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Abstract—The increasing scale of encyclopedic knowledge
graphs (KGs) calls for summarization as a way to help users
efficiently access and distill world knowledge. Motivated by the
disparity between individuals’ limited information needs and the
massive scale of KGs, in this paper we propose a new problem
called personalized knowledge graph summarization. The goal is to
construct compact “personal summaries” of KGs containing only
the facts most relevant to individuals’ interests. Such summaries
can be stored and utilized on-device, allowing individuals private,
anytime access to the information that interests them most.

We formalize the problem as one of constructing a sparse
graph, or summary, that maximizes a user’s inferred “utility”
over a given KG, subject to a user- and device-specific constraint
on the summary’s size. To solve it, we propose GLIMPSE, a
summarization framework that provides theoretical guarantees
on the summary’s utility and is linear in the number of edges
in the KG. In an evaluation with real user queries to open-
source, encyclopedic KGs of up to one billion triples, we show
that GLIMPSE efficiently creates summaries that outperform
strong baselines by up to 19% in query answering F1 score.

I. INTRODUCTION

Encyclopedic knowledge graphs, which store facts about

the world by connecting entities via semantically meaningful

relations, have shown to be useful tools for AI tasks including

question answering, item recommendation, query expansion,

language modeling, and more [38], [40], [37], [9]. Modern

knowledge graphs (KGs) contain up to billions of entities and

relationships, and are continually being augmented with new

facts [26]. These increasingly large stores of world knowledge

necessitate summarization, which reduces large KGs to more

concise but still interpretable and query-able forms [22].

This paper proposes the new task of personalized knowl-
edge graph summarization, the goal of which is to find a

sparse summary of a large KG—in essence, a “mini-KG”—

containing the facts most relevant to each individual user’s

interests and queries. We motivate this task by studies in

information retrieval and human-computer interaction showing

that individuals have limited information capacity [34], [17].

In a KG setting, then, most individuals’ information needs will

likely cover only small portions of a given large KG [27]. We

Fig. 1: Personalized KG summarization for a user interested
in books and authors. Given seed information about the user’s
interests over G, GLIMPSE constructs an on-device personal
summary of G (i.e., a mini-KG) for anytime information access.

thus envision compact personal summaries containing user-

specific facts of interest being stored and accessed on devices

like smartphones, intelligent assistants, and in other scenarios

where resources are constrained (e.g., network bandwidth,

device disk space), an Internet connection is not available,

or the user desires privacy in querying. Figure 1 shows an

example for a user interested in books and authors. Her

personal summary allows for anytime user information access

while still supporting KG-powered tasks with high accuracy.

Present work. Our proposed approach to personalized KG

summarization, GLIMPSE or Graph-based Learning of Per-

sonal Summaries, consists of first inferring user preferences

over a given KG, then constructing the user’s personal sum-

mary from these preferences. For the first step, we assume the

user demonstrates her interests via her queries to the KG, and

use these queries as seeds from which we infer other entities

and relations of potential interest to the user. We formalize the

second step as an optimization problem in which we maximize

the summary’s inferred utility to the user, subject to a size

constraint corresponding roughly to device resources like disk

space. GLIMPSE relies on fast submodular maximization,

which to the best of our knowledge has not been used for

graph summarization before, to efficiently summarize KGs.
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This paper makes the following contributions:

• Problem: We introduce, motivate, and mathematically for-

mulate the problem of personalized KG summarization.

• Framework: We propose GLIMPSE, a flexible summariza-

tion framework that combines strong theoretical guarantees

with the scalability necessary for large KGs.

• Evaluation: We analyze GLIMPSE in a direct query an-

swering task using real queries to KGs of up to one

billion triples. GLIMPSE personal summaries outperform

summaries created by strong baselines by up to 19% in

query answering F1 score across various simulated user

models. We demonstrate GLIMPSE’s consistency across

datasets, and provide in-depth analysis of our results.

II. RELATED WORK

Graph summarization and sampling. Graph summarization

techniques abstract large graphs into smaller ones according

to objectives like query efficiency, ease of visualization, and

pattern discovery [22], [30], [18], [16]. That said, existing

techniques for labeled graphs tend to follow a “one-size-fits-

all” approach [4], [32]. Such techniques construct summaries

by compressing all nodes into “supernodes”, with “super-

edges” connecting pairs of nodes across supernodes. By con-

trast, in our setting we assume that most facts in a KG are

irrelevant to a single user, so a personal summary need not

contain all of the KG. Moreover, grouping-based techniques

usually compare all nodes pairwise, leading to quadratic-time

algorithms that are too slow for our problem setting.

Some graph summarization techniques create summaries

preserving specific classes or types of subgraph queries (e.g.,

path or star queries), though again toward summarizing the

entire graph [6], [23]. A few recent approaches also consider

user- or task-specific input [1], [19], [15]. That said, no exist-

ing work handles the actual content of user queries. This calls

for new summarization approaches tailored to personalization,

as a personal summary cannot be the same for individuals with

different interests (as expressed by their past queries).

Because our proposed method selects a subset of edges from

G as the summary, graph sampling is also relevant. That said,

the goal of graph sampling is not to answer queries tailored to

user interests, but rather to preserve graph-specific properties

(centralities, motifs) in smaller, representative samples [20].

Knowledge graphs. The KG tasks most related to the present

work are fact contextualization and entity ranking or sum-

marization [5], [10], [13], [35], [9]. In these works, a single

entity or fact in the knowledge graph is given as input. The

output is a set of entities, entity attributes or features, and/or

facts that are deemed the most “informative” or “relevant” to

the input according to various heuristic criteria. Such methods

can be seen as complementary to our work. They usually rely

on either feature extraction or PageRank variants, and require

human assessment of solution quality and/or manually labeled

training data, which can be expensive to obtain. By contrast,

we evaluate our method with the accuracy of query answering

Fig. 2: Example of a query to the YAGO knowledge graph (§ IV-A)
and one answer, with corresponding natural language and query
graph representations.

on the summary. Importantly, we also handle arbitrary query

structures, rather than single entities or facts, as input.

