
On Consensus Number 1 Objects
Pankaj Khanchandani

Adobe Systems
Bangalore, India

kpankaj@adobe.com

Jan Schäppi
ETH Zurich

Zurich, Switzerland
schajan@ethz.ch

Ye Wang
ETH Zurich

Zurich, Switzerland
wangye@ethz.ch

Roger Wattenhofer
ETH Zurich

Zurich, Switzerland
wattenhofer@ethz.ch

Abstract—The consensus number concept is used to determine
the power of synchronization primitives in distributed systems.
Recent work in the blockchain domain motivates shifting the
attention to consensus number 1 objects, as it has been shown
that transaction-based blockchains just need consensus number
1. In this paper we want to get a better understanding of such
consensus number 1 objects.

In particular, we study the necessary and sufficient conditions
for determining the consensus number 1 objects. If an object
has consensus number 1, then its operations must be either
commutative or associative (necessary condition). On the other
hand, if the operations are consistently commutative or over-
writing, i.e., independent of the current state of the object, then
the consensus number of the object is 1 (sufficient condition).
We give an algorithm to implement such generic consensus
number 1 objects using only read/write registers. This implies
that read/write registers are universal enough to solve tasks, such
as asset transfer of a cryptocurrency, among many others, in
wait-free distributed systems for any number of processes.

Index Term— Consensus number, synchronization hierarchy,
object implementation, read/write registers

I. INTRODUCTION

In distributed systems, we typically have multiple processes
concurrently working on the same data. Distributed systems
provide tools to orchestrate synchronization, both on the
hardware and the software level. Using these synchronization
primitives, one process will not inadvertently overwrite the
data of another concurrent process. We can measure the power
of a synchronization primitive in asynchronous distributed
systems by the so-called consensus number introduced by
Maurice Herlihy [7].

The consensus number of a synchronization primitive (of-
ten also called: object) determines how many processes can
achieve consensus. More precisely, an object has consensus
number n, if n processes can achieve consensus, but n + 1
processes cannot. These n processes then can implement any
wait-free object that is shared among n processes using the
consensus number n object and read/write registers [7], [8],
[14].

Back when the consensus number was introduced, designers
of hardware and concurrent programming languages were
motivated to provide synchronization primitives with a high
consensus number. Having consensus allows for virtually
any computation, since in the worst case, the n concurrent
processes can get consensus for just about anything before
they move on with the next task. Not surprisingly, all future

hardware and software provided synchronization primitives
which allowed an unbounded consensus number, i.e., n→∞.

However, a high consensus number is often also associated
with a high implementation cost and low parallelism, which
is a disadvantage. Recently, several works started advocating
low consensus number primitives instead. In the important
application domain of blockchains for instance, multiple teams
started questioning the importance of consensus at all, e.g. [6],
[18].

It turns out that simple blockchains for financial transactions
(equivalent to what Bitcoin [13] offers) do not need consensus
at all, and so these transactions can be implemented with
a synchronization mechanism that does not need a high
consensus number. Of particular interest are hereby primitives
that merely have consensus number 1, and hence cannot even
achieve consensus among 2 concurrent processes.

Indeed, if we only do financial transactions, why would
consensus be needed? If a person A wants to send money
to another person B, A can simply sign a transaction. All
blockchain participants will be informed about this transaction
via a reliable broadcast protocol [4]. Consensus is not needed
unless person A tries to send the same money not only
to B but also (concurrently) to C. This is known as a
double spend attack. In the case of such a double spend,
the blockchain would need consensus to decide whether the
money is transferred to B or C. In consensus-free blockchains
(e.g., [3], [6], [18]), the money would be sent to either B
or C, or, A could even lose the money. In transaction-based
blockchains, losing the money seems plausible, since the the
problem only occurred because A tried to cheat. On the other
hand, consensus-free blockchains have many advantages over
consensus-based blockchains: They are simpler, more efficient,
and also work in completely asynchronous environments.

But the use of consensus number 1 goes well beyond crypto
transactions. For instance, snapshot [1] is another typical
example of a useful consensus number 1 object. In this paper,
we want to put a spotlight on consensus number 1 objects. We
want to understand their possibilities and limitations better.

