
Brick: Asynchronous Incentive-Compatible
Payment Channels

Zeta Avarikioti1, Eleftherios Kokoris-Kogias2, Roger Wattenhofer1, and
Dionysis Zindros3

1 ETH Zürich
2 IST Austria, Novi Research

3 NKUA, IOHK

Abstract. Off-chain protocols (channels) are a promising solution to
the scalability and privacy challenges of blockchain payments. Current
proposals, however, require synchrony assumptions to preserve the safety
of a channel, leaking to an adversary the exact amount of time needed
to control the network for a successful attack. In this paper, we intro-
duce Brick, the first payment channel that remains secure under net-
work asynchrony and concurrently provides correct incentives. The core
idea is to incorporate the conflict resolution process within the channel
by introducing a rational committee of external parties, called wardens.
Hence, if a party wants to close a channel unilaterally, it can only get
the committee’s approval for the last valid state.
Additionally, Brick provides sub-second latency because it does not em-
ploy heavy-weight consensus. Instead, Brick uses consistent broadcast
to announce updates and close the channel, a light-weight abstraction
that is powerful enough to preserve safety and liveness to any rational
parties. We formally define and prove for Brick the properties a pay-
ment channel construction should fulfill. We also design incentives for
Brick such that honest and rational behavior aligns. Finally, we provide
a reference implementation of the smart contracts in Solidity.

1 Introduction

The prime solution to the scalability challenge [12] of large-scale blockchains,
are the so-called channels [13, 35, 38]. The idea is that any two parties that
interact (often) with each other can set up a joint account on the blockchain,
i.e., a channel. Using this channel, the two parties can transact off-chain, sending
money back and forth by just sending each other signed messages. The two
parties are relying on the blockchain as a fail-safe mechanism in case of disputes.

The security guarantees of a channel are ensured by a dispute handling mech-
anism. If one party tries to cheat the other party, in particular by trying to close
a channel on the underlying blockchain in an invalid (outdated) state, then the
attacked party has a window of time (t) to challenge the fraud attempt. Hence,
a channel is secure as long as all parties of the channel are frequently – at least
once in t time – online and monitoring the blockchain. This is problematic in real
networks [31], as one party may simply execute a denial-of-service (DoS) attack



2 Z. Avarikioti et al.

on the other party. To add insult to injury, the dispute period t is public; the
attacking party hence knows the exact duration of the denial-of-service attack.

The issue is well-known in the community, and there were solution attempts
using semi-trusted third parties called watchtowers [2, 5, 7, 16, 30]. The idea is
that worrisome channel parties can hire watchtowers that watch the blockchain
on their behalf in case they were being attacked. So instead of DoSing a single
machine of the channel partner, the attacker might need to DoS the channel
partner as well as its watchtower(s). This certainly needs more effort as the
adversary must detect a watchtower reacting and then block the dispute from
appearing on-chain. However, if large amounts of money are in a channel, it will
easily be worth the investment.

While DoS attacks are also possible in blockchains such as the Bitcoin block-
chain, DoS attacks on channels have a substantially different threat level. A
DoS attack on a blockchain is merely a liveness attack: One may prevent a
transaction from entering the blockchain at the time of the attack. However, the
parties involved with the transaction will notice this, and can simply re-issue
their transaction later. A DoS attack on a channel, on the other hand, will steal
all the funds that were in the channel. Once the fraudulent transaction is in
the blockchain, uncontested for t time, the attack succeeds, and nobody but the
cheated party (and its watchtowers) will know any better.

Channels need a more fundamental solution. Not unlike blockchains, intro-
ducing timing parameters is acceptable for liveness. Security on the other hand
should be guaranteed even if the network behaves completely asynchronously.
To that end we introduce Brick, a novel incentive-compatible payment channel
construction that does not rely on timing assumptions for the delivery of mes-
sages to be secure. Brick provides proactive security, detecting and preventing
fraud before it appears on-chain. As a result, Brick can guarantee the channels’
security even under censorship4 [31] or any liveness attack.

To achieve these properties, Brick needs to address three key challenges.
The first challenge is how to achieve this proactive check without using a single
trusted third party that approves every transaction [41]. The core idea of Brick
is to provide proactive security to the channel instead of reactive dispute res-
olution. To this end, Brick employs a group of wardens. If there is a dispute,
the wardens make sure the correct state is the only one available for submis-
sion on-chain, regardless of the amount of time it takes to make this final state
visible. The second challenge for Brick is cost. To simulate this trusted third
party, it would need the wardens to run costly asynchronous consensus [26] for
every update. Instead, in Brick we show that a light-weight consistent broadcast
protocol is enough to preserve both safety and liveness.

A final challenge of Brick that we address is incentives. While the wardens
may be partially byzantine, we additionally want honest behavior to be their
dominant strategy. Unfortunately, existing watchtower solutions do not align
the expected and rational behavior of the watchtower, hence a watchtower is

4 This censoring ability is encompassed by the chain-quality property [19] of blockchain
systems which is rightly bound to the synchrony of the network.



Brick 3

reduced to a trusted third party. Specifically, Monitors [16], Watchtowers [2], and
DCWC [5] pay the watchtower upon fraud. Given that the use of a watchtower
is public knowledge, any rational channel party will not commit fraud and hence
the watchtower will never be paid. Therefore, there is no actual incentive for a
third party to offer a watchtower service. On the other hand, Pisa [30] pays the
watchtower regularly every time a transaction is executed on the channel. The
watchtower also locks collateral on the blockchain in case it misbehaves. However,
Pisa’s collateral is not linked to the channel or the party that employed the
watchtower. Hence, a watchtower that is contracted by more than one channel
can double-assign the collateral, making Pisa vulnerable to bribing attacks. Even
if the incentives of Pisa get fixed, punishing a misbehaving watchtower in Pisa is
still a synchronous protocol (though for a longer period). In Brick, we employ
both rewards and punishment to design the appropriate incentives such that
honest and rational behavior of wardens align, while no synchrony assumptions
are required, i.e., the punishment of misbehaving wardens is not conditional on
timing assumptions.

To evaluate our channel construction we deploy our protocol on a large-scale
testbed and show that the overhead of an update is around the round-trip latency
of the network (in our case 0.1 seconds). Unlike existing channels, the parties in
Brick need not wait for the dispute transaction to appear on-chain. Hence, our
dispute resolution mechanism is three orders of magnitude faster than existing
blockchain systems that need to wait until the transaction is finalized on-chain.
We additionally implement the on-chain operations of Brick in a Solidity smart
contract that can be deployed on the Ethereum blockchain. We provide gas
measurements for typical operations on the smart contract illustrating that it is
practical. Our smart contract implementation is well tested and can be adopted
towards a real deployment of Brick.

In summary, this paper makes the following contributions:

– We introduce Brick, the first incentive-compatible off-chain construction
that operates securely with offline channel participants under full asynchrony
with sub-second latency.

– We define the desired channel properties and show they hold for Brick under
a hybrid model of rational and byzantine participants (channel parties and
wardens). Specifically, we present elaborate incentive mechanisms (rewards
and punishments) for the wardens to maintain the channel properties under
collusion or bribing.

– We evaluate the practicality of Brick by fully implementing its on-chain
functionality in Solidity for the Ethereum blockchain. We measure its oper-
ational costs in terms of gas and illustrate that its deployment is practical.

2 Protocol Overview

2.1 System Model

Cryptographic assumptions. We make the usual cryptographic assumptions:
the participants are computationally bounded and cryptographically-secure com-
munication channels, hash functions, signatures, and encryption schemes exist.



4 Z. Avarikioti et al.

Blockchain assumptions and network model. We assume that any message
sent by an honest party will be delivered to any other honest party within a
polynomial number of rounds. We do not make any additional assumptions about
the network (e.g., known bounds for message delivery). Furthermore, we do
not require a “perfect” blockchain system since Brick can tolerate temporary
liveness attacks. Specifically, if an adversary temporarily violates the liveness
property of the underlying blockchain, this may result in violating the liveness
property of channels but will not affect the safety. Nevertheless, we assume
the underlying blockchain satisfies persistence [19]. In Section 7, we discuss a
modification of Brick that is safe even when persistence is temporarily violated.

Threat model. We initially assume that at least one party in the channel
is honest to simplify the security analysis. However, later, we show that the
security analysis holds as long as the “richest” party of the channel is rational and
intentionally deviates from the protocol only if it can increase its profit (utility
function). Regarding the committee, we assume that there are at most f out of
n = 3f + 1 byzantine wardens, and we define a threshold t = 2f + 1 to achieve
the liveness and safety properties. The non-byzantine part of the committee is
assumed rational; we first prove the protocol goals for t honest wardens, and
subsequently align the rational behavior to this through incentives.

2.2 Brick Overview

Both parties of a channel agree on a committee of wardens before opening the
channel. The wardens commit their identities on the blockchain during the fund-
ing transaction of the channel (opening of the channel). After opening the chan-
nel on the blockchain, the channel can only be closed either by a transaction
published on the blockchain and signed by both parties or by a transaction
signed by one of the parties and a threshold (t) of honest wardens. Thus, the
committee acts as power of attorney for the parties of the channel. Furthermore,
Brick employs correct incentives for the t rational wardens to follow the proto-
col, hence it can withstand t = 2f + 1 rational and f byzantine wardens, while
the richest channel party is assumed rational and the other byzantine.