Personalization. Identifying items of interest to users (web

pages, e-commerce products, movies, etc) is a major goal in

search and recommender systems. While it is common for

recommender systems to use auxiliary information extracted

from knowledge graphs toward better recommendations [40],

we are not aware of any work that identifies individuals’ facts

of interest—in other words, the facts themselves are being

recommended—in a KG. Furthermore, while there exists a vast

literature on personalized web search, such works tend to focus

on extracting or learning features of interest at the document

or user level [36], [2]. By contrast, we are mainly interested in

summary construction, so we leave the incorporation of more

complex user preference modeling to future work.

That said, many personalization approaches do rely on

graph-based methods. The most common approach, person-

alized PageRank (PPR) [14], returns a ranking of entities in

order of their “importance” or “relevance” to a given query.

We investigate this approach in our experiments.

III. METHODOLOGY

We begin this section with preliminaries. We then outline

how we infer user preferences and construct a personal sum-

mary from these preferences. Finally, we theoretically analyze

our approach. For reference, Table I gives our main symbols.

A. Preliminaries

A knowledge graph G = (E,R, T ) consists of a set

of entities E, a set of relations R, and a set of triples

T ⊆ E × R × E1. A triple connecting entities ei, ej ∈ E
with relation rk ∈ R is denoted xijk = (ei, rk, ej). From

a natural language perspective, triples in a knowledge graph

are 〈subject, predicate, object〉 facts. From a graph-theoretical

perspective, triples are labeled edges connecting pairs of entity

nodes. In this work we assume each question to G is given in

query graph form (i.e., via semantic parsing [38]), as shown

in Figure 2. Each query graph GQ = (EQ, RQ, TQ), which

may be a subgraph of G or may contain elements not in G,

is directed, acyclic, and fully connected. One or more entities

in GQ are variable(s), as shown by the (?) node in Figure 2.

Each variable represents any entity in E. The entities e ∈ E
that replace variables during query answering by matching the

1Although KGs are in general incomplete, in the summary construction step
we assume a closed world (i.e., we add only existing triples to the summary).

529

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 07,2020 at 09:48:28 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Table of main symbols.

Symbol Meaning

G Knowledge graph G = (E,R, T ) with entity set E, relation
set R, and triple set T

ei i-th entity in entity set E
rk k-th relation in relation set R

xijk Triple (ei, rk, ej) ∈ T with entities ei, ej ∈ E, relation rk
GQ Query graph GQ = (EQ, RQ, TQ) to G
Qu Query log Qu = (G1

Q, . . . , Gn
Q) of user u on G

Su Personal summary Su = (Eu, Ru, Tu) ⊆ G of user u
K Number of triples in personal summary Su

given query graph pattern are called the answers to the query

GQ. Finally, each user u is associated with a sequence of

queries, or query log Qu = (G1
Q, . . . , G

n
Q) to G.

Queries to G are answered via subgraph isomorphism,

which means we find a one-to-one mapping ψ between queried

entities EQ and knowledge graph entities E, if one exists,

such that for all triples (ei, rk, ej) ∈ TQ, there exists a

(ψ(ei), rk, ψ(ej)) ∈ T . While subgraph isomorphism is NP-

complete in general, most real queries to KGs are small (one

or two triples [3]), which makes the isomorphism feasible to

compute in practice. That said, another benefit of summariza-

tion is faster query answering, since a summary will contain

fewer entities/triples than the KG it summarizes.

B. Informal problem statement

Informally, the problem we address may be described as:

Given a knowledge graph G, a user u’s past queries to
G, and a user-specific resource (device or application)
constraint, efficiently infer a personal summary Su ⊆ G
under the given constraint that best captures the user’s
preferred facts in G, as expressed by her past queries.
In the following sections, we will formalize this problem by

defining a notion of a resource-constrained personal summary

drawn from a general model of user preferences2.

C. Inferring user preferences

GLIMPSE consists of two steps. First, we infer entities and

relations of potential interest to the user based on her historical

queries Qu. We then construct a summary by maximizing

a user-specific utility function drawn from these inferred

preferences. In this section, we address the first step.

We model user preferences over G by associating each

entity and triple with a probability of user u preferring them,

conditioned on u’s query history Qu. We capture preferences

for entities and triples separately because of the KG-specific

differences in meaning between the two. A user’s preference

for a single entity e indicates interest in a related group of facts

(i.e., any triple containing e or its neighbors), which loosely

corresponds to a “topic”3. By contrast, a user’s preference for a

triple xijk expresses an interest in a single unit of information.

2For privacy reasons, we model each user’s preferences individually, and
leave privacy-preserving collaborative approaches for future directions.

3For instance, the Freebase KG documentation explicitly refers to each
entity as a topic: https://developers.google.com/freebase/guide/basic concepts

Importantly, note that GLIMPSE is flexible enough to in-

corporate arbitrary modeling complexities or even explicit user

feedback (c.f. [9]). In this paper we focus on an unsupervised,

graph-structural user preference model that is highly efficient

to compute, but any approach that yields per-user probabilities

for both entities and triples in G can be used in its stead.

Entity preference. Let Pr(ei|Qu) be the user’s preference for

entity ei ∈ E. Since users often re-seek information [34], we

capture the user’s historical preference for ei in Pr(ei|Qu).
We also account for the local graph structure around ei: Since

queries come in the form of connected graphs (§ III-A),

answers to future queries involving ei must involve entities ej
directly connected to ei (i.e., neighbors of ei). More generally,

an interest in a single entity (e.g., Charles Dickens) may signal

interest in connected entities in the KG (e.g., Oliver Twist,
Great Expectations, England, etc).

