
The Theoretic Center of Computer Science2

Michael Kuhn and Roger Wattenhofer
Computer Engineering and Networks Laboratory

ETH Zurich
8092 Zurich, Switzerland

{kuhnmi,wattenhofer}@tik.ee.ethz.ch

Abstract

In this article we examine computer science in general, and theory and distributed computing in par-
ticular. We present a map of the computer science conferences, speculating about the center of computer
science. In addition we present some trends and developments. Finally we revisit centrality, wondering
about the central actors in computer science. This article is a printed version of a frivolous PODC 2007
business meeting talk, held by the second author. In an attempt to address a broader audience we have ex-
tended the content by data about theory conferences and computer science in general. Still, the character
of the information remains the same, meaning our investigations should not be taken too seriously.

1 Introduction

People have always been fascinated by centrality. They have been afraid of the middle of the night, and
estimated time based on the middle of the day. Most people also like to be the center of attention, and look
at things in egocentric ways. Not surprisingly, the Babylonians placed themselves in the middle of their
world map. And even today, almost any country claims to be the center of its continent. Noteworthy is
surely also the question about the center of the universe. Among many others Ptolemy, Copernicus, and
Galileo have thought about it, some of them at the risk of life.3

Recently, when presenting some material about conference similarities, we have been asked a question
of similar nature by a colleague. He was curious about the center of computer science. In a declaredly
navel-gazing attempt to address this question we will outline a map of computer science in the beginning of
the article. We will then present different facets of the world of computer science. Being genuinely more
risk-averse than Galileo et al.4 we would like to stress that all our investigations should be taken with a grain
of salt.

2 c©Michael Kuhn and Roger Wattenhofer, 2007
3At the time the Catholic Church accepted Galileo’s model, physicists have already claimed that there is no center of the universe.

Contradicting the physicists, Fremont, WA declares itself the center of the universe. Other eccentric centers of the universe are the
Toronto Maple Leaf hockey team, or a manhole cover in Wallace, Idaho.

4Not to mention Giordano Bruno!

ACM SIGACT News 54 December 2007 Vol. 38, No. 4



2 Computer Science Cartography

Maps have always been an essential instrument in exploring space. It was, after all, the Ptolemy world map—
and its mistakes—that triggered Columbus’ monumental voyage and the discovery of America. Reason
enough to draw a map of “our world”, the world of computer science.

2.1 Method

We first set up a model for the world of computer science. Assuming that computer science conferences
adequately represent computer science disciplines, we model the interrelations between the conferences as
a graph.

To construct such a graph, we introduce a notion of “social conference similarity”. Basically, two
conferences are supposed to be closely related if they exhibit a large number of common authors. To avoid
overestimating the similarity of massive events—they naturally have a large number of common authors—
we improve on this idea by incorporating a normalization method: Consider two conferences, C1 and C2,
that contain a total of s1 and s2 publications, respectively. Further, assume that there are k authors Ai

(i = 1, ..., k) that have published in both of them and that author Ai has pi,1 publications in conference C1

and pi,2 publications in conference C2. We can now define the similarity S(C1, C2) between C1 and C2 as
follows5:

S(C1, C2) =
k∑

i=1

min
(

pi,1

s1
,
pi,2

s2

)
Applying this similarity measure to all pairs of conferences results in the desired graph, our model

of the world of computer science. The required information for this graph was extracted from the DBLP
bibliographic repository.

Luckily, the “cartography of graphs”, better known as graph embedding, is a well explored topic. Simply
speaking, the goal of a graph embedding algorithm is to assign Euclidean coordinates to all vertices of a
graph, such that the resulting positions well reconstruct the graph distances between all pairs of nodes (also
multi-hop).6 Similarly as it is impossible to undistortedly draw the globe in 2 dimensions, it is in general
also not possible to exactly represent a graph metric in 2 dimensions.

Out of the rich choice of embedding algorithms we have opted to apply the widely used multi-dimensional
scaling method (MDS) to create our map. MDS minimizes the mean absolute squared error when comparing
all the pairwise distances in the graph metric (i.e. shortest paths) and the resulting Euclidean metric.