A naive solution would then instruct the committee to run asynchronous
consensus on every new update, which would cost O(n4) [26] per transaction, a
rather big overhead for the critical path of our protocol. Instead in Brick, con-
sensus is not necessary for update transactions, as we only provide guarantees
to rational parties (if both parties misbehave one of them might lose its funds).
As a result, every time a new update state occurs in the channel (i.e., a trans-
action), the parties run a consistent broadcast protocol (cost of O(n)) with the
committee. Specifically, a party announces to each warden that a state update
has occurred. This announcement is a monotonically increasing sequence num-
ber to guarantee that the new state is the freshest state, signed by both parties
of the channel to signal that they are in agreement. If the consistent broadcast
protocol succeeds (t wardens acknowledge reception) then this can serve as proof
for both parties that the state update is safe. After this procedure terminates
correctly, both parties proceed to the execution of the off-chain state.



Brick 5

At the end of the life-cycle of a channel, a dispute might occur, leading to
the unilateral closing of the channel. Even in this case, we can still guarantee the
security and liveness of the closing with consistent broadcast. The crux of the
idea is that if 2f+1 wardens accepted the last sequence number before receiving
the closing request (hence the counterparty has committed), then at least one
honest warden will not accept the closing at the old sequence number. Instead,
the warden will reply to the party that it can only close at the state represented
by the last sequence number. As a result we define a successful closing to be at
the maximum of all proposed states, which guarantees safety. Although counter-
intuitive, this closing process is safe because the transactions are already totally
ordered and agreed to by the parties of the channel; thus, the committee simply
acts as shared memory of the last sequence number.

2.3 Reward Allocation & Collateral

To avoid bribing attacks, we enforce the wardens to lock collateral in the channel.
The total amount of collateral is proportional to the value of the channel mean-
ing that if the committee size is large, then the collateral per warden is small.
More details on the necessary amount of collateral are thoroughly discussed in
Sections 3.2 and 7. Additionally, the committee is incentivized to actively par-
ticipate in the channel with a small reward that each warden gets when they
acknowledge a state update of the channel. This reward is given with a unidi-
rectional channel [22], which does not suffer from the problems Brick solves.
Moreover, the wardens that participate in the closing state of the channel get
an additional reward, hence the wardens are incentivized to assist a party when
closing in collaboration with the committee is necessary.

2.4 Protocol Goals

To define the goals of Brick, we first need to define the necessary properties of a
channel construction. Intuitively, a channel should ensure similar properties with
a blockchain system, i.e., a party cannot cheat another party out of its funds,
and any party has the prerogative to eventually spend its funds at any point
in time. The first property, when applied to channels, means that no party can
cheat the channel funds of the counterparty, and is encapsulated by Safety. The
second property for a channel solution is captured by Liveness; it translates to
any party having the right to eventually close the channel at any point in time.
We say that a channel is closed when the locked funds of the channel are spent
on-chain, while a channel update refers to the off-chain change of the channel’s
state. In addition, we define Privacy which is not guaranteed in many popular
blockchains, such as Bitcoin [33] or Ethereum [40], but constitutes an important
practical concern for any functional monetary (cryptocurrency) system.

First, we define some characterizations on the state of the channel, namely,
validity and commitment. Then, we define the properties for the channel con-
struction. Each state of the channel has a discrete sequence number that reflects
the order of the state. We assume the initial state of the channel has sequence
number 1 and every new state has a sequence number one higher than the pre-



6 Z. Avarikioti et al.

vious state agreed by both parties. We denote by si the state with sequence
number i.

Definition 1. A state of the channel, si, is valid if the following hold:
– Both parties of the channel have signed the state si.
– The state si is the freshest state, i.e., no subsequent state si+1 is valid.
– The committee has not invalidated the state. The committee can invalidate

the state si if the channel closes in the state si−1.

Definition 2. A state of the channel is committed if it was signed by at least
2f + 1 wardens or is valid and part of a block in the persistent5 part of the
blockchain.

Definition 3 (Safety). A Brick channel will only close in the freshest com-
mitted state.

Definition 4 (Liveness). Any valid operation (update, close) on the state of
the channel will eventually6 be committed (or invalidated).

Definition 5 (Privacy). No external (to the channel) party learns about the
state of the channel (e.g., the current distribution of funds between the parties
of a payment channel) unless at least one of the parties initiate the closing of
the channel.

3 Brick Design

In this section, we first present the Brick architecture assuming t honest war-
dens, and then introduce the incentive mechanisms aligning honest and rational
behavior.

3.1 Architecture

Brick consists of three phases: Open, Update, and Close. We assume the exis-
tence of a smart contract that has two functions, Open and Close, which receive
the inputs of the protocols and verify that they adhere to the abstractly defined
protocols specified below.

Protocol 1 describes the first phase, Open, which is the opening of a chan-
nel between two parties. In this phase, the parties create the initial funding
transaction, similarly to other known payment channels such as [13, 35]. How-
ever, in Brick we also define two additional parameters in the funding trans-
action: the hashes of the public keys of the wardens of the channel, denoted by
W1,W2, . . . ,Wn, and the threshold t.

The second phase, Update, consists of two protocols, Protocol 2 (Update),
and Protocol 3 (Consistent Broadcast). Both algorithms are executed consecu-
tively every time an update occurs, i.e., when the state of the channel changes.
In Protocol 2, the parties of the channel agree on a new state and create an

5 The part of the chain where the probability of fork is negligible hence there is
transaction finality, e.g., 6 blocks in Bitcoin.

6 Depending on the message delivery.



Brick 7

Protocol 1: Brick Open

Data: Parties A,B, wardens W1, . . . ,Wn, initial state s1.
Result: Open a Brick payment channel.

/* The parties agree on the first update before opening the channel

*/

1. Register to {M,σ(M)} the announcement of Protocol 2 on input (A,B, s1).

/* The parties broadcast the first sequence number to the wardens

*/

2. Execute Protocol 3 on input (M,σ(M), A,B,W1,W2, . . . ,Wn).
// without an update fee

/* The parties open the Brick channel */

3. Both parties A,B sign and publish on-chain
open(H(W1), H(W2), . . . , H(Wn), t, s1).

/* A closing fee F is included in the funding transaction, as well

as the collateral C of each warden along with their signature.

*/

announcement, which they subsequently broadcast to the committee with Pro-
tocol 3. To agree on a new state, both parties sign the hash of the new state7.
This way both parties commit to the new state of the channel, while none of
the parties can unilaterally close the channel without the collaboration of either
the counterparty or the committee. The announcement, on the other hand, is
the new sequence number signed by both parties of the channel8. The signed
sequence number allows the wardens to verify agreement has been reached be-
tween the channel parties on the new state, while the state of the channel remains
private. Upon receiving a valid announcement from a party, wardens reply with
their signature on the announcement. A party executes the new state update
when it receives t signatures from the wardens.

The last phase of the protocol, Close, can be implemented in two different
ways: the first is similar to the traditional approach for closing a channel (Pro-
tocol 4: Optimistic Close) where both parties collectively sign the freshest state
(closing transaction) and publish it on-chain. However, in case a channel party
is not responding to new state updates or closing requests, the counterparty can
unilaterally close the channel in collaboration with the committee of the channel
(Protocol 5: Pessimistic Close).

In Protocol 5, a party requests from each warden its signature on the last
committed sequence number. A warden, upon receiving the closing request, pub-
lishes on-chain a closing announcement, i.e., the stored sequence number signed

7 Blinding the commitment to the state is not necessary for Brick, but we do it for
compatibility with an auditable extension of Brick [6] where the hash of the state
is given to the wardens along with the sequence number. Because the states of a
channel may be limited, the salt ri is used to prevent wardens from retrieving the
state by simply hashing all possible states, effectively compromising privacy.

8 We abuse the notation of signature σ to refer to the multisig of both A and B.



8 Z. Avarikioti et al.

Protocol 2: Brick Update

Data: Parties A,B, current state s.
Result: Create announcement M,σ(M) (sequence number of new state

signed by both parties).

1. Both parties A,B sign, exchange, and store: {H(si, ri), i}, where ri is a
random number and si the current state. // The parties store only the

current and previous hash

2. Upon receiving the signature of the counterparty on {H(si, ri), i}, a party
replies with its signature on the sequence number σ(i). // creating the

announcement {M,σ(M)}(M = i)

Protocol 3: Brick Consistent Broadcast
Data: Parties A,B, wardens W1, . . . ,Wn, announcement {M,σ(M)}.
Result: Inform the committee of the new update state and verify the validity

of the new state.

