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ABSTRACT

Blood vessel networks in the brain play a crucial role in stroke research, where un-
derstanding their topology is essential for analyzing blood flow dynamics. How-
ever, extracting detailed topological vessel network information from microscopy
data remains a significant challenge, mainly due to the scarcity of labeled training
data and the need for high topological accuracy. This work combines synthetic
data generation with deep learning to automatically extract vessel networks as
graphs from volumetric microscopy data. To combat data scarcity, we introduce
a comprehensive pipeline for generating large-scale synthetic datasets that mirror
the characteristics of real vessel networks. Our three-stage approach progresses
from abstract graph generation through vessel mask creation to realistic medical
image synthesis, incorporating biological constraints and imaging artifacts at each
stage. Using this synthetic data, we develop a two-stage deep learning pipeline
of 3D U-Net-based models for node detection and edge prediction. Fine-tuning
on real microscopy data shows promising adaptation, improving edge prediction
F1 scores from 0.496 to 0.626 by training on merely 5 manually labeled sam-
ples. These results suggest that automated vessel network extraction is becoming
practically feasible, opening new possibilities for large-scale vascular analysis in
stroke research.

1 INTRODUCTION

Understanding the topology of brain vessel networks is crucial for analyzing blood flow dynamics,
particularly in stroke research, where vascular disruptions can have severe consequences (Shih et al.,
2013). These networks can be modeled as graphs, enabling detailed flow analysis. However, accu-
rately extracting vessel structures from high-resolution 3D microscopy data remains a significant
challenge (Schmid, 2017).Imaging noise, artifacts, and complex vessel junctions frequently lead to
segmentation errors, disrupting downstream analyses.

Deep learning methods offer a promising approach to automate vessel network extraction, but the
scarcity of labeled training data constrains their effectiveness. Annotating 3D vessel structures is an
expert-intensive and time-consuming process, making creating the large-scale datasets required for
robust model training challenging. This data bottleneck limits deep learning solutions’ applicability,
scalability, and generalization (Tetteh et al., 2020; Wittmann et al., 2024).

We propose a synthetic data generation pipeline to address this challenge and improve vessel graph
extraction in microscopy images. Our approach simulates realistic vessel networks based on physi-
ological principles, generates volumetric imaging data with domain-specific artifacts, and produces
large-scale synthetic datasets for training models. By leveraging synthetic data, we enhance model
robustness, particularly in detecting complex junctions, and reduce reliance on extensive manual
annotations. Fine-tuning on a minimal set of real microscopy samples further demonstrates the po-
tential for synthetic data to bridge the gap between limited real-world data and scalable AI solutions.

This work highlights how synthetic data can mitigate critical data access limitations in biomedical
AI, aligning with the broader goal of expanding machine learning applications in data-scarce do-
mains. Our findings contribute to the discussion on the benefits and challenges of synthetic data
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Figure 1: The synthetic data generation is split into three phases. First, the ground truth graph struc-
ture, including all node and edge placements, is generated while considering biological constraints.
Then, Vessel features, such as the outline and curves, are generated. Finally, we add noise, artifacts,
and distortions during the simulated imaging to derive a synthetic image of a blood vessel network.

for model training, supporting the development of more generalizable and scalable AI systems in
biomedical research.

2 SYNTHETIC DATA GENERATION

Blood vessel imaging data typically consists of 3D volumetric scans where vessels appear as tube-
like structures against a dark background. The diameters of these structures can vary drastically,
ranging from large arteries to fine capillaries. Moreover, the data frequently contains imaging arti-
facts, such as intensity variations along vessels and noise patterns that can vary with imaging depth
and conditions. One of the main challenges besides the scan quality is the lack of labeled anno-
tated ground truth data. We introduce a fully parametrized synthetic data generation pipeline to
address the data scarcity for vessel network extraction (Figure 1). Our approach enables the creation
of large-scale training datasets while maintaining control over key characteristics of the generated
samples, which can provide the ground truth of the topological graph structure.

Our data generation pipeline consists of three main stages. First, we generate the underlying graph
structure representing the vessel network. Here, we incorporate biological constraints such as real-
istic branching patterns and vessel diameter relationships following Murray’s law Murray (1926).
The second stage converts these abstract graphs into volumetric vessel masks to recreate a fully
virtual model of the underlying vessel network. We use Bézier curves to create natural-looking ves-
sel segments throughout the network. Finally, we simulate realistic imaging conditions by adding
appropriate noise patterns and imaging artifacts that match those observed in real data.

Following this pipeline, we create two distinct synthetic datasets: A Homogenous and a Varied
dataset whose characteristics are noted in Table 1. The Homogeneous dataset comprises 100k sam-
ples generated using a single set of parameters carefully tuned to match the characteristics of our real
vessel microscopy data. We show several examples from both datasets in Figure 2. In contrast, the
varied dataset consists of 1024 samples of 1024 different parameter configurations, yielding roughly
1 million datapoints. This diversity allows for greater variation in vessel network properties, imag-
ing conditions, and artifact patterns. Moreover, this dataset includes configurations that can result in

Table 1: Overview of the used datasets. We have access to 10 real data samples that are annotated to
have the network topology. We generate two synthetic datasets, both of which contain at least 100k
samples. The homogenous dataset contains samples from the configuration that resemble the real
data the closest, whereas the Varied dataset consists of a diverse range of parameter configurations.