We first consider how to determine consensus number 1
objects depending on the relationships between operations. We
prove that the operations of a consensus number 1 object must
satisfy either commutative or overwriting relationships with
each other. Otherwise, we can construct an algorithm with the
object and read/write registers to achieve binary agreement
between the two processes. Then, we study the implementation

of consensus number 1 objects with read/write registers. We
propose an algorithm to simulate consensus number 1 objects
whose operations keep the same commutative and overwriting
relationships at every system state. Meanwhile, this result
also implies that if the relationship between two operations
is consistent across the system states, then the object has
consensus number 1.

II. RELATED WORK

Since Herlihy [7] introduced the hierarchy based on the
consensus number of wait-free objects, it has been used to
quantify the synchronization power of the objects [15], [16].
He analyzed the consensus number of different objects: those
with a finite consensus number, such as fetch-and-add, and
those with an infinite consensus number, such as compare-
and-swap. On top of determining the consensus number of
objects, Herlihy also considered universality. He showed that
an object of consensus number n could implement any other
objects in a system of no more than n processes. Nevertheless,
it is not clear how to implement other objects with objects
of consensus numbers lower than n. In particular, Herlihy
proposed an open question regarding the wait-free hierarchy:
can read/write registers implement any object with consensus
number 1 in a system of two or more processes?

Later, Jayanti studied how to utilize objects of consensus
numbers lower than n to implement other objects. Although it
has been proved that it is impossible to implement an object
of a higher consensus number with an object of a lower
consensus number [7], [17], Jayanti showed that this wait-
free hierarchy is not robust if combining multiple objects with
lower consensus [10]. In particular, he proposed a type weak-
sticky object of consensus number k, which can implement
an object of consensus number k+ 1 together with read/write
registers. However, their results are not generalized to the most
basic objects with consensus number 1.

Recently, there is a series of works analyzing the com-
putational power of low consensus objects [5], [11], [12].
However, they do not consider objects as individual elements
in the systems. They model a set of registers that support the
set of synchronization operations. For example, in traditional
systems, a consensus number 1 object only supports either the
decrement operation or the multiply operation; while in their
models, an object can execute both decrement operation and
multiply operation atomically. Ellen et al. showed that with
two consensus number 1 operations, such as decrement and
multiply, the system could achieve the binary agreement for
any given number of processes. Khanchandani et al. [11] im-
plemented the concurrent queue objects with the compare-and-
swap operation and other low consensus number operations.
Later, Khanchandani et al. [12] utilized another two elemen-
tary operations, i.e., half-max and max-write [2], to realize a
wait-free and linearizable implementation of the compare-and-
swap object, which further decreases the consensus number
of operations in the system. However, the objects that are
studied in these works are not consensus number 1 anymore.
Although they only execute low consensus number operations,

the inherent atomicity between different operations increases
the synchronization power of these objects.

The implementations of consensus-less objects in cryptocur-
rency system [6], [18] motivate us to revisit the computational
power of consensus number 1 objects. Guerraoui et al. [6]
show that even if all processes have not achieved the con-
sensus in the distributed system, it is still possible to ensure
the correctness of a cryptocurrency system. Furthermore, the
consensus number of a cryptocurrency object can be as low
as 1 if each account is only operated by a single process.
These findings suggest that objects with a finite consensus
number may also be universal to solve other tasks in asyn-
chronous wait-free distributed systems with any number of
processes [7], which motivates us to study the computational
power of these objects that are usually overlooked.

In this paper, we aim to answer the open question [7]:
can read/write registers implement any object with consensus
number 1 in a system of two or more processes? To the
best of our knowledge, this paper is the first to explore the
implementation of an arbitrary object with read/write registers
for unbounded number of processes. We find that if every
pair of operation of the objects consistently follows either
the commutative or the overwriting relationship, the consensus
number 1 objects can be implemented by read/write registers.

III. PRELIMINARIES

In this section, we define some frequently used terms.
An object O is modeled by an I/O automaton:
〈S,Σ, δ, s0, F 〉. S = {sj} is the state set, where j ∈ ΓQ.
Σ = {opk} is the operation set, where k ∈ ΓΣ. Both ΓQ and
ΓΣ are (infinite) index sets. δ : Q×Σ is the transition function,
while each operation opj causes a state transition on any state
si, i.e., s′i = si + opj , and returns a response. s0 ∈ S is the
initial state and F ⊆ S is the set of terminal state. There also
exists a readO operation that returns the current state of O.