1. Each party broadcasts to all the wardens W1,W2, . . . ,Wn the
announcement {M,σ(M)}. // alongside a fee r

2. Each warden Wj , upon receiving {M,σ(M)}, verifies that both parties’
signatures are present, and the sequence number is exactly one higher than
the previously stored sequence number. If the warden has published a closing
state, it ignores the state update. Otherwise, Wj stores the announcement
{M,σ(M)} (replacing the previous announcement), signs M , and sends the
signature σWj (M) to the parties. // only to the parties that payed

the fee

3. Each party, upon receiving at least t signatures on the announcement M ,
considers the state committed and proceeds to the state transition.

along with a flag close. When t closing announcements are on the persistent
part of the chain, the party recovers the state that corresponds to the maximum
sequence number from the closing announcements si. Then, the party publishes
state si and the random number ri along with the signatures of both parties on
the corresponding hash and sequence number σ(H(si, ri), i) on-chain. As soon
as these data are included in a (permanent) block, the Brick smart contract
performs the following operations: (a) recovers from the submitted state si and
salt ri the hash H(si, ri) and the maximum sequence number i, (b) verifies that
the signatures of both parties are on the message {H(si, ri), i}, and (c) there
are t submitted announcements that correspond to warden identities committed
on-chain in Protocol 1. If all verifications check the smart contract closes the
channel in the submitted state si.

3.2 Incentivizing Honest Behavior

Brick actually works without the fees, if we assume one honest party and t
honest wardens. However, our goal is to have no honest assumptions and instead



Brick 9

Protocol 4: Brick Optimistic Close

Data: Parties A,B, state s.
Result: Close a channel on state s, assuming both parties are responsive and

in agreement.

1. A party p ∈ {A,B} broadcasts the request close(s).

2. Both parties A,B sign the state s (if they agree) and exchange their
signatures.

3. The party p (or any other channel party) publishes the signed by both
parties state, σA,B(s) on-chain.

/* The collateral C is returned to each warden */

/* The closing fee F is returned to the parties */

Protocol 5: Brick Pessimistic Close
Data: Party p ∈ {A,B}, wardens W1, . . . ,Wn, state si, random nonce ri.
Result: Close a channel on state si with the assist of the committee.

1. Party p broadcasts to the wardens W1,W2, . . . ,Wn the request close().

2. Each warden Wj publishes on-chain a signature on the (last) stored
announcement σWj (M, close) and stops signing new state updates.

3. Party p, upon verifying t on-chain signed announcements by the wardens,
recovers the max(i) that is included in the announcements. Then, party p
publishes on-chain the state si, the random number ri, and the signature of
both parties on {H(si, ri), i}.

4. After the state is included in a (permanent) block, the smart contract
recovers {H(si, ri), i}, verifies both parties’ signatures and the wardens
identities, and then closes the channel in state si.

align rational behavior to honest through incentives. There are three incentive
mechanisms in Brick:

Update Fee (r). The parties establish a unidirectional channel [22] with each
warden and send a fee when they want a signature for a state update. Note that
the update fee is awarded to the wardens at step 1 of Protocol 3.

Closing Fee (F ). During phase Open (Protocol 1), the parties lock a closing
fee F in the channel. If a party closes in a collaboration with the wardens, the
closing fee is split only among the first t wardens that publish an announcement
on-chain (see Protocol 6). If the channel closes optimistically (Protocol 4), the
closing fee returns to the parties.

Collateral (C). During phase Open, each warden locks collateral C at least
equal to the amount locked in the channel v divided by f . If a warden misbehaves,
the closing party can claim the warden’s collateral by submitting a proof-of-
fraud in the Brick smart contract during phase Close; otherwise, the collateral



10 Z. Avarikioti et al.

is returned to the warden when the channel closes (Protocol 6). A proof-of-fraud
consists of two conflicting messages signed by the same warden: (a) a signature
on an announcement on a state update of the channel, and (b) a signature on
an announcement for closing on a previous state of the channel.

In case, a party submits x ≤ f proofs-of-fraud, the closing process is extended
until x+t wardens have published an announcement on-chain. Then, the channel
closes in the state with the maximum sequence number from the announcements
submitted by the t non-cheating wardens. On the other hand, if a party submits
at least f+1 proofs-of-fraud, the party that submitted the proofs-of-fraud claims
only the collateral from the cheating wardens, while the entire channel balance
is awarded to the counterparty. If no proofs-of-fraud are submitted the channel
closes as described in Protocol 5, as it is a subcase of Protocol 6 for x = 0.

Protocol 6: Brick Pessimistic Close with Incentives
Data: Party p ∈ {A,B}, wardens W1, . . . ,Wn, state si, random nonce ri.
Result: Close a channel on state si with the assist of the committee.

/* Similarly to Protocol 5 */

1. Party p broadcasts to the wardens W1,W2, . . . ,Wn the request close().

2. Each warden Wj publishes on-chain a signature on the (last) stored
announcement σWj (M, close) and stops signing new state updates.

/* Closing party submits also proofs-of-fraud */

3. Party p, upon verifying t on-chain signed announcements by the wardens,
recovers the max(i) that is included in the announcements. Then, party p
publishes on-chain the state si, the random number ri, the signature of both
parties on {H(si, ri), i}, and any proofs-of-fraud.

/* Closing the channel with punishments */

4. After the state is included in a (permanent) block, the smart contract
recovers {H(si, ri), i}, and verifies both parties’ signatures, the wardens
identities, and the proofs-of-fraud.

(a) If the valid proofs-of-fraud x ≤ f , the smart contract closes the channel as soon
as t+ x wardens have published an announcement on-chain. The channel closes
in the state with the maximum sequence number included in the announcements,
si. // Protocol 5 with t+ x wardens

(b) If the valid proofs-of-fraud x ≥ f + 1, the smart contract closes the channel, and
awards the entire channel balance to the counterparty.

The smart contract awards the collateral of cheating wardens to party p, and
returns the collateral of all non-cheating wardens. The first t non-cheating
wardens whose signature are published on-chain get an equal fraction of the
closing fee F/t.

We further demand that the size of the committee is at least n > 7, hence f > 2.
As a result, we guarantee there is at least one channel party with locked funds
greater than each individual warden’s collateral, v

2 >
v
f . This restriction along



Brick 11

with the aforementioned incentive mechanisms ensure resistance to collusion and
bribing of the committee, meaning that following the protocol is the dominant
strategy for the rational wardens.

We note that in a network with multiple channels, each channel needs to
maintain a unique id which will be included in the announcement to avoid re-
play attacks. Otherwise, if there exist two channels with the same parties and
watchtowers, the parties can unjustly claim the watchtowers’ collateral by using
signed sequence numbers from the other channel, effectively violating safety.

4 Brick Analysis

We first prove Brick satisfies safety and liveness assuming at least one hon-
est channel party and at least t honest wardens. Furthermore, we note that
Brick achieves privacy even if all wardens are byzantine while the channel par-
ties are rational. Then, we show that rational players (parties and wardens)
that want to maximize their profit will follow the protocol specification, for
the incentive mechanisms presented in Section 3.2. Essentially, we show that
Brick enriched with the proposed incentive mechanisms is dominant-strategy
incentive-compatible.

4.1 Security under one Honest Participant and t Honest wardens

We first show that closing a Brick channel is safe in asynchrony when at least
t wardens are honest while the rest are byzantine. The core idea is that the
channel will close in the state that corresponds to the maximum sequence number
submitted by t wardens. In particular, every transaction is broadcast to the
wardens and confirmed by at least t wardens before the transaction is executed
by the parties. Given that at most f wardens are byzantine and at most another
n−t = 3f+1−(2f+1) = f can be slow, then at most 2f can publish an outdated
sequence number when closing the channel. Since Brick waits for t = 2f + 1
sequence numbers, at least one will be submitted by an honest and up-to-date
warden which will bear the maximum sequence number and correspond to the
freshest state.

Theorem 1. Brick achieves safety in asynchrony assuming one byzantine party
and f byzantine wardens.

Proof. In Brick there are two ways to close a channel (phase Close), either by in-
voking Protocol 4 or by invoking Protocol 5. In the first case (Optimistic Close),
both parties agree on closing the channel in a specific state (which is always the
freshest valid state9). As long as this valid state is published in a block in the
persistent part of the blockchain, it is considered to be committed. Thus, safety
is guaranteed.

In the second case, when Protocol 5 (Pessimistic Close) is invoked, a party
has decided to close the channel unilaterally in collaboration with the committee.

9 We assume that if the parties want to close the channel in a previous state, they will
still create a new state similar to the previous one but with an updated sequence
number.



12 Z. Avarikioti et al.

The Brick smart contract verifies that the state is valid, i.e., the signatures of
both parties are present and the sequence number of that state is the maximum
from the submitted announcements. Given the validity of the closing state, it is
enough to show that the channel cannot close in a state with a sequence number
smaller than the one in the freshest committed state. This holds because even if
the channel closes in a valid but not yet committed state with sequence number
larger than the freshest committed state, this state will eventually become the
freshest committed state (similarly to Protocol 4).

