
Distributed Coloring Depending on the
Chromatic Number or the Neighborhood

Growth

Johannes Schneider1, Roger Wattenhofer1

Computer Engineering and Networks Laboratory, ETH Zurich, 8092 Zurich,
Switzerland

Abstract1

We deterministically compute a ∆+1 coloring in time O(∆5c+2 ·(∆5)2/c/(∆1)ε+
(∆1)ε + log∗ n) and O(∆5c+2 · (∆5)1/c/∆ε + ∆ε + (∆5)d log∆5 log n) for arbi-
trary constants d, ε and arbitrary constant integer c, where ∆i is defined as the
maximal number of nodes within distance i for a node and ∆ := ∆1. Our greedy
algorithm improves the state-of-the-art ∆+1 coloring algorithms for a large class
of graphs, e.g. graphs of moderate neighborhood growth. We also state and ana-
lyze a randomized coloring algorithm in terms of the chromatic number, the run
time and the used colors. If ∆ ∈ Ω(log1+1/ log∗ n n) and χ ∈ O(∆/ log1+1/ log∗ n n)
then our algorithm executes in time O(logχ + log∗ n) with high probability.
For graphs of polylogarithmic chromatic number the analysis reveals an expo-
nential gap compared to the fastest ∆ + 1 coloring algorithm running in time
O(log∆ +

√
log n). The algorithm works without knowledge of χ and uses less

than ∆ colors, i.e., (1 − 1/O(χ))∆ with high probability. To the best of our
knowledge this is the first distributed algorithm for (such) general graphs taking
the chromatic number χ into account.

1 Introduction

Coloring is a fundamental problem with many applications. Unfortunately, even
in a centralized setting, where the whole graph is known, approximating the
chromatic number (the minimal number of needed colors), is currently compu-
tationally infeasible for general graphs and believed to take exponential running
time. Thus, basically any reduction of the used colors below ∆ + 1 – even just
to ∆ – is non-trivial in general. Looking at the problem in a distributed setting,
i.e., without global knowledge of the graph, makes the problem harder, since
coloring is not a purely “local” problem, i.e., nodes that are far from each other
have an impact on each other (and the chromatic number). Therefore, it is not
surprising that all previous work has targeted to compute a ∆ + 1 coloring in

1 This Technical Report (ID: TIK- Report-335) contains an omitted proof of the
18th International Colloquium on Structural Information and Communication
Complexity (SIROCCO), June 26-29, 2011 conference paper.

general graphs as fast as possible (or resorted to very restricted graph classes).
However, this somehow overlooks the original goal of the coloring problem, i.e.,
use as little colors as possible. Though in distributed computing the focus is often
on communication, in many cases keeping the number of colors low outweighs
the importance of minimizing communication. For example, a TDMA schedule
can be derived from a (2-hop) coloring. The length of the schedule (and thus the
throughput of the network) is determined by the number of employed colors.

In this paper, we also consider fast distributed computation of ∆ + 1 col-
orings in the first part. In the second part we are interested in both using less
than ∆ + 1 colors and efficient computation. For sparse graphs, such as trees
and planar graphs, as well as for dense graphs, e.g. cliques and unit disk graphs
(UDG), efficient distributed algorithms are known that have both “good” time
complexity and “good” approximation ratio of the chromatic number. Sparse
graphs typically restrict the number of edges to be linear in the number of
nodes. Unit disk graphs restrict the number of independent nodes within dis-
tance i to be bounded by a polynomial function f(i). Our requirements on the
graph are much less stringent than for UDGs, i.e., we do not restrict the num-
ber of independent nodes to grow dependent on the distance only. We allow for
growth of the neighborhood dependent on the distance and also on ∆, i.e., n. For
illustration, if the number of nodes within distance i is bounded by ∆1+(i−1)/100

our deterministic algorithm improves on the state-of-the-art algorithms running
in linear time in ∆ by more than a factor of ∆1/10.2 Note, for any graph the size
of the neighborhood within distance i is bounded by ∆i. Additionally, if the size
of the neighborhood within distance i of a graph is lower bounded by ∆c·i for an
aribtrary constant c then the graph can have only small diameter, i.e. O(log∆).
In such a case a trivial algorithm collecting the whole graph would allow for a
coloring exponentially faster than the current state of the art deterministic algo-
rithms running in time O(∆+ log∗ n) for small ∆ already. Therefore, we believe
that for many graphs that are considered “difficult” to color we significantly im-
prove on the best known algorithms. The guarantee on the number of used colors
is the same as in previous work, i.e., ∆+ 1. Despite the hardness of the coloring
problem, intuitively, it should be possible to color a graph with small chromatic
number with fewer colors and also a lot faster than a graph with large chromatic
number. Our second (randomized) algorithm shows that this in indeed the case.
The algorithm works without knowledge of the chromatic number χ.

