Space and Write Overhead are Inversely
Proportional in Flash Memory

Philipp Brandes

ETH Zurich
{pbrandes,wattenhofer}@ethz.ch

Roger Wattenhofer

Abstract

In this paper we consider the trade-off between space and
write overhead of flash memory. Every flash memory has
additional space to compensate for wear leveling; we denote
the space overhead with o. Furthermore, every flash memory
is forced to rewrite valid data when a block is erased; we
denote the write overhead with w. We show that space and
write overhead are inversely proportional with cw > 1. We
also present an algorithm that proves that our analysis is
tight, as it achieves cw = 1 in a worst case. Moreover, we
analyze a setting with the data being updated uniformly at
random, or not at all.

Categories and Subject Descriptors D.4.2 [Storage man-
agement]: Garbage collection

Keywords wear leveling, write amplification, flash mem-
ory, solid state disks, FTL

1. Introduction

Flash memory is omnipresent in smartphones and cameras.
Solid state disks (SSDs) based on NAND flash increasingly
become the default choice for computers of any kind, from
laptops to servers. Unfortunately, NAND flash is also known
for having a limited lifetime, as the multi-level cells used to
physically store data can only be written and erased about
10,000 times until they are worn out (Agarwal and Marrow
2010). Afterwards, cells can no longer reliably store data. As
a result, despite not having moving mechanical parts, flash
memory is perceived as more failure prone than traditional
hard disk drives.

This problem is aggravated due to another technical prop-
erty of flash memory. The smallest storage unit, a page, can-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SYSTOR °15, May 26-28, 2015, Haifa, Israel.

Copyright © 2015 ACM 978-1-4503-3607-9/15/05. .. $15.00.
http://dx.doi.org/10.1145/2757667.2757682

not be erased on its own, but only with the rest of the pages
of a block. A block usually consists of 64 pages, with each
page being able to store up to 2048 bytes (Micron |[2008)
2010, 2011). When a block is erased to create free pages, the
valid data stored in the block needs to be preserved, i.e., writ-
ten to a page in another block to avoid data loss. Such writes
are not issued by the user but by the system, and as such not
necessary from the user’s point of view. We call them write
overhead. Since write overhead wears out our flash memory
(and consequently decreases its lifetime), it should be mini-
mized.

If some data gets updated often and it is always stored
in the same block, this block will be worn out quickly.
Such an access pattern is common in a real world environ-
ment (Chang and Du |2009; |Chang and Huang |2011). In-
stead, a logical data address is mapped to a physical page
address using a flash translation layer (FTL). FTL improves
write overhead significantly.

In Section [2] we will discuss various advanced heuristic
algorithms that manage to extend the lifetime of flash mem-
ory by moving data in a sophisticated way. In particular, the
internal storage capacity of the hardware is generally higher
than announced to the consumer, and this space overhead
is used to move data less often. It is known that write over-
head and space overhead are related; in general this relation
depends on the application that is using the flash memory.

We study the trade-off between write overhead w and
space overhead o in Section [5} We show that there is an
inversely proportional law connecting the two. If we assume
a worst possible application (an application that accesses
data in a worst-case way), any FTL algorithm must obey

ow > 1.

Moreover, in Section 4| we show that this inequality is
tight: Our FTL algorithm, the cycling algorithm, can achieve
equality, and hence is worst-case optimal.

In Section [6] we analyze the cycling algorithm with an
average-case analysis. More concretely, we assume that
some data is static and never updated. The remaining data
is dynamic and updated uniformly at random. In this setting
the cycling algorithm achieves ow < 1, more precisely the

1—a
pwT+oTe o \ith i, 8, and

Tf(,u-T+5-T<elaié)
 being the fraction of the flash memory that is filled with

static data, dynamic data, and no data, respectively.

write overhead is at most

2. Related Work

As mentioned in the introduction, FTLs have been around
as long as flash memory. Thus, we can only provide an
overview in this section.

The work closest to ours, as in that it also considers worst
cases analysis, is by Ben-Aroya and Toledo (Ben-Aroy and
Toledo2011). In their model the flash memory has 7" blocks
out of which only V are visible to the user, and the remaining
ones solely exist for the sake of wear leveling. They show
that there exists for every algorithm an input sequence such
that the algorithm can fulfill at most (7'—V +1)- H requests,
with H being the maximal number of writes a block can
endure. They assume that every block has exactly one page.
Since this guarantees that there is always a block that has
either only free pages or only invalid pages, this greatly
simplifies the problem. It is therefore not necessary preserve
the valid data stored in the block, i.e., write it to a page in
another block to avoid data loss. Hence, write overhead does
not exist.

