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Abstract

Neural audio codecs have become increasingly important for audio compression
and, more recently, for creating tokenized representations for various generative
downstream tasks. Consequently, the performance of neural audio codecs plays
a crucial role in many applications. In this work, we introduce DISCODEC, a
high-fidelity neural audio codec for compressing 44.1kHz music into discrete or
continuous latent representations. DISCODEC leverages ConvNeXt and attention
layers, an affine re-parametrization of the code vectors, and an improved commit-
ment loss for better alignment between codebooks and model embeddings. We
study comparisons of DISCODEC against existing codecs, perform a comprehen-
sive ablation of the proposed architecture, and demonstrate its performance against
state-of-the-art neural audio codecs. We make the DISCODEC codebase and model
checkpoints available at https://github.com/ETH-DISCO/discodec.

1 Introduction

Neural audio codecs have recently emerged as viable alternatives to traditional codecs, such as
MP3 [1] and Opus [2]. These neural codecs were initially introduced for general audio compression
tasks with the aim of achieving high reconstruction quality at lower bitrates while still enabling
real-time encoding and decoding [3, 4, 5]. Neural audio codecs leverage discretized representations
based on the vector-quantized variational autoencoder architecture, initially introduced for the image
domain [6]. Since the audio data is encoded into discrete tokens, these models have found use
beyond just compression. With the advent of the transformer architecture [7] and its use of tokenized
representations, neural audio codecs have become a key component in converting audio data into a
compatible representation for transformer-based architectures. Many recent applications of generative
audio tasks, such as text-conditioned audio generation [8, 9, 10, 11], therefore, rely on high-quality
neural audio codecs.

There has been a significant amount of recent research on neural audio codecs [3, 4, 5, 12, 13, 14],
with particular focus on extremely low bitrate regimes. However, existing neural audio codecs are all
based on the same fundamental architecture. Therefore, we re-evaluate the design choices of existing
neural audio codecs, particularly with regard to residual vector quantization, and propose changes
to improve these architectures. DISCODEC leverages ConvNeXt [15] and attention layers [7], an
affine re-parametrization of the code vectors, and an improved commitment loss for better alignment
between codebooks and model embeddings [16]. Furthermore, in addition to the discrete latent
DISCODEC model, we also open-source two unquantized versions of DISCODEC at 64 and 128
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latent dimensions. The 128-dimensional DISCODEC model achieves audio reconstruction nearly
indistinguishable from the reference signal at 3x lower bitrate.

Our contributions can be summarized as follows:

• We present DISCODEC, a novel neural audio codec architecture using ConvNeXt layers,
attention layers and trained with an improved commitment loss.

• We evaluate DISCODEC on various objective metrics and perform a MUSHRA listening test.
Our findings show that the architectural changes of DISCODEC lead to better reconstruction
fidelity compared to existing codecs.

• We ablate our model and investigate the trade-off between vocabulary size and the number
of codebooks. Furthermore, code and pre-trained checkpoints are open-sourced, along with
unquantized versions of the model.

Audio samples are available online.1

2 Related Work

Vector Quantization. Vector Quantization (VQ) enables deep neural networks to learn discrete
representations by quantizing features into clusters called codebooks, showing impressive results in
image and speech generation [6, 17]. However, VQ networks are challenging to optimize and often
require specialized training techniques like exponential moving average updates [6] and codebook
reset [18]. Residual Vector Quantization (RVQ) [3] extends VQ for efficient audio compression at
various bitrates, especially beneficial at lower bitrates. RVQ employs a cascade of vector quantizers
that iteratively quantize residual errors from previous stages, enabling refined compression with
manageable complexity.