Dataset Samples Method Size Source
Labeled Scans 10 TPLSM X GB Real
Homogeneous (ours) 100k, 1M Single Parameterset X GB Synthetic
Varied (ours) 1.08M Diverse Parameterset X GB Synthetic
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(a) Real Blood Vessels (b) Synthetic Homogenous images

(c) Synthetic Varied images

Figure 2: 2D projections of real and synthetic 3D blood vessel image scans. The real image on the
top left depicts a full scan, which we divide into patches of smaller sizes. The top right contains
samples from the Homogenous data, which aims to be as close as possible to the original data
patches. The bottom row contains samples from the Varied data, which covers a more diverse set of
parameters. These samples include flipped masks, different noise levels, straight vessels, etc.

instances that look and are quite different, i.e., by having an inverted mask or consisting of straight
connections only. We include a full list of the parameters used when generating the Homogenous
and Varied datasets in Appendix C. This dual approach enables us to evaluate both the benefits of
matched synthetic data and the potential advantages of training on more diverse samples.

3 METHODOLOGY

We approach the task of vessel network extraction using two separate models that first detect nodes
and then predict the connections between them. Our preliminary experiments motivated this sepa-
ration, which showed that attempting to predict both nodes and edges simultaneously led to reduced
accuracy, particularly at complex junctions. By splitting the prediction, we can optimize each stage
independently and use ground truth node positions during edge predictor training, eliminating the
compounding of localization errors. Both models employ a 3D U-Net based architecture, specif-
ically for the node task we predict both node coordinates and confidence scores. In comparison,
the edge prediction stage uses a similar but smaller network that takes the detected node positions
as additional input to predict the vessel graph’s adjacency matrix directly. Given the typical num-
ber of nodes observed in vessel networks from our data, we designed the model to predict a fixed
maximum of 32 node coordinates in 3D space along with corresponding confidence scores. The
network outputs both a coordinate tensor representing the 3D positions and confidence logits, which
are transformed into probabilities using a sigmoid activation.

Loss The loss function has to balance multiple aspects: a variable amount of present nodes, pre-
cise localization as well as confidence calibration. Our approach consists of three components: a
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Figure 3: Architecture of the node prediction model, which can detect up to a maximum of 32
nodes. The model follows a U-Net structure with an encoder path and decoder path with additional
skip connections between corresponding layers. The final processing block outputs features used by
the coordinate prediction head (3D node coordinates) and confidence head (confidence scores).

coordinate matching loss that ensures precise node localization, an excess prediction penalty that
handles predictions without corresponding ground truth nodes, and a confidence loss. The total loss
is then a combination of these terms:

L = Lmatched + αLexcess + βLconf

where α, β are weighting factors between the different losses, Lmatched represents the distance-
weighted coordinate matching loss, Lexcess penalizes unmatched predictions based on their confi-
dence and distance to targets, and Lconf is the binary cross-entropy loss for confidence prediction.

Coordinate Matching: First, we pair the n ground truth nodes with the n most confident predicted
nodes using the Hungarian algorithm Kuhn (1955), solving the challenge of arbitrary node ordering.
The cost of matching the nodes corresponds to the euchlidian distance between the points. We denote
the predictions with Pi and the targets as Ti, where Pi was matched with Ti using the Hungarian
algorithm. Matched predictions contribute to the loss with confidence-based weights:

Lmatched =
∑
i<n

∥Pi − Ti∥2 · (2.0− confi).

Excess Prediction Penalty: For unmatched predictions, a confidence proportional penalty is applied:

Lexcess =
∑
i≥n

min
j

(∥Pi − Tj∥2) · confi

This loss ensures that low-confidence unmatched predictions incur a minimal penalty,unmatched
predictions with high-confidence are penalized heavily while predictions near targets are penalized
less than distant ones.

Confidence Loss: The confidence predictions are additionally trained using a binary cross-entropy
loss. For matched predictions, the target confidence is based on the distance to the matched ground
truth node, while unmatched predictions are trained towards zero confidence:

Lconf = −
∑
i

[ti log(confi) + (1− ti) log(1− confi)]

where ti = exp(−di) is the target confidence for prediction i, with di being either the distance to the
matched target for matched predictions or 1 for unmatched predictions. This formulation ensures
that predictions closer to their targets are trained towards higher confidence values.