2 Model and Definitions

Communication among nodes is done in synchronous rounds without collisions,
i.e., each node can exchange one distinct message with each neighbor. Nodes
start the algorithm concurrently. The communication network is modeled with a
graph G = (V,E). The distance between two nodes u, v is given by the length of
the shortest path between nodes u and v. For a node v its neighborhood Nr(v)

2 Generally, for a graph with ∆5c+2 · (∆5)2/c/(∆1)ε + log∗ n = (∆1)ε for any choice of
parameters ε and c, the best known run time (linear in ∆) is cut by a factor ∆1−ε.

represents all nodes within distance r of v (not including v itself). By N(v) we
denote N1(v) and by N+(v) := N(v)∪ v. The degree d(v) of a node v is defined
as |N(v)|, d+(v) := |N+(v)|, ∆ := maxu∈V d(u) and ∆i := maxu∈V |N i(u)|. By
Gi = (V,Ei) of G = (V,E) we denote the graph where for each node v ∈ V
there is an edge to each node u ∈ N i(v). In a (vertex) coloring any two adjacent
nodes u, v have a different color. A set T ⊆ V is said to be independent in G if
no two nodes u, v ∈ T are neighbors. A set R ⊆ V is (α, β)-ruling if every two
nodes in the set R have distance at least α and any node not in the set R has a
node in the set within distance β. The function log∗ n states how often one has
to take the (iterated) logarithm to get at most 1, i.e., log(log∗ n) n ≤ 1. The term
“ with high probability” abbreviated by w.h.p. denotes a number 1 − 1/nc for
an arbitrary constant c > 1.

Our algorithm is non-uniform, i.e., every node knows an upper bound on the
total number of nodes n and the maximal degree ∆. We also use the following
Chernoff bound:

Theorem 1 The probability that the number X of occurred independent events
Xi ∈ {0, 1}, i.e., X :=

∑
Xi, is less than (1− δ) times a with a ≤ E[X] can be

bounded by Pr(X < (1 − δ)a) < e−aδ
2/2. The probability that the sum is more

than (1+δ)b with b ≥ E[X] with δ ∈ [0, 1] can be bounded by Pr(X > (1+δ)b) <

e−bδ
2/3.

Corollary 2 The probability that the number X of occurred independent events
Xi ∈ {0, 1}, i.e., X :=

∑
Xi, is less than E[X]/2 is at most e−E[X]/8 and the

probability that is more than 3E[X]/2 is bounded by e−E[X]/12.

3 Related Work

Distributed coloring is a well studied problem in general graphs in the message
passing model e.g. [3, 4, 15, 13, 12, 11]. There is a tradeoff between the number
of used colors and the running time of an algorithm. Even allowing a constant
factor more colors can have a dramatic influence on the running time of a col-
oring algorithm, i.e., in [15] the gap between the running time of an O(∆) and
an ∆+ 1 coloring algorithm can be more than exponential for randomized algo-
rithms. More precisely, a ∆+ 1 coloring is computed in time O(log∆+

√
log n)

and an O(∆ + log1+1/ log∗ n n) coloring in time O(log∗ n). When using O(∆2)
colors, a coloring can be computed in time O(log∗ n) [12], which is asymptoti-
cally optimal for constant degree graphs due to a lower bound of time Ω(log∗ n)
for three coloring of an n-cycle. Using O(∆1+o(1)) colors [4] gives a determin-
istic algorithm running in time O(f(∆) log∆ log n) where f(∆) = ω(1) is an
arbitrarily slow growing function in ∆. To this date, the fastest deterministic
algorithm to compute a ∆+ 1 coloring in general graphs requires O(∆+ log∗ n)

[3, 10] or nO(1)/
√
logn time [13]. Algorithm [13] computes graph decompositions

recursively until the maximum degree in the graph is sufficiently small. To deal
with large degree vertices, a ruling forest is computed for each decomposition

and each tree is collapsed into a single vertex. The algorithms [3, 10] improved
on [11] by a factor of log∆ through employing defective colorings, i.e., several
nodes initially choose the same color. However, through multiple iterations the
number of adjacent nodes with the same color is reduced until a proper coloring
is achieved. In [4] defective colorings were combined with tree decompositions
[2]. In comparison, our deterministic algorithm improves the linear running time
in ∆ by a factor ∆d for a constant d for a large class of graphs by iteratively
computing ruling sets, such that a node in the ruling set can color its two hop
neighborhood.