We define two relationships between operations of O.

Definition 1 (Commutative Operations). Consider a state
s and two operations op1 and op2 of an object O. If the
following equation holds:

s+ op1 + op2 = s+ op2 + op1,

then we define op1 and op2 are commutative at state s. If
for any s ∈ S, op1 and op2 are commutative, then op1 and
op2 are commutative operations in O.

Definition 2 (Overwriting Operations). Consider a state s and
two operations op1 and op2 of an object O. If the following
equation holds:

s+ op1 = s+ op2 + op1,

then we define the relationship between op1 and op2 as op1

overwriting op2 at state s. If for any s ∈ S, op1 overwrites
op2 at s, then op1 overwrites op2 in O.

The execution of operations will occur events in the system,
while these events make up execution histories. We further
define these terms as follows.

Definition 3 (Events). Let op be an operation. The execution
of op by a process p is modeled by two events: an invocation
event, denoted as invoc(op), which occurs when process p
invokes op, and a response event, denoted as resp(op), which
occurs when p terminates the operation.

Definition 4 (Histories). A history is a total order on the
events produced by processes. Given any two events e1 and
e2, e1 < e2 if e1 happens before e2 in the corresponding
history. We always have either e1 < e2 or e2 < e1. A history
is denoted as Ĥ = 〈E,<〉, where E is the set of events.

Definition 5 (Linearizable history). A history Ĥ = 〈E,<〉
is linearizable if there is an equivalent sequential history

ˆHseq = 〈E,<seq〉 where the sequence of effective operations
issued by processes satisfies that each effective operation
appears as executed at a single point of the time line between
its invocation event and its response event.

Definition 6 (Concurrent operations). Given a history Ĥ =
〈E,<〉 and two effective operations op1 and op2. We say
op1 precedes op2 if invoc(op2) > resp(op1). If neither
invoc(op1) > resp(op2) nor invoc(op2) > resp(op1), then
we say that op1 and op2 are concurrent.

Definition 7 (Internal events). Given a history Ĥ = 〈E,<〉
of an object O implemented by Algorithm 4 and Algorithm 5.

• For an operation op(arg), there are two internal events:
a scan event, denoted as scan(op), which occurs at
the linearization point of the scan operation of the
atomic snapshot object, and an update event, denoted as
upd(op), which occurs at the linearization point of the
update operation of the atomic snapshot object.

• For a read operation read(), there is one internal event:
a scan event, denoted as snap(op), which occurs at the
linearization point of the snapshot operation of the atomic
snapshot object.

Definition 8 (Effective concurrent operations). Given a history
Ĥ = 〈E,<〉 of an object O implemented by Algorithm
4 and Algorithm 5, and two operations op1 and op2. We
say op1 precedes op2 if scan(op2) > upd(op1). If neither
scan(op1) > upd(op2) nor scan(op2) > upd(op1), then we
say that op1 and op2 are effectively concurrent.

In this paper, we study objects which are atomic. An atomic
object O satisfies the following three properties,

• deterministic: for each state si and operation opj , the state
transition and the response only depends on si and opj ;

• oblivious: every process p can invoke every operation;
moreover, the state transition and the response does not
depend on p;

• atomic (linearizable): the execution of O can be specified
by linearizable history [9].

IV. DETERMINING CONSENSUS NUMBER 1 OBJECTS

In this section, we study consider the most central question:
which objects are consensus number 1? We find that given a
particular state si, the relationship between any two operations
of a consensus number 1 object must be either overwriting or
commutative. Otherwise, we can always find an algorithm that
leads to agreements between two processes. In other words,
the overwriting and commutative relationships of operations
are necessary conditions of consensus number 1 objects.

Theorem 1. If an atomic object O = 〈S,Σ, δ, s0, F 〉 does not
satisfy the following property, then the consensus number of
O is at least 2.

For each state si ∈ S and operations opj , opk ∈ Σ, one of
the following equations must hold,
• si + opj + opk = si + opk + opj
• si + opj + opk = si + opk
• si + opj = si + opk + opj

Proof. We prove Theorem 1 by contradiction. We show that
if the statement of Theorem 1 does not hold, then there exists
an algorithm that enables two processes P and Q achieve
agreement with an object O and two read/write registers.