Denoting the set of all neighbors of ei in G as N(ei) =
{ej |(ei, rk, ej) ∈ T}, we capture the user’s preference with

Pr(ei|Qu)∝
∑

GQ∈Qu

�EQ
(ei)

︸ ︷︷ ︸
historical pref.

+γ
∑

ej∈N(ei)

�EQ
(ej)

︸ ︷︷ ︸
graph structure

, (1)

where γ ∈ [0, 1] controls the influence of neighbors and �X(x)
is the indicator function, equal to 1 iff x ∈ X and 0 otherwise.

We can generalize (1) to all entities in the KG: Let q ∈ R
|E|

be the user’s seed query vector with qi = 1 if the user queried

the i-th entity in E and 0 otherwise, and M = γAD−1 ∈
R
|E|×|E| be the normalized adjacency matrix of the KG. Then

(1) is equivalent to the first two terms of the random walk

power series expansion

u = q+Mq+M(Mq) +M(M(Mq)) + . . . , (2)

where u ∈ R
|E| is the vector that contains user u’s preference

for all |E| entities. Note that (2) can be computed efficiently,

in time linear in the number of edges in the graph, via sparse

matrix-vector multiplications.

Extending (1) and (2) to neighbors of neighbors spreads user

preference from queried entities across paths in the KG, which

captures compositional facts centered around topic entities.

For example, users interested in Charles Dickens may also be

interested in the United Kingdom more generally. Spreading

preference across paths in the KG allows us to capture this

interest, since the entity Charles Dickens is connected to

the entity United Kingdom by the two-step path (Charles
Dickens, citizenOf, England) and (England, constituentOf,
United Kingdom). We investigate such paths further in § V.

Triple preference. To capture the user’s preference for triple

or fact xijk = (ei, rk, ej) ∈ T , we incorporate its entities

and relation. We follow the standard conditional independence

assumption in graph mining and KG learning (c.f. [8], [26]):

Pr(xijk|Qu) ∝ Pr(ei|Qu)Pr(rk|Qu)Pr(ej |Qu), (3)

We compute Pr(rk|Qu) as the proportion of queries in query

log Qu containing relation rk. As mentioned earlier, both
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Pr(ei|Qu) and Pr(rk|Qu) can modeled with more complex

relevance features, either extracted or learned. However, as

discussed in the next section, our focus is summary construc-

tion, so we leave more complex user modeling for future work.

D. Constructing the summary

The second step of our approach is to construct the personal

summary. Given the user preference model described in the

previous section, let Pr(Su|Qu) be our estimate of how well

a constructed summary Su = (Eu, Ru, Tu) captures the user’s

inferred preferences, conditioned on Qu:

Pr(Su|Qu) ∝
∏

e∈Eu

Pr(e|Qu)︸ ︷︷ ︸
“topic” pref.

∏
xijk∈Tu

Pr(xijk|Qu)︸ ︷︷ ︸
fact pref.

. (4)

Using the above as an objective function, we formalize the

optimization problem corresponding to summary construction:

Problem 1 (Personalized KG summarization). Given (1) a
knowledge graph G, (2) a user u and her query history Qu to
G, and (3) a number of triples K, find the personal summary
Su = (Eu, Ru, Tu) ⊆ G of K triples that maximizes the log-
likelihood of Pr(Su|Qu):

arg max
Su⊆G

log Pr(Su|Qu) s.t. |Tu| ≤ K. (5)

The constraint K roughly corresponds to a resource con-

straint like device disk space or latency requirements. For

example, say an offline KG-powered application has 10MB

of available storage on a user’s mobile device. Given a KG

of 10 million triples that requires 1GB of storage, a value of

K ≈ 100 000 might be appropriate. Overall, K is expected

to be relatively small, as most users’ information needs are

limited, and especially so on the mobile devices or applications

where we imagine personal summaries being used [34], [17],

[27]. We discuss K in more depth in § V.

A utility perspective. Exactly optimizing (5) would be com-

putationally infeasible, as solving it would require enumer-

ating all size-k subsets of the KG’s triple set T , leading to

a complexity of O
(|T |
K

)
. That said, instead of immediately

resorting to heuristics we reformulate (5) to lead to a tractable,

approximation with theoretical guarantees. The key intuition

is to restate the likelihood maximization problem in (5) as

a utility maximization problem, where the utility function to

be maximized is nonnegative. We exploit this nonnegativity

to show that our utility function is submodular (discussed in

the next section), which allows us to devise a near-optimal

approximation algorithm.

Define φ : (Su;Qu) → R
+ as a function that captures the

“utility” of personal summary Su over a non-personalized
Sα that includes every entity and triple in the summary with

a constant, small uniform probability 0 < α
 1:

φ(Su;Qu) = log Pr(Su|Qu)− log Pr(Sα)

=
∑

e∈Eu

log
Pr(e|Qu)

α
+

∑

xijk∈Tu

log
Pr(xijk|Qu)

α
, (6)

where P (·|Qu) ≥ α > 0; in other words, α can be seen

as the smallest non-zero probability α = P (·|Qu). Note that

the summations above only include entities and triples with

P (·|Qu) > 0, since those with P (·|Qu) = 0 bring no extra

improvement to Su.

Given φ, we restate (5) as a utility maximization problem:

arg max
Su⊆G

φ(Su;Qu) s.t. |Tu| ≤ K. (7)

A near-optimal approximation. While (7) is close to (5),

we can show that the objective function in the former is

submodular, which will allow us to near-optimally approx-

imate the solution to (7). Intuitively, submodularity is a

“diminishing returns” property of set functions. Formally, for

set X and subsets A ⊆ B ⊆ X and element x ∈ X\B,

let ΔF (x|A) = F (A ∪ {x}) − F (A) be the marginal utility

gained in F by adding x to A. The function F is submodular

if ΔF (x|A) ≥ ΔF (x|B) everywhere, i.e., the marginal gain of

adding x to the result set diminishes as the result set grows.