Let us denote by si the closing state of the channel. Suppose that there is
a committed state sk such that k > i, thus si is not the freshest state agreed
by both parties. We will prove safety by contradiction. For the channel to close
at si at least t = 2f + 1 wardens have provided a signed closing announcement,
and the maximum sequence number of these announcements is i. Otherwise
the Brick smart contract would not have accepted the closing state as valid.
According to the threat model, at most n − t = f wardens are byzantine, thus
at least f + 1 honest wardens have submitted a closing announcement. Hence,
none of the f + 1 honest wardens have received and signed the announcement
of any state with sequence number greater than i. However, in phase Update, an
update state is considered to be committed, according to Protocol 3 (step 3),
if and only if it has been signed by at least t = 2f + 1 wardens. Since at most
n− (f +1) = 3f +1−f −1 = 2f < 2f +1 wardens have seen (and hence signed)
the state sk, the state sk is not committed. Contradiction.

We note that safety is guaranteed even if both parties crash. This holds
because a state update requires unanimous agreement between the parties of
the channel, i.e., both parties sign the hash of the new state.

Note that a channel can close in two possible states: either the last agreed
state by both parties, or the previous one. We still preserve safety in both cases.
If the last agreed state is considered valid then it is guaranteed to be the closing
state, whereas if the closing state is the previous then the last agreed state never
gets validated by t wardens.

Theorem 2. Brick achieves liveness in asynchrony assuming one byzantine
party and f byzantine wardens.

Proof. We will show that every possible valid operation is either committed or
invalidated. There are two distinct operations: close and update. We say that
operation close applies in a state s if this state was published on-chain either in
collaboration of both parties (Protocol 4) or unilaterally by a channel party as
the closing state (step 3, Protocol 5).

If the operation is close and not committed, either the parties did not agree
on this operation (Optimistic Close), or a verification of the smart contract failed
(Pessimistic Close). In both cases, the operation is not valid.

Suppose now the operation is close and never invalidated. Then, if it is an
optimistic close, all the parties of the channel have signed the closing state since
it is valid. Since at least one party is honest the transaction will be broadcast
to the blockchain. As soon as the blockchain is live, the state will be included



Brick 13

in a block in the persistent part of the blockchain, and thus, the state will be
eventually committed. On the other hand, if it is a pessimistic close and not
invalidated, the smart contact verifications were successful therefore the state
was committed.

Suppose the operation is a valid update and it was never committed. Since
the operation is valid and at least one party of the channel is honest, the wardens
eventually received the state update (Consistent Broadcast). However, the new
state was never committed, therefore at least f + 1 wardens did not sign the
update state. We assumed at most f byzantine wardens, hence at least one
honest warden did not sign the valid update state. According to Protocol 3 (line
2), an honest warden does specific verifications and if the verifications hold the
warden signs the new state. Thus, for the honest warden that did not sign, one
of the verifications failed. If the first verification fails, then a signature from the
parties of the channel is missing thus the state is not valid. Contradiction. The
second verification concerns the sequence number and cannot fail, assuming at
least one honest channel party. Thus, the warden has published previously a
closing announcement on-chain and ignores the state update. In this case, either
(a) the closing state of the channel is the new state - submitted by another
warden that received the update before the closing request - or (b) the closing
state had a smaller sequence number from the new state. In the first case (a),
the new state is committed eventually (on-chain), while in the second case (b)
the new state is invalidated as the channel closed in a previous state.

For the last case, suppose the operation is a valid update and it was never
invalidated. We will show the state update was eventually committed. Suppose
the negation of the argument towards contradiction. We want to prove that
an update state that is not committed is either not valid or invalidated. The
reasoning of the proof is similar to the previous case.

Lastly, Brick achieves privacy even against byzantine wardens. They only
receive the sequence number of each update. Therefore, as long as parties do not
intentionally reveal information, privacy is maintained.

4.2 Incentivizing Rational Players

In this section, we show that rational players, parties and wardens, that want to
maximize their profit follow the protocols, i.e., deviating from the honest protocol
executions can only result in decreasing a player’s expected payoff. Therefore,
security and liveness hold from Theorems 1 and 2. Note that in our system
model 2f + 1 wardens and the richest party are rational, while the rest can be
byzantine. We consider each protocol separately, and evaluate the players’ payoff
for each possible action.

Intuitively, we provide correct incentives without utilizing timelocks because
the closing party is the one penalizing the cheating wardens when closing the
channel. Although counter-intuitive, the main idea is that the cheating party that
convinced the wardens to cheat will profit more from collecting the collateral of
the cheating wardens than closing the channel in any old state. Or in other words,
the cheating party is actually rationally baiting the possible byzantine wardens



14 Z. Avarikioti et al.

to get their collateral. As we show, this leads to rational wardens following the
protocol faithfully.

Open. Naturally, if a party is not incentivized to open a channel then that
channel will never be opened. We assume the parties have some business interest
to use the blockchain and since transacting on channels is faster and cheaper
they will prefer it. Deviating from the protocol at this phase is meaningless.
Furthermore, we assume the wardens follow Protocol 1 and commit the requested
collateral on-chain (Brick smart contract). Otherwise, the parties simply replace
the unresponsive/misbehaving wardens.

Update. In phase Update, we analyze Protocol 2 for rational parties as the
wardens do not participate in this protocol. Then, we analyze Protocol 3 for
both parties and wardens.

Lemma 1. Rational parties faithfully follow Protocol 2.

Proof. During the execution of Protocol 2, any party can deviate from the pro-
tocol by not signing the hash of the new state. In this case, the new state will
not be valid and thus cannot be committed and will not be executed. No party
can increase its profit from such behavior directly (attacking the safety of the
channel). The same argument holds in case the party signs the hash but not the
sequence number. Moreover, attempting to attack the liveness of the channel is
not profitable since the counterparty can always request to close in collaboration
with the committee by invoking Protocol 6.

Lastly, channel parties can collude and stop updating the channel (liveness
attack) in order to enforce a hostage situation on the wardens’ collateral. How-
ever, the committee size is at least n > 7. Thereby, from the pigeonhole principle
there is at least one party in the channel that has locked funds at least equal to
v
2 >

v
f , i.e., the richest party of the channel. Thus, the richest channel party locks

an amount larger than each warden’s collateral which means that this party’s
cost is larger than a wardens. Since we assume the richest party is rational, at
any time this party is incentivized to close the channel in collaboration with the
committee. Thus, the richest party (if rational) will not deviate from the honest
execution of Protocol 2.

Lemma 2. Rational parties faithfully follow Protocol 3.

Proof. During the execution of Protocol 3, a party can deviate as follows:

(a) First, a party can choose not to broadcast the announcement to the com-
mittee or part of the committee. In this case, the party has signed the new
state, which is now a valid state. This state will be considered committed
for the counterparty after the execution of Protocol 3. We show a rational
party cannot increase its payoff by not broadcasting the announcement to
all wardens. To demonstrate this, we consider two cases; either the new state
is beneficial to the party or not. If the new state is beneficial to party A,
then this state is not beneficial for the counterparty (e.g., B payed A for a
service). Thus, if the committee has not received the freshest state, party B



Brick 15

can “rightfully” close the channel in the previous state. Hence, the expected
payoff of party A decreases. On the other hand, suppose the new state is
not beneficial to party A and it chooses not to send the announcement to
the committee. Then, either the counterparty will have the state committed
or the state will not be executed. From the safety property of the channels,
party A cannot successfully close the channel in a previous state if the state
was committed. Hence, party A does not increase its payoff. On the other
hand, if party A does not request the signature of a warden that will later
commit fraud, then the party cannot construct a proof-of-fraud to claim the
warden’s collateral and therefore the party’s payoff decreases.

(b) Second, a party can broadcast different messages to the committee or parts
of the committee. During the execution of Protocol 3, the wardens verify
the parties’ signatures, thus an invalid message will not be acknowledged
from an honest warden. If the messages are valid (both parties’ signatures
are present), the parties have misbehaved in collaboration. This can lead
to a permanent partition of the view of the committee regarding the state
history, but at most one of the states can be committed (get the 2f + 1
signatures). Thus, this strategy has the same caveats as the previous one,
where the party can only lose from following it.

(c) Lastly, the party can choose not to proceed to the state transition. This is
outside the scope of this work and a problem of a different nature (a fair
exchange problem).

Lemma 3. Rational wardens faithfully follow Protocol 3.

Proof. A warden only acts in step 2 of Protocol 3, and can deviate as follows:

(a) The warden does not perform the necessary verifications (signatures and
sequence number). Then, the warden might unintentionally commit fraud
by signing an invalid state, hence allow the party to claim the collateral.

(b) The warden replies to the party although it has published a closing an-
nouncement on-chain. Then, the party can penalize the warden by claiming
its collateral.

(c) The warden sends its signature on the new state but does not store the
new announcement. In this case, if a party requests to close unilaterally the
warden cannot participate and thence collect the closing fee. Consequently,
the warden’s expected payoff decreases.

(d) The warden ignores the party’s request to update the state (does not reply
to the party), since the update fee is already collected. At first sight, this
game looks like a fair exchange game, which is impossible to solve without
a trusted third party [17]. Furthermore, we cannot use a blockchain to solve
it [34] as the whole point of channels is to reduce the number of transactions
that go on-chain. Fortunately, the state update game is a repeated game
where wardens want to increase their expected rewards in the long term.
The wardens know that if they receive an update fee from a party and do
not respond, then the party will stop using them (there is f fault tolerance in
Brick), thus their expected payoff for the repeated game will decrease.