For edge prediction, we employ a similar U-Net architecture that takes both the image data and
detected node positions as input. The network predicts the corresponding adjacency matrix A. We
ensure symmetry in the adjacency matrix by averaging it with its transpose. During training, we use
the binary cross-entropy loss between the predicted and target adjacency matrix.
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(a) Node Prediction (b) Edge Predictions

Figure 4: 2D projections of graph networks predicted on 3D synthetic image data. On the left, we
illustrate node prediction. The blue circles indicate the area within a prediction is marked as correct.
The red and green dots symbolize the trained model’s high and low confidence predictions.

4 EXPERIMENTAL EVALUATION

While our synthetic dataset aims to capture vessel network characteristics as well as possible, the real
microscopy z-stack images will always differ. To bridge this gap, we employ a fine-tuning approach
using a small set of manually labeled real microscopy data. Our fine-tuning dataset consists of 10
manually annotated patches of vessel networks. Given its limited size, we split it into five samples
for additional training and five for final evaluation. We employ a leave-one-out cross-validation
(LOOCV) strategy on the fine-tuning set to maximize insights from the limited data.

We explore two distinct fine-tuning strategies. In the head-only approach, only fine-tunes the final
prediction layers while keeping feature extraction layers frozen. This means adjusting only the coor-
dinate prediction and confidence heads for the node prediction model, while for the edge prediction
model, only the final edge MLP is trained. In contrast, the full-model approach fine-tunes all layers
with a low learning rate 10−6 to avoid catastrophic forgetting of patterns learned during pre-training.

We use the Homogeneous and Varied datasets to pre-train models. We pretrain the model on the full
Varied dataset of roughly one million samples, as it shows continued improvement as more data is
used. For the Homogenous data, we tested the performance for the 100k and one million versions of
the dataset, where the model trained on the 100k variant performed slightly better. Therefore, this
dataset was used to futher fine-tune on the real data. Further details are provided in the Appendix D.
We run both fine-tuning approaches for each pre-trained model by fitting for 100 epochs using the
Adam optimizer. After cross-validation identifies optimal hyperparameters, we train the final models
using all 5 training samples. This methodology enables us to quantify the benefits of fine-tuning and
the relative merits of selective versus full model adjustment when adapting to real microscopy data.

Finally, we also create and evaluate an additional Scanset model, which uses the same architectures
but is trained for 1000 epochs exclusively on these 5 training samples to illustrate the impact of
using synthetic data for pre-training.

While the synthetic dataset enables training models that can capture basic vessel network character-
istics, real microscopy z-stacks present additional challenges and variations not perfectly captured
by our synthetic generation pipeline. To bridge this gap, we employ a fine-tuning approach using a
small set of manually labeled real microscopy data.
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Figure 5: F1 score of node and edge prediction on real-world data with pre-trained models. The
stacked bars show the improvement of the Varied relative to the Homogenous dataset. The values
above the bars are the increase of using the Varied dataset. Scanset, only trained on the label real
data, does not perform well, and training purely on synthetic data alone improves performance
drastically. By fine-tuning the model on very few labeled real data samples, performance can be
further improved. Moreover, training on synthetic data that emphasizes diversity in the generation,
even if it can result in implausible networks, aids transferring from the synthetic to the real domain.

5 RESULTS

After applying our fine-tuning approaches to node and edge prediction models, we evaluate their
performance on the five manually labeled test scans. This directly compares three scenarios: the
baseline model without fine-tuning, fine-tuning only the prediction heads, and fine-tuning the entire
model. The result is shown in Figure 15.

Both fine-tuning approaches show notable improvement over the baseline model for node detection.
The Scanset model (F1: 0.067) trained exclusively on the five labeled scans and exhibits very low
precision (0.059) and recall (0.077) with a systematic tendency to overpredict, generating 27.2 nodes
per image compared to the ground truth average of 20.8. This dramatic performance gap demon-
strates that the pre-training on our synthetic data has provided crucial prior knowledge about vessel
network structures that cannot be learned effectively from just a handful of real examples. Edge
prediction shows similar improvements with fine-tuning. Interestingly, fine-tuning on the Varied
dataset benefits the performance in both the node and edge prediction tasks. This shows that even
though the individual data samples might not fully match the blood vessel domain, the additional
diversity throughout the dataset leads to better downstream performance. The comparison between
head-only and full-model fine-tuning reveals only marginal differences, with full-model fine-tuning
performing slightly better in both node detection (F1: 0.435 vs. 0.427) and edge prediction (F1:
0.626 vs. 0.607). This suggests that most of the benefits of fine-tuning can be achieved by adjusting
only the final prediction layers.

The results demonstrate that our synthetic data provides a viable path toward vessel network extrac-
tion, enabling effective model pre-training that can be refined with very limited real data. The large
performance gap between the Scanset and fine-tuned models highlights the value of our approach
- while training on just five real samples yields poor results in itself, the same amount of real data
can substantially improve a model pre-trained on synthetic data. This suggests that our synthetic
data successfully captures key characteristics, allowing the models to learn fundamental features
that transfer well to real data.

