤ costA(R) also in this case. To that end,
notice that

costA(R)− costA′(R) ≥ (t1 − t(r1) + t1 − t(r′1) + t2 − t(r2) + t2 − t(r′2))

− (t(r2)− t(r1) + 2 max{t1, t2} − t(r′1)− t(r′2))

= 2 (t1 + t2 − t(r2)−max{t1, t2}) .

The last expression is non-negative since we know that t1, t2 ≥ t(r2).



We subsequently assume that OPT is smart. The cost incurred by a smart
algorithm A (online or offline) is comprised of three cost components:
(C1) the space cost incurred by A for matching across;
(C2) the time cost incurred by A while there exists a single open request; and
(C3) the time cost incurred by A while there exist two open requests (one at
each source).

Observation 1 The parity of the number of open requests is the same for DM2
and OPT at any time t.

From Observation 11 we conclude that cost component (C2) for DM2 is iden-
tical to that of OPT . We therefore ignore it in the subsequent analysis (this can
only hurt the upper bound we obtain on the competitive ratio of DM2).

Our analysis relies on partitioning the time axis into phases. Each phase
starts when the previous phase ends (the first phase starts at time 0) and ends
when DM2 performs a match across (OPT might have open requests at this
stage). Note also that a match across can only occur (Line 10) when T has
increased from 0 to τ since the last time a match across occurred (i.e., in this
phase only).

Let MA(P ) denote the set of request pairs matched by algorithm A
during phase P so the cost that algorithm A pays for P is costA(P ) =∑
m∈MA(P ) costA(m). Since we ignore cost component (C2), the cost for DM2

of any phase P is always costDM2(P ) = 1 + 2τ .
Phase P is said to be clean if when it starts, OPT does not have any open

requests. Otherwise, P is said to be dirty. Phase P is said to be even numbered
if OPT performs an even number of matches across during the time interval P .
Otherwise, P is said to be odd numbered.

Observation 2 When a dirty phase starts, OPT has exactly two open requests.

Proof. From Observation 11 we know OPT has an even number of open requests;
it can not be larger than 2 because OPT is smart and it can not be 0 because
the phase is dirty.

Observation 3 In every phase the number of requests that appear in each source
is odd.

Proof. DM2 starts and ends each phase with no open requests, and since it also
matches across exactly once during the phase, the number of requests appearing
during the phase in each source must be odd.

Observation 44 follows from Observation 33 and from the fact that DM2
matches across exactly once (and in particular an odd number of times) in each
phase.

Observation 4 Given two consecutive phases P1 and P2, if both are clean or
both are dirty, then P1 must be an odd numbered phase. If one of them is dirty
and the other is clean, then P1 must be even numbered.



We now turn to define the notion of a super phase which consists of a clean
phase followed by a maximal (possibly empty) contiguous sequence of dirty
phases. This notion uniquely induces a partition of the phase sequence into
super phases. We denote the cost that algorithm A pays for super phase S as
costA(S) =

∑
P∈S costA(P ). By definition, when a super phase starts, both

DM2 and OPT have no open requests. This means that we can establish The-
orem 11 by proving the following lemma.

Lemma 2. There exists a choice of the parameter τ > 0 that guarantees
costDM2(S) ≤ 3 · costOPT (S) for every super phase S.

Proof. Consider some super phase S comprised of a single clean phase followed
by n ≥ 0 dirty phases. We know that DM2 pays 1 + 2τ for each phase, so
costDM2(S) = (n+ 1)(1 + 2τ).

If S consists of exactly one phase P (i.e., n = 0), then by Observation 44, P is
odd numbered. Therefore, OPT matched across at least once during super phase
S, hence costOPT (S) ≥ 1. This proves the assertion under the requirement that
τ ≤ 1.

Assume hereafter that S contains n ≥ 1 dirty phases. Refer to the first (clean)
phase of S as P0 and to the subsequent n dirty phases as P1, .., Pn in order of
appearance. By Observation 44, phase P0 is even numbered, therefore, during this
phase, OPT either matched across at least twice or did not match across at all.
The former case implies that costOPT (P0) ≥ 2; in the latter case, we know by
the design of DM2 that OPT paid at least 2τ in time cost. This means that
costOPT (P0) ≥ min{2, 2τ}.