Overall ∆+1 coloring has probably attracted more attention than employing
O(∆) or more colors. Using less than ∆ + 1 colors is not possible for complete
graphs – not even in a centralized setting, where the entire graph is known. An
algorithm in [9] parallelizes Brooks’ sequential algorithm to obtain a ∆ coloring
from a ∆+ 1 coloring. In a centralized setting the authors of [1] showed how to
approximate a three-colorable graph using O(n0.2111) colors. Some centralized
algorithms iteratively compute large independent sets, e.g. [5]. It seems tempt-
ing to apply the same ideas in a distributed setting, e.g. a parallel minimum
greedy algorithm for computing large independent sets is given in [8]. It has
approximation ratio (∆+ 2)/3. However, the algorithm runs in time polynomial
in ∆ and logarithmic in n and thus is far from efficient. For some restricted
graph classes, there are algorithms that allow for better approximations in a
distributed setting. A ∆/k coloring for ∆ ∈ O(log1+c n) for a constant c with
k ≤ c1(c) log∆ where constant c1 depends on c is given in [7]. It works for
quite restricted graphs (only), i.e., graphs that are ∆-regular, triangle free and
∆ ∈ O(log1+c n). Throughout the algorithm a node increases its probability to
be active. An active node picks a color uniformly at random. The algorithm runs
in O(k+log n/ log∆) rounds.Constant approximations of the chromatic number
are achieved for growth bounded graphs (e.g. unit disk graphs) [14] and for many
types of sparse graphs [2]. In [6] the existence of graphs of arbitrarily high girth
was shown such that χ ∈ Ω(∆/ log∆). Since graphs of high girth locally look
like trees and trees can be colored with two colors only, this implies that color-
ing is a non-local phenomenon. Thus, a distributed algorithm that only knows
parts of the graph and is unaware of global parameters such as χ, has a clear
disadvantage compared to a centralized algorithm.

We give a randomized coloring algorithm in terms of the chromatic number
of a graph which uses ideas from [15]. Given a set of colors {0, 1, . . . , f(∆)} for
an arbitrary function f with f(x) ≥ x [15] computes an f(x) + 1 coloring. The
run time depends on f , i.e. for f(∆) := ∆ Algorithm DeltaPlus1Coloring [15]

takes time O(log∆ +
√

log n). For f(∆) := O(∆ + log1+1/ log∗ n n) Algorithm
ConstDeltaColoring [15] takes only O(log∗ n) time. Both Algorithms from [15]
operate analogously: In each communication round a node chooses a subset of
all available colors and keeps one of the colors, if no neighbor has chosen the same
color. For our deterministic coloring we employ the (deterministic) Algorithm
CoordinateTrials[15] for computing ruling sets from [15] as a subroutine. Due to
Theorem 16 in [15] a (2, c)-ruling set is computed using CoordinateTrials(d,c) in

time 2cd1/c from an initial coloring {0, 1, . . . , d}. The algorithm partitions the
digits of a node’s label, e.g. color, into c equal parts (with the same number of
digits). A node v computes a rank Rank(v) consisting of c bits in each round
j, where bit i is 1 if the ith part equals round j and 0 otherwise. Based on the
rank a node either continues the algorithm (and eventually joins the ruling set)
or stops. Nodes with rank larger 0 compete to continue and force other nodes
to stop the algorithm. More precisely, a node v tells its neighbors with distinct
rank to halt the algorithm, if in the kth round of the competition its Rank(v)
equals k.

4 Deterministic Coloring

For coloring one can either let each node decide itself on a color or decompose
the graph into (disjoint) clusters and elect a leader to coordinate the coloring in
a cluster. Our deterministic algorithm follows the later strategy by iteratively
computing ruling sets. Each node in the set can color itself and (some) nodes up
to distance 2 from it (in a greedy manner). To make fast progress, only nodes
can join the ruling set that color many nodes. Once, no node has sufficiently
many nodes to color within distance two, i.e., less than ∆ε (for a parameter ε of
the algorithm), the nodes switch to another algorithm [3, 10].

When a node v is in the ruling set, it gets to know all nodes N3(v) and assigns
colors to all uncolored nodes N2(v) by taking into account previously assigned
colors. Node v can assign colors, for instance, in a greedy manner, i.e., it looks
at a node u ∈ N2(v) and picks the smallest color that is not already given to a
neighbor of w ∈ N(u). Potentially, two nearby nodes u, v in the ruling set might
concurrently assign the same colors two adjacent nodes, e.g. node u assigns 1
to x and node v assigns 1 to y and x, y are neighbors. To prevent this problem
any two nodes u, v in the ruling-set must have distance at least 6 to avoid that
neighbors are potentially assigned the same color. Thus, the algorithm computes
a (6, 5k)- ruling set, where k is a parameter of the ruling-set algorithm [15]. In
fact, the ruling-set algorithm from [15] computes only a (2, k)-ruling set for the
graph G. However, if the ruling set is computed on the graph Gi then we get a
(1 + i, ik)-ruling set. Note that any algorithm working on the graph Gi can be
run by using the graph G at the price of prolonging the algorithm by a factor of
i and, potentially, requiring larger messages. This is because a message between
two adjacent nodes u, v in Gi might have to be forwarded along up to i edges in
G and a single node might have to forward several messages at a time from its
neighbors. Computing a (6, 5k)-ruling set in turn demands that two nodes u, v
within distance 5 have distinct labels, therefore we start out by computing an
O(|N5(v)|2) coloring in the graph G5 using [12] (or [4] to compute an O(|N5(v)|)
coloring).

After the initial coloring, a node participates in iteratively computing (6, 5k)-
ruling sets until it has color less than ∆ + 1, or it and all neighbors have less
than ∆ε neighbors with color larger than ∆ for some parameter ε. The remaining
nodes (with color larger ∆) are taken care of using [3, 10].