Importantly, a greedy algorithm that chooses the item with

the highest marginal gain in iterations yields a solution that

is guaranteed to be within a ≥ (1 − 1
e ) fraction away from

the (unknown) optimal solution’s value when maximizing a

nonnegative monotone submodular function under cardinality

constraints [25]. The practical implication can be seen as

similar to convexity in continuous optimization problems:

Under certain conditions, submodularity admits optimization

algorithms that yield solutions with theoretically guaranteed

bounds on optimality, rather than arbitrarily bad solutions.

The key to our solution is to view (E ∪R) as our “ground

set” of elements, and consider each triple xijk = (ei, rk, ej) ∈
T as a three-element “subset” of this ground set. From

this perspective, we can prove that the utility function φ is

submodular over the triples T of G. The important implication

is that continually choosing the triple with the highest
marginal utility Δφ(xijk|Su, Qu), up to K triples, near-

optimally solves (7):

Theorem 1. Equation (7) has a (1− 1
e )-approximation.

Proof. Let S
(1)
u ⊆ S

(2)
u ⊆ G be two personal summaries of

a knowledge graph G, and let triple xijk = (ei, rk, ej) ∈
G\S(2)

u . Consider that (1) if either (or both) entities ei or

ej are contained in S
(1)
u , by necessity those entities must

also be contained in S
(2)
u , since S

(1)
u ⊆ S

(2)
u . Conversely,

however, (2) if either (or both) ei or ej are not contained

in S
(1)
u , they may still be contained in S

(2)
u for the same

reason. Therefore, in case (1), when adding the triple xijk

to the smaller S
(1)
u , any entity e not in S

(2)
u will result in a

marginal gain of at least Δφ(xijk|S(1)
u , Qu) = log Pr(e|Qu)

α

more than the corresponding gain to S
(2)
u , since e is already

contained in S
(2)
u . In case (2), where the entities contained

within S
(1)
u and S

(2)
u are the same with respect to xijk,

the marginal gains Δφ(xijk|S(1)
u , Qu) = Δφ(xijk|S(2)

u , Qu).
Therefore, the function φ is submodular over the triples xijk

of the knowledge graph G, which means that optimizing (7)
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Algorithm 1 The GLIMPSE framework. All OPT comments

refer to the optimizations discussed in § III-E.

Input: Knowledge graph G, user query log Qu, # triples K
Output: Personal summary Su ⊆ G with |Tu| ≤ K

1: Compute TΔ �=0 with Pr(e|Qu), Pr(xijk|Qu) � § III-C, OPT1
2: Su ← ∅
3: while |Tu| ≤ K do
4: Sample set A of size

|TΔ �=0|
K

log 1
ε

from TΔ�=0 � OPT2
5: Select x̃ijk ← argmaxxijk∈A Δφ(xijk|Su;Qu) � OPT3
6: Add triple x̃ijk = (ei, rk, ej) to Su

7: return personal summary Su

by continually selecting the triple with the highest marginal

utility Δφ(Su;Qu) results in a (1− 1
e ) approximation of the

unknown optimal solution.

E. The GLIMPSE framework

The naive greedy algorithm discussed in the previous sec-

tion updates up to |T | marginal utilities of triples, and there

are up to K iterations, leading to O(K|T |) complexity. This is

too slow for KGs with |T | on the order of millions or billions.

Fast summary construction. We exploit special properties of

personalization and submodularity to construct a personal

summary in time linear in the number of triples |T | in

G, while retaining near-optimal approximation guarantees.

Our first optimization, OPT1, is specific to the domain of

personalization and relies on the intuition that most triples

in the original KG will be of no interest or relevance to

a single given user. Let TΔ�=0 be the set of triples with

nonzero marginal utility for any given knowledge graph G
and corresponding Su:

TΔ�=0 � {xijk ∈ G s.t. Δφ(xijk|Su;Qu) = 0}. (8)

Now, we only need to update the marginal utilities of triples

in TΔ�=0. This is because φ is submodular, so the triples that

start with zero marginal utility can never increase in value as

Su grows. In the experiments (§ V-C) we show that this op-

timization alone leads to a speedup of over thirteen thousand
times compared to a non-optimized version of GLIMPSE.

For OPT2, we extend [24]: Given a ground set of n triples,

we sample a set A of size n
K log 1

ε per iteration, 0 < ε 
 1,

and update the marginal utilities for only the sampled triples,

then pick the highest-valued triple out of that sample. We

combine this with “lazy selection” (OPT3): In each iteration,

we take the top-valued item from the previous iteration and

recompute its marginal utility. If it remains top-ranked, we do

not need to recompute the marginal utility of other items, since

by submodularity those values cannot increase.

GLIMPSE overview and analysis. We outline the GLIMPSE

framework given in Algorithm 1. First, we compute the set of

nonzero-marginal utility triples TΔ�=0 from all Pr(e|Qu) and

Pr(xijk|Qu) (§ III-C and OPT1). Then, in each iteration we

sample a set A of size
|TΔ�=0|

K log 1
ε from the precomputed set

TΔ�=0 (OPT2), and add the triple xijk of maximal marginal

utility from A to personal summary Su, using the lazy greedy

approach to select the highest-valued triple if possible (OPT3).

We continue until |Tu| = K.

Theorem 2. GLIMPSE is O(|T |).
Proof. The user preference inference step is linear in |T | using

sparse matrix-vector multiplication (Eq. (2)). Then, for the

summary construction step, GLIMPSE consists of K itera-

tions, each of which updates
|TΔ �=0|

K log 1
ε marginal utilities of

sampled triples xijk ∈ A. Therefore, its runtime complexity is

O(|T | +K |TΔ �=0|
K log 1

ε ) = O(|T | + log 1
ε |TΔ�=0|) = O(|T |),

since |TΔ�=0| 
 |T | and log 1
ε is a constant.