Some papers assume a uniform distribution of write ac-
cesses and then try to find a closed form expression for write
amplification depending on the over-provisioning (Agarwal
and Marrow |[2010; Xiang and Kurkoski |[2011). They use
powerful (and therefore in practice rather slow) FTL algo-
rithms that can erase the block with the most invalid pages
if no block with a free page exists. Some work analyses spe-
cific strategies, e.g., choosing the “best” block from a slid-
ing window, again using a uniform distribution to model the
write accesses (Hu et al][2009). In our Section [} some data
is static and never updated and only the remaining data is
accessed uniformly at random. We consider the trade-off be-
tween space and write overhead and give a general bound.
The trim command, i.e., marking pages as invalid, and its
effects on write amplification, are also studied under a uni-
form write distribution (Frankie et al. [[2012). Non-uniform
write distributions are analyzed in (Desnoyers |2014)). They
employ the least recently written strategy, which is similar
to our cycling algorithm.

FTL heuristics have been around right from the start.
In addition to the mostly secret implementations by hard-
ware manufacturers, FTL algorithms have been published as
well. We can only list a small subset of these algorithms.
The so called dual-pool algorithm tries to store cold data,
i.e., data that is not accessed much, in blocks which have
been erased often (Chang |[2007). This work has been re-
fined later (Chang and Du |2009; |Chang and Huang ||2011}
Chang et al.[2013). Another approach is to use a log buffer
based FTL. This is a hybrid between page-level mapping
and block-level mapping. Requests are written to log blocks.

Once such a block is filled, the data is merged with other
data from the same LBA and written into a new block, thus
allowing block-level mapping. A popular FTL algorithm is
commonly referred to as FAST (Lee et al|2007). A survey
about FTL algorithms can be found in (Chang et al. |2006).

With the emergence of PCM-based memory, wear level-
ing remains an important topic even beyond current NAND
flash (Qureshi et al.|[2009). Low level technical details about
flash memory can be found in (Micron |2008| 2010} 2011).
There exists a journaling file system that is developed exclu-
sively with flash drives in mind (Woodhouse (201 1}).

Since details about flash memory and SSDs in particu-
lar were initially trade secrets and thus not accessible to re-
search, simulators were written to compensate for the se-
crecy of the manufacturers. One of them, CPS-SIM (Lee
et al. |2009), also takes the number of buses and low level
clocks into account. DiskSim, a disk simulator framework,
was extended to include energy usage by (Kim et al. |2009)
and parallelism and write ordering by (Agarwal |2008)).

3. Model

The flash memory we consider consists of n blocks by, . . .,
b,,—1. Bach block b; in turn consists of m pages pj, .. ., p’,.
A page is the smallest accessible unit, i.e., a page can only
be accessed (read or written) as a whole. The physical pages
in flash memory store data.

A physical page continuously cycles through three dis-
tinct states: free, valid, and invalid. First the page is free,
and data can be written into it. After data was written into the
page, the page is valid as it stores useful data. Later the data
might be updated, and stored in a free flash memory page.
The old page storing the old version of that data becomes in-
valid. However, the old page cannot be written again, first
it needs to be erased. Because of technical limitations of
NAND flash, all pages in a block must be erased together.
Before a block can be erased, all valid pages must first be
moved (written to other pages). After a block is erased, all
pages in the block are free again, and a life cycle of the page
is complete.

Let T be the total number of pages of our flash mem-
ory, that is, 7' = m - n. Let V denote the maximum num-
ber of valid pages that can be stored, the capacity avail-

T

able to the user. The ratio @ = v > 1 is referred to

as over-provisioning. We denote the space overhead with
o= % = a — 1. This o is the relative amount of storage
that is hidden from the user, and used to improve the lifetime
of our flash memory.

Since blocks can be erased only about 10,000 times, un-
balanced data access will wear out some blocks earlier than
others. The flash translation layer (FTL) maps logical ad-

dresses to physical pages This mapping is not static but

I'Some FTLs instead use a block based mapping scheme, where flash
memory is addressed on the level of blocks. In this paper we address
memory on the page level.

evolves over the life time of the flash memory, and is de-
termined by the FTL algorithm. Note that the FTL resides
inside the flash memory and is invisible to the user.