6 CONCLUSION

This work presents a novel synthetic data generation pipeline designed to address the challenge of
training deep learning models for brain vessel network extraction with very little labeled data. Our
parameterized approach generates a diverse and realistic vessel network, enabling the creation of
large-scale synthetic training datasets with access to the underlying topological labels.
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We validate the effectiveness of our approach by generating two synthetic datasets and test the
performance improvement of a U-Net architecture by first pre-training on the fully synthetic data
and then fine-tuning on 5 labeled real data samples. Our results show that pre-training on synthetic
data is beneficial, especially on the diverse variation, which improves edge prediction F1 score
from 0.496 to 0.626. These results demonstrate that our parameterized synthetic data generation
approach, combined with strategic fine-tuning, provides a practical solution for the extraction of
vessel networks.
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A BACKGROUND AND RELATED WORK

Imaging Techniques Understanding blood vessel networks is essential for studying cerebrovas-
cular dynamics and conditions such as stroke, where disruptions in blood flow can lead to severe
outcomes. These networks span multiple scales, from large cerebral arteries to fine capillaries, and
their analysis requires advanced imaging techniques.

At the macroscale, magnetic resonance imaging (MRI) and computed tomography (CT) allow non-
invasive visualization of major vessels, providing insights into cerebral perfusion and blood flow
during neural activation (Ogawa et al., 1992). However, their spatial resolution, typically in the
range of hundreds of micrometers, is insufficient for capturing the finer microvasculature.

High-resolution imaging methods, such as two-photon laser scanning microscopy (TPLSM), have
become indispensable for studying small vessels and capillaries, offering subcellular resolution (We-
ber & Schmid, 2022; Meng et al., 2022). Through line scanning, TPLSM can quantify absolute
blood flow speeds in individual vessels, though it is constrained by small fields of view and the
need for invasive cranial windows (Chen et al., 2020; Boppart et al., 1997). Recent ultrafast imple-
mentations have enhanced temporal resolution, enabling kilohertz frame rates, but remain limited to
two-dimensional imaging (Meng et al., 2022). Light microscopy through cranial windows provides
a versatile solution for broader fields of view and longitudinal studies, balancing invasiveness with
stable optical access to vascular networks (Chen et al., 2020).

Graph Representation Graph representations of vascular networks offer a natural framework
for analyzing topology and blood flow dynamics. In these representations, vessels are modeled as
edges, and junctions serve as nodes, enabling the study of key features such as branching patterns,
flow dynamics, and collateral vessel functionality (Blinder et al., 2013; Glück et al., 2024). This
graph-based perspective aligns well with physiological principles, as blood flow entering a junction
must equal the flow exiting it. However, extracting these graphs from volumetric microscopy data
is fraught with challenges. The data’s inherent noise, imaging artifacts, and three-dimensional na-
ture complicate segmentation and graph construction, especially at junction points where errors can
disconnect entire regions Schmid (2017).

Classic Graph Extraction Traditional vessel segmentation and graph extraction approaches typi-
cally employ analytical pipelines, as exemplified by VesselExpress (Spangenberg et al., 2023).
These methods involve vessel enhancement (e.g., using the Frangi filter), segmentation, centerline
extraction, and subsequent graph construction. While interpretable and grounded in established im-
age processing techniques, these methods often fail to maintain topological consistency in complex
regions, such as junctions. They are sensitive to noise and parameter variations.

Deep Learning for Graph Extraction Deep learning has emerged as a powerful tool for vessel
network analysis, shifting the paradigm from multi-stage pipelines to end-to-end solutions. Early
advances focused on segmentation tasks, with models like U-Net (Ronneberger et al., 2015) and
CS2-Net (Mou et al., 2021) achieving state-of-the-art results across various imaging modalities.
However, these models are limited to pixel-level predictions and do not directly output graph repre-
sentations. More recent methods predict vessel graphs directly, such as VesselFormer (Prab-
hakar et al., 2024) and RelationFormer (Shit et al., 2022). VesselFormer extends the
transformer-based RelationFormer architecture to predict vessel properties like radius while
maintaining global topological relationships. Similarly, frameworks like Any2Graph (Krza-
kala et al., 2024) employ optimal transport losses, such as the Partially-Masked Fused Gromov-
Wasserstein distance, to compare predicted and ground-truth graphs while ensuring permutation
invariance. These methods outperform classical pipelines in maintaining topological consistency
but require large-scale annotated datasets for training.

Data Challenges The scarcity of labeled training data presents a fundamental challenge for both
classical and deep learning approaches. Manual annotation of vessel networks is labor-intensive,
requiring expert knowledge to ensure accurate topology, especially for 3D datasets (Schmid, 2017).
Synthetic dataset generation has emerged as a viable solution to this bottleneck, enabling the creation
of large-scale datasets with known ground truth. Tools like VascuSynth (Hamarneh & Jassi,
2010) simulate vascular growth based on physiological principles such as Murray’s law (Murray,
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1926), vessel curvature constraints, and tissue perfusion requirements. These synthetic datasets
provide valuable training data and support the validation of graph extraction algorithms. However,
they often fail to capture the full complexity of real vasculature, limiting their direct applicability to
real-world datasets.