Assume that there exists a state si and two operations opj
and opk of a consensus number 1 object O, such that the
following three inequalities hold at the same time. In other
words, opj and opk are neither commutative nor overwriting
with si.
• si + opj + opk 6= si + opk + opj
• si + opj + opk 6= si + opk
• si + opj 6= si + opk + opj

Let us denote sj = si + opj , sk = si + opk, sjk = si +
opj + opk, and skj = si + opk + opj . From the assumption,
we know that sj 6= skj , sjk 6= skj , and sk 6= sjk.

Let P and Q be two processes that share a two-register array
prefer, where each entry is initialized to ⊥, and an object O,
initialized to si. Process P and Q execute the protocols shown
in Algorithm 1.

Note that, P may observe three possible states of O in
decideP : sj , sjk, and skj . All of these three states are differ-
ent, so p can easily distinguish them and get the information
whether opj or opk executes first. If opj executes first, the
protocol chooses the input of P , otherwise it chooses the input
of process Q. If opk executes first, then prefer[Q] 6=⊥. The
return of decideP must be valueQ. With the same argument,
Q will return valueQ if opk executes first and valueP if opj
executes first.

Therefore, two processes achieve agreement by Algorithm
1 with an object O and two read/write registers, which turns
out that the object O has consensus number at least 2, which
contradicts our assumption.

V. IMPLEMENTING CONSENSUS NUMBER 1 OBJECTS

In section IV, we show that if two operations are not com-
mutative or overwriting at any system states, then the object

Algorithm 1 Code for process P and Q, two-processes
agreement

1: function decideP (valueP)
2: prefer[P]← valueP
3: execute opj on O
4: CurState← readO()
5: if CurState = sj or CurState = sjk then
6: return prefer[P]
7: else
8: return prefer[Q]
9: end if

10: end function
1: function decideQ(valueQ)
2: prefer[Q]← valueQ
3: execute opk on O
4: CurState← readO()
5: if CurState = sk or CurState = skj then
6: return prefer[Q]
7: else
8: return prefer[P]
9: end if

10: end function

has consensus at least number 2. The remaining question is:
are all objects satisfy Theorem 1 consensus number 1 objects?

In this section, we answer this question by providing an
implementation algorithm of consensus number 1 objects with
read/write registers. Read/write registers are the most elemen-
tary objects in distributed systems with consensus number 1.
If an object can be implemented with read/write registers, then
we can ensure its consensus number as 1.

We show that if the relationship of two operations is
consistent at any state, then the object has consensus number
1.

Theorem 2 (consensus number 1 objects). If an atomic object
O = 〈S,Σ, δ, s0, F 〉 satisfies the following property, then it has
consensus number 1.

For any operations opj , opk ∈ Σ, one of the following
equations must always hold with all si ∈ S,
• si + opj + opk = si + opk + opj
• si + opj + opk = si + opk
• si + opj = si + opk + opj

To prove Theorem 2, we provide an algorithm to implement
objects that satisfy the statement with only read/write registers.
We first study the properties that these objects have and
consider how to construct the algorithm protocols based on
these properties.

A. Overwriting Graph of Objects

If all operations are commutative with each other, then it is
easy to construct an algorithm to implement the object O with
the read/write registers because the order of operations does
not influence the final state. However, because of the over-

Fig. 1. The Overwriting graph of the add/reset object. The reset operation
overwrites all other add operations, so there are edges pointing from reset
to other processes.

writing relationship between operations, we should carefully
consider the order of executing operations.

To get a more clear idea of the relationship between
operations, we construct an overwriting graph GO = (ΓΣ, E).
Each process v in G represents an operation opv ∈ Σ, while if
opv overwrites opw, then there is a directed edge (v, w) ∈ E
pointing from v to w.

Consider an example of the add/reset object. The state
of the object is an integer, which is initialized to 0. An
addx operation adds value x to the current state and a reset
operation make the state to 0. The reset operation overwrites
all other add operations and the Overwriting graph of the
add/reset object is shown in Figure 1.

Moreover, the overwriting graph has some special properties
given the Overwriting and commutative relationships between
operations.

Lemma 1. If there is a path in GO = (ΓΣ, E) from process v
to process w, then there exists an edge directly pointing from
process v to process w.