To write data on flash memory, a write request must to
be issued. A write request contains the data and a logical
address. The task of an FTL algorithm is to accept write
requests and choose for each write request a physical page,
where the data will be stored. We distinguish between two
types of write requests. To write new data or update existing
data, an external write request will be issued. Apart from
Section[6] we assume that an adversary issues these external
write requests. The adversary knows the FTL algorithm and
the current state of the flash memory at any moment. Note
that whenever a block b; that still contains valid pages will
be erased, these valid pages first need to be written to a free
page to avoid data loss. Thus, any FTL algorithm also needs
to issue internal write requests to avoid data loss.

Let E} and I}, be the number of external and internal
write requests written into a physical page p, of block b;, re-
spectively. Thus, the total number of external write requests
is E = Y. 52" Ei and the total number of internal
write requests is 7 = >/ S°7" | I This allows to define
the average number of external write requests per physical
page as E/T. The local write overhead ', of page pi is

% — 1, i.e., the total number of write requests over the

T
average number of write requests minus 1. The minus 1 is
included in the term since we focus on the overhead. We can
now define the write overhead w as

w = max wy
0<i<n—1,1<k<m

Ei+1}
= max % —1,.
0<i<n—1,1<k<m 7

Intuitively, this is means that we are interested in the worst
page. In the literature, write amplification A is defined as as
the total number of write requests W over the total number
of external write requests, i.e., A = % = E4I

We assume that the flash memory has a volatile memory
(RAM) of two blocks to temporarily store m incoming write
requests and every page of one single block. Hence, after
buffering m write requests a block b; can be read and its
valid pages stored in the buffer, then block b; can be erased,

and finally the m write requests can be written into block b;.

4. Cycling Algorithm

We now present the cycling algorithm. It keeps track of
the most recent block b; it has written data into. After m
write requests, these write requests are written as a whole
to the next block b; with j = ¢ + 1 mod n. For every valid
page of this block a new internal write request is issued to
avoid data loss. Note that if b; contains only valid pages,
then all these pages are written into the next block b; (with

4’ =i+ 2 mod n). This process is repeated until less than

m write requests are buffered. This must eventually happen
because we have T' > V. The pseudocode is presented in
Algorithm I] This algorithm is also known as circular buffer
scheme and a special case of the algorithm presented in (Hu
et al.|2009). Note that buffering the data, but writing m write
requests at once is not necessary, but it simplifies the proof.
Before we start, we need a small helper lemma.

Algorithm 1 Cycling
1: 140
2: for every write request do
3: while number of outstanding write requests > m do
4: issue write request for every valid page from
block b;
erase block b;
write data from write requests into b;
141+ 1modn
end while
end for

R A4

Lemma 1. The write overhead w is always larger than the
ratio between the total number of internal and external write
requests, i.e., w > %

Proof. To see that the inequality holds consider the average
local write overhead of an arbitrary page p; of block b,.

We have E) = E/T and I} = I/T and therefore w) =

ﬁ —-1= E/}Tjiﬁ/T -1= é The pigeon hole principle

now yields that there must be a physical page that has local
write overhead of at least é There can be a page with even
larger write overhead. O

Theorem 2. The cycling algorithm guarantees ow < 1.

Proof. To see this, consider one run from “left to right”, i.e.,
from block by to block b,,_1. We briefly show that no logical
address can cause two internal write requests. Consider a
fixed logical address. Wlog let b; be the block that is erased
and in which the corresponding data currently is stored in.
Since it is valid, this causes an internal write request. Now,
the write request for this logical address is in the queue and
later written to some block b; with j > . The next write
requests are written into block b;1. Thus, no second write
request for the data of the logical address is issued in this run.
In the beginning, there are V' valid pages and thus T'—V free
or invalid pages. While writing 7" pages, we have to issue up
to V internal write requests to avoid data loss. Thus, in one
cycle the T write requests are made up by V internal and
I’ external write requests. Since exactly the same number of
write requests is written into each block, the average local
write overhead is identical to the write overhead. Thus, we

obtain = L5750 — 1 = LAGHGZI —1 = 7y =
v _ 1 _1 0
V(a—1) a—1 o

5. Lower Bound

We now show that there is no algorithm that can be better
than our simple algorithm in the worst case. But before we
continue, let us introduce a few terms. We define d to be
é - m. Let a sparse block denote a block with less than
d valid pages, and let a dense block denote a block with
at least d valid pages. To improve readability, we assume
wlog that d is an integer. Note that each block can be dense,
i.e., contain at least d valid pages because we have up to
V' valid pages in total. To improve readability, we assume
that there are m additional valid pages stored on the flash
memory. Thus, even when the algorithm has buffered m

write requests, every block can still be dense.