Efforts to bridge the gap between synthetic and real data include domain adaptation and semi-
supervised learning approaches. For example, combining synthetic datasets with limited real-world
annotations can improve generalization. Incorporating fluid dynamics considerations (Schmid,
2017) into synthetic data generation further enhances biological plausibility, creating datasets that
more accurately reflect real blood flow patterns. Similarly, work in the area of blood vessel segmen-
tation has looked at taking real data and applying data augmentations designed explicitly for blood
vessel data, which can also be a promising way to generate synthetic data (Wittmann et al., 2024).

Our work focuses on generating synthetic data with a structure and noise pattern similar to those
observed in real-world light microscopy images.

B SYNTHETIC DATASET GENERATION

B.1 GRAPH GENERATION

Our vessel graph generation follows a growth-based approach inspired by biological vessel forma-
tion. Starting from a randomly placed initial vessel, the network grows iteratively, with each new
branch maintaining properties observed in real vascular networks. The generation process maintains
a priority queue of active vessel segments ordered by their diameter, ensuring that thicker vessels
are processed first. As the network expands, new branches are added through single extensions or
bifurcations, with vessel diameters scaled to maintain consistent blood flow capacity. The growth
continues until either the desired network size is reached or no further valid expansions are possible
due to spatial or minimum diameter constraints. This approach naturally creates hierarchical vessel
structures that mirror the organization of real vascular networks.

B.1.1 NODE PLACEMENT STRATEGY

The foundation of realistic vessel network generation lies in controlled growth rules that create
biologically plausible vessel branching patterns. Our algorithm generates nodes through an iterative
process that enforces several key constraints:

• Creation of branching points with biologically plausible angles and degree distributions

• Generation of intermediate extension nodes to create vessel curvature

• A minimum distance constraints between nodes to prevent unrealistic clustering

This rule-based approach creates graph structures that exhibit characteristics similar to real vessel
networks while maintaining computational efficiency and ensuring biological plausibility.

B.1.2 EDGE CONNECTION RULES

The connection of nodes to form vessel segments is governed by both biological constraints and ge-
ometric considerations. Real blood vessels follow specific patterns in how they branch and connect,
and our algorithm mimics these patterns through a set of carefully designed rules.

A key biological constraint we implement is Murray’s law (Murray, 1926), a law based on the
principle of minimum work in biological systems which states that the sum of the cubes of the radii
of daughter vessels equals the cube of the radius of the parent vessel:

r3p =

n∑
i=1

r3i

where rp is the radius of the parent vessel and ri are the radii of the daughter vessels.

10



Published at SynthData Workshop at ICLR 2025

The branching probability at each vessel segment is calculated based on the current vessel weight
(diameter) w and configurable minimum and maximum weights (wmin, wmax):

Pbranch = 0.2 + 0.6 · w − wmin

0.8 · wmax − wmin
.

This formula ensures thicker vessels have a higher probability of branching, while very thin vessels
rarely branch, matching biological observations.

For each potential branch, spatial validity is verified using intersection detection between line seg-
ments. Given two vessel segments defined by points p1 = (x1, y1), p2 = (x2, y2), p3 = (x3, y3),
and p4 = (x4, y4), we check for intersection using the cross-product method:

d1 = (x4 − x3)(y1 − y3)− (y4 − y3)(x1 − x3),

d2 = (y4 − y3)(x2 − x1)− (x4 − x3)(y2 − y1).

B.1.3 PARAMETER CONTROLS

The generation process is controlled through a comprehensive set of parameters that ensure flexibil-
ity and biological plausibility. The main parameters include:

• Vessel diameter range: wmin ≤ w ≤ wmax

• Node spacing constraints: dmin ≤ d ≤ dmax

• Maximum nodes (Nmax) and edges (Emax)

For a generated graph G = (V,E), we want to enforce the following constraints:

|V | ≤ Nmax

|E| ≤ Emax

∀vi, vj ∈ V : d(vi, vj) ≥ dmin

∀e ∈ E : d(e.start, e.end) ≤ dmax

where d(·, ·) is the Euclidean distance between nodes vi and vj . These constraints ensure that
the generated graphs maintain both biological plausibility and computational feasibility: limiting
the total number of nodes and edges prevents excessive complexity, while the distance constraints
prevent both unrealistically dense clustering (dmin) and implausibly long vessel segments (dmax).

When sampling new node positions, we use a distance-based probability distribution that encourages
more uniform spacing between nodes. For each potential new node position p, we calculate an
acceptance probability based on its distance to the nearest existing node. This probability is highest
when the new position is far from existing nodes and decreases exponentially as it gets closer to any
existing node:

Paccept(p) = exp(−minv∈V |p− v|2

2σ2
)

where σ = dmin/3 is derived from the minimum distance parameter. This formulation means that
positions very close to existing nodes (within dmin) are rejected, while positions further away are
more likely to be accepted. The exponential decay creates a soft boundary rather than a hard cutoff,
allowing occasional closer placement while maintaining good average spacing (See Figure 6). This
approach helps prevent unrealistic clustering of nodes while allowing natural variations in node
density that might occur at vessel bifurcations or in regions of complex vessel structure.