Proof. We prove Lemma 1 by induction of the path length n.
When n = 1, then the edge directly points from v to w.
When n > 1 and the lemma holds for all paths with length

n − 1. Let us consider a path of length n : v → 1 → 2 →
. . .→ n− 1→ w, then there is a direct edge pointing from v
to n− 1. We know that for a state s, the following equations
always holds,

Now we consider, if the lemma holds for all paths with
length n− 1, then there is a path from v to w of length 2, i.e.
v → u→ w. For any state s, the following equations always
holds,

s+ opw + opn−1 + opv = s+ opw + opv,

and

s+ opw + opn−1 + opv = s+ opn−1 + opv = s+ opv.

Fig. 2. Construct a contracted graph G̃ from the overwriting graph G.
processes op3, op4, op5 form a clique in G. We randomly order them as
op3 > op5 > op4 and deleted edges.

Therefore, for any state s, s + opw + opv = s + opv ,
which denotes opv overwrites opw and there is an edge directly
pointing from process v to process w in GO.

Note that if two operations are commutative, then there is
no edge and no path between two corresponding processes in
GO = (ΓΣ, E).

Lemma 2. If processes v and w are in the same clique of
graph GO = (ΓΣ, E), then the indegree and the outdegree of
v and w are the same, i.e., deg+(v) = deg+(w), deg−(v) =
deg−(w).

Proof. We prove Lemma 2 by contradiction.
Assume there exists a process u pointing to process v and

there is no edge from u to w. Because v and w are in the
same clique, there is a path of length 2 from u to w, i.e.,
u→ v → w. According Lemma 1, there is also an edge from
u to w, which contradicts to our assumption.

The same argument also works for outdegree. Assume there
exists an edge from v to u and no edge from w to u. Because
v and w are in the same clique, there is a path of length 2 from
w to u, i.e., w → v → u. According Lemma 1, there is also an
edge from w to u, which contradicts to our assumption.

B. Contracted Overwriting Graph

For each overwriting graph, we can construct a contracted
graph of the object O.

Definition 9. The contracted overwriting graph G̃ = (ΓΣ, Ẽ)
is a directed graph derived from an overwriting graph G. For
each clique, we randomly assign a priority order among all
operations and delete edges from the low priority processes
to the high priority processes.

We present an example of constructing contracted overwrit-
ing graph in Figure 2. processes op3, op4, op5 form a clique in
G. We randomly order them as op3 > op5 > op4 and remove
edges (op4, op3), (op4, op5), (op5, op3) in G̃.

Lemma 3. There is no cycle in a contracted overwriting graph
G̃.

Proof. We prove Lemma 3 by contradiction.

Assume there is a cycle in a contracted overwriting graph
G̃: (u1, u2), (u2, u3), .., (un, u1). By Lemma 1, we know that
there are also edges between any process pairs in this cycle.
Then, processes (u1, u2, u3, . . . , un) form a clique. However,
there is no clique in a contracted overwriting graph, which
contradicts to our assumption.

With the same argument in Lemma 1, we can have the
following lemma in contracted overwriting graphs as in over-
writing graphs.

Lemma 4. If there is a path in G̃ from process v to process
w, then there exists an edge directly pointing from process v
to process w. Moreover, every operation in OPv overwrites
every operation in OPw.

Since G̃ has no cycles, we can assign levels to every
operation using Algorithm 2. Trivially operations with the
same levels commute with each other.

Algorithm 2 Determining the levels for all operations
1: function OPERATIONLEVEL
2: G̃ = (ΓΣ, Ẽ) is the contracted overriding graph of O
3: lev ← the length of the longest path in G̃
4: while |ΓΣ| > 0 do
5: UTop ← {u ∈ ΓΣ : in(u) = ∅}
6: ΓΣ ← ΓΣ \ UTop

7: Ẽ ← Ẽ \ out(UTop)
8: for u ∈ UTop do
9: level[{opk|k ∈ u}] = lev

10: end for
11: lev ← lev − 1
12: end while
13: end function

C. Consensus Number 1 Object Algorithm

We prove Theorem 2 by proposing algorithms (Algorithm 4,
Algorithm 5) to implement consensus number 1 object O with
read/write registers. We use a shared atomic snapshot object to
realize such algorithm [1]. Note that snapshot objects can be
implemented by read/write registers and are consensus number
1 [1].