Theorem 3. No algorithm can guarantee cw < 1.

Proof. We will first make a few simplifying assumptions that
will be lifted later on. We assume that every block contains
exactly the same number of valid pages, i.e., d = é -m,
in the beginning and we assume that every algorithm writes
only once its buffer is full. Furthermore, we do not allow
static wear leveling, i.e., moving valid pages from one block
to another without an exogen write request.

The main idea of this proof is that the adversary always
invalidates pages in such a way that every block remains
dense. Thus, only a “few” external write requests can be
written into a block until there are no free pages left in a
block. Because the block is still dense, “a lot” of internal
write requests have to be issued to avoid data loss. Thus, the
write overhead is “high” and therefore also the product of
space and write overhead.

Recall that I denotes the total number of internal write
requests and E denotes the total number of external write
requests. As shown in Lemma we have w > é Thus, it
suffices to show that é > % holds. We do this by carefully
accounting for the number of external and internal write
requests per block and showing that no block achieves a
better ratio.

When any algorithm writes the m write requests into a
block, it has to issue d internal write requests. Note that
this means that the buffer of the algorithm is not empty, but
contains d write requests. From now on, it can accept m — d
external write requests until its buffer is filled and it writes

1
- . —m
m pages. Thus, the write overhead is —mi 7= T, =
1 .. . °
o = ;17 = +. This is equivalent to ow = 1.
-1 a—1 o

We start by lifting the assumption that any algorithm
writes data only when its buffer is full. The proof above
can easily be adapted such that the adversary no longer
invalidates pages from the one dense block, but from any
dense block. Note that such a block must always exist since
the average number of valid pages in a block is d. If we
now consider the write overhead of each block separately,
it is easy to see that the same approach works with more
fine grained writing/invalidating. Every block can accept at

most m — d external write requests and issues d additional
internal write requests when it is erased. Thus, we obtain
w=d/(m—d)=1.

Next, we allow the data to be unevenly distributed on
the flash memory in the beginning. Note that once again
the adversary only invalidates pages of dense blocks. This
page now needs to be written into a new block. Let b; be
the block selected by the algorithm. If b; is dense, then the
algorithm can only write m — d pages into it before it is
full. If b; is now erased, there were at most m — d external
write requests but m write requests in total, thus the write
overhead is d/(m — d) = %. Hence, let b; be a sparse block.
The algorithm can write up to d pages per sparse block and
thus up to n - d pages in total in sparse blocks until before
there is no sparse block left. Note that the adversary will not
invalidate a page of a sparse block and thus will not create a
sparse block. Hence, at most V' external write requests can
be written and therefore it does not affect the asymptotic
behavior.

We continue by showing how to lift the assumption that
the algorithm does not perform static wear leveling. We
start with the simple case that an algorithm erases blocks
while they still have valid pages. If algorithm A chooses
to erase this block prematurely, then there were at most
m —d — 1 external write requests written to this block. Since
the adversary ensures that every block is dense, there are d
internal write requests. Thus, the write overhead is at least
d/(m —d—1) > d/(m — d) and therefore cw > 1.

We now focus on more interesting static wear leveling,
i.e., valid pages being moved around blocks. We proof our
result by carefully accounting for the external and internal
write requests. Let k& be the number of pages that have been
moved away from block b; before block b; needs to be
erased. Note that if this block is not erased, then it is clear
that issuing the k internal write requests only increases the
write overhead. Thus, we can assume that block b; is erased
later on. Note that valid pages need to be preserved and thus
internal write requests need to be issued. If pages from a
dense block are moved and the block remains dense, then it
is easy to see that later, when this block is erased, at most
m — d external write requests could have been written into
this block and d internal write requests are issued. Thus,
we obtain the familiar expression d/(m — d) for the write
overhead. The same argument holds if the page becomes
dense again before it is being erased. Hence, let s < d be
the number of valid pages right after it has been erased the
next time. We proceed by showing that between now and the
last time this block was erased, its write overhead is % Since
the block started with d valid pages, it could only accept
m — d external write requests. Because of the static wear
leveling at least d — s internal write requests were issued.
To preserve the data another s internal write requests were
issued. Combined this yields ((d — s) + s)/(m — d) =
d/(m — d). Hence, static wear leveling has not decreased

the write overhead. But now the block contains only s valid
pages. We will now proceed to show that the result of it also
does not decrease the write overhead.