16 Z. Avarikioti et al.

Close. A channel can either close optimistically by both parties with Proto-
col 4, or unilaterally by one of the parties in collaboration with the wardens
with Protocol 6. We first show that rational parties do not deviate from Proto-
col 4 (Lemma 4), and later we consider the most complicated case of Protocol 6.
Intuitively, a rational party invoking Protocol 6 could pretend to “cheat” and
collect proofs-of-fraud from the wardens. However, the rational party always
prefers to close the channel in the correct state and claim the wardens’ collat-
eral, when C ≥ v/f , as they sum up to larger profits (Lemma 5). The rational
wardens, therefore, will not collaborate with a cheating party but instead follow
Protocol 5. As a result, Brick channels achieve safety and liveness with rational
players (Theorem 3).

Lemma 4. Rational parties faithfully follow Protocol 4.

Proof. A party can deviate from Protocol 4 in the following ways:

(a) It is the party requesting the closing of the channel in a cheating state. The
counterparty will not sign the state since it is being cheated, else it would
not be a cheating state. Thus, safety is guaranteed and the party cannot
profit from this strategy.

(b) It is the party requesting the closing of the channel and never publishes
the signed closing state. In line 2 of Protocol 4, the signatures on the state
are exchanged between the parties, hence the counterparty will eventually
publish the closing state. Note that we assume that the closing party sends
its signature first with the closing request.

(c) It is the party that got the closing request and does not sign the state. In
this case, the party requesting to close the channel can invoke Protocol 6
and close the channel in collaboration with the committee in the freshest
committed state.

Lemma 5. Rational parties invoking Protocol 6 maximize their profit when clos-
ing the channel in the freshest committed state.

Proof. Let us denote by pA the payoff function of party A (the cheating party
wlog). The payoff function depends on the channel balance of party A when
requesting to close the channel, denoted by cA (0 ≥ cA ≥ v, where v is the total
channel funds), the collateral the party claims through proofs-of-fraud, and the
total amount spent for bribing rational wardens. Formally,

pA = cA + x
v

f
− b

( v
f

+ ε
)

where x is the number of proofs-of-fraud submitted by the party, b the number of
bribed rational wardens, and ε the marginal gain over the collateral the wardens
require to be bribed. Note that each warden has locked v

f as collateral. Further,
note that the byzantine wardens do not require a bribe but act arbitrarily ma-
licious, meaning that they will provide a proof-of-fraud to party A without any
compensation.



Brick 17

Next, we analyze all potential strategies for party A and demonstrate that the
payoff function maximizes when the party does not bribe any rational warden,
but closes the channel in the freshest committed state. There are four different
outcomes in the strategy space of party A:

(a) The channel closes in the freshest committed state and no proofs-of-fraud
are submitted. Then, pA = cA.

(b) Party A submits the proofs-of-fraud only from the byzantine wardens and the
channel closes in the freshest committed state (by the remaining t rational
warden). Then, pA = cA + f v

f = cA + v. Note that the payoff function in
this case maximizes for x = f .

(c) Party A bribes b > 0 rational wardens and the channel closes in the freshest
committed state. Then, pA ≤ cA+(f+b) v

f −b(
v
f +ε) = cA+v−bε ≤ cA+v−ε.

The first inequality holds because the bribed wardens might be part of the
second set of t closing announcements, in which case they do not contribute
to the claimed collateral.

(d) Party A bribes b > 0 rational wardens and the channel closes in a state
other than the freshest committed state10. Let us denote by y the number of
rational wardens that provide a proof-of-fraud to the party, and m the num-
ber of submitted proofs-of-fraud that belong to byzantine wardens. Then,
the possible actions in this strategy are depicted in Table 1. Note that at

Table 1: Potential actions to close the channel in a “fraudulent” state. The first
column illustrates the wardens for which the closing party submits proofs-of-
fraud; y denotes the rational wardens and m the byzantine. The second co-
lumn depicts the wardens for which no proof-of-fraud was submitted, hence
they “count” for closing the channel. Since f rational wardens may be slow in
asynchrony, the closing party needs f + 1 submitted sequence numbers from
wardens that “count” to close the channel.

Action Proof-of-fraud Close Total

Byzantine m f −m f

Bribed y f + 1− (f −m) y +m+ 1
(rational) = m+ 1

Total m+ y f + 1 -

least f + 1 misbehaving wardens are required to close the state in a previous
state since we assume there can be f slow rational wardens that have not
yet received the update states. In this case, the payoff function is

pA ≤ v +
(
m+ y

) v
f
−
(
y +m+ 1

)( v
f

+ ε
)

= v − v

f
− ε

(
y +m+ 1

)
≤ v − v

f
− ε

10 Note that b varies between 1 and f + 1. That is because up to f wardens may be
slow in asynchrony, hence might provide truthful confirmation of an old state to the
closing party.



18 Z. Avarikioti et al.

where the first inequality holds since 0 ≥ cA ≥ v. Therefore, the payoff function
maximizes in case the party follows the second strategy, i.e., when the channel
closes in the freshest committed state and no rational wardens are bribed.

Using Lemma 5, we show that rational parties follow Protocol 5 with respect
to the rational wardens. That is, apart from the proofs-of-frauds submitted by
the party for the byzantine wardens that “forfeit” their collateral to the closing
party, in every other way, the selfish behavior of the closing party executing
Protocol 6 aligns with the honest behavior of a party executing Protocol 5.

Lemma 6. Rational parties are incentivized to faithfully follow Protocol 5 with
respect to the rational wardens.

Proof. The party that requested to close, invoking Protocol 5, can deviate from
the protocol’s specification in two ways: either (a) the party publishes an invalid
closing state (e.g., random state, previously valid state, a committed state that
is not the freshest), or (b) the party is not responsive, meaning that the party
does not publish the closing state.

In case (a), publishing an invalid state can only decrease a party’s profit, as
shown in Lemma 5.

In case (b), either the party is the richest of the channel or not. If the party
is the richest of the two then the party’s cost of not responding is higher than
that of the counterparty and any other warden’s cost. Therefore, the party is not
the richest of the channel. In this case, the counterparty which wants to close
the channel, can use the on-chain closing announcements of the wardens and
publish the closing state. In both cases, the party that requested close cannot
increase its payoff by not revealing the closing state, but only lose from locking
its channel funds for a longer period of time that necessary (since no updates
are possible).

Next, we show that if the smart contract executes Protocol 6 when closing
the channel, the rational wardens will honestly follow Protocol 5; implying that
the wardens will not commit fraud in collaboration with the closing party.

Lemma 7. Rational wardens faithfully follow Protocol 5.

Proof. A warden can deviate from the protocol as follows:

(a) The warden does not publish a closing announcement on-chain. In this case,
the warden can attempt to enforce a hostage situation on the funds of the
channel in collaboration with other wardens in order to blackmail the chan-
nel parties. However, to enforce a hostage situation on the channel’s funds,
at least f + 1 wardens must collude, hence at least one rational warden
must participate. However, a rational warden cannot be certain that the
other wardens will indeed maintain the hostage situation or participate in
the consensus thus claim the closing fee (only the first t wardens get paid);
therefore, we reduce our problem to the prisoner’s dilemma problem. As a



Brick 19

result, the only strong Nash equilibrium for a rational warden is to imme-
diately publish a closing announcement on-chain in order to claim later the
closing fee.

(b) The warden signs later a new state update. Then, the warden allows the
party receiving the signed announcement with higher sequence number than
the closing announcement to create a proof-of-fraud and claim the warden’s
collateral.

(c) The warden publishes on-chain a closing announcement that is not the stored
one11. However, the warden has already sent a signature on an announcement
with a higher sequence number, therefore the party can create a proof-of-
fraud and claim the warden’s collateral. Hence, any rational warden will
request as a bribe an amount at least marginally higher than the collateral
to perform the fraud. In Lemma 5, we show that no rational party will
provide such a bribe to any rational warden. Thus, all rational wardens will
honestly follow the protocol and submit the stored announcement for closing
the channel.

Theorem 3. Brick channels achieve safety and liveness in asynchrony assum-
ing the richest party and 2f+1 wardens are rational, while the rest are byzantine
(wardens and other party).

Proof. We showed that any rational player, party or warden, honestly follows
Protocols 1, 2 (Lemma 1), 3 (Lemmas 2 and 3), 4 (Lemma 4), and 5 (Lemmas
6 and 7). Therefore, both safety and liveness are achieved in asynchrony in our
system model from Theorems 1 and 2, respectively.

5 Evaluation of Brick

In this section we evaluate both the cost of consistent broadcast as well as the
cost of Brick’s on-chain operations. The key questions we want to answer are:
(a) How does the cost of deploying Brick change as we increase the number of
wardens (i.e., the security and fault tolerance), and (b) how does the cost of the
off-chain part scale now that we need to interact with the wardens every time in
order to protect against network attacks.