Theorem 3. GLIMPSE constructs a summary that is a(
1− 1

e(1−ε)

)
-approximation to the (unknown) optimal personal

summary S∗u for 0 < ε
 1, in expectation.

Proof. As shown in [24], the expected marginal gain of OPT2

for a single triple xijk is at least

E[Δφ(xijk|Su;Qu)] =
1− ε

K

∑

xijk∈S∗u\Su

Δφ(xijk|Su;Qu), (9)

where S∗u is the (unknown) summary that optimally solves (7).

Now, a fact of submodularity, which was proven for φ in The-

orem 1, is that
∑

xijk∈S∗u\Su
Δφ(xijk|Su;Qu) ≥ φ(S∗u;Qu)−

φ(Su;Qu), because the sum of individual marginal utilities for

each triple must be greater than the total value of those triples

grouped as a set, due to diminishing returns. By consequence,

combining this fact with the result of (9),

E[Δφ(xijk|Su;Qu)] ≥ 1− ε

K

[
φ(S∗u;Qu)− φ(Su;Qu)

]
.

Using the above, it can be shown by induction on K that

E[φ(Su;Qu)] ≥ φ(S∗u;Qu)−
(
1− 1− ε

K

)K
φ(S∗u;Qu)

=
(
1− 1

e(1−ε)

)
φ(S∗u;Qu),

where the last line follows from ex ≥ (1 + x
n )

n.

IV. DATA

In this section we describe the KGs and queries used in our

experiments, as well as the various user models we study.

A. Knowledge graphs

We use three large encyclopedic knowledge graphs in our

experiments: DBPedia 3.5.14, YAGO 35, and a subset of

Freebase6, all detailed in Table II. All three KGs contain

over ten million triples, spanning topics like music, movies,

sports, etc. We do not perform any extra preprocessing on the

RDF dumps. Following standard practice [21], we treat each

KG as bidirectional by including inverse relations.

4https://wiki.dbpedia.org/services-resources/datasets/data-set-35/
data-set-351

5https://old.datahub.io/dataset/yago
6https://developers.google.com/freebase/ – last available version
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TABLE II: Knowledge graphs used in our experiments.

# Entities |E| # Relations |R| # Triples |T |
DBPedia 2 026 781 1 043 10 964 261

YAGO 5 155 416 72 19 635 755
Freebase 115 765 760 269 984 1 000 000 000

B. Queries

Real queries. The WebQuestionsSP dataset [39] provides

manually parsed mappings from natural language questions

to structured query graphs for several thousand simple real

questions to the Freebase knowledge graph. Each question

has a natural language representation and a corresponding

query graph representation. Each query graph consists of a

topic entity and a short path of predicates (an inferential
chain) leading from the topic to one or more answer entities,

with optional constraints to limit the number of intermediate

answers at any point along the inferential chain.

As our experiments model users querying KGs according to

topics of interest (discussed further in § IV-C), we manually

categorized 153 WebQuestionsSP queries into five high-

level topics according to what we observed in the dataset:

“history”, “travel”, “art”, “geography”, and “pop culture”.

To ensure consistency, we had three independent assessors

annotate each query with a single topic out of the five

choices. The inter-annotator agreement using Fleiss’ kappa [7],

which quantifies the degree of agreement over that expected

by chance, was 85.6% (“almost perfect” agreement). The

subset of WebQuestionsSP queries used in our experiments

consist of 1.07 triples each, on average.

Synthetic queries. We generate queries to DBPedia and

YAGO following standard procedure in KG query answering

evaluation tasks (c.f. [11], [12]). Following the structure of the

queries in WebQuestionsSP, we start with a topic entity ei,
a path length �, and a number of constraints c. We then follow

the procedure to generate a query GQ:

1) Follow a path without self-loops of � steps starting from

entity ei by uniformly choosing the next entity ej to

visit, and add each encountered relation in the path to

the query’s relation set RQ.

2) After arriving at the query’s answers, add up to c
〈relation, argument〉 constraint pairs to RQ, EQ respec-

tively such that the answer set of GQ remains non-empty.

Since most real queries on KGs contain few triples [31],

[3], we limit � ≤ 2 and c ≤ 4. The synthetic queries to

DBPedia/YAGO are more complex than those to Freebase,

consisting of 2.05 triples each on average.

C. User querying models

As we are not aware of any publicly available dataset with

individual users’ queries to KG, we resort to user simulation

with realistic assumptions. Since user behavior is a complex

matter, we simulate real behaviors reported in the information

retrieval literature and attempt to be consistent with related

works that simulate users [29], [6], [32]. We assume that each

user is interested in t topics. At any point in time, the user

may ask a query from any of their topics of interest, with a

small probability of asking “random” or “off-topic” queries.

Note that we define topics differently on Freebase versus

DBPedia/YAGO: For the latter, since we do not have high-

level conceptual topics, we randomly select a set of topic

entities (e.g., Charles Dickens, JK Rowling) from the given

KG, and generate queries of varying size and shape anchored

around each topic entity. This in effect models two kinds of

user behavior: High-level conceptual querying for Freebase,

and low-level structural querying for DBPedia and YAGO.

Given a number of topics t, a number of queries n, and a

random query probability p, we simulate a user’s query history

Qu as follows:

1) Uniformly sample a set of t topic entities in the case

of DBPedia/YAGO or high-level topic categorizations

(“art”, “history”, etc) in the case of Freebase.

2) Uniformly generate a multinomial distribution D speci-

fying the proportion of topics in the log.