We now show that between now and until the next time
block b; is erased, the write overhead is at least «/(a —
1). Keep in mind that the adversary will continue to only
invalidate pages from dense blocks. Thus, this block will
inevitably become dense. We consider the d — s pages that
were moved and denote them emigrant pages. Until the next
time this block is erased, there can be m — s many external
write requests and there are at least d many internal write
requests. In addition to this, consider the blocks storing an
emigrant page. It is easy to see that each of these blocks
now can take one less external write request before being
erased. We account these to block b;. Thus, there are m —
s — (d — s) = m — d many external write requests. The
number of internal write requests is d (simply to preserve
the valid pages). Thus, we obtain w = d/(m — d). O

5.1 Total Number of Pages Written

Note that the blocks of a flash memory need to be used
evenly to maximize the life of the flash memory. In a perfect
scenario flash memory with 7" pages and each block being
able to withstand H writes, then this flash memory can
endure up to H - T pages being written before its end of
life. Due to the fact that not every block is worn equally and
write overhead, this cannot be achieved.

It is easy to see that the cycling algorithm wears the
blocks out evenly. Hence, the write overhead is the only
criteria, which determines the how many write requests can
be written. Since its write overhead is optimal, the cycling
algorithm can write a Z—ﬁ pages. This leads to the following
corollary.

Corollary 4. The cycling algorithm maximizes the amount
of data written on the flash memory in the worst case.

6. Different Access Pattern

Until now we have assumed that an adversary chooses which
page is invalidated and we have given the adversary com-
plete knowledge about the employed wear leveling algo-
rithm. This is a rather pessimistic point of view. Thus, we
now assume a simple access pattern and analyze the perfor-
mance of the algorithm described above. It is easy to see that
if data is simply written sequentially and the “oldest” data is
always being invalidated, then the cycling algorithm is op-
timal and has no write overhead (independent of the space
overhead). Hence, the effect of the access pattern should not
be neglected.

6.1 Uniform Write Access Pattern

Let us describe a more realistic write access pattern, albeit a
very simple one: the logical address of a write request is cho-
sen uniformly at random. We say that a write request is ran-
dom when its logical address is chosen uniformly at random.

Let us give an intuition why this write access pattern should
positively influence the write overhead. The worst case anal-
ysis assumed that while cycling from block by to b,,_; the V
internal write requests were issued. But if the write requests
are uniform at random, some pages will inevitably be inval-
idated and thus it is not necessary to issued an internal write
request for these.

Lemma 5. The cycling algorithm has an expected write
overhead of at most —5— if the write requests are random.

ae—e

Proof. We first calculate the probability that a page in a
block that is currently being written into is still valid when
the algorithm has cycled through the flash memory once and
then use this to calculate the expected write overhead.
Consider a fixed physical page. We use the same argu-
mentation as in the proof of Theorem [2| to show that there
are at least 7' — V' external write requests until the cycling
algorithm writes again in this block. The probability that the
logical address associated with this physical page is invali-
dated by one external write request is % Thus, the probabil-
ity that it is not invalidated and still valid after 7'—V external
write requests is at most (1 — %)T_V =(1- %)V(a_l) ~
e~(@=1)_ We conclude that the expected number of internal
write requests is at most e ~(*~1) .V while writing V' pages.
Note that it suffices to consider V' pages because we only
need to look at the V' logical addresses that are valid. Thus,

. —(a—1)
e Voo e
we obtain w < = —— 7 = soe .- O
e _ [i g —
Note thatow < 02— = O c(@aea—1-1) = (otl)eo—1 —
o <L <.

v ter -1 = &
In order to make our access pattern more realistic, we

divide the data into two types: static and dynamic. Static
data is data that is never invalidated whereas dynamic data is
data that is invalidated uniformly at random. Let y, 6, and ¢
be the fraction of static data, dynamic data, and free space,
respectively. Thus, we have p+ 6 + ¢ = 1.