B.2 MASK GENERATION

B.2.1 CONVERTING GRAPHS TO BINARY MASKS

The conversion from graph representation to binary mask involves creating smooth vessel paths and
maintaining appropriate vessel thickness. We use cubic Bézier curves for each vessel segment to
create natural-looking paths. Given control points P0 through P3, the curve point B(t) at parameter
t is:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3.
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Figure 6: Generated 2D vessel graphs showing varying complexity and branching patterns. The
edge weight indicates the vessel diameter.

Figure 7: Binary vessel masks generated from the graph structures. Note how the vessel thickness
varies smoothly along branches and at bifurcations.

For each vessel segment with start point P0 and end point P3, we calculate intermediate control
points P1 and P2 to create a natural curve:

P1 = P0 +
d⃗

3
+ wn⃗

P2 = P0 +
2d⃗

3
− wn⃗

where d⃗ = P3 − P0 is the vessel direction vector, w is the vessel weight (diameter), and n⃗ is
the unit normal vector perpendicular to d⃗. The control points P1 and P2 are positioned one-third
and two-thirds along the path respectively, with opposite perpendicular offsets to create a smooth,
natural-looking curve.

B.2.2 ADDING REALISTIC VESSEL FEATURES

Along these Bézier curves, we place spheres with varying radii to create organic-looking vessels. At
each point along the curve, we add subtle random variations to the base radius:

ractual = rbase(1 + ϵ), ϵ ∼ U(−0.1, 0.1)

where U(−0.1, 0.1) represents a uniform random distribution between -0.1 and 0.1. This creates
subtle variations in vessel thickness that break up the otherwise perfectly circular cross-section.

The vessel volume is constructed by placing these modified spheres at dense intervals along the
Bézier curves. A point (x, y, z) is included in the vessel mask if:√

(x− xc)2 + (y − yc)2 + (z − zc)2 ≤ ractual

where (xc, yc, zc) is the center of the current sphere. At bifurcations, the overlapping of multiple
spheres naturally creates smooth transitions between vessels of different diameters.
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Figure 8: Final synthetic images.

B.3 ADDING NOISE

B.3.1 ADDING REALISTIC NOISE AND ARTIFACTS

We add several artifacts to simulate tissue-like structures and natural variations in medical imaging.
A background tissue structure is simulated using Perlin noise (Perlin, 1985) with multiple octaves:

P (x, y, z) =

n∑
i=1

1

2i
noise(2ix, 2iy, 2iz)

where n is the number of octaves, controlling the level of detail in the noise pattern. Additional
brightening is applied along vessel structures using a separate Perlin noise pattern to create variations
in vessel intensity, modulated by the original vessel mask.

Furthermore, multiple randomly placed blobs are added with varying sizes and intensities, simulat-
ing nearby tissue structures. Each blob’s intensity profile follows:

B(x, y) = exp

(
− (x− xc)

2 + (y − yc)
2

2σ2
b

)
· I

where (xc, yc) is the blob center, σb controls the blob size, and I is the intensity.

B.3.2 SIMULATING IMAGING CONDITIONS

The final image synthesis accounts for physical imaging effects through several steps. A point spread
function (PSF) simulates optical blur:

k(x) =
1

Z
exp

(
− x2

2σ2

)
where Z is a normalizing constant. This kernel is applied separably in each dimension for compu-
tational efficiency.

Poisson noise simulates quantum noise in the imaging process, with intensity-dependent variance:
Npoisson(x, y, z) ∼ Poisson(λ = I(x, y, z) · noise level).

Additional Gaussian noise represents electronic noise in the imaging system:
Ngaussian ∼ N (0, σ2

noise).

These effects are combined to produce the final image:
Ifinal = α(Ivessel ∗ PSF + Ibackground) +Npoisson +Ngaussian

where ∗ denotes convolution and α is a contrast factor.

C SYNTHETIC DATASET PARAMETERS

Homogenous Dataset The homogenous dataset is generated using the parameters shown in Ta-
ble 2.

13



Published at SynthData Workshop at ICLR 2025

Table 2: Dataset Parameters Overview. The table presents the configuration parameters used for
generating our synthetic dataset, consisting of 1 million samples. The parameters were carefully
chosen to simulate realistic vessel networks while incorporating various imaging artifacts and noise
characteristics.