Algorithm RulingColoring for arbitrary ε and any integer k

1: col(v) := Compute an O(|N5(v)|2) coloring in the graph G5 using [12]
2: while col(v) > ∆ ∧ ∃u ∈ N+(v) with |{w ∈ N(u)|col(w) > ∆}| > ∆ε do
3: Compute a (6, 5k)-ruling set R using [15]
4: if v ∈ ruling set R then
5: for all w ∈ N+(v) with |{x ∈ N(w)|col(x) > ∆}| > ∆ε do
6: (Greedily) color all nodes u ∈ N(w) for which col(u) > ∆
7: end for
8: end if
9: end while

10: Execute Algorithm [3] if col(v) > ∆

Lemma 1. A (6, 5c)-ruling set is computed in time O(|N5(v)|2/c) (Line 1 Al-
gorithm RulingColoring).

Proof. Due to Theorem 16 in [15] a (2, c)-ruling set can be computed deter-
ministically using Algorithm CoordinateTrials(d,c) in time 2cd1/c in a graph G
from an initial d + 1 coloring. The algorithm only requires that two adjacent
nodes have distinct colors. Since a node v has a distinct color from any node
u ∈ N5(v), any two adjacent nodes in G5 have distinct colors. Thus we can run
CoordinateTrials(|N5(v)|2, c) to compute a (2, c)-ruling set in G5, i.e., a (6, 5c)-
ruling set in G, in time O(c2c|N5(v)|2/c) = O(|N5(v)|2/c), since c is a constant.
Two nodes that are adjacent in G5 have distance 1 to 5 in G. If two nodes are at
distance 2 in G5 then they are at distance 6 to 10 in G. Thus, we get a (6, 5c)-
ruling set, since any two nodes in G5 at distance 2 have distance at least 6 in
G5 and any two nodes at distance c in G5 have distance at most 5c in G.

Theorem 3 Algorithm RulingColoring computes a ∆ + 1 coloring in time
O(∆5c+2 · (∆5)2/c/∆ε +∆ε + log∗ n).

Proof. Any node v that participates in computing a ruling set, can color at least
∆ε nodes within distance 5c + 2. This is because a node only takes part in the
computation, if there is a node u ∈ N+(v) with at least ∆ε uncolored neighbors.
If a node enters the ruling set it can color itself and all nodes w ∈ N(u). By
definition of a (6, 5c)-ruling set any two nodes have distance 6. Therefore, if all
nodes in the ruling set color nodes at distance 2 from them, there will not be
any color conflicts. Furthermore, every node gets a node in the ruling set within
distance 5c. Any node that has more than ∆ε uncolored neighbors, gets at least
∆ε colored nodes within distance 5c+ 2 by computing one ruling set. The total
time until node v gets colored or has less than ∆ε colored neighbors is given
by the following expression: The total number of nodes |N5c+2(v)| ≤ ∆5c+2

within distance 5c + 2 divided by the number of nodes that get colored for a
computation of a ruling set, i.e., at least ∆ε, multiplied by the time it takes
to color the nodes and to compute one ruling set, i.e., O((∆5)2/c) (see Lemma
1). In total this results in time O(∆5c+2/∆

ε · (∆5)2/c). To color the remaining
nodes, i.e., at most ∆ε neighbors of each node, using [3] (or [10]) takes time

O(∆ε+log∗ n). Computing an O(|N5(v)|2) coloring in graph G5 using [12] takes
time O(log∗ n).

Depending on the maximal degree ∆, it might be better to compute an
(initial) O(|N5(v)|) coloring in time O((∆5)c0 log∆5 log n) for an arbitrary small
constant c0 using [4]. The time complexity changes to O(∆5c+2 · (∆5)1/c/∆ε +
∆ε + (∆5)d log∆5 log n) for arbitrary small d.

5 Coloring Depending on the Chromatic Number

The algorithm (but not the analysis) itself is straight forward without many
novel ideas. In the first two rounds a node attempts to get a color from a set
with less than ∆ colors. Then, (essentially) coloring algorithms from [15] are
used to color the remaining nodes.

Let ∆0 := ∆ be the maximal size of a neighborhood in the graph, where all
nodes are uncolored, and let N(v) be all uncolored neighbors of node v (in the
current iteration). The algorithm lets an uncolored node v be a active twice with
a fixed constant probability 1/c1. An active node chooses (or picks) a random
color from all available colors in the interval [0, ∆0/2−1]. Node v obtains its color
and exits the algorithm, if none of its neighbors N(v) has chosen the same color.
After the initial two attempts to get colored each node v computes how many
neighbors have been colored and how many colors have been used. The difference
denotes the number of “conserved” colors nc(v). The algorithm can use the
conserved colors to either speed up the running time, since more available colors
render the problem simpler, e.g. allow for easier symmetry breaking, or to reduce
the number of used colors as much as possible. In Algorithm FastRandColoring
we spend half of the conserved colors for fast execution and preserve the other
half to compute a coloring using ∆0 + 1 − nc(v)/2 colors. A node v repeatedly
picks uniformly at random an available color from [0, ∆0 + 1 − nc(v)/2] using
Algorithm DeltaPlus1Coloring until the number of available colors is at least a
factor two larger than the number of uncolored neighbors. Afterwards it executes
Algorithm ConstantDeltaColoring [15] using 2∆ colors.