It is important to note that there is no notion of orientation for such an embedding. It only represents
pairwise distances, and would be equally valid after applying any congruence transformation.

2.2 Results

Figure 3 shows the map of computer science conferences, constructed as described in the previous section.
To keep the map readable we have restricted the vertex set to only include top-tier conferences. The required

5There are surely a couple more normalization methods one could think of. Manual inspection of the options we tried, revealed
this to be the most suited.

6More generally, graph embedding is the process of mapping a graph into any other space (not necessarily Euclidean), thereby
pursuing some (not necessarily distance related) design goals.

ACM SIGACT News 55 December 2007 Vol. 38, No. 4



Figure 3: Our map of computer science: The map was constructed by embedding the conference graph
into a 2-dimensional Euclidean space. Only top-tier conferences (according to Libra) are shown. Note that
the map only represents pairwise distances, there is no notion of orientation, i.e. the axes can be chosen
arbitrarily.

ACM SIGACT News 56 December 2007 Vol. 38, No. 4



conference classification—with which the authors disagree to a certain extent—was taken from Libra7.
Our map gives room for quips and questions. It can, first of all, be observed that like-minded confer-

ences tend to gather together, they build families and tribes. It is thus possible to investigate the intercon-
nections between entire “scientific cultures” rather than single conferences. Software engineers and design
automation specialists, for example, live in the west of this world.8 Their eastern neighbors are mainly into
computer networks, and further south hardware architecture and operating systems experts are located.

In the very north, people mainly study natural languages and artificial intelligence. Also, they retrieve
information from and mine the data provided by their direct southern neighbors (databases and the world
wide web). The south-eastern population, finally, lives quite independently, and is mostly interested in user
interfaces, graphics and visualization. It is interesting that these disciplines almost “drop” from the disk,
and that we experience these large distances in the south-eastern part of our map. Are these gaps merely an
artifact of our sloppy model, making our drawing as inaccurate as the disk-shaped Babylonian world map,
or does this emptiness call for attention by the computer science community?!

We observe that the center of the graph is dominated by theory, and—slightly less significantly—also
cryptography, distributed computing, networks, and databases. Interestingly, all these areas can be seen as
service suppliers for other disciplines: Data can hardly be mined without databases, software design requires
a great amount of (algorithmic) theory, and networks as well as cryptography and distributed systems play
a crucial role in many real world systems. Hence, looking at our map, a theoretician could, with a healthy
dose of self-esteem, derive that he (or at least his field of research) is in the center of computer science.9

Our theoretician would surely like to get a more detailed view on his self-declared center of computer
science. Even though we question the center predicate, we do him—and hopefully also our theory-focused
readers—a favor and zoom into this section. We have inserted the lower-tier conferences (again, according
to Libra, and again, we do not fully agree) into the drawing by placing them into the weighted center of their
closest top-tier neighbors (while keeping the layout of these top-tier conferences fixed). Figure 4 illustrates
the theory close-up of our map.

In an attempt to interpret the figure, one might notice a slight separation of west and east. The west-
side of the map seems to be mostly populated by the species of “practical theoreticians”, while the east-
side is rather inhabited by “pure theory”. Interestingly, the cryptographers squeeze themselves into the
territory of distributed computing. Clearly the two share common roots, but still the proximity is remarkable.
Comparing the distances in the map to the distances in the original graph reveals that there is quite some
discrepancy in this specific case. We speculate that distributed computing and cryptography get intermixed
because they both lie between (pure) theory and systems/networking. Possibly, a 2-dimensional map can
not accurately represent the ultimate truth. As detailed views usually provide deeper insights into a problem,
the insight of this close-up is perhaps that our map should be treated with care.