Neural Audio Codecs. Recent advances in neural audio processing have led to the development
of neural audio codecs. WaveNet [19] introduced a deep generative model for high-fidelity audio
synthesis from raw samples, revolutionizing speech synthesis. WaveGlow [20] extended this with a
flow-based generative model. SoundStream [3] was one of the first neural audio codecs, introducing
the VQ-VAE architecture to audio compression, originally proposed for image compression [6].
SoundStream employs adversarial losses, feature-space losses, and multi-scale spectral reconstruction
loss. It uses exponential moving average for codebook updates [17] and introduces “quantizer
dropout” to adapt to different bitrates, enhancing generalization and outperforming traditional codecs.
EnCodec [4] follows a similar architecture to SoundStream, adding LSTM layers in the encoder
and decoder and a different loss formulation. It also incorporates a Transformer-based language
model for faster-than-real-time compression and decompression, and was trained on large audio
datasets [21, 22, 23].

RVQ Adaptations. Descript Audio Codec (DAC)[5] introduces changes inspired by BigVGAN [24],
including Snake activations [25] and an improved training recipe. It performs codebook lookup
similar to Improved VQGAN [26], using lower-dimensional L2-normalized lookup vectors, improving
codebook usage without special initialization methods. DAC was trained on various audio types
resampled to 44,kHz. SNAC [14] is a concurrent codec based on DAC, introducing local multi-head
attention layers in the encoder and decoder and strided pooling of codebooks to reduce the bitrate.

3 DISCODEC

3.1 Architecture

We provide an overview of DISCODEC (cf. Figure 1). DISCODEC builds on a modified DAC [5]
architecture, utilizing 1D convolutions for downsampling, transposed 1D convolutions for upsampling,
and interspersed residual connections. We deviate from existing architectures for neural audio
compression at two key points.

First, we add a variant of the ConvNeXt [15] block adapted for 1D signals at the end of every
encoder and decoder block. Secondly, we introduce multi-headed attention before applying the last

1https://lucala.github.io/DisCodec/
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Figure 1: Architectural overview of DISCODEC. The model consists of 1D convolution layers
with weight normalization (WNConv1D) and stride S, Multi-Headed Attention layers (MHA),
snake activations, and ConvNeXt layers. Latent embeddings are discretized with Residual Vector
Quantization (RVQ) to obtain discrete representations.

convolution prior to the residual vector quantization layer, as well as after applying the first 1D
convolution after quantization. We use a standard multi-stage vector-quantization method to enable
the discretization of raw audio signals, with each subsequent step encoding the remaining residual
between the true latent and the quantized representation at that stage.

In more detail, the RVQ algorithm works as follows: The input vector e is encoded using a nearest
neighbor lookup in an embedding table. The resulting vector qi is subtracted from e, with the next
lookup being performed using e− qi. We modify the RVQ block by splitting the embeddings into
multiple disjoint groups and applying separate learned scale and shift parameters [16]. This has been
found to reduce the codebook covariate shift, which can negatively affect the reconstruction quality.

We use codebook and commitment losses as defined in VQ-VAE [6] to align latent embeddings with
quantized codebook vectors. While the codebook loss aims to align the codebook vector to the latent
embedding, the commitment loss prevents the embedding space from growing arbitrarily [6]. These
losses are defined as follows:

Lcodebook = ||sg[ze(x)]− zq(x)||22, (1a)

Lcommitment = ||ze(x)− sg[zq(x)]||22, (1b)

where sg is the stop-gradient operator, and the encoder output ze and the decoder input zq are the
unquantized and quantized latent vectors, respectively.

In addition, we make improvements to the vector quantization process, adopting an affine re-
parametrization of the code vectors [16] q̂ = µ+ σ ∗ q, where q is the original code vector, while µ
and σ are learned parameters for the mean and standard deviation.

Furthermore, we adopt the synchronized update rule [16] defined as:

z(t+1)
q ← (1− η) · z(t)q + η · z(t)e + η2 · ∂Ltask

∂zq
, (2)

where Ltask is a combination of Lmel, Lfeat, and Ladversarial, and η is the learning rate. These changes
make it possible to set considerably higher weights for the codebook and commitment losses, which
we found to increase audio reconstruction fidelity.