If an event occurs with high probability then conditioning on the fact that
the event actually took place does not alter the probability of other likely events
much as shown in the next theorem. It is a (slight) generalization of Theorem 2
from [15].

Theorem 4 For nk0 (dependent) events Ei with i ∈ {0, ..., nk0−1} and constant
k0, such that each event Ei occurs with probability Pr(Ei) ≥ 1 − 1/nk for k >
k0 + 2, the probability that all events occur is at least 1− 1/nk−k0−2.

Proof. For an event Ei let SEi
⊆ Ω be all elementary events from all pos-

sible events Ω for which Ei cannot happen. By definition Pr(Ei) = 1 −∑
F∈SEi

Pr(F)). We want to show that Pr(∧i∈{0,...,nk0−1}Ei) ≥ 1− 1/nk−k0−2.

Since Pr(∧i∈{0,...,nk0−1}Ei) = Pr(E0) · Pr(E1|E0) · Pr(E2|E0 ∧ E1) · ... ·

Algorithm FastRandColoring

1: col(v) := none
2: for i = 0..1 do
3: choice(v) := With probability 1/c1 random color from interval [0,∆0/2− 1] else

none
4: if choice(v) 6= none ∧ @u ∈ N(v), s.t.choice(u) = choice(v) ∨ col(u) = choice(v)

then col(v) := choice(v) and exit end if
5: end for
6: nc(v) := (∆− |N(v)|)− |{col(u)|u ∈ N(v)}|
7: C(v) := [0,max(3∆0/4,∆0 + 1− nc(v)/2] \ {col(u)|u ∈ N(v)} {available colors}
8: Execute Algorithm DeltaPlus1Coloring [15] until C(v) ≥ 2|N(v)|
9: Execute Algorithm ConstDeltaColoring [15]

Pr(Enk0−1| ∧i∈{0,...,nk0−2} Ei) we can also derive lower bounds for the condi-
tional probabilities Pr(Ei| ∧i∈T,T⊂∈{0,...,nk0−2} Ei). We assume a worst case
correlation among events Ei, i.e. the occurrence of an event Ei has the worst
impact on the probability that another event Ej occurs. Given that the event
Ei occurs, all elementary events SEi

for which Ei cannot happen, are known
not to occur. They can be excluded from Ω, when computing the probability
of another event Ej , i.e. Pr(Ej |Ei). Thus, the elementary events that can oc-
cur given Ei are Ω|i := Ω \ SEi . Since Pr(Ej |Ei) is a probability distribution,
the sum of the probabilities Pr(F |Ei) of all elementary events F ∈ Ω|i must
be one, i.e.

∑
F∈Ω|i Pr(F |Ei) = 1. We have that Pr(F |Ei) = Pr(F) · 1/(1 −∑

F∈SEi
Pr(F)) ≤ Pr(F) ·1/(1−1/nk), since the occurrence of event Ei only re-

moves the set SEi
with

∑
F∈SEi

Pr(F) ≤ 1/nk from Ω, but does not make one el-

ementary event F1 ∈ Ω|i (relatively) more favorable to another F2 ∈ Ω|i, i.e. the
probabilities Pr(F |Ei) of all remaining events F ∈ Ω|i are increased by the same

factor 1/(1−
∑
F∈SEi

Pr(F)) ≤ 1/(1−1/nk). To compute Pr(Ej |Ei) assuming a

worst case correlation, all excluded elementary events SEi cause Ej to occur and
SEi ∩ SEj = {}, i.e. all elementary elements SEj are excluded for Pr(Ej |Ei) to
occur. Thus, all elementary events Ω|i \SEj

cause Ej to occur and Pr(Ej |Ei) =

1−
∑
F∈SEj

Pr(F |Ei) ≥ 1−
∑
F∈SEj

Pr(F) · 1/(1− 1/nk) ≥ 1− 1/nk · 1/(1−
1/nk) = 1− 1/(nk − 1). The argument can be generalized to bound any condi-
tional probability Pr(Ej | ∧i∈T,T⊆{1,...,nk0−1} Ei) for any 0 ≤ j ≤ nk0 − 1. The
remaining possible events for Ej to occur given all events Ei with i ∈ T happen
is Ω|T := Ω \∪i∈TSEi

. For the probability of an elementary event F ∈ SEj
holds

Pr(F | ∧i∈T Ei) = Pr(F) · 1/(1−
∑
F∈∪i∈TSEi

Pr(F)) ≤ Pr(F) · 1/(1− |T |/nk).