3 Migration in Computer Science

As the history of mankind, the world of computer science is not static. Communities emerge, disappear, and
migrate. In the following we want to have an eye on the movements in the proximity of PODC, as well as

7http://libra.msra.cn/ For each discipline the site lists the major conferences grouped by tier (e.g.
http://libra.msra.cn/conf category 1.htm)

8Again, note that there are no axes defined, we just orient ourselves as the picture is aligned here.
9Clearly, the map leaves room for discussion. A closer look reveals many surprises, e.g. the location of design automation

conferences. Also, other (equally reasonable) centers, such as databases or networking could doubtlessly be identified—please
mind that we write this article for SIGACT and not SIGMOD or SIGCOMM. More fundamentally one might wonder whether there
at all is a center of computer science; maybe we rather live in a “centerless” world, much like modern physics sees the universe.

ACM SIGACT News 57 December 2007 Vol. 38, No. 4



Figure 4: Close-up of the map around the theory conferences. Tier-1 conferences (according to Libra) are
marked black, any other conferences gray.

some major theory conferences, namely STOC, FOCS and SODA (which we in the following will treat as
one).

3.1 Method

A conference is mainly defined by its participating authors. We thus assume that looking at the changes
in authorship is a handy method to capture the changes of a conference over time. Consequently, we have
applied the idea of our “social similarity measure” from Section 2.1 on a per year basis: For a particular
year and conference we have examined where else the authors would typically publish (at all times). This
gives, for this particular conference, an insight in what other conferences have been particularly close at a
given point in time.

3.2 Results

The described “time dependent social similarity measure” allows to plot the development of a conference’s
proximity over time. Figures 5 and 6 show such plots for PODC and STOC/FOCS/SODA. An interesting
observation is, maybe, the temporal closeness of cryptography to both, PODC and the theory conferences.
Most likely, this does not mean that cryptography is in danger of extinction, but rather protocols an eman-
cipation process; cryptographers have grown strong enough to form their own, independent community and
thus drift away from other conferences.

ACM SIGACT News 58 December 2007 Vol. 38, No. 4



0

5

10

15

20

25

30

35

40

45

50

1982 1987 1992 1997 2002 2007

spaa
opodis
infocom
sirocco
srds
dsn
esa

(a) Conferences getting closer.

0

5

10

15

20

25

30

35

40

45

50

1982 1987 1992 1997 2002 2007

cav
concur
uai
tacas
vdm europe
tark
vmcai

(b) Conferences losing contact.

0

5

10

15

20

25

30

35

40

45

50

1982 1987 1992 1997 2002 2007

crypto
eurocrypt

(c) Temporary close.

0

5

10

15

20

25

30

35

40

45

50

1982 1987 1992 1997 2002 2007

podc
disc
stoc
icdcs
soda
focs
icalp

(d) Evergreens.

Figure 5: Related conference trends for PODC.

4 Keyword Trends: Predicting the Perfect Paper Title

After this brief excursion into the evolution of conference relationships, we want to come back to a more
global view. How did computer science evolve over time? We believe that terminology is an meaningful
witness for scientific history. We thus analyze the change of central keywords in computer science. More-
over, we will, in a tongue-in-cheek way, suggest the perfect titles for the next year’s edition of PODC as
well as STOC/FOCS/SODA.

4.1 Method

As usual when it comes to predicting future trends we rely on historic data. For this purpose, history has
been divided into 6 time-slots, from 1977 to 2006 in 5-years chunks. Moreover, for each conference in
question we have parsed all the titles appearing in its proceedings to extract the single words. Counting the
number of occurrences for each word and time-slot allows to establish a “per-time-slot” ranking which can
then be mined to extract trends. We have restricted the search space to keywords that made it into the top-50
in at least one time-slot. The actual trend analysis (i.e. selection of the keywords that best characterize the
movements) was then mainly carried out manually.

ACM SIGACT News 59 December 2007 Vol. 38, No. 4



0

5

10

15

20

25

30

35

40

45

50

1977 1982 1987 1992 1997 2002 2007

cccg
random-approx
approx

(a) Conferences getting closer.

0

5

10

15

20

25

30

35

40

45

50

1977 1982 1987 1992 1997 2002 2007

lics
ipdps
correct system design

(b) Conferences losing contact.