Theorem 6. The cycling algorithm has write overhead w <
H'T+5-T-61(:76a
o -
T—(wT+5T-e a5)

Proof. 1t is easy to see that while cycling from “left” to
“right”, i.e., from block by to block b,_1, every page con-
taining static data is still valid and thus causes an internal
write request to avoid data loss. The dynamic data can be
analyzed as before. Consider a fixed valid physical page con-
taining dynamic data. The probability that one external write
request invalidates this page is &%' While cycling from left
to right, we can lower bound the number of external write
requests by 7'— V. Thus, the probability that this page is not
invalidated while cycling once from left to right is at most
(1 - s5)T~V ~ e’a5". Hence, the number of internal write
requests from dynamic data is § - T - ea5" while cycling
through the flash memory once. Thislleads to an expected
pwT4+6-T-e ad_
T—(;L~T+§~T~elf;75a) =

write overhead of at most

References

R. Agarwal and M. Marrow. A closed-form expression for write
amplification in NAND Flash. In GLOBECOM Workshops,
pages 1846-1850, 2010.

N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy. Design Tradeoffs for SSD Performance.
In USENIX Annual Technical Conference on Annual Technical
Conference, ATC, pages 57-70, 2008.

A. Ben-Aroya and S. Toledo. Competitive Analysis of Flash Mem-
ory Algorithms. ACM Trans. Algorithms, 7(2):23:1-23:37, Mar.
2011.

L.-P. Chang. On Efficient Wear Leveling for Large-scale Flash-
memory Storage Systems. In Proceedings of the ACM Sympo-
sium on Applied Computing, SAC, pages 1126—-1130, 2007.

L.-P. Chang, T.-Y. Chou, and L.-C. Huang. An Adaptive, Low-cost
Wear-leveling Algorithm for Multichannel Solid-state Disks.
ACM Trans. Embed. Comput. Syst., 13(3):55:1-55:26, Dec.
2013.

L.-P. Chang and C.-D. Du. Design and Implementation of an Ef-
ficient Wear-leveling Algorithm for Solid-state-disk Microcon-
trollers. ACM Trans. Des. Autom. Electron. Syst., 15(1):6:1-
6:36, Dec. 2009.

L.-P. Chang and L.-C. Huang. A Low-cost Wear-leveling Algo-
rithm for Block-mapping Solid-state Disks. In Proceedings of
the SIGPLAN/SIGBED Conference on Languages, Compilers
and Tools for Embedded Systems, LCTES, pages 31-40, 2011.

T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-
J. Song. System Software for Flash Memory: A Survey. In
Proceedings of the International Conference on Embedded and
Ubiquitous Computing, EUC, pages 394-404, 2006.

P. Desnoyers. Analytic Models of SSD Write Performance. Trans.
Storage, 10(2):8:1-8:25, Mar. 2014.

T. Frankie, G. Hughes, and K. Kreutz-Delgado. A Mathematical
Model of the Trim Command in NAND-flash SSDs. In Proceed-
ings of the 50th Annual Southeast Regional Conference, ACM-
SE, pages 59-64, 2012.

X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write
Amplification Analysis in Flash-based Solid State Drives. In
Proceedings of of SYSTOR, SYSTOR, pages 10:1-10:9, 2009.

Y. Kim, B. Tauras, A. Gupta, D. Mihai, and N. B. Urgaonkar. Flash-
Sim: A Simulator for NAND Flash-based Solid-State Drives,
2009.

J. Lee, E. Byun, H. Park, J. Choi, D. Lee, and S. H. Noh. CPS-SIM:
Configurable and Accurate Clock Precision Solid State Drive
Simulator. In Proceedings of the ACM Symposium on Applied
Computing, SAC, pages 318-325, 20009.

S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, and H.-J.
Song. A Log Buffer-based Flash Translation Layer Using Fully-
associative Sector Translation. ACM Trans. Embed. Comput.
Syst., 6(3), July 2007.

Micron. Wear-Leveling Techniques in NAND Flash Devices, 2008.

Micron. NAND Flash 101: An Introduction to NAND FLash and
How to Design It In to Your Next Product, 2010.

Micron. Wear-Leveling in Micron NAND Flash Memory, 2011.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Las-
tras, and B. Abali. Enhancing Lifetime and Security of PCM-
based Main Memory with Start-gap Wear Leveling. In Proceed-
ings of theAnnual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO, pages 14-23, 2009.

D. Woodhouse. JFFS : The Journalling Flash File System, 2001.

L. Xiang and B. M. Kurkoski. An Improved Analytical Expression
for Write Amplification in NAND Flash. CoRR, 2011.

	Introduction
	Related Work
	Model
	Cycling Algorithm
	Lower Bound
	Total Number of Pages Written

	Different Access Pattern
	Uniform Write Access Pattern