In addition, we analyze model performance without vector quantization. For these continuous
latent models, we do not use the VQ block to discretize the latent, opting instead for a VAE-based
approach [27], utilizing a cyclic annealing schedule [28] for the KL loss term.
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3.2 Training

Previous approaches often face the issue of codebook collapse, leading to the utilization of only
a small subset of codebook tokens for quantization [5]. There have been attempts to mitigate
codebook collapse by using methods such as reviving dead codebooks using exponential moving
average [6, 3, 4]. DAC [5] addresses codebook collapse by performing the codebook lookup in a lower
dimensional space. Similarly to DAC, we also use a learned projection to mitigate codebook collapse.
Using D dimensional latent embeddings and M lower-dimensional latent embedding with D ≫M .
For DISCODEC, we set D = 1024 and M = 8. The learned projection matrices Win ∈ RD×M and
Wout ∈ RM×D are used to find the closest L2-normalized vector, which is analogous to a cosine
similarity. The lookup is defined as follows:

zq(x) = Woutqk, (3)

where k = argminj ∥ℓ2 (Winze (x))− ℓ2(qj)∥2 and qk is a codebook vector. This differs from the
codebook lookup method used in other approaches, which do not L2-normalize the embedding vector
ze and lookup vector zq . These approaches operate in the dimension of the latent vector ze, which is
significantly higher (1024 compared to 8). This default lookup can be seen as setting Win = Wout = I
and not using L2-normalization.

Losses. To train DISCODEC we use a combination of losses [5] with the following weightings:

Ltotal = 15 · Lmel + 2 · Lfeat + 1 · Ladv + 10 · Lcodebook + 2.5 · Lcommit, (4)

where Lmel is the multi-scale mel-spectogram loss, Lfeat the feature matching loss, Ladv the adver-
sarial loss. Lcodebook and Lcommit refer to the codebook and commitment losses for the RVQ layer,
respectively. We find that the higher codebook and commitment loss weights at 10 and 2.5, compared
to 1.0 and 0.25 as proposed by DAC, perform better for us. This is made possible by the affine
re-parametrization of the code vectors and the improved commitment loss formulation.

The Mel-spectrogram loss was initially introduced by Hifi-GAN [29] and is defined as:

Lmel(F,G) = Fx [||ϕ(x)− ϕ(G(F (x)))||1] , (5)

where F is the encoder and G is the decoder of the audio codec, and ϕ transforms a waveform into a
mel-spectrogram. We use a multi-scale mel-spectrogram loss with window lengths of 32, 64, 128,
256, 512, 1024, and 2048, and the hop lengths set to 25% of the window length, and 5, 10, 20, 40, 80,
160, and 320 mel bands, respectively.

4 Evaluation

We perform a series of ablations to validate the effectiveness of DISCODEC. We analyze the trade-off
between the number of codebooks, vocabulary size, and scaling laws of the codecs in terms of
bitrate and compare DISCODEC to various other models. All DISCODEC models are trained on
MTG-Jamendo [23] and an internal dataset of 120 hours of vocal tracks.

4.1 Metrics

We evaluate the performance of all models using a multi-scale mel-spectrogram loss (cf. Section 3.2),
a multi-scale STFT loss, L1 loss on the waveform, and ViSQOL [30]. We subjectively compare the
models by performing listening tests according to the MUSHRA protocol [31] with a group of audio
experts. In this setup, listeners are exposed to 5-second audio snippets from an unseen evaluation set.
7 signals, including the hidden reference and a low-passed anchor, are compared in a single test, with
an entire run being composed of 10 such tests.

4.2 Number of Codebooks & Codebook Size

To find a good trade-off between vocabulary size and the number of codebooks, we investigate the
scaling behavior of the number of codebooks while keeping the bitrate constant. To achieve this, we
compensate for a reduced number of codebooks by increasing the vocabulary size. Surprisingly, we
find that a model with a vocabulary size of 32k (15 bits per token) and 4 codebooks obtains similar
reconstruction quality compared to a model with a vocabulary size of 1024 (10 bits per token) and 6
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Table 1: Performance comparison. Latents refer to the latent dimension (continuous) or number of
codebooks (discrete). Best scores for discrete models in brown, and for continuous models in blue.