Algorithm 3 State of processes
1: state
2: snapshot . A shared atomic snapshot object,

process p can modify the p− th element
3: level . A shared register vector. level[opk] denotes

the level of opk
4: MaxLevel . The length of the longest path in G̃,

the highest level of operations
5: P . Set of processes
6: reg . Each process p has a local variable regp,

keeping historical executed operations
7: end state

The basic idea is as follows: All operations applied to the
object are recorded in an atomic snapshot, which is shared by
all processes. When a process p wants to execute an operation
opi to the object, it first takes a scan of the snapshot to know
which operations have been recorded in the snapshot advance
to it. It will consider these operations have been executed
in the system. Then, it adds opi and the observations to its
operation list and updates to the snapshot object. When process
p executes a read operation, it first scans operations which are
recorded in the snapshot object and then finds a justifiable
order to apply to the initial state.

Algorithm 4 Executing an operation, process p
1: function opi(args)
2: mem← snapshot.scan() . read operations executed

before opi
3: op.com = opi(args)
4: op.mem = mem
5: regp ← regp + op . add opi to the operation list
6: snapshot.update(regp). update the operation list of

process p
7: end function

Algorithm 5 Read Operation, process p
1: function read
2: mem← snapshot.scan(). read operations has been

executed
3: OP ← ∅ . set of executed operations
4: for q ∈ P do
5: OP ∪mem[q]
6: end for
7: s← s0 . start with the initial state of O
8: S ← ∅
9: for u ∈ ΓΣ do

10: pred(op) = {õp|∃ path from õp to op in G̃} .
operations which overwrite op

11: end for
12: lev ←MaxLevel
13: for lev ≥ 0 do
14: S+ ← {op ∈ OP |level(op.com) = lev,∀õp ∈

S ∩ pred(op), õp ∈ op.mem}
15: . operation which have not been overwritten by

other operations
16: OP ← OP \ S+

17: S ← S ∪ S+

18: lev ← lev − 1
19: for op ∈ S+ do
20: s = s+ op.com . operations in S+ are

commutative
21: end for
22: end for
23: return s
24: end function

Note that, as some operations overwrite others, some op-

erations will not actually have an influence on the state. The
algorithm categorizes operations into different groups, while
some of them will not influence the final state (remains in
the OP set by the end of the algorithm) and the rest of them
should be applied to the object (operations in the S+ set).

We start with operations with highest level (Algorithm 5
Line 12). Note that these operations will never be overwritten
by other operations because they have no incoming degrees
(Algorithm 2). Moreover, these operations are commutative.
Thus, the executed order does not influence the final state of
these operations (Algorithm 5 Line 20).

In the substantial iterations, we consider operations of
lower levels. Note that if the operation op with lower levels
contributes to the final state of the object, there are no
operations that can overwrite it (Line 10) have been executed
after it. In other words, if õp ∈ op.mem, then the execution
time of snapshot.scan() in op is after the execution time
of snapshot.update() in õp. Because we cannot identify the
invoke time and the response time of both op and õp, while the
execution time of snapshot.scan() must be after the invoke
time and the execution time of snapshot.update() must be
before the response time, we infer that op is executed after
õp. Therefore, op is not overwritten by õp and may influence
the final state of the object.

If an operation op is selected in line 14, then the relationship
between op and operations õp selected in previous iterations
has two possibilities. First, op can be overwritten by õp but it
executes after õp. In such case, there is no argument to apply
op after õp (line 20). Second, op and õp are commutative.
Thus, there is no difference between different execution orders
to the final state. Note that it is impossible that op overwrites
õp. Otherwise, õp will have a lower level than op and will not
be selected in previous iterations.

D. Correctness of Consensus Number 1 Object Algorithm

We show the correctness of consensus number 1 object
algorithm by proving it is deterministic, oblivious, and atomic.
We first argue the algorithm satisfy the first two properties of
the atomic object and then prove its atomicity.

Lemma 5. An object O implemented by Algorithm 4 and
Algorithm 5 is deterministic and oblivious.

It is trivial that an object O implemented by Algorithm 4
and Algorithm 5 is deterministic and oblivious. We have not
accessed to any random source for processes determining their
actions and each process share the same algorithm protocol.
To prove Theorem 2, we show that O is also atomic in the
next lemma.