Solidity Smart Contract. To evaluate the cost of deployment of Brick on
Ethereum, we have implemented the on-chain operations in the form of a smart
contract in Solidity12. We measured the gas cost of deploying and operating
the smart contract on the Ethereum blockchain. Our results are illustrated in
Figure 1. Our gas measurements are conducted using prices as of May 2020,
namely the fiat price of 1 ETH = 195.37 EUR and a gas price of 20 Gwei (for
convenience, prices on the diagram are shown in both EUR and Ether). The

11 We assume the warden will only sign as closing an announcement that used to be
valid in an attempt to commit fraud. Otherwise, the party will claim the warden’s
when the smart contract verifications fail.

12 The source code of the smart contract is released under the open source MIT license
and is available anonymously at https://github.com/dionyziz/brick.

https://github.com/dionyziz/brick


20 Z. Avarikioti et al.

contract was implemented in Solidity 0.5.16 and measurements were performed
using using the solc 0.6.8 compiler with optimizations enabled, deployed on a
local ganache-cli blockchain using truffle and web3. The measurements concern
the deployment of the smart contract, the opening of the channel, optimisti-
cally closing the channel, and pessimistically closing the channel. The contract
allows the parties to specify the number n of wardens they desire to involve as
well as their identities. To aid with the EVM implementation, we opted for the
secp256k1 elliptic curve signature scheme [11, 23], as the signatures generated
by it can be verified in a gas-efficient manner in Solidity using the ecrecover

precompiled smart contract [40]. Additionally, the signature scheme makes off-
chain signatures compatible with on-chain accounts and as such signatures made
off-chain can be verified using public keys available on-chain. We measured the
gas cost for warden values of n = 3 to 30. We recommend the value of n = 13
as highlighted in the figure, since it is safe, has good performance and aligns the
incentives correctly.

Once the contract is deployed on the Ethereum network, Alice funds it first.
Subsequently, once Alice’s funding transaction is finalized, Bob funds it. Once
Bob’s funding transaction is finalized, the collateral can be calculated and so the
wardens can fund it in any order simultaneously. When all wardens have funded
the contract, any of the two parties can open the channel. At any time prior to
opening the channel, any party or warden can withdraw their money, at which
point the channel is cancelled and can no longer be opened, but allows the rest
of the parties to withdraw as well, in any order. Once the channel is open, the
parties can continue exchanging states off-chain. If multiple Brick channels are
used, then the cost of smart contract deployment can be amortized over all of
them by abstracting the common functionality into a Solidity library. However,
the opening and closing costs are recurrent. We remark here that our cost of
deployment (≈ 9 EUR) is comparable to other state channel smart contracts
which perform different operations under different assumptions (e.g., at current
prices, the deployment of the 3 Pisa [30] contracts amounts to ≈ 17 EUR).

When the parties wish to close the channel optimistically, initially Alice sub-
mits a transaction to the smart contract requesting the channel to close. This
request contains Alice’s claimed closing state (namely, Alice’s value at closing
time, as Bob’s value at closing time can be deduced from this). Once Alice’s
transaction is confirmed, if Bob is in agreement, he submits a transaction to the
smart contract to signal his agreement. The smart contract then returns Alice’s
and Bob’s values as well as wardens’ collateral. Care must be taken to check that
the sum of Alice’s value and Bob’s value at the closing state does not exceed the
sum of their values at their initial state, so that sufficient funds remain to return
the wardens’ collateral. If Bob does not agree with Alice’s claim, the channel
becomes unusable and must be closed pessimistically (Alice can no longer make
an optimistic claim on a different state). The optimistic close operation measures
the cumulative gas cost of the two transactions from both parties. The cost is
minimal and should be the normal path since parties need not pay closing fees.



Brick 21

Finally, the channel can be closed pessimistically at any time. To do this,
the party who wishes to close the channel requests this from the wardens. Each
warden then submits a transaction to the smart contract containing the sequence
number they have last seen, together with Alice’s and Bob’s off-chain signatures
on it. These can be submitted in any order. The signatures of Alice and Bob
on the sequence number are verified on-chain, along with the warden signatures;
this incurs the majority of gas cost for the pessimistic close. The party who
wishes to close the channel monitors the chain for such claims and remembers
any of them that are fraudulent. As soon as t (honest or adversarial) claims have
been recorded, either Alice or Bob can send a transaction to the smart contract
to close the channel. The transaction is accompanied by the fraud proofs the
closing party was able to assemble, namely the latest announcement for each
warden who made a claim on an earlier sequence number. These announcements
contain the signature of the warden on the plaintext which consists of the smart
contract address and the sequence number. As smart contracts have unique
addresses, including the smart contract address in the plaintext ensures that the
same warden can participate in multiple Brick channels simultaneously using
the same public key13. Closing the channel releases the funds of the participant
parties and slashes any malicious wardens. After the channel has been closed, any
honest wardens who wish to redeem their collateral and their corresponding fee
can do so by issuing a further transaction to the smart contract. The pessimistic
close operation was measured when no fraud proofs are provided and includes
the transaction of each of the t wardens and the final transaction by one of the
parties. Additionally, it was assumed that, while the counterparty is unresponsive
or malicious, the wardens were responsive and all submitted the same sequence
number (hence limiting the need for multiple signature validations).

Consistent Broadcast. We have also implemented consistent broadcast in
Golang using the Kyber [27] cryptographic library and the cothority [14] frame-
work. In Table 2 we evaluate our protocol on Deterlab [15] using 36 physical
machines, each having four Intel E5-2420 v2 CPUs and 24 GB RAM. To have a
realistic wide area network, we impose a 100ms roundtrip latency on the links
between wardens and a 35Mbps bandwidth limit.

As illustrated the overhead of using a committee is almost equal to a round-
trip latency (100ms). The small overhead is due to the party sending the mes-
sages in sequence, hence the last message is sent with a small delay d > 0. This is
observed in the total latency which is close to 100+d ms. This latency in Brick
defines the time parties must wait to execute a transaction safely, meaning that
Brick provides fast finality. These numbers are three orders of magnitude faster
than current blockchains, such as Ethereum where blocks are generated on aver-
age every 12sec and finality is guaranteed after 6 minutes. Furthermore, channels
are independent and embarrassingly parallel which means that we can deploy
as many as we want without significantly increasing the overhead. In contrast

13 If Brick is deployed on multiple alt-etherea, each warden must use a different key in
each, or the smart contract must be modified to have the warden sign the CHAIN ID

together with the address and sequence number.



22 Z. Avarikioti et al.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Et
he

r

5 10 15 20 25 30
Number n of Wardens

0

2

4

6

8

10

12

14

EU
R

Gas cost of a Brick channel
Cost of deployment
Cost of opening
Cost of pessimistic close
Cost of optimistic close
Recommended n

Fig. 1: The on-chain gas cost of deploying and operating Brick in the form of
an Ethereum smart contract.

to synchronous channel solutions where finality under our model is guaranteed
only after channel closure, Brick provides fast finality (rtt).

Table 2: Microbenchmark of Brick

Number of wardens 7 34 151

Consistent Broadcast 0.1138 sec 0.118 sec 0.1338 sec

6 Related Work

Payment channels were originally introduced by Spilman [38]. Several payment
channels solutions have been proposed [1,13,35], the most notable being the Bit-
coin Lightning Network [35]. All these solutions, however, require timelocks to
guarantee safety and therefore make strong synchrony assumptions that some-
times fail in practice.

To guarantee safety, traditional payment channels require participants to be
frequently online, actively watching the blockchain. To alleviate this necessity,
recent proposals introduced third-parties in the channel to act as proxies for the
participants of the channel in case of fraud. This idea was initially discussed by
Dryja [16], who introduced the Monitors or Watchtowers [2] operating on the
Bitcoin Lightning network [35]. Later, Avarikioti et al. proposed DCWC [5], a
less centralized distributed protocol for the watchtower service, where every full
node can act as a watchtower for multiple channels depending on the network
topology. In both these works, the watchtowers are paid upon fraud. Hence, the
solutions are not incentive-compatible since in case a watchtower is employed no
rational party will commit fraud on the channel and thus the watchtowers will



Brick 23

never be paid. This means there will be no third parties offering such a service
unless we assume they are altruistic.

In parallel, McCorry et al. [30] proposed Pisa, a protocol that enables the
delegation of Sprites [32] channels’ safety to third-parties called Custodians. Al-
though Pisa proposes both rewards and penalties similarly to Brick, it fails to
secure the channels against bribing attacks. Particularly, the watchtower’s collat-
eral can be double-spent since it is not tied to the channel/party that employed
the watchtower. More importantly, similarly to Watchtowers and DCWC, Pisa
demands a synchronous network and a perfect blockchain, meaning that trans-
actions must not be censored, to guarantee the safety of channels.

Concurrently to this work, Avarikioti et al. introduced Cerberus channels [7],
a modification of Lightning that incorporates rational watchtowers to Bitcoin
channels. Although Cerberus channels are incentive-compatible, they still require
timelocks, hence their security depends on synchrony assumptions and a perfect
blockchain that cannot be censored. Furthermore, Cerberus channels do not
guarantee privacy from the watchtowers, as opposed to Brick.