Parameter Category Parameter Name Value
Volume Dimensions X dimension 64

Y dimension 64
Z dimension 64

Graph Properties Number of graphs 1,000,000
Maximum number of nodes 32
Maximum number of edges 0
Minimum node distance 5.0
Maximum node distance 30.0
Vessel weight (diameter) range 3.0 - 10.0
Straight lines False

Imaging Parameters PSF size 3
PSF sigma 2.0
Noise level 800
Background noise 0.05
Gaussian std 0.005
Background brightness 0.01

Perlin Noise Scale 20.0
Strength 0.3
Darkness 0.1

Brightening Effects Scale 50.0
Strength 0.8

Blob Parameters Maximum number 5
Maximum size 20
Complexity range [1, 4]
Elongation range [1, 3]
Curvature range [0, 1]
Intensity range [0.01, 0.2]

Varied Dataset For the varied configurations, we systematically varied parameters across three
aspects of the generation pipeline, with the remaining parameters being the same as those for the
homogenous dataset.

1. Graph Structure Parameters:

• Minimum node distance (dmin): 3–10 units
• Maximum node distance (dmax): dmin + 5 to min(64, dmin + 25) units
• Minimum vessel diameter (wmin): 2–8 units
• Maximum vessel diameter (wmax): wmin + 2 to min(24, wmin + 16) units

2. Vessel Mask Parameters:

• 10% probability of using straight lines as edges instead of Bézier curves
• 10% probability of inverting the vessel mask

3. Image Generation Parameters:

• Point Spread Function: Size (2–7 units) and sigma (0.5–5.0)
• Noise characteristics: Level (200–2000)
• Perlin noise: Scale (10–100), strength (0.1–0.8), and darkness (0.05–0.3)
• Vessel brightening: Scale (20–100) and strength (0.3–1.2)
• Blob artifacts: Count (2–15), size (10–40 units), intensity range (0.01–0.4)
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C.1 NETWORK EXTRACTION

The complete vessel network extraction combines the node and edge prediction models into a se-
quential pipeline. This unified approach processes volumetric data through two stages: first detect-
ing vessel junction points, then determining their connectivity to reconstruct the complete vessel
network graph.

The pipeline implements a modular design where each model operates independently yet shares a
common data representation. When processing an input volume, the node prediction model first
identifies potential junction points and assigns confidence scores to each detection. These predic-
tions are filtered using a confidence threshold (typically 0.5), producing a set of high-confidence
node coordinates in 3D space.

For training, each model is optimized separately using ground truth data:

• The node predictor learns from labeled junction points in the training set

• The edge predictor trains on known vessel connections, using ground truth node positions

This separation of concerns during training simplifies the optimization process and allows each
model to focus on its specific task without interference from potential errors in the other stage. The
edge predictor, in particular, benefits from training with ground truth node positions, as it can learn
connectivity patterns without having to account for node localization errors.

C.1.1 NODE PREDICTION

Model The node detection network (Figure 9) builds upon the U-Net architecture Ronneberger
et al. (2015), extended to handle 3D volumetric data. The network consists of an encoding path
that captures context and a decoding path that enables precise localization, with skip connections
preserving fine spatial details.

The network predicts both 3D coordinates as well as confidence scores for each potential node. For
a maximum of N nodes, the outputs are:

• A coordinate tensor P ∈ RN×3 representing the 3D positions

• Confidence logits C ∈ RN , which are transformed into probabilities using a sigmoid acti-
vation

This method is inspired by object detection techniques in classical computer vision, where confi-
dence scores are used to filter detections based on their probability of existence.

The confidence score for each node is computed as:

confi = σ(Ci) =
1

1 + e−Ci
.

C.1.2 EDGE PREDICTION

Model The edge prediction network (Figure 10) addresses the challenge of determining connec-
tivity between detected nodes. Rather than treating this as a pure geometric problem, our approach
combines both image features and spatial information. This design choice is motivated by the ob-
servation that vessel connectivity is influenced by both the visible vessel structure in the image and
the geometric plausibility of connections.

The network processes this information through several stages:

1. Image feature extraction using a U-Net-like architecture with:

• Initial feature extraction (64 channels)
• Downsampling path doubling features
• Upsampling path with skip connections
• Final feature map maintaining spatial information
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Figure 9: Architecture of the node prediction model for a maximum of 32 nodes. The model follows
a U-Net structure with an encoder path (left), decoder path (right), and skip connections between
corresponding layers. Numbers indicate tensor dimensions (channels × depth × height × width). The
shared processing block outputs features used by both the coordinate prediction head (producing
node coordinates in 3D space) and confidence head (producing confidence scores).

Figure 10: Architecture of the edge prediction model.

2. Feature extraction at node locations using grid sampling

3. Feature processing through MLPs to capture node relationships

4. Final adjacency matrix prediction using node features and coordinate information

The edge probabilities for all node pairs are computed simultaneously through the network, produc-
ing an adjacency matrix A ∈ [0, 1]N×N where Aij represents the probability of an edge between
nodes i and j. The final adjacency matrix is made symmetric by averaging:

Afinal =
A+AT

2
.
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Loss The edge prediction model takes as input an image and a set of node coordinates, predicting
the likelihood of edges existing between each pair of nodes. While during training we typically use
ground truth node coordinates, the loss function must also handle the case where node positions
come from a previous prediction step. This presents two key challenges:

Firstly, we must establish node correspondence between the input coordinates and the ground truth
nodes, as the existence of an edge between nodes i and j only makes sense when we know which
nodes these indices refer to. Secondly, vessel networks are undirected graphs, requiring symmetry
in the adjacency matrix.