Lemma 6. Given a history Ĥ = 〈E,<〉 of an object O
implemented by Algorithm 4 and Algorithm 5, we can always
find an equivalent sequential history ˆHseq = 〈E,<seq〉 where
the sequence of operations issued by processes satisfies that
each operation appears as executed at a single point of the
time line between its invocation event and its response event.

Proof. We present a way to construct ˆHseq = 〈E,<seq〉 and
show that it satisfies the atomicity.

For each read operation, the linearization point in ˆHseq is
equal to the linearization point of the scan operation at ˆHseq ,
i.e., lin(read) = scan(read).

Then we define the linearzation point of other operations.
We start from the operations observed by the first read
operation. If the operation op has appeared in the set S by
the end of Algorithm 5, then we determine the linearzation
point of op as the linearzation point of its update operation,
i.e., lin(op) = upd(op).

Otherwise, there exists an operation õp ∈ S such that
õp overwrites op. If upd(op) ≤ upd(õp), then we set the
linearzation point of op as the linearzation point of its update
operation, i.e., lin(op) = upd(op). Otherwise, we set the
linearzation point of op before the linearzation point of õp,
i.e., lin(op) = lin(op)− ε.

Note that õp /∈ op.mem, if upd(op) > upd(õp), then op
and õp are effective concurrent, and invoc(op) < scan(op) <
upd(õp) < upd(op) < resp(op). Therefore, the linearization
point of op is valid because invoc(op) < lin(op) = lin(õp)−
ε < resp(op).

Then we show that the linearization of operations in ˆHseq

is equivalent to Ĥ until the first read operation.
Let us denote the sequence of the operation in ˆHseq as

op1, op2, . . . , opk. In the first step, we remove all operations
which are not in S by the end of the first read operation. We
first consider an operation opj , which is not in S with the
lowest level. There must exist another operation opk which
overwrites opj where j < k. We consider opj and opj+1.
Because opj has the lowest level, it will not overwrite any
other operations. It will be overwritten by opj+1, or they are
commutative. In the first scenario, we can directly remove
opj from the sequence and do not influence the final state.
In the second scenario, we can exchange the position of opj ,
and opj+1 and do not influence the final state. We repeat this
exchange until the k− th position, and then opj eventually is
removed from the sequence because opk overwrites opj . The
sequence without opj results in the same state as ˆHseq . We
recursively apply this deduction until all remaining operations
are in S.

In the second step, we reorder the operations in the se-
quence. We start with the operation opl, which is in S with
the highest level. We exchange opl with opl−1 until there is no
other operation with lower level in front of it in the sequence.
Because opl has higher level than opl−1 and opl−1 cannot be
overwritten by opl, this exchange always works. Otherwise,
opl−1 will not exist in S by the end of the first read operation.
Because lin(opl−1) < lin(opl), opl /∈ opl−1.mem. If opl
overwrites opl−1, then opl−1 will not be selected in line 14.
Thus, we can exchange opl−1 and opl−1 and do not influence
the object state.

After reordering the operations, we obtain the same se-
quence order as operations have been applied to the object
in the first read operation, which proves that until the first
read operation, ˆHseq is equivalent to Ĥ .

Then we consider operations which have been observed by
the second read. We follow the same rules as for operations
observed by the first read: for operation op that appears
in S by the end of the second read, lin(op) = upd(op);
for operation op that is not in S, compare its update time
with the Overwriting operation õp, such that lin(op) =
min(upd(op), lin(õp)ε). Note that lin(op) might be smaller
than the linearization time of the first read operation. How-
ever, it is only possible if lin(op) = lin(õp)ε, otherwise, the
first read operation can observe op. op does not contribute to
the object state and it immediately overwrite by õp. Therefore,
it does not influence the equivalence between ˆHseq and Ĥ for
the first read operation.

Then we use the same argument to show that ˆHseq is
equivalent to Ĥ until the second read operation and vice
versa. For operations which are not observe by the last read
operation, we denote their linearization time as its update time,
i.e., lin(op) = upd(op).

Until now, we have defined the linearization point of all
operations in ˆHseq , which is equivalent to Ĥ . We prove
that every history corresponding to an execution of O is
linearizable.