Model VQ Latents Bitrate (kbps) Mel ↓ SI-SDR ↑ STFT ↓ L1 ↓ ViSQOL ↑ MUSHRA↑ Params

Reference - - 706 - - - - - 98.2± 5.80 -

DisCodec ✗ 64 102 0.740± 0.048 13.862± 4.085 7.044± 0.497 0.022± 0.010 4.45± 0.29 87.4± 11.3 109M
DisCodec ✗ 128 205 0.474± 0.038 17.419± 5.180 6.016± 0.399 0.013± 0.007 4.56± 0.27 97.3± 4.30 109M
DisCodec ✓ 8 8 1.139± 0.073 10.771± 2.866 7.689± 0.606 0.034± 0.011 4.35± 0.21 85.6± 11.0 109M
EnCodec ✓ 16 12 1.901± 0.138 9.274± 2.793 14.011± 2.531 0.045± 0.013 3.46± 0.49 70.6± 17.9 15M
DAC ✓ 9 7.74 1.099± 0.059 10.387± 2.450 5.680± 0.394 0.039± 0.011 4.37± 0.11 84.5± 12.7 76M

codebooks. Overall, our observations support the conventional approach of utilizing more codebooks
for higher bitrate models, particularly when considering the trade-off with the number of bits per
token. However, our findings indicate that models with higher vocabulary sizes might still be feasible.

To further investigate the behavior of larger vocabulary sizes, we encode samples from our test set
and compute the entropy over the tokens used in every codebook. We then normalize the entropy
with the maximally achievable entropy by every model, which is equal to the number of bits used per
token. The resulting values indicate the percentage of the theoretically possible entropy (and, in turn,
codebook usage) that could be achieved by the respective model.

In Figure 2, we observe that exceedingly large vocabulary sizes achieve lower codebook usage. In
contrast, models with commonly used vocabulary sizes (10-12 bits per token) can make use of their
tokens more uniformly. This aligns with our observations on the performance of these models. We
find that models with 15 bits per token retain high codebook utilization, which is close to optimal.
Regimes with vocabulary sizes in this range remain under-explored and constitute an interesting
avenue for future research.

4.3 Comparative Analysis
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Figure 2: Visualization of entropy over multiple
codebooks, calculated on our MTG-Jamendo test
set. Values were computed as the entropy for ev-
ery codebook, normalized by the number of bits
available for the codebook. The resulting numbers
indicate the codebook usage percentage.

We evaluate against pre-trained DAC [5] and
EnCodec [4] models. All metrics in Table 1
are computed on the MUSDB-test set [32]. We
observe in Table 1 that DAC exhibits strong per-
formance. The VQ version of DisCodec obtains
comparable performance on objective metrics
and outperforms EnCodec on the subjective lis-
tening test conducted with audio experts, achiev-
ing an average score of 85.6 compared to 70.6
for EnCodec and 84.5 for DAC. The mean rat-
ing of the low anchor for the MUSHRA test is
32.3. While the continuous models use signif-
icantly more bandwidth, they are comparable
in audio fidelity to the reference signal, mak-
ing them ideal for downstream tasks where a
continuous latent representation can be utilized
(e.g., diffusion-based approaches). Providing
the continuous models of DISCODEC thus al-
lows for further use cases without the loss in
audio fidelity induced by vector quantization.

5 Conclusion

Neural audio codecs have been shown to significantly outperform traditional codecs at low bitrates.
In addition, these codecs transform audio into highly compressed latent representations, which
transformer-based architectures can directly use to process and generate audio. However, since these
models depend on the codec’s latent representation, the resulting audio fidelity is inherently tied to
the codec’s reconstruction quality. To that end, we present DISCODEC, a high-fidelity neural audio
codec specifically trained for music that incorporates ConvNeXt and attention layers, as well as
recent advancements in residual vector quantization. To further research on downstream tasks, we
open-source the codebase and model checkpoints of DISCODEC.
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