
PARALLEL COMPILATION OF CMS SOFTWARE

Shaun Ashby, Giulio Eulisse, Lassi A. Tuura (CERN, Geneva, Switzerland)
Stefan Schmid (ETH Zurich, Switzerland)

Abstract

LHC experiments have large amounts of software to
build. CMS has studied ways to shorten project build times
using parallel and distributed builds as well as improved
ways to decide what to rebuild. We have experimented
with making idle desktop and server machines easily avail-
able as a virtual build cluster usingdistccandzeroconf. We
have also tested variations ofccacheand more traditional
make dependency analysis. We report on our test results,
with analysis of the factors that most improve or limit build
performance.

INTRODUCTION

The development of big software projects requires fre-
quent recompilation for rapid prototyping. We have de-
veloped a system to perform distributed compilation using
spare cycles of available machines (running GNU/Linux).

This document is organized as follows: In this introduc-
tory part we first describe the “classic” compilation process
and point out which parts will be parallelized by our sys-
tem. We then give some background about the theory of
parallelization in general which is crucial to understand the
potential bottlenecks for the speed-up. Finally we present
the build environment at CMS and also the infrastructure
on which our tests have been performed. The next sec-
tion then introduces our compilation system and its com-
ponents. After the presentation of the performance tests,
the document concludes with a short summary of our find-
ings and an outlook to the future.

Phases of Compilation

Figure 1 outlines the phases of compilation. The C-
preprocessor expands the macros in the C or C++ source
file and does header files include processing. The generated
intermediate file is the input file of the C or C++ compiler.1

In the next step, the assembler generates the binary object
file, which is finally linked with other object files and the
libraries. The result is the executable program or shared
library.

The compilation and the assembly phase depend only
on the preprocessed input and are therefore self-contained.
These two steps are parallelized in our system.

1Modern compilers usually integrate the preprocessor, so there is no
intermediate file in practice.

Figure 1: Phases of compilation.

Parallel Algorithms

The speed-upof a parallel algorithm is defined as the
execution time of an algorithm on a single machine, di-
vided by the execution time on a cluster of machines, i.e.
speedup = tsingle

tcluster
.

There is no algorithm which can be parallelized ad in-
finitum. Every algorithm has parts that have to be executed
serially, for example we can not distribute a single hard
disk read. Given an algorithm with a fractionf of the se-
rial execution time that can not be parallelized, according
to Amdahl’s Law[2], having P CPUs, the speedup is at
most

speedupmax =
1

f + 1−f
P

.

So even for infinitely many CPUs the speedup can not ex-
ceed1

f .
In our case of distributed compilation, we find several

factors that limit parallelization:

• We distribute the work on aper filebasis, and each file
is compiled on a machine sequentially.

• In addition to compilation, we have two other tasks:
pre-processing and linking.2 Whereas we can com-
pile in parallel, with a granularity of entire files, these
two tasks are not only inherently serial, but are in our
case also done on the same machine, that is, on the
local host. However, several independent libraries or
executables can be linked simultaneously, but this will
happen on a single computer.

• Very practical issues reduce the gain of additional

2And SCRAM, see later.



hosts even further. For example the networking over-
head increases with the number of participating hosts.

In order to maximize the speed-up, it is crucial to under-
stand where these bottlenecks are and how the number of
serial steps can be minimized.

Environment at CMS

There are two different build systems at CMS (see [1]):
SCRAM V0.20, the “old SCRAM,” and SCRAM V1, the
“new SCRAM.” While SCRAM V0.20 has several bottle-
necks for parallelization — for example, it recursively de-
scends into each subdirectory — SCRAM V1 makes more
standard use of make and is very fast.

For our tests we used a cluster of five Intel P4 Xeon 2.8
GHz (two CPUs each) hosts running GNU/Linux. The
bandwidth is more than 10 MBytes/s and a ping takes
around 0.1 ms. The local compiler of the machines is GCC
3.2.

The project’s source files are held on local disk, but the
header files except for the system headers and the libraries
are located on the network file system AFS.

SYSTEM DESCRIPTION

In this section, we present the different components of
our system: The distributed compiler, the service discovery
protocol which allows to find the idling host that may par-
ticipate in the build, the compiler cache, and the daemons
which make use of the service discovery mechanism and
decide whether the underlying machine is busy or not. Fi-
nally, the issue of integration into the build system SCRAM
is addressed.

Distributed Compiler

Our system uses the distributed compilerdistcc [3].
Given a list of server hostnames, either in a file or in an en-
vironment variable, it distributes compilation to these hosts
and collects the results. The remote machines use a locally
installed compiler, so we have to ensure that incompatible
versions are not mixed.