Since phases P1, .., Pn are all dirty, Observation 44 ensures that phases
P1, .., Pn−1 are all odd numbered, hence OPT must have matched across at
least once during each one of them. It follows that costOPT (Pi) ≥ 1 for ev-
ery 1 ≤ i ≤ n − 1. Therefore, the total cost of OPT for super phase S is
costOPT (S) ≥ min{2, 2τ}+ (n− 1).

To establish the assertion, we require that (n+ 1)(1 + 2τ) ≤ 3(min{2, 2τ}+
(n− 1)). To that end, we let

f(τ) = (n+1)(1+2τ)−3(min{2, 2τ}+(n−1)) = 2nτ+2τ−6min{1, τ}−2n+4

and require that f(τ) ≤ 0. Observing that setting τ < 1 implies

f(τ) = 2nτ + 2τ − 6τ − 2n+ 4 = (1− τ)(4− 2n)

which means that f(τ) > 0 for n = 1, forces τ to be at least 1. Recalling the
prior constraint of τ ≤ 1, we conclude that τ must be 1. Indeed, by setting τ = 1,
we obtain f(τ) = 0 as required.

3 A Lower Bound for Deterministic Algorithms

We now turn to show that the algorithm presented in Section 2.12.1 is optimal by
establishing a matching lower bound.



Theorem 2. For any δ > 0, no deterministic online 2-MPMD algorithm can
have a competitive ratio of 3− δ.

Theorem 22 is established by proving that for every deterministic online 2-
MPMD algorithm A, there exists a request sequence R with arbitrarily large
costOPT (R) such that costA(R) ≥ (3− δ)costOPT (R). The key ingredient in the
construction of R is a gadget G satisfying costA(G) ≥ (3 − δ)costOPT (G); the
request sequence R is then constructed by repeatedly introducing instances of
this gadget with sufficiently large time gaps between consecutive copies.

Gadget G is comprised of 2n requests, denoted by r1, . . . rn and r′1, . . . , r
′
n,

with x(ri) = a, x(r′i) = b, and t(ri) = t(r′i) for every 1 ≤ i ≤ n. Requests r1 and
r′1 are the only requests certain to appear, while the appearance of the rest of the
requests ri, r

′
i depends on the behavior of A. Given that G includes requests ri

and r′i (i.e., n ≥ i), let ti be the difference (in absolute value) between time t(ri)
and the time when A performed m(ri, r

′
i) (the time difference ti is well defined

since A must eventually match m(ri, r
′
i) as otherwise its competitive ratio is

unbounded). The appearance of requests ri+1 and r′i+1 then abides the following
rule: if ti < 1, then requests ri+1 and r′i+1 are introduced at time

t(ri+1) = t(r′i+1) = t(ri) + ti + ε

for a sufficiently small ε > 0; otherwise, the gadget ends (i.e., n = i). This holds
until the first odd i ≥ 3 that fulfills i−2

i ≥ 1− δ after which there will appear no
more requests (i.e., n = i).

Lemma 3. For every δ > 0, the construction of G ensures that costA(G) ≥
(3− δ)costOPT (G).

Proof. If n = 1, then costA(G) = 1 + 2t1 whereas costOPT (G) = 1, thus
costA(G)

costOPT (G) = 1+2t1
1 which is at least 3 since t1 ≥ 1. If n = 2, then costA(G) = 2+

2t1 + 2t2 whereas costOPT (G) = 2t1 since OPT performs {m(r1, r2),m(r′1, r
′
2)}.

Therefore, costA(G)
costOPT (G) = 2+2t1+2t2

2t1
= 2

2t1
+ 2t1

2t1
+ 2t2

2t1
which is at least 3 since

t1 < 1 ≤ t2.
Assume hereafter that n ≥ 3 is odd (the case of even n ≥ 3 is similar and

deferred to the full version). Notice that costA(G) is always n+2t1+2t2+· · ·+2tn
whereas OPT can choose between the following options (among others).

1. Perform a match across m(r1, r
′
1, t(r1)) for the first two requests;

match all other requests by performing m(r2j , r2j+1, t(r2j+1)) and
m(r′2j , r

′
2j+1, t(r

′
2j+1)) for every 1 < j ≤ (n− 1)/2.

Ignoring ε-terms that can be made arbitrarily small, this results in
costOPT (G) = 1 + 2t2 + 2t4 + · · ·+ 2tn−1.