3) For each topic, (a) if the KG is DBPedia or YAGO, select

a path length � ∈ {1, 2} and randomly select a number of

constraints c ∈ 1 . . . 4, then generate a query GQ centered

around the current topic entity, following § IV-B. With

probability p, re-generate GQ with a randomly chosen

topic entity. (b) If the KG is Freebase, select a query

GQ categorized into the current topic. With probability

p, set GQ equal to a randomly chosen query from the

query database. (c) Add GQ to Qu.

Within this model we also simulate re-retrieval, a well-

documented phenomenon whereby users repeat queries [34],

[17]. We limit the percentage of query reuse in our user simu-

lations according to statistics reported in real log analyses [34],

from around 20% for the simulations with more topics to 50%
for the simulations with fewer topics.

V. EVALUATION

Our evaluation focuses on the following questions:

Q1 How well do GLIMPSE personal summaries answer user

queries under various conditions and constraints?

Q2 Can GLIMPSE handle large real knowledge graphs?

Q3 How do changes in parameters affect GLIMPSE?

We implemented all methods7 in Python3 on a single machine

with a 6-core 3.50GHz Intel Xeon CPU and 1TB of RAM.

A. Experimental setup

Baselines. As discussed in § II, there is no existing method

directly addressing our problem. As such, we modify existing

baselines from the literature and introduce a new one:

• PPR [14]: As discussed in § II, most graph-based personal-

ization methods rely on variants of personalized PageRank

(PPR) to find the entities most relevant to a set of queries.

To compare to this method, we perform random walks with

restart on the knowledge graph, varying the walk length

7 Code and data: https://github.com/tsafavi/glimpse-summary
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TABLE III: GLIMPSE consistently outperforms competitors across the two user models defined in § V-B: Average F1 score for all
methods, knowledge graphs, and user querying models following the settings in § V-A. All averages are over 15 simulated users per
KG and querying model. Top performer per experiment in bold. In the GLIMPSE column, the value in parentheses denotes the
number of percentage points improvement over the best baseline. �: significant improvement by GLIMPSE over the best baseline
for a two-sided t-test at p < 0.01.

User model Dataset TCM CACHE PPR-1 PPR-2 PPR-5 PPR-10 GLIMPSE (+ improve.)

Few topics (t ∈ 2 . . . 5)
DBPedia 0.687± 0.09 0.684± 0.09 0.693± 0.09 0.846± 0.09 0.824± 0.09 0.819± 0.09 0.980± 0.02� (+0.134)
YAGO 0.539± 0.11 0.558± 0.10 0.549± 0.08 0.672± 0.08 0.659± 0.08 0.653± 0.08 0.814± 0.11� (+0.142)
Freebase 0.678± 0.06 0.707± 0.05 0.469± 0.05 0.486± 0.05 0.499± 0.04 0.499± 0.04 0.724± 0.06 (+0.017)

Many topics (t ∈ 5 . . . 10)
DBPedia 0.585± 0.08 0.603± 0.08 0.650± 0.08 0.782± 0.07 0.765± 0.08 0.764± 0.08 0.971± 0.03� (+0.189)
YAGO 0.526± 0.07 0.546± 0.07 0.552± 0.08 0.685± 0.07 0.673± 0.07 0.670± 0.07 0.768± 0.11� (+0.082)
Freebase 0.542± 0.07 0.577± 0.05 0.345± 0.05 0.339± 0.05 0.350± 0.05 0.354± 0.05 0.593± 0.06 (+0.016)

in {1, 2, 5, 10}, and take the subgraph of K edges (triples)

induced by the top-ranked entities as Su. The initial seed

PPR value of each entity in the KG is its query frequency

in the log Qu. In our tables and figures, PPR-n refers to

an n-step random walk. We implemented PPR using the

linear-time power method.

• TCM [33]: TCM is one of the only graph summarization

methods that is both fast enough to handle massive graphs

and flexible enough to be adapted to a (semi-)personalized

setting. Briefly, TCM is a sketching method that maps each

node in a given graph to a supernode via one or more

hash functions. To “personalize” this method, given a query

log Qu, we randomly hash only the entity IDs of entities

appearing in Qu, as well as neighbors of those entities. We

set the number of supernodes in the summary to K.

• CACHE: To further evaluate how GLIMPSE fares in

comparison with a frequency-based “caching” strategy, we

devised a method that sorts all entities in the user’s query

history Qu by their query frequency, then adds the neigh-

borhoods of entities in descending order of query frequency

to Su until |Tu| = K.

We also made a consistent effort to compare GLIMPSE to

non-personalized KG summarization methods [4], [32] with

the original implementations, but they failed to run on our

large-scale KGs (Table II), motivating our choice to take a

direction orthogonal to grouping-based summarization (§ II).

Evaluation metrics. We evaluate a personal summary Su with

the average F1 score of query answering on Su for a given log

Qu (see § III-A for algorithmic details on graph-based query

answering). For true positives TP , false positives FP , and

false negatives FN , the F1 score F1 = 2·P ·R/(P + R) is

defined as the harmonic mean of precision P = TP/(TP +
FP ) and recall R = TP/(TP + FN). In our setting, TP is

the number of query answers in Su that are also in G, FP
is the number of query answers in Su that are not in G, and

FN is the number of query answers in G that are not in Su.

Settings. Unless otherwise stated, we use the following default

parameters. We set ε = 10−3 following our analysis in § V-D.

For all methods involving random walks, we set γ = 0.85
following [28]. We use the first 50% of queries from each

simulated user’s log to create the personal summary Su,

then compute the average F1 score of answering the held-

out queries on Su. In § V-B we use the first 100 million

triples of the Freebase RDF dump to make running multiple

simulations per method feasible. We use larger subsets of

Freebase, up to one billion triples, in other experiments.

B. Query answering on GLIMPSE summaries

We address question Q1 by exploring different models of

user interests. Each simulation consists of 15 users asking 200

queries. We end the section with an in-depth discussion.