VI. CONCLUSION

In this work, we investigate the consensus number 1 objects
in distributed systems. We contribute to the understanding of
the synchronization hierarchy structure of consensus numbers.

Compared to previous work, we are the first to study the
implementation of consensus number 1 objects for unbounded
number of processes using only read/write registers and pro-
vide an algorithm to implement a class of consensus number
1 objects.

We show that the commutative relationship and the over-
writing relationship between operations are necessary for
consensus number 1 objects. Moreover, the consistent commu-
tative and overwriting relationships between operation pairs
are sufficient for determining consensus number 1 objects.
Also, such relationships can be utilized to implement these
consensus number 1 objects with read/write registers for
unbounded number of processes.

REFERENCES

[1] AFEK, Y., ATTIYA, H., DOLEV, D., GAFNI, E., MERRITT, M., AND
SHAVIT, N. Atomic snapshots of shared memory. Journal of the ACM
(JACM) 40, 4 (1993).

[2] ASPNES, J., ATTIYA, H., AND CENSOR, K. Max registers, counters,
and monotone circuits. In Proceedings of the 28th ACM symposium on
Principles of distributed computing (PODC) (2009).

[3] BAUDET, M., DANEZIS, G., AND SONNINO, A. Fastpay: High-
performance byzantine fault tolerant settlement. In Proceedings of the
2nd ACM Conference on Advances in Financial Technologies (2020),
pp. 163–177.

[4] CHANG, J.-M., AND MAXEMCHUK, N. F. Reliable broadcast protocols.
ACM Transactions on Computer Systems (TOCS) 2, 3 (1984), 251–273.

[5] ELLEN, F., GELASHVILI, R., SHAVIT, N., AND ZHU, L. A complexity-
based hierarchy for multiprocessor synchronization. In Proceedings
of the 2016 ACM Symposium on Principles of Distributed Computing
(PODC) (2016).

[6] GUERRAOUI, R., KUZNETSOV, P., MONTI, M., PAVLOVIČ, M., AND
SEREDINSCHI, D.-A. The consensus number of a cryptocurrency. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing (2019).

[7] HERLIHY, M. Wait-free synchronization. ACM Transactions on
Programming Languages and Systems (TOPLAS) 13, 1 (1991).

[8] HERLIHY, M., SHAVIT, N., LUCHANGCO, V., AND SPEAR, M. The art
of multiprocessor programming. Newnes, 2020.

[9] HERLIHY, M. P., AND WING, J. M. Linearizability: A correctness
condition for concurrent objects. ACM Transactions on Programming
Languages and Systems (TOPLAS) 12, 3 (1990).

[10] JAYANTI, P. On the robustness of herlihy’s hierarchy. In Proceedings
of the twelfth annual ACM symposium on Principles of distributed
computing (1993).

[11] KHANCHANDANI, P., AND WATTENHOFER, R. On the importance of
synchronization primitives with low consensus numbers. In Proceedings
of the 19th International Conference on Distributed Computing and
Networking (ICDCN) (2018).

[12] KHANCHANDANI, P., AND WATTENHOFER, R. Two elementary in-
structions make compare-and-swap. Journal of Parallel and Distributed
Computing (JPDC) 145 (2020).

[13] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
[14] RAYNAL, M. Concurrent programming: algorithms, principles, and

foundations. Springer Science & Business Media, 2012.
[15] RUPPERT, E. Consensus numbers of multi-objects. In Proceedings of

the seventeenth annual ACM symposium on Principles of distributed
computing (1998).

[16] RUPPERT, E. Consensus numbers of transactional objects. In Interna-
tional Symposium on Distributed Computing (1999), Springer.

[17] RUPPERT, E. Determining consensus numbers. SIAM Journal on
Computing 30, 4 (2000).

[18] SLIWINSKI, J., AND WATTENHOFER, R. Abc: Asynchronous
blockchain without consensus. arXiv preprint arXiv:1909.10926 (2019).

	Introduction
	Related Work
	Preliminaries
	Determining Consensus Number 1 Objects
	Implementing Consensus Number 1 Objects
	Overwriting Graph of Objects
	Contracted Overwriting Graph
	Consensus Number 1 Object Algorithm
	Correctness of Consensus Number 1 Object Algorithm

	Conclusion
	References