0

5

10

15

20

25

30

35

40

45

50

1977 1982 1987 1992 1997 2002 2007

crypto
eurocrypt
colt

(c) Temporary close.

0

5

10

15

20

25

30

35

40

45

50

1977 1982 1987 1992 1997 2002 2007

focs
stoc
icalp
soda

(d) Evergreens.

Figure 6: Related conference trends for STOC/FOCS/SODA.

4.2 Results

How did computer science research evolve over time and where does it go? Our analysis shows that wire-
less mobile agents based on neural learning that quickly adapt to image and video web services are fash-
ionable.10 On the other hand, we are no longer interested in computer experts specifying the semantics of
parallel relational databases for VLSI in the prolog programming language.11 Also, knowledge about object
oriented simulation logic does not seem to be required any longer, even though the topic was a hot in the
beginning of the 90ties.

If you do not want to risk being labeled antediluvian after submitting to a major theory conference, better
name your paper, say:

“Online Quantumn Algorithms to Approximate Directed Location Codes” or “On the Hardness
of Scheduling using Random Sampling”

Moreover, avoid titles like
10In other words, the keywords web, agent, wireless, neural, mobile, video, learning, image, adaptive, services are becoming

increasingly popular.
11Again, we witness that the keywords computer, expert, etc. have seen their peak.

ACM SIGACT News 60 December 2007 Vol. 38, No. 4



“Relational Logic to Separate Automata Isomorphism Classes” and “Probabilistic Parallel
Programs for VLSI Design”

as these will immediately out you as being stuck in the 80ties. Similarly, the next year’s blockbuster of
PODC is rather going to be called

“Failure Detectors and Scalable Dynamic Quorum: A Free Mobile Ad-Hoc Game with Selfish
Peers”

than, for example

“Recover from Committed Ring-Deadlocks using Message Passing Communication, Temporal
Knowledge and Parallel Computation Processes”

5 Kevin Bacon of Computer Science

After temporarily drifting away from the centrality question, we want to come back to it again in this section.
Maybe it was short-sighted to ask what the center of computer science is. Why not asking about the central
actor of computer science, i.e. who the center of computer science is? Science is, after all, made by people,
and not disciplines.

5.1 Method

The central actor? Well, it is widely known that this is Kevin Bacon—in the movie industry.12 In math, the
corresponding role is accredited to Paul Erdős. In a similar approach we attempt to nominate the central
actor in computer science as well as STOC/FOCS/SODA and PODC. Analogously to the construction of the
Erdős number, we base our method on the co-author-graph. We then create the induced subgraph for each
region of interest (PODC, STOC/FOCS/SODA, and computer science). For PODC, for example, this graph
would only contain authors that have at least one PODC paper, and so on.

Other than in the construction of the Erdős number, we do not rely on shortest paths, but rather on the
PageRank idea: We start several short random walks at different nodes of the graph, and count how often
each author gets visited.13 This idea is then extended to time dependent centrality, by starting the random
walks only at authors that have published in the last five years.

5.2 Results

Table 1 lists the central actor of computer science, as well as his major competitors. Oddly enough, our
central actor, Alberto L. Sangiovanni-Vincentelli, acts quite at the edge of our computer science map.14 But
which is right, the map or the election? Critics might ask us to rethink our election process—as oppositions
always do after elections. Maybe they are right. Sangiovanni-Vincentelli’s toughest competitors, though,
seem to live much more in the heartland of computer science—mostly in the area of databases. Maybe there
is nonetheless a grain of truth in both, the map and the election?

12This is not perfectly true. Rod Steiger is said to be the best connected actor (source: Wikipedia article on the Bacon Number).
13More precisely, the number of walks is proportional to each author’s number of Tier-1 papers.
14He has most frequently published in the area of design automation (DAG, ICCAD, DATE) and his research also covers electrical

engineering. Note that both, the map and the author election base on the same set of publications, such that we cannot assume that
electrical engineers get preferred by the election process.