Varying topical interests. Here we study how performance

changes with the number of topical interests per simulated

user. Table III displays F1 score averages and standard de-

viations for two aggregate user models: few topics, which

corresponds to 2-5 topics t of interest per user, and many
topics, which corresponds to 5-10 topics t of interest per user.

Here, all summaries have K equal to 10% of the number of

triples |T | of the original KG (we vary K separately in § V-B).

For each user model and dataset, we denote a significant

improvement by GLIMPSE over the best baseline for a two-

sided t-test at p < 0.01 with �. In the GLIMPSE column,

the value in parentheses denotes the number of percentage

points improvement of GLIMPSE over the best baseline. The

relatively high standard deviations are due to the randomness

in simulation, reflecting the variability of real users.

The findings per user model may be summarized as follows:

• Few topics (t ∈ 2 . . . 5): GLIMPSE outperforms the

strongest baselines by around 14% on DBPedia and YAGO,

and 2% on Freebase. GLIMPSE’s improvement over the

best baselines on DBPedia and YAGO are significant at

the p < 0.01 level. The PPR methods generally perform

second best after GLIMPSE, and specifically PPR-2, which

we analyze more in our discussion and § V-D. We find

that TCM’s performance is overall low due to the exis-

tence of “super-edges” between supernodes, which leads to

false positives in query answering. CACHE’s performance

depends on whether the user queries are simple and can

be answered within the neighborhoods of queried entities,

which is true only for the Freebase queries, hence its

stronger performance on this dataset.

• Many topics (t ∈ 5 . . . 10): Here it is expected that person-

alization methods should perform poorer, since query reuse

is lower and the simulated users’ information needs are less

focused. The bottom three rows of Table III show the aver-

age F1 scores for this model. Here, GLIMPSE outperforms

the strongest competitor by 19%, 8%, and 2% on DBPedia,
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Fig. 3: Comparing GLIMPSE and its closest competitor PPR-2
by varying the number of topics of interest, averaged over 15
simulated users each. GLIMPSE consistently outperforms PPR-2
on DBPedia, significant at p < 0.01. It is also comparable to or
better than PPR-2 on YAGO for 10-15 topics.

YAGO, and Freebase, respectively. Interestingly, for both

user models PPR-2 usually substantially outperforms PPR-

1—by over 15% on DBPedia, for example—but adding

more steps to PPR exhibits a diminishing returns effect. We

believe that this is because most real queries to KGs contain

few triples, as demonstrated by the literature [31], [3]. We

study this effect further in § V-D.

Figure 3 compares the performance of GLIMPSE to its

closest competitor on DBPedia and YAGO, PPR-2, when the

number of topics is varied between 5 and 20. We find that

GLIMPSE consistently outperforms PPR-2 on DBPedia. The

same is true on YAGO for 5-10 topics. While GLIMPSE’s

performance slightly decreases on YAGO for 10 − 15 topics,

it still performs comparably with PPR-2. We discuss the

differences between DBPedia and YAGO and interpret these

findings further at the end of this section.

Varying the constraint K. As discussed in § III-D, the value

of K may depend on the user, the amount of device space, or

the application scenario. Here, we experiment with different

values of K, where we vary K as a percentage of the number

of triples |T | in the KG, to observe how the F1 score changes

with different levels of constraints. We show results in Figure 4

across user models for DBPedia and YAGO, using only PPR-

2 among the PPR methods since PPR-2 consistently performs

the best. As expected, across all methods, the query answering

F1 score increases with K, since a larger K means the

summary Su has more capacity for facts. That said, GLIMPSE

still performs well, for example at nearly 80% average F1

on DBPedia at just 0.1% of the number of triples |T |. For

reference, this corresponds to a GLIMPSE summary that uses

just 3.6 MB of memory, for a KG that originally uses around

2600 MB memory.

Discussion. While certain baselines can perform as well as

GLIMPSE under specific conditions, GLIMPSE is better at

generalizing across datasets and user models. For example, the

baseline CACHE performs relatively well on the Freebase
logs where the queries have on average around one triple, but

cannot handle the more complex queries to DBPedia and

YAGO. Another example is PPR-2, which is the closest com-

petitor to GLIMPSE on DBPedia and YAGO. PPR-2 performs

comparably to GLIMPSE on YAGO when the number of topics

t is high or the constraint K is tighter (Figures 3 and 4b).

We hypothesize that this is because YAGO has relatively few

(a) Few topics model

(b) Many topics model

Fig. 4: GLIMPSE consistently outperforms baselines across
constraints: Performance comparison varying K as a percentage
of the number of triples |T | in the original KG across user models.

relations and contains several extremely high-degree entities

to which many other entities are connected. For example,

most Person entities in YAGO are connected by the hasGender
relation to one of the Male or Female entities. PPR includes

all entities connected to these high-degree hubs, thereby an-

swering many queries connected to these hubs. However, not

all KGs have this structure: DBPedia, for example, does

not, and GLIMPSE consistently and significantly outperforms

PPR-2 here. Moreover, the generated queries to YAGO are less

complex than those on DBPedia due to the fact that YAGO
contains very few unique relations, and therefore each entity

in YAGO has fewer outgoing/incoming edges (Table II).

Importantly, GLIMPSE performs substantially better in par-

ticular over all PPR variants on the real Freebase queries,

whereas PPR is usually a stronger baseline on DBPedia and

YAGO. We believe this is due to important inherent properties

of KGs, which contain both low-level structure (entity-entity

links) and high-level concepts (subjective topics). Recall that

the Freebase queries were manually grouped by high-level

topic (§ IV-B). Therefore, two queries from the same user

in the same topic (e.g., “geography” or “history”) may not
be close distance-wise in the graph, which is the only type

of query similarity that PPR can capture. In fact, querying

behavior without structural coherence or locality in the KG can

be considered adversarial to personalization methods that only

extract paths or subgraphs. By contrast, because GLIMPSE

selects triples one at a time for the summary Su, it is more

robust. It includes different facts in the summary Su that

are not necessarily structurally close in the graph. Therefore,

GLIMPSE relies on but does not over-emphasize the graph’s

structure, and can handle both the lower-level structure and
the higher-level concepts over the KG.