The last inequality follows since all sets SEi are assumed to be disjunct,
i.e. SEi

∩ SEl
= {}, to maximize the probability that an elementary event

F ∈ SEj
occurs. Therefore, Pr(Ej | ∧i∈T Ei) = 1 −

∑
F∈SEj

Pr(F | ∧i∈T Ei) ≥
1 −

∑
F∈SEj

Pr(F) · 1/(1 − |T |/nk) = 1 − 1/(1 − |T |/nk)
∑
F∈SEj

Pr(F) ≥
1− 1/(1−nk0/nk) · 1/nk = 1− 1/(nk−nk0). Using the bound of the conditional
probabilities and Pr(Ei) ≥ 1 − 1/nk ≥ 1 − 1/(nk − nk0) (the first inequal-

ity is by assumption), we obtain: Pr
(
∧i∈{0,...,nk0−1}Ei

)
= Pr (E0) ·Pr (E1|E0) ·

Pr
(
E2| ∧i∈{0,1} Ei

)
·Pr

(
E3| ∧i∈{0,1,2} Ei

)
·...·Pr

(
Enk0−1| ∧i∈{0,...,nk0−2} Ei

)
≥∏

i∈{0,...,nk0−1}
(
1− 1/(nk − nk0)

)
=
(
1− 1/(nk − nk0)

)nk0

≥
(
1− 2/nk

)nk0

≥
1− 1/nk−k0−2.

Consider any coloring of the graph G using the minimal number of colors χ.
Let Sc be a set of nodes having color c ∈ [0, χ− 1] for this coloring. For a node
v with color c for this optimal coloring, we have v ∈ Sc. Let choice i ≥ 0 (of
colors) be the (i+ 1)-st possibility where a node could have picked a color, i.e.,
iteration i of the for-loop of Algorithm FastRandColoring. Let the set CiS be all
distinct colors that have been obtained by a set of nodes S for any choice j ≤ i,
i.e. CiS := {c|∃u ∈ S, s.t. col(u) = c after iteration i}. We do not use multisets
here, i.e. a color c can only occur once in CiS . Let P iS be all nodes in S that make a
choice in iteration i,i.e., P iS := {c|∃u ∈ S, s.t. choice(u) = c in iteration i}. Let
CP iS be all colors that have been chosen (but not yet obtained) by a set of nodes
S in iteration i, i.e., CP iS := {c|∃u ∈ P iS , s.t. choice(u) = c in iteration i}. By
definition, |CP iS | ≤ |P iS |.

To deal with the interdependence of nodes we follow the idea of stochastic
domination. If X is a sum of random binary variables Xi ∈ {0, 1}, i.e., X :=∑
iXi, with probability distributions A,B and PrA(Xi = 1|X0 = x0, X1 =

x1, ..., Xi−1 = xi−1) ≥ PrB(Xi = 1|X0 = x0, X1 = x1, ..., Xi−1 = xi−1) = p
for any values of x0, x1, ..., xi−1, we can apply a Chernoff bound to lower bound
PrA(X ≥ x) by a sum of independent random variables Xi, where Xi = 1 with
probability p.

Theorem 5 After choice i ∈ [0, 1] for every node v holds w.h.p.: The colored
nodes C1

S of any set S ∈ N(v)∪{Sc∩N(v)|c ∈ [0, χ−1]} with |S| ≥ c2 log n fulfill
|S|/(16c1) ≤ |C1

S | ≤ 3|S|/c1 with c1 > 32. The number of nodes |P 1
S | making a

choice is at least |S|/(4c1) and at most 3|S|/(2c1).

Proof. Consider a set S ∈ {Sc ∩ N(v)|c ∈ [0, χ − 1]} of nodes for some node
v. For i choices we expect (up to) i|S|/c1 nodes to make a choice. Using the
Chernoff bound from Corollary 2 the number of nodes that pick a color deviates
by no more than one half of the expectation with probability 1−2i/8|S|/c1 ≥ 1−
2i/8c2 logn/c1 = 1−1/nc3 for a constant c3 := ic2/(8c1). Thus, at most 3i|S|/(2c1)
neighbors of v make a choice and potentially get colored with probability 1 −
1/nc3 . Using Theorem 4 this holds for all nodes with probability 1 − 1/nc3−3,
which yields the bounds |P 1

S | ≤ 3|S|/(2c1) and |C1
S | ≤ 3|S|/c1.

For choice i w.h.p. the number of nodes that make a choice is therefore in
[a, b] := [1/2 · (1− 3i/(2c1)) · |S|/c1, 3|S|/(2c1)]. The lower bound, i.e. a ≤ |P iS |,
follows if we assume that for each choice j < i at most 3|S|/(2c1) nodes get
colored, which happens w.h.p.. Thus, after i−1 choices at least (1−3i/(2c1))·|S|
nodes can make a choice, i.e. are uncolored. We expect a fraction of 1/c1 to
choose a color. Using Corollary 2 the nodes that make a choice is at least half
the expected number w.h.p.. Thus, for choice 1 we have for c1 > 32 and a :=
(1− 3/(2c1))/(2c1) · |S|: |S|/(4c1) ≤ a ≤ |P 1

S |.