In a similar work, Lind et al. proposed Teechain [28], a layer 2 payment net-
work that operates securely under asynchrony using hardware trusted execution
environments (TEEs) to prevent parties from misbehaving. In contrast, Brick
eliminates the need for TEEs with the appropriate incentive mechanisms.

To summarize, we exhibit the differences of Brick to the other channel
constructions and watchtower solutions in Table 3. We observe that Brick is
the only solution that maintains security under an asynchronous network and
offline channel parties while assuming rational watchtowers. Further, Brick is
secure (i.e., no loss of funds) even when the blockchain substrate is censored,
and also when the network is congested. Finally, an extension to Brick that we
describe in Section 7 enables protection against small scale persistence attacks
making it more secure than the underlying blockchain.

Table 3: Comparison with previous work

Protocol Monitors DCWC Pisa Cerberus Brick
Safe under [16] [5] [30] [7] [6]

Rational Players 7 7 ∼14 3 3

Offline Parties 3 3 T � td
15 T � td

15 3

Asynchrony 7 7 7 7 3

Censorship 7 7 7 7 3

Congestion 7 7 7 7 3

Forks 7 7 7 7 316

Privacy 3 3 3 7 3

Bitcoin Compat. 3 3 7 3 7



24 Z. Avarikioti et al.

State Channels, Payment Networks, and Sidechains. Payment channels
can only support payments between users. To extend this solution to handle
smart contracts [39] that allow arbitrary operations and computations, state
channels were introduced [32]. Recently, multiple state channel constructions
have emerged [10, 18, 32]. However, all these constructions use the same foun-
dations, i.e., the same concept on the operation of two-party channels. And as
the fundamental channel solutions are flawed the whole construction inherits the
same problems (synchrony and availability assumptions). Brick’s design could
potentially extend to an asynchronous state channel solution if there existed a
valuation function for the states of the contract ( i.e., a mapping of each state
to a monetary value for the parties) to correctly align incentives. In this case,
the channel can evolve as long as the parties update the state, while in case of of
an uncooperative counterparty the honest party can always pessimistically close
the channel at the last agreed state and continue execution on-chain.

Another solution for scaling blockchains is sidechains [8,20,25]. In this solu-
tion, the workload of the main chain is transferred in other chains, the sidechains,
which are “pegged” to the main chain. Although the solution is kindred to chan-
nels, it differs significantly in one aspect: in channels, the states updates are
totally ordered and unanimously agreed by the parties thus a consensus process
is not necessary. On the contrary, sidechains must operate a consensus process to
agree on the validity of a state update. Brick lies in the intersection of the two
concepts; the states are totally ordered and agreed by the parties, whereas war-
dens merely remember that agreement was reached at the last state announced.

Finally, an extension to payment channels is payment channel networks
(PCN) [9, 29, 36, 37]. The core idea of PCN is that users that do not have a di-
rect channel can route payments using the channels of other users. While Brick
presents a novel channel construction that is safe under asynchrony, enabling
asynchronous multi-hop payments remains an open question.

7 Conclusion, Limitations and Extensions

Below, we discuss the rationale of Brick design, its limitations, and possible
extensions.

Byzantine players. If both channel parties are byzantine then the wardens’
collateral can be locked arbitrarily long since the parties can simply crash forever.
This is why in the threat model, we assume that at least the richest channel
party is rational to correctly align the incentives. We further demand byzantine
fault-tolerance to guarantee a truly robust protocol against arbitrary faults. We
assume at most f out of the 3f + 1 wardens are byzantine, which is necessary
to maintain safety, as dictated by well known lower bounds for asynchronous

14 The watchtower needs to lock collateral per-channel, equal to the channel’s value.
Current implementation of Pisa does not provide this.

15 The party needs to be able to deliver messages and punish the watchtower within a
large synchrony bound T.

16 Possible if consensus is run for closing the channel as described in Section 7.



Brick 25

consistent broadcast. Nevertheless, users of Brick can always assume f = 0
and configure the smart contract parameters accordingly.

Warden unilateral exit. If both parties are malicious, they might hold the
wardens’ collateral hostage. A similar situation is indistinguishable from the
parties not transacting often. As a result the wardens might want to exit the
channel. A potential extension can support this in two ways. First, we can en-
able committee replacement, meaning that a warden can withdraw its service
as long as there is another warden willing to take its place. In such a case,
we simply replace the collateral and warden identities with an update of the
funding transaction on-chain, paid by the warden that requests to withdraw its
service. Second, if a significant number (e.g, 2f + 1) of wardens declare they
want to exit, the smart-contract can release them and convert the channel to
a synchronous channel [30]. The parties will now be able to close the channel
unilaterally by directly publishing the last valid state. If the counterparty tries
to cheat and publishes an old state, the party (or any remaining warden) can
catch the dispute on-time and additionally claim the (substantial) closing fee.

Committee selection. Each channel has its own group of wardens, i.e., the
committee is independently selected for each channel by the channel parties.
The scalability of the system is not affected by the use of a committee since
each channel has its own independent committee of wardens. The size of the
committee for each channel can vary but is constrained by the threat model.
If we assume at least one honest party in the channel, a single rational warden
is enough to guarantee the correct operation of Brick. Otherwise, we require
more than 7 wardens to avoid hostage situations from colluding channel parties
(Section 3.2). Note that the cost for security for the parties is not dependent on
the committee size, but on the value of the channel. If the parties chose a small
committee size, the collateral per warden is high, thus the update fees are few
but high. On the other hand, if the parties employ many wardens, the collateral
per warden is low, thus the update fees are many but low.

Consensus vs consistent broadcast. Employing consistent broadcast in a
blockchain system typically implies no conflict resolution as there is no liveness
guarantee if the sender equivocates. This is not an issue in channels since a valid
update needs to be signed by both parties and we provide safety guarantees
only to honest and rational parties17. The state updates in channels are totally
ordered by the parties and each sequence number should have a unique corre-
sponding state. Thereby, it in not the role of the warden committee to enforce
agreement, but merely to verify that agreement was reached, and act as a shared
memory for the parties. As a result, consistent broadcast is tailored for Brick
as it offers the only necessary property, equivocation protection.

Brick Security under execution fork attacks. We can extend Brick to run
asynchronous consensus [26] during the closing phase in order to defend against
execution fork attacks [24]. This would add an one-off overhead during close but
would make Brick resilient against extreme conditions [4]. For example, in case

17 Of course if a party crashes we cannot provide liveness, but safety holds.



26 Z. Avarikioti et al.

of temporary dishonest majority the adversary can attack the persistence18 of
the underlying blockchain, meaning that the adversary can double-spend funds.
Similarly in channels, if the adversary can violate persistence, the dispute reso-
lution can be reversed, hence funds can be cheated out of a party. However, in
Brick the adversary can only close on the last committed state or the fresh-
est valid (not committed) state. With consensus during close, Brick maintains
safety (i.e., no party loses channel funds) even when persistence is violated. A
malicious party can only close the channel in the state that the consensus de-
cides to be last, thus a temporary take-over can only affect the channel’s liveness.
Therefore, Brick can protect both against liveness and persistence attacks19 on
the underlying blockchain adding an extra layer of protection, and making it
safer to transact on Brick than on the blockchain.

Update fees. Similarly to investing in stocks for a long period of time, many
invest in cryptocurrencies; resulting in large amounts of unused capital. Acting
as a warden can simply provide more profit (update fees) to the entities that
own this capital complementary to owning such cryptocurrencies.

Currently, the update fees are awarded to wardens on every state update via
a unidirectional channel. Ideally, these rewards would be included in the state
update of the channel. But even if we include an increased fee on every state
update, the parties can always invoke Optimistic Close, and update the channel
state to their favor when closing. Thus, the incentives mechanism is not robust
if the update rewards of the wardens are included in the state updates.

Collateral. The collateral for each warden in Brick is v/f , where v is the total
value of the channel and f the number of byzantine wardens. This is slightly
higher than the lowest amount v/(f + 1) for which security against bribing
attacks is guaranteed in asynchrony when both channel parties and wardens are
rational. Towards contradiction, we consider a channel where each warden locks
collateral C < v/(f + 1). Suppose now a rational party p owns 0 coins in the
freshest state and v coins in a previous state. Due to asynchrony, p controls
the message delivery, hence f wardens may consider this previous state as the
freshest one. Consequently, if p bribes f + 1 wardens, which costs less than
(f + 1)v/(f + 1) = v, the party profits from closing the channel in the previous
state in collaboration with the bribed and “slow” wardens, violating safety.

In a synchronous network, this attack would not work since the other parties
would have enough time to dispute. However, under asynchrony (or offline par-
ties [30]) there is no such guarantee. Further, note that in a naive asynchronous
protocol with f byzantine wardens, the previous attack is always possible for any
collateral because a rational party can direct the profit from the collateral of the
byzantine wardens to bribe the rational wardens. We circumvent this problem
in Brick by changing the closing conditions; in particular, we force the closing

18 Persistence states that once a transaction is included in the permanent part of one
honest party’s chain, then it will be included in every honest party’s blockchain.