C. Scalability of GLIMPSE

In this section, we address question Q2, which concerns the

scalability of GLIMPSE.
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TABLE IV: Comparison of GLIMPSE runtime on a subset
of Freebase with and without the optimizations discussed in
§ III-E. Evidently, the optimizations are necessary for GLIMPSE
to be feasible on encyclopedic knowledge graphs.

GLIMPSE With OPT1 only With OPT2+3 only

Runtime (seconds) 2.11± 0.08 15487.93± 978.05 28980.46± 416.38

Relative to GLIMPSE 1× 7340× 13734×

Benefits of optimization. Here we compare GLIMPSE as it is

described in § III-E and Algorithm 1 to non-optimized versions

of GLIMPSE. In our first experiment, we only use OPT1,

the precomputation of TΔ�=0. In the second experiment, we

only use OPT2 and OPT3, the random sampling of triples

and lazy updating of marginal values. These experiments were

all run on a relatively small subset (|T | = 1000 000) of

the Freebase knowledge graph, averaged over 3 simulated

users asking 100 queries across two topics. We simulate fewer

users here because runtime varies very little from one user

to another. Table IV summarizes our results. Evidently, the

optimizations are necessary for GLIMPSE to be viable in the

real world. GLIMPSE with both optimizations takes only 2

seconds on average. By contrast, only using OPT1, GLIMPSE

takes on average 4.5 hours and is > 7 000× slower than the

fully optimized version of GLIMPSE. Only using OPT2 and

OPT3, GLIMPSE takes on average 8 hours and is > 13 000×
times slower than fully optimized GLIMPSE. In particular,

these results demonstrate that OPT1, our optimization tailored

to personalization, allows GLIMPSE to operate at scale.

Runtime. Figure 5 shows how summarizing KGs with

GLIMPSE scales for progressively larger subsets of

Freebase, each one an order of magnitude larger than the

previous, up to one billion triples. These values are averages

over three simulated users asking 100 queries each across

two topics. Our results confirm that GLIMPSE is indeed

practical on web-scale data. For instance, GLIMPSE takes

only two minutes on average for a 10 million-triple subset

of Freebase. Figure 6 compares the summarization runtime

of GLIMPSE, PPR-2, CACHE, and TCM, averaged over all

experiments in § V-B (as all PPR variants took around the

same amount of time, only PPR-2 is shown). From the figure

it can be seen that our versions of TCM and CACHE are

the fastest, sublinear in the number of triples in G, because

they only consider the queried entities and neighbors of those

queried entities. However, TCM and CACHE are usually

not competitive baselines. On the other hand, the stronger

performers PPR and GLIMPSE are linear in the number of

triples. While GLIMPSE is slightly slower than PPR due to the

Fig. 5: GLIMPSE scalability
(seconds) on Freebase.

Fig. 6: Summarization time
on all KGs.

(a) Varying the sampling parameter ε from OPT2.

(b) Varying the random walk length on GLIMPSE and PPR.

Fig. 7: Parameter analysis of GLIMPSE and competitors.

extra marginal value updates (§ III-E), the extra computation

pays off in accuracy, as demonstrated in § V-B.

D. Parameter analysis

Finally, we address question Q3: How do variations in

parameters affect GLIMPSE’s performance?

Sampling parameter ε. Here we study how varying the

sampling parameter ε, which in turn changes the expected

theoretical performance of GLIMPSE (Theorem 3), affects

query answering accuracy. Figure 7a shows the results on

DBPedia and YAGO for ε ∈ [10−4, 10−3, 10−2, 10−1, 0.5] for

both user querying models. We find that for very small values

of ε (10−2 or less) GLIMPSE performs well with fairly stable

results, although we observe slight variance and noise due to

the randomness of sampling. However, with a large value of

ε, the performance degrades rapidly and the results are less

stable, as evidenced by the large standard deviations in the

plot for ε = 0.5. This is to be expected. The larger the ε, the

smaller the sampled set, which makes it more likely for sub-

optimal triples to be chosen for Su. Therefore, we recommend

a value of ε = 10−2 or less for good performance.

Random walk length. Recall that in § III-C our user entity

preference model can be interpreted as a random walk with

restart controlled by restart parameter γ. In these final exper-

iments, we model the user’s preference distribution over G
with varying-length random walks, and compare these results

to our variants of PPR. Figure 7b shows that across all KGs,

GLIMPSE’s performance with random walks either plateaus

or else decreases, whereas PPR’s performance with longer

random walks increases from one to two, and then plateaus.

Thus, random walks on KGs longer than two steps appear to

result in diminishing returns. We believe these findings are

KG-specific, due to the unique structure of real queries to a

knowledge graph. Assuming that such queries are “localized”

in the graph and do not span more than a few triples, which has

been demonstrated in several analyses of real KG queries [31],

[3], longer walks may add more complexity than necessary.
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VI. CONCLUSION

Motivated by the disparity between the massive scale of

encyclopedic knowledge graphs and the relatively limited

information needs of individuals, this paper proposes person-

alized knowledge graph summarization. Toward this goal we

devise GLIMPSE, and demonstrate its empirical and theo-

retical strengths. That said, there are many possibilities for

future work. For example, online (incremental) methods may

prove useful as facts are updated, KGs are augmented, and

user interests evolve. Future work could also make use of the

rich semantics provided by ontologies, as well as contextual

user cues (e.g., location, preferred language), as is common in

traditional ad-hoc web search [36]. As such, we believe our

work opens up many possibilities for emerging approaches to

accessing and managing world knowledge.
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