Consider an arbitrary order w0, w1, ..., w|S|−1 of nodes S. We compute the
probability that node wk ∈ S obtains a distinct color for choice i from all previous
nodes w0, w1, ..., wk−1 ∈ S. The probability is minimized, if all k− 1 nodes have
distinct colors and k is large. Since k ≤ b = 3|S|/(2c1) we have p(col(wk) ∈
[0, ∆0/2] \ Sw0,w1,...,wk−1

) ≥ p(col(wk) ∈ [0, ∆0/2] \ Sw0,w1,...,wb−1
) ≥ 1/c1 · (1−

b/(∆0/2) ≥ (1− 3/∆0/(2c1)/(∆0/2))/c1 = 1/c4 with constant c4 := 1/c1 · (1−
3/c1). The lower bound for the probability of 1/c4 holds for any k ∈ [0, b − 1]
and any outcome for nodes Sw0,w1,...,wk−1

. Thus, to lower bound the number of
distinct colors |CS | that are obtained by nodes in S we assume that the number
of nodes that make a choice is only a and that each node that makes a choice
gets a color with probability 1/c4 (independent of the choices of all other nodes).
Using the Chernoff bound from Corollary 2 gives the desired result for a set S.
In total there are n nodes and we have to consider at most 1 + χ ≤ n + 2 sets
per node. Using Theorem 4 for n · (n+1) events each occurring w.h.p. completes
the proof.

Next we consider a node v and prove that for the second attempt of all
uncolored nodes u ∈ Sc∩N(v) a constant fraction of colors taken by independent
nodes w ∈ Sc ∩ N(v) \ {u} from u are not taken (or chosen) by its neighbors
y ∈ N(u).

Theorem 6 For the second choice let E(c) be the event that for a node
v for each uncolored node u ∈ N(v) ∩ Sc holds |(CP 1

N(u) ∪ C1
N(u)) ∩

C1
N(v)∩Sc

| ≤ 3/4|CN(v)∩Sc
| for |N(v) ∩ Sc| ≥ c2 log n. Event E(c) occurs given∧

c1∈X⊆[0,χ],|N(v)∩Sc1 |≥c2 lognE(c1) w.h.p. for an arbitrary set X ⊆ [0, χ].

Proof. Consider a colored node w ∈ Sc∩N(v) for some node v, i.e. col(w) 6= none.
We compute an upper bound on the probability that a node y ∈ N(u) gets (or
chooses) color col(w), i.e., p(∃y ∈ N(u), col(y) = col(w)∨ choice(y) = col(w)) =
p(∨y∈N(u)col(y) = col(w) ∨ choice(y) = col(w)) ≤

∑
y∈N(u) p(col(y) = col(w) ∨

choice(y) = col(w)). The latter inequality follows from the inclusion-exclusion
principle: For two events A,B we have p(A ∪ B) = p(A) + p(B) − p(A ∩ B) ≤
p(A) +p(B). We consider the worst case topology and worst case order in which
nodes make their choices to maximize

∑
y∈N(u) p(col(y) = col(w) ∨ choice(y) =

col(w)). Due to Theorem 5 for every node y ∈ N(u) at most |P 0
N(y)|+ |P

1
N(y)| ≤

3d(y)/c1 ≤ 3∆0/c1 neighbors z ∈ N(y) make a choice during the first two
attempts i ∈ [0, 1]. To maximize the chance that some node y obtains (or chooses)
color col(w), we can minimize the number of available colors for y and the
probability that some neighbor z ∈ N(y) chooses color col(w), since when making
choice i we have p(choice(y) = col(w)) ≤ 1/(c1|C(y)|) because each available
color is chosen with the same probability. To minimize |C(y)| the number of
colored nodes z ∈ N(y) should be maximized and at the same time each node
z ∈ N(y) should have a neighbor itself with color col(w). The latter holds, if z ∈
N(y) is adjacent to node w. Thus, to upper bound p(col(y) = col(w)) we assume
that node w and each node y ∈ N(u) share the same neighborhood (except u),
i.e., N(y) \ {u} = N(w), and the maximal number of nodes in N(y) given our

initial assumption are colored or make a choice, i.e., 3d(y)/c1 ≤ 3∆0/c1. This,
yields p(col(y) = col(w)) ≤ 1/(c1|C(y)|) ≤ 1/(c1(∆0/2 − 3∆0/c1)) ≤ 8/(c1∆0)
(for c1 > 32) and therefore p(∃y ∈ N(u), col(y) = col(w)) = p(∨y∈N(u)col(y) =
col(w)) ≤

∑
y∈N(u) p(col(y) = col(w)) ≤ 3∆0/c1 ·8/(c1∆0) ≤ 1/c1 (for c1 > 32).

In other words, the probability that some node y ∈ N(u) has obtained color
col(w) or chooses col(w) is bounded by 1/c1.