Distcc preprocesses the source files locally and then
ships the output to the server hosts. This ensures correct-
ness, but it is also more expensive compared to remote
hosts preprocessing the sources themselves. On a low-
bandwidth network, shipping preprocessed sources may
become a bottleneck.

If distcc encounters a problem while connecting to the
remote host, it removes the server from the list and masks
the error by compiling locally. It is therefore not a problem
if the host list contains crashed hosts.

Note that distcc does not check whether it is really worth
to compile remotely.

Service Discovery

To discover the hosts currently not busy and therefore
able to help in compilation, we use a service discovery pro-
tocol, calledzero-conf[4]. In our setup, all hosts in a clus-
ter run a daemon which automatically updates the host’s
registration in a DNS server depending on how busy the
underlying machine is. When a client wants to compile a
project, it simply looks up the registered servers and passes
their names to distcc. We use the multicast DNS server
PyRendezvous[4], but it is possible to use a central DNS
server as well.

Compiler Cache

We studied also the effects of using the compiler cache
ccache[5] in our system. Ccache acts as a caching prepro-
cessor to C/C++ compilers, using the -E compiler switch
to get the output of the preprocessor and a hash to detect
if a compilation can be satisfied from cache. The present
version of ccache has the disadvantage that it considers the
whole path of the files only, which means that we can not
benefit from the cache when we compile in a different di-
rectory.

Daemons

There are two processes running on every host in the sys-
tem. A “server daemon” applies different strategies to ob-
serve its underlying host. Whenever the host is idling, the
daemon registers the machine and the machine’s local com-
piler version using the service discovery protocol. There
are several possible strategies to decide whether a host is
idle: if the screen-saver is running, if less than a certain
number of users are logged at the machine, if the CPU-
usage falls beyond a threshold, etc.

The “client daemon” periodically checks for available
servers; as the servers have to use the same gcc-compiler
as the client, it looks for the machines offering the same
version as it has itself. The daemon writes the names of the
idling hosts into a file. When distcc is called, it uses this
file instead of performing a service discovery. As distcc is
able to handle crashed hosts, it is not necessary for the host
list to be completely up-to-date.

Integration into SCRAM

The integration of the distributed compiler into SCRAM
V1 is simple: one can just override the correspond-
ing variables and executescram build MAKEFLAGS=-jX
CC=... CXX=... Here, the -j-option sets the level
of parallelization: the maximum number of concurrently
spawned processes. The CC and CXX variables stand for
the C-compiler and C++-compiler respectively and can be
pointed to distcc.

For SCRAM V0.20 a different approach is necessary.
We instructed SCRAM to use a script called pgcc as the
compiler. While the old SCRAM usually waits for the com-
piler to return before compiling the next file, we trick it



to parallelize compilation as follows: pgcc spawns another
process which calls distcc, while pgcc itself returns imme-
diately. This fools the old SCRAM to behave as if the first
compilation job was already done and starts the next com-
pilation. Of course, for the linking process we have to wait
until all source files are compiled using lock files.

Hence, the situation for old SCRAM is as follows: We
compile the source files of a module in parallel, resynchro-
nize before linking, and then start to compile the next mod-
ule. If the project has no inter-module dependencies (for
example COBRA [6], but not IGUANA [7]), it is not neces-
sary to compile one module after another and we can spawn
a new process also for linking, letting pgcc return immedi-
ately.

We observed that the old SCRAM and make spend a
lot of time doing dependency checking, that is, to find
out which files can be reused from the previous execution.
While this is useful in a situation where we use a local com-
piler, it is a bottleneck for distributed compilation, because
this work can not be parallelized. For this reason, pgcc
forces SCRAM not to do these checks by providing a triv-
ial dependency output for each source file consisting of the
object file, the source file and a dummy target.

PERFORMANCE TESTS

In the tests presented in this section, all hosts have been
idling and we did not run the service discovery protocol in
order to concentrate on the pure speed-ups of distributed
compilation.

SCRAM V0.20

We first tested IGUANA 4.5.0 [7], see Figure 2. The
speed-up is quite small, and we see that the serial com-
ponents “linking” and “rest” (consisting of time spent for
SCRAM, preprocessing and networking) make up almost
half of the execution time. As has been mentioned before,
the old SCRAM changes into the corresponding directory
of every module and then callsscram b recursively, which
is expensive and is a crucial reason for the poor paralleliza-
tion.

Figure 2: IGUANA 4.5.0.