ACM SIGACT News 61 December 2007 Vol. 38, No. 4



All-time Last 5 years
Alberto L. Sangiovanni-Vincentelli Wei-Ying Ma
Noga Alon Wei Wang
Hector Garcia-Molina Hector Garcia-Molina
Michael Stonebraker HongJiang Zhang
Michael J. Carey Noga Alon
Yishay Mansour Philip S. Yu
Moshe Y. Vardi Christos Faloutsos
Christos Faloutsos Gerhard Weikum
David Maier Joseph M. Hellerstein
Philip S. Yu Jiawei Han

Table 1: The most “central” authors in computer science. Note that name ambiguities might have distorted
the results.

All-time Last 5 years
Noga Alon Noga Alon
Avi Wigderson Avi Wigderson
Robert Endre Tarjan Sanjeev Arora
Frank Thomson Leighton Moses Charikar
Moni Naor Anupam Gupta
Yishay Mansour Madhu Sudan
Oded Goldreich Erik D. Demaine
Richard M. Karp Alan M. Frieze
Amos Fiat Uriel Feige
Michael E. Saks Yishay Mansour

Table 2: The most “central” authors in STOC/FOCS/SODA.

The critics would probably react even more sharply when looking at our central actors over the past 5
years. Indeed, there are some surprises in this list. Maybe this is a stunning proof of the often-quoted Asian
research momentum, maybe it is caused by name ambiguities that even get reinforced by PageRank-like
algorithms15 (and most likely, it is a combination of both).

Clearly, the nomination of a single representative for the entire world of computer science is a delicate
task, and the result inevitably controversial. Imagine, you had to elect a single person representing our
planet in front of the universe—another unenviable task. In the following we thus focus on restricted areas
of research. Elections within a single culture seem more realistic. Not surprisingly, Noga Alon, second in
the list of computer science, is attributed the honor of the central player in theory (see Table 2).

For the PODC community, Nancy Lynch is found on top, as shown in Table 3. All in all, there seem to be
less surprises in top-10 lists of the theory cluster and PODC. Most likely, name ambiguities play a less impor-
tant role in these more restricted areas, as they contain a lower number of people. If you could not find your-

15Persons holding an ambiguous name do not only get more weight themselves, but also pass this weight to their collaborators,
therefore the reinforcement. We want to stress that the (top-ranked) name Wei-Ying Ma does not seem to suffer from such ambigu-
ities (as opposed to others). Wei-Ying Ma might or might not have profited from “passed on” ambiguities just as anybody else in
the list.

ACM SIGACT News 62 December 2007 Vol. 38, No. 4



All-time Last 5 years
Nancy A. Lynch Rachid Guerraoui
Danny Dolev Nancy A. Lynch
Hagit Attiya Roger Wattenhofer
Yehuda Afek Danny Dolev
Maurice Herlihy C. Pandu Rangan
Nir Shavit Hagit Attiya
Rachid Guerraoui Michel Raynal
Sam Toueg Maurice Herlihy
Michel Raynal Idit Keidar
Yishay Mansour Sam Toueg

Table 3: The most “central” authors in PODC.

self on the lists, feel free to check the extended versions on http://www.confsearch.org/ca.jsp.

6 Conclusion

What is the center of computer science? A controversial question. Some might claim that computer science
is all about building computing machines—possibly only theoretically. Others think it is all about the art
of programming these machines, or about describing languages to talk to them. Yet other people associate
computer science with algorithms, and believe P vs NP is at the heart of computer science. Finally, the
tremendous impact of the Internet, or the huge data collections in service today might speak in favor of
networking or database experts, respectively. In this article, we have tried to highlight this controversial
nature by examining various aspects from different points of view. We have claimed persons to be in the
center of computer science, and at the same time drawn a map placing them at the very border. We have
looked into the evolution of scientific disciplines and observed that the same evidence can be interpreted as
both, the birth as well as the funeral of a research area. Without doubt the future will teach our evaluations
a lesson, ultimately revealing in which direction computer science evolves, and maybe even discover the
most influential computer scientist. After all, research is not about how many papers we write, or how many
citations they get, but rather, what the best contributions are.

ACM SIGACT News 63 December 2007 Vol. 38, No. 4