2. Perform a match across m(rn, r
′
n, t(rn)) for the last two requests; match all

other requests by performing m(r2j−1, r2j , t(r2j)) and m(r′2j−1, r
′
2j , t(r

′
2j))

for every 1 ≤ j ≤ (n− 1)/2.
Ignoring ε-terms that can be made arbitrarily small, this results in
costOPT (G) = 1 + 2t1 + 2t3 + · · ·+ 2tn−2.



Denoting Todd =
∑bn/2c
j=1 t2j−1 and Teven =

∑dn/2e−1
j=1 t2j implies that

costOPT (G) can never exceed min{1 + 2Teven, 1 + 2Todd}. Since ti < 1 for every
1 ≤ i ≤ n− 1, it follows that costOPT (G) < n.

Consider the case where ti < 1 for every 1 ≤ i ≤ n − 1 and tn ≥ 1. We
examine the ratio of costA(G) and costOPT (G) to conclude that

costA(G)

costOPT (G)

=
n+ 2Todd + 2Teven + 2tn

1 + 2 min{Teven, Todd}

=
1 + 2Todd

1 + 2 min{Teven, Todd}
+

1 + 2Teven
1 + 2 min{Teven, Todd}

+
n− 2 + 2tn

1 + 2 min{Teven, Todd}

>
1 + 2Todd
1 + 2Todd

+
1 + 2Teven
1 + 2Teven

+
n

n
= 3 .

It remains to consider the case where ti < 1 for every 1 ≤ i ≤ n which means
that n is odd and that n−2

n ≥ 1 − δ. Again, we examine the ratio of costA(G)
and costOPT (G) to conclude that

costA(G)

costOPT (G)

=
n+ 2Todd + 2Teven + 2tn

1 + 2 min{Teven, Todd}

=
1 + 2Todd

1 + 2 min{Teven, Todd}
+

1 + 2Teven
1 + 2 min{Teven, Todd}

+
n− 2 + 2tn

1 + 2 min{Teven, Todd}

≥ 1 + 2Todd
1 + 2Todd

+
1 + 2Teven
1 + 2Teven

+
n− 2

n
≥ 3− δ .

The assertion follows.

4 Memoryless Online Algorithms

We now turn our attention to randomized algorithms. As the deterministic al-
gorithm presented in Section 22 is 3-competitive and the lower bound established
in Section 33 states that this cannot be improved, it is natural to ask whether
a randomized 2-MPMD algorithm can have competitive ratio smaller than 3.
While we dot know the answer to this question in the general case yet, the
current section resolves it on the negative for a restricted family of randomized
2-MPMD algorithms.

Recall the notion of smart algorithms presented in Section 2.22.2. Lemma 11
guarantees that for the sake of establishing negative results, it suffices to consider
the class of smart online algorithms as any algorithm can be transformed into a
smart algorithm without increasing the cost (since the transformation works in
an online fashion, the lemma applies to randomized algorithms as well).



Consider some randomized smart 2-MPMD algorithm ALG. By the definition
of smart algorithms, ALG is fully characterized by the parameter λ(t) ∈ R≥0,
t ≥ 0, defined so that if there is an open request in each source throughout
the infinitesimally small time interval [t − dt, t), then ALG matches across at
time t with probability λ(t)dt. (Strictly speaking, λ(t) can also take the special
value 1/dt in which case λ(t)dt = 1; in particular, the algorithm is deterministic
if λ(t) is either 0 or 1/dt for every t ≥ 0.) We say that algorithm ALG is
memoryless if there exists some λ > 0 such that λ(t) = λ for every t ≥ 0,
namely, the probability that ALG matches across at time t depends only on the
infinitesimally small time interval [t− dt, t) and is independent of the rest of the
history.

Interestingly, the restriction of the randomized online MPMD algorithm of [88]
to metric spaces with 2 sources is memoryless with parameter λ = 1. Although
the authors of [88] did not attempt to optimize the (constant) competitive ratio
of their algorithm for that special case, a careful examination of the arguments
used in the analysis of this algorithm reveals that its competitive ratio is 3. In
this section, we show that this cannot be improved.

Theorem 3. If ALG is a (randomized) memoryless 2-MPMD algorithm with
parameter λ 6= 1, then its competitive ratio is greater than 3.