To address the correspondence issue, we apply the Hungarian algorithm to match input nodes with
ground truth nodes based on spatial proximity. This produces a reordering matrix R that aligns the
nodes with their ground truth counterparts:

Areordered = RART

where A is the predicted adjacency matrix. When using ground truth node coordinates during train-
ing, this matching step yields the identity permutation, effectively leaving the adjacency matrix
unchanged; the step is nonetheless crucial for correctness when using predicted node positions, en-
suring that edges are compared between corresponding node pairs.

The binary cross-entropy loss is then computed between the reordered predictions and the target
adjacency matrix:

Ledge = −
∑
i,j

[yij log(pij) + (1− yij) log(1− pij)]

where yij represents the ground truth binary label indicating the existence of an edge between nodes
i and j, and pij is the predicted probability of such an edge.

Note that the symmetry requirement for undirected graphs is enforced separately in the model archi-
tecture by averaging the prediction matrix with its transpose before applying the sigmoid activation,
ensuring that pij = pji for all node pairs.

D FURTHER ABLATIONS

We first validate the impact of the dataset size. To this end, we generate 3 datasets of varying sizes for
the Homogenous data, with 10k, 100k, and 1000k samples, respectively. To ensure the performance
difference is not caused by the amount of compute, we normalize the compute budgets. Specifically,
we train the model with the 1000k-sized dataset for 1 epoch, and then we increase the number of
epochs by a factor 10 when we reduce the dataset size by a factor 10. Thus, the models see the same
number of samples during training.

We further test the impact of using the Varied dataset by creating two variations; the first is the full
dataset while the second removes 10% of the parameter classes. We then fit the models on these
and test how well they perform on the Homogenous data as that is different from the samples in the
Varied dataset.

The results of the test of dataset size are shown in Figure 11. The results show only minor improve-
ments from 10k to 100k and almost no improvements from 100k to 1,000k. Therefore, we deem it
unlikely that increasing the size further yields any benefits. Since the precision of node predictions
drops from 100k to 1,000k, we use the 100k dataset for later experiments. Note that in most of the
subsequent figures, the evalutation is done on the test set of the Homogenous data, where training on
the Homogenous data directly seems to be more beneficial. In contrast, performance is better when
pretraining on the Varied dataset for the real world data.
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Figure 11: The figure shows the precision, recall, and f1 score for node and edge predictions for
different dataset sizes of homogenous data. The left plot shows the results for node predictions, and
the right plot shows the results for edge predictions. The x-axis shows the dataset size, and the y-axis
shows the score. The y-axis is zoomed in on the relevant regions. See Figure 12 for a zoomed-out
plot with a y-axis from 0% to 100%. The legend shows the color for each score. The figure shows
that the precision, recall, and f1 score are somewhat higher for larger dataset sizes, but it levels off
between 100k and 1,000k.
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Figure 12: The figure shows the precision, recall, and f1 score for node and edge predictions for
different dataset sizes of homogenous data. The left plot shows the results for node predictions,
and the right plot shows the results for edge predictions. The x-axis shows the dataset size, and the
y-axis shows the score. This is a zoomed-out variant of Figure 11. The legend shows the color for
each score. The figure shows that the precision, recall, and f1 score are somewhat higher for larger
dataset sizes, but it levels off between 100k and 1,000k.
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Figure 13: Precision, recall, and f1 score for node predictions on the homogenous test data when
training on the 3 datasets, 90% Varied, Varied, and Homogenous, as indicated by the x-axis. The
y-axis indicates the scores, and the view is limited to the relevant region. See Figure 14 for the
zoomed-out variant. The legend shows the color of each score. Pre-training on the homogenous
data gives the best performance, but we see a noticeable improvement from 90% Varied to Varied,
indicating that seeing more diverse samples is beneficial.
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Figure 14: Precision, recall, and f1 score for node predictions on the homogenous test data when
training on the 3 datasets, 90% Varied, Varied, and Homogenous, as indicated by the x-axis. The y-
axis indicates the scores, and the view is limited to the relevant region. This is a zoomed-out variant
of Figure 13. The legend shows the color of each score. Pre-training on the homogenous data gives
the best performance, but we see a noticeable improvement from 90% Varied to Varied, indicating
that seeing more diverse samples is beneficial.
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Figure 15: F1 score performance of the node and edge prediction on real-world data with pre-trained
models. The x-axis indicates the fine-tuning approach, and the y-axis the score. The bars are stacked
to show the improvement of the Varied dataset over the Homogenous dataset. The values above the
bars indicate the increase in %-points when using the Varied dataset. Without fine-tuning, the f1
score is only 6.7% and 6.2% for node and edge predictions, respectively. Thus, we omit it from
this zoomed-in plot to make viewing easier. See Figure 5 for the zoomed-out variant with Scanset
performance.
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