19 We assume the channel to be created long before these attacks take place, so the
adversary cannot fork the transaction that creates the channel.



Brick 27

party to choose between closing the channel in an old state, or claiming the
collateral of at least f + 1 wardens and awarding the channel balance to the
counterparty.

Finally, a trade-off for replacing trust is highlighted: online participation
with synchrony requirements or appropriate incentive mechanisms to compel
the honest behavior of rational players.

Decentralization. In previous payment channel solutions a party only hires a
watchtower if it can count on it in case of an attack. Essentially, watchtowers are
the equivalent of insurance companies. If the attack succeeds, the watchtower
should reimburse the cheated channel party [30]. After all, it is the watchtower’s
fault for not checking the blockchain when needed. However, in light of network
attacks (which are prevalent in blockchains [3, 21]), only a few, centrally con-
nected miners will be willing to take this risk. Brick provides an alternative,
that proactively protects from such attacks and we expect to provide better
decentralization properties with minimal overhead and fast finality.

Bitcoin compatibility. We believe Brick can be implemented in Bitcoin as-
suming t honest wardens (Protocol 5) using chained transactions. In contrast, we
conjecture that the incentive-compatible version of Brick (Protocol 6) cannot
be deployed without timelocks in platforms with limited contracts like Bitcoin.

8 Acknowledgements

We would like to thank Kaoutar Elkhiyaoui for her valuable feedback as well as
Jakub Sliwinski for his impactful contribution to this work.

References

1. Raiden network. https://raiden.network/ (2017), accessed: 2020-11-22

2. Bitcoin Lightning Fraud? Laolu Is Building a ‘Watch-
tower’ to Fight It. https://www.coindesk.com/

laolu-building-watchtower-fight-bitcoin-lightning-fraud (2018)

3. Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: Routing attacks on
cryptocurrencies. In: 2017 IEEE Symposium on Security and Privacy (SP). pp.
375–392. IEEE (2017)

4. Avarikioti, G., Käppeli, L., Wang, Y., Wattenhofer, R.: Bitcoin security under tem-
porary dishonest majority. In: International Conference on Financial Cryptography
and Data Security. pp. 466–483. Springer (2019)

5. Avarikioti, G., Laufenberg, F., Sliwinski, J., Wang, Y., Wattenhofer, R.: Towards
secure and efficient payment channels. arXiv preprint: 1811.12740 (2018)

6. Avarikioti, Z., Kogias, E.K., Wattenhofer, R., Zindros, D.: Brick: Asynchronous
incentive-compatible payment channels. In: International Conference on Financial
Cryptography and Data Security (2021)

7. Avarikioti, Z., Litos, O.S.T., Wattenhofer, R.: Cerberus channels: Incentivizing
watchtowers for bitcoin. In: International Conference on Financial Cryptography
and Data Security. pp. 346–366. Springer (2020)

8. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-
stra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged
sidechains. https://www.blockstream.com/sidechains.pdf (2014)

https://raiden.network/
https://www.coindesk.com/laolu-building-watchtower-fight-bitcoin-lightning-fraud
https://www.coindesk.com/laolu-building-watchtower-fight-bitcoin-lightning-fraud
https://www.blockstream.com/sidechains.pdf


28 Z. Avarikioti et al.

9. Bagaria, V., Neu, J., Tse, D.: Boomerang: Redundancy improves latency and
throughput in payment networks. In: International Conference on Financial Cryp-
tography and Data Security (2020)

10. Coleman, J., Horne, L., Xuanji, L.: Counterfactual: Generalized state channels.
https://l4.ventures/papers/statechannels.pdf (2018)

11. Courtois, N.T., Grajek, M., Naik, R.: Optimizing sha256 in bitcoin mining. In:
International Conference on Cryptography and Security Systems. pp. 131–144.
Springer (2014)

12. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A.,
Saxena, P., Shi, E., Sirer, E.G., Song, D., Wattenhofer, R.: On scaling decentralized
blockchains. In: International Conference on Financial Cryptography and Data
Security. pp. 106–125. Springer (2016)

13. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin du-
plex micropayment channels. In: Stabilization, Safety, and Security of Distributed
Systems. pp. 3–18. Springer (2015)

14. DeDiS cothority (2016), https://www.github.com/dedis/cothority

15. DeterLab network security testbed. http://isi.deterlab.net/ (2012)

16. Dryja, T.: Unlinkable outsourced channel monitoring. https://youtu.be/Gzg_

u9gHc5Q (2016)

17. Dziembowski, S., Eckey, L., Faust, S.: Fairswap: How to fairly exchange digital
goods. In: Proceedings of the 25th ACM SIGSAC Conference on Computer and
Communications Security. pp. 967–984. ACM (2018)

18. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment
hubs over cryptocurrencies. In: IEEE Symposium on Security and Privacy. pp.
327–344 (2017)

19. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Analysis and
applications. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. pp. 281–310. Springer (2015)

20. Gaži, P., Kiayias, A., Zindros, D.: Proof-of-Stake Sidechains. In: IEEE Symposium
on Security and Privacy. pp. 139–156. IEEE (2019)

21. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery
of blocks and transactions in Bitcoin. In: Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. pp. 692–705. ACM (2015)

22. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Layer-
two blockchain protocols. In: International Conference on Financial Cryptography
and Data Security. pp. 201–226. Springer (2020)

23. Gura, N., Patel, A., Wander, A., Eberle, H., Shantz, S.C.: Comparing elliptic curve
cryptography and rsa on 8-bit cpus. In: International workshop on cryptographic
hardware and embedded systems. pp. 119–132. Springer (2004)

24. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in Bit-
coin. In: 19th ACM Conference on Computer and Communications Security. pp.
906–917. ACM (2012)

25. Kiayias, A., Zindros, D.: Proof-of-Work Sidechains. In: International Conference
on Financial Cryptography and Data Security. pp. 21–34. Springer (2019)

26. Kokoris-Kogias, E., Malkhi, D., Spiegelman, A.: Asynchronous distributed key
generation for computationally-secure randomness, consensus, and threshold sig-
natures. In: 27th ACM SIGSAC Conference on Computer and Communications
Security. pp. 1751–1767. ACM (2020)

27. The Kyber Cryptography Library (2010 – 2018)

https://l4.ventures/papers/statechannels.pdf
https://www.github.com/dedis/cothority
http://isi.deterlab.net/
https://youtu.be/Gzg_u9gHc5Q
https://youtu.be/Gzg_u9gHc5Q
https://github.com/dedis/kyber


Brick 29

28. Lind, J., Naor, O., Eyal, I., Kelbert, F., Sirer, E.G., Pietzuch, P.R.: Teechain: a
secure payment network with asynchronous blockchain access. In: Proceedings of
the 27th ACM Symposium on Operating Systems Principles. pp. 63–79 (2019)

29. Malavolta, G., Moreno-Sanchez, P., Kate, A., Maffei, M.: Silentwhispers: Enforcing
security and privacy in decentralized credit networks. In: 24th Annual Network and
Distributed System Security Symposium (2017)

30. McCorry, P., Bakshi, S., Bentov, I., Meiklejohn, S., Miller, A.: Pisa: Arbitration
outsourcing for state channels. In: Proceedings of the 1st ACM Conference on
Advances in Financial Technologies. pp. 16–30. ACM (2019)

31. Miller, A.: Feather-forks: enforcing a blacklist with sub-50% hash power. https:
//bitcointalk.org/index.php?topic=312668.0, accessed: 2020-11-22

32. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: International Con-
ference on Financial Cryptography and Data Security. pp. 508–526 (2019)

33. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
34. Pagnia, H., Gärtner, F.C.: On the impossibility of fair exchange without a trusted

third party. Tech. rep., Technical Report TUD-BS-1999-02, Darmstadt University
of Technology, Germany (1999)

35. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2015)

36. Prihodko, P., Zhigulin, S., Sahno, M., Ostrovskiy, A., Osuntokun, O.: Flare: An
approach to routing in lightning network (2016)

37. Roos, S., Moreno-Sanchez, P., Kate, A., Goldberg, I.: Settling payments fast and
private: Efficient decentralized routing for path-based transactions. In: 25th Annual
Network and Distributed Systems Security Symposium (2018)

38. Spilman, J.: Anti dos for tx replacement. https://lists.linuxfoundation.org/
pipermail/bitcoin-dev/2013-April/002433.html, accessed: 2020-11-22

39. Szabo, N.: Formalizing and securing relationships on public networks. First Monday
2(9) (1997)

40. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2014)

41. Zamyatin, A., Al-Bassam, M., Zindros, D., Kokoris-Kogias, E., Moreno-Sanchez,
P., Kiayias, A., Knottenbelt, W.J.: Sok: Communication across distributed ledgers.
IACR Cryptology ePrint Archive, Report 2019/1128 (2019)

https://bitcointalk.org/index.php?topic=312668.0
https://bitcointalk.org/index.php?topic=312668.0
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html

	Brick: Asynchronous Incentive-Compatible Payment Channels