For COBRA 7.5.0 [6] which has no inter-module depen-
dencies, the speed-up is moderate (cf. Figure 3), even in the
case of a wrapped SCRAM which gets rid of a part of the
serial component. Finally, we tested ccache (full cache),

Figure 3: COBRA 7.5.0.

which yields good results, see Figure 4.

Figure 4: Ccache for COBRA 7.5.0.

SCRAM V1

New SCRAM has just one makefile and is not recur-
sive. It reduces the time-stamping work and uses differ-
ent algorithms for dependencies. The overhead of SCRAM
turned out to be less than one second. We tested a proto-
type version of new SCRAM for the projects SEAL 1.3.3
[8], POOL 1.5.0 [9] and COBRA 7.6.2. The results are
shown in Table 1. Unlike the former test, the sources here
are also located on AFS. Obviously, the speed-up for SEAL
is still very small. The reason for this is that the generation
of SEAL’s dictionary is a huge serial component. More-
over, SEAL has many small source files which reduces the
speed-up even further. The results for POOL and COBRA
are quite good.

Table 1: Speed-Up for SCRAM V1.
project 1 vs. 10 CPUs
SEAL 2.03
POOL 4.11
COBRA 4.4



Figure 5 gives the detailed test for COBRA. It shows that
more than five hosts may still be useful. Moreover, from
our tests, we can find a reasonable rule of thumb for the -j
option: 3

2 · # CPUs.

Figure 5: COBRA 7.6.2.

CONCLUSIONS

From our studies we can draw several conclusions:

• In most cases, one additional host reduces the execu-
tion time remarkably. The utility of a third or forth
machine is less obvious.

• It is crucial to reduce serial components like prepro-
cessing, SCRAM, networking, and so on to get a good
speed-up.

• SCRAM V0.20 and the generation of SEAL’s dictio-
nary are significant bottlenecks for parallelization.

• The speed-up depends on many parameters, which
are not only related to the computer infrastructure
(number of hosts, latency, bandwidth...) but also
to the project’s properties (e.g. number and size of
files). It is not possible to give a formula for an arbi-
trary project to calculate lower bounds of performance
gains.

• Pragmatic rules of thumb have to be applied to pre-
dict certain system parameters. For the -j-option, we
recommend32 · # CPUs.

• Integration of ccache is easy and useful.

With the present technologies, the distribution of com-
pilation jobs to idling hosts provides only moderate speed-
ups, i.e. a factor of two can hardly be achieved even with
dozens of desktops. However, as will be discussed in the
next section, this may change in the near future.

In our system, the sources have usually been local, but all
the headers (except the system headers) and libraries were
on AFS. Although AFS caches files, many operations take
more time on AFS than on local disk. Therefore, a com-
pletely local compilation may result in better performance
than in our environment.

FUTURE WORK

Besides using local header files and libraries, we can
identify several measures to reduce serial execution times
further. The following sub-sections present two interesting
technologies which may be useful to speed-up the compi-
lation process further.

Moreover, a completely different approach for dis-
tributed compilation is possible, e.g. by using MOSIX [10]
which distributes the compiling processes automatically on
a cluster — without distcc. However, in contrast to distcc
this solution requires changes at kernel level.

Pre-compiled Header Files (PCH)

It is possible to pre-compile header files [11], so they
have not to be processed over and over again if they appear
in many source files. To use PCH, it is necessary to change
the makefiles.

Compiler Server

Apple is working on a compiler server [12] which also
allows reuse of compiled headers. The idea is that the com-
piler will run as a kind of a server process which waits for
compilation requests and always checks if the file has al-
ready been compiled. A compiler server does not just re-
member the text, but stores the semantic data trees result-
ing from the header files in memory. This is a very so-
phisticated approach compared to PCH. However, this new
version of gcc is still under construction.

REFERENCES

[1] http://cmsdoc.cern.ch/Releases/SCRAM/current/doc/html/SCRAM.html.

[2] J. Hennessy,Computer Architecture. A Quantitative Ap-
proach(2002), Morgan Kaufmann Publishers, USA.

[3] http://distcc.samba.org.

[4] http://dotlocal.org.

[5] http://ccache.samba.org.

[6] http://cobra.web.cern.ch/cobra/.

[7] http://iguana.web.cern.ch/iguana/.

[8] http://seal.web.cern.ch/seal/.

[9] http://pool.cern.ch.

[10] http://www.mosix.org.

[11] http://gcc.gnu.org/onlinedocs/gcc/Precompiled-
Headers.html.

[12] http://per.bothner.com/papers/GccSummit03-slides/.