Proof. Consider first the case where λ < 1. Let R be the request sequence
consisting of 2n requests r1, . . . , rn and r′1, . . . , r

′
n for some arbitrarily large n so

that
(1) x(ri) = a and x(r′i) = b for every 1 ≤ i ≤ n;
(2) t1 = t(r1) = t(r′1) = 0; and
(3) ti+1 = t(ri+1) = t(r′i+1) = ti + z for some sufficiently large real z for every
1 ≤ i ≤ n− 1.
Given that z > 1, OPT will perform m(ri, r

′
i, ti) for every 1 ≤ i ≤ n for a total

cost of costOPT (R) = n.
Assuming that all previous requests are already matched by the time ri and

r′i arrive, ALG will perform either (i) m(ri, r
′
i, ti + Yi) for some 0 ≤ Yi < z;

or (ii) m(ri, ri+1, ti+1) and m(r′i, r
′
i+1, ti+1), recalling that ti+1 = ti + z. By the

definition of a memoryless algorithm, the probability that (ii) occurs is

P(Exp(λ) > z) = e−λz ,

where Exp(λ) is an exponential random variable with rate parameter λ. More-
over, Yi is a random variable that behaves like Exp(λ), truncated at z, namely,
Yi ∼ min {Exp(λ), z}. Standard calculation (see, e.g., the proof of Lemma 4.2 in
[88]) then yields that

E(Yi) =
1

λ
(1− e−λz) .

It follows that

lim
z→∞

E (costALG(R)) = n (1 + 2/λ) > 3n ,



where the last transition follows from the assumption that λ < 1.
Suppose that λ > 1 and let R be the request sequence consisting of 4n

requests r1, . . . , r2n and r′1, . . . , r
′
2n for some arbitrarily large n so that

(1) x(ri) = a and x(r′i) = b for every 1 ≤ i ≤ 2n;
(2) t1 = t(r1) = t(r′1) = 0;
(3) t2i = t(r2i) = t(r′2i) = t2i−1 +ε for some sufficiently small real ε > 0 for every
1 ≤ i ≤ n; and (4) t2i+1 = t(r2i+1) = t(r′2i+1) = t2i + z for some sufficiently
large real z for every 1 ≤ i ≤ n − 1. Given that ε < 1, OPT will perform
m(r2i−1, r2i, t2i) and m(r′2i−1, r

′
2i, t2i) for every 1 ≤ i ≤ n for a total cost of

costOPT (R) = 2εn.
Assuming that all previous requests are already matched by the time r2i−1

and r′2i−1 arrive, ALG will perform either (i) m(r2i−1, r
′
2i−1, t2i−1 + y) for some

0 ≤ y < ε; or (ii) m(r2i−1, r2i, t2i) and m(r′2i−1, r
′
2i, t2i), recalling that t2i =

t2i−1 + ε. Taking p to be the probability that (i) occurs, we conclude by the
definition of a memoryless algorithm that p = P(Exp(λ) < ε) = 1− e−λε, hence

λε(1− λε) < λε− (λε)2/2 < p < λε

by standard approximations of the exponential function.
Condition for the time being on the event that (i) occurs and notice that

ALG will now perform either (iii) m(r2i, r
′
2i, t2i + Yi) for some 0 ≤ Yi < z; or

(iv) m(r2i, r2i+1, t2i+1) and m(r′2i, r
′
2i+1, t2i+1), recalling that t2i+1 = t2i + z.

As before, the probability that (iv) occurs is P(Exp(λ) > z) = e−λz and Yi ∼
min {Exp(λ), z} with E(Yi) = 1

λ (1−e−λz), so by taking z to be sufficiently large
with respect to n, we can assume that event (iv) never occurs. This means that
every time event (i) occurs, ALG pays, on expectation, 1 + 2/λ for matching r2i
and r′2i (and that this match occurs before time t2i+1, i.e., the arrival time of
the next requests).

Since every time (i) occurs, ALG pays an additional space cost of 1 for
matching (across) r2i−1 and r′2i−1 and every time (ii) occurs, ALG pays a time
cost of 2ε, it follows that

E (costALG(R)) ≥n(p(2 + 2/λ) + (1− p)2ε)
= 2n(p(1 + 1/λ) + (1− p)ε)
> 2n(λε(1− λε)(1 + 1/λ) + (1− λε)ε)
= (1− λε)2εn(λ(1 + 1/λ) + 1)

= (1− λε)2εn(λ+ 2) .

By taking 1/ε to be sufficiently large with respect to λ (yet, much smaller than
n), we conclude that E(costALG(R)) > 3costOPT (R) due to the assumption that
λ > 1.
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