Let us estimate the probability that some neighbor y ∈ N(u) gets the same
color as a node w1 ∈ N(v) ∩ Sc given that no (or some) node in y ∈ N(u)
has chosen or obtained col(w0) for some node w0 ∈ CN(v)∩Sc

\ {w1}. To min-
imize |C(y)| we assume that |C(y)| is reduced by 1 for every colored node
w0 ∈ CN(v)∩Sc

\ {w1}. Since at most 3/2d(y)/c1 ≤ 3/2∆0/c1 neighbors make
a choice concurrently, the event reduces our (unconditioned) estimate of the
size of |C(y)| by at most 3/2∆0/c1. Using the same calculations as above with
|C(y)| ≤ ∆0/2 − 9/2∆0/c1, the probability that some node y ∈ N(u) has ob-
tained color col(w) or chooses col(w) given the outcome for any set of colored
nodes W ⊆ N(v)∩Sc is at most 1/2. Thus, we expect at most |CN(v)∩Sc

|/2 colors
from CN(v)∩Sc

to occur in node u’s neighborhood. Using the Chernoff bound from
Corollary 2, we get that the deviation is at most 1/2 the expectation with prob-
ability 1− 2−|CN(v)∩Sc |/8 for node u, i.e., the probability p(E(u, c)) of the event
E(u, c) that for a node u ∈ N(v) at most 3|CN(v)∩Sc

|/4 colors from N(v) ∩ Sc
are also taken or chosen by its neighbors y ∈ N(u) is at least 1− 2−|CN(v)∩Sc |/8.
Using Theorem 5 for S = N(v) ∩ Sc we have |CN(v)∩Sc

| ≥ |S|/(16c1) =

|N(v) ∩ Sc|/(16c1) ≥ c2 log n/(16c1). Therefore, p(E(u, c)) ≥ 1 − 1/nc2/(16c1).
Due to Theorem 4 the event E(c) :=

∧
u∈N(v)E(u, c) occurs with probability

1− 1/nc2/(16c1)−3.

Theorem 7 After the first two choices for a node v with initial degree d(v) ≥
∆0/2 there exists a subset Nc ⊆ N(v) with |Nc| ≥ (∆ + 1)/(c5χ) that has
been colored with (∆ + 1)/(2c5χ) colors for a constant c5 := 2048c21 w.h.p. for

∆ ∈ Ω(log1+1/ log∗ n n) and χ ∈ O(∆/ log n).

Proof. By assumption χ ∈ O(∆/ log n), i.e., χ < 1/(4c3)∆/ log n. At least half of
all neighbors u ∈ N(v) with u ∈ Sc∩N(v) must be in sets |Sc∩N(v)| ≥ c3 log n.
This follows, since the maximum number of nodes in sets |Sc ∩N(v)| < c3 log n
is bounded by χ · c3 log n ≤ ∆0/4. Assume that all statements of Theorem 5
that happen w.h.p. have actually taken place. Consider a node v and a set
N(v) ∩ Sc with |Sc ∩ N(v)| ≥ c3 log n given there are at most 3/2∆0 colored
neighbors u ∈ N(v). For a node u ∈ N(v) ∩ Sc the probability that it obtains
the same color of another node N(v) \ {u} ∩ Sc is given by the probability
that it chooses a color col(w) taken by node w ∈ N(v) \ {u} ∩ Sc that is not
chosen by any of u’s neighbors x ∈ N(u). Due to Theorem 6 |CN(v)∩Sc

|/4 colors
exist that are taken by some node w ∈ N(v) ∩ Sc but not taken (or chosen
for the second choice) by a neighbor x ∈ N(u). Due to Theorem 5 we have
|CN(v)∩Sc

|/4 ≥ |N(v)∩Sc|/(64c1). Additionally, the theorem yields |P 1
N(v)∩Sc

| ≥
|N(v) ∩ Sc|/(4c1).

The probability for a node u ∈ P 1
N(v)∩Sc

to obtain (not only pick) a color in

CN(v)∩Sc
becomes the number of “good” colors, i.e., |N(v)∩Sc|/(64c1), divided

by the total number of available colors, i.e., 1/(∆0/2), yielding |N(v)∩Sc|/(32c1 ·
∆0). This holds irrespectively of the behavior of other nodes w ∈ P 1

N(v)∩Sc
and

other sets N(v) ∩ Sd with d ∈ [0, χ − 1] \ {c}. The reason is that a node u
makes its decision what color to pick independently of its neighbors y ∈ N(u)
and Theorems 5 and 6 already account for the worst case behavior of neighbors
y ∈ N(u) to bound the probability that node u gets a chosen color.

Thus, for a set of |P 1
N(v)∩Sc

| ≥ |N(v)∩Sc|/(4c1) nodes we expect that for at

least |N(v)∩Sc|2/(128c21 ·∆0) nodes u there exists another node w ∈ (N(v)∩Sc)\
{u} with the same color. The expectation |N(v)∩Sc|2/(128c21 ·∆0) is minimized
if all sets |N(v) ∩ Sc| ≥ c3 log n are of equal size and as small as possible, i.e.,
∆0/(4χ) since at least ∆0/4 nodes are in sets |N(v) ∩ Sc| ≥ c3 log n for some
c. This gives

∑
c∈[0,χ−1] |N(v) ∩ Sc|2/(128c21 · ∆0) ≥

∑
c∈[0,χ−1](∆0)2/(2048c21 ·

∆0 · χ2) = ∆0/(c5 · χ) for c5 = 2048c21. Since by assumption χ ∈ O(∆0/ log n)
using Corollary 2 the actual number deviates by at most 1/2 of its expectation
with probability 1 − 1/nc4 for an arbitrary constant c4. Therefore, for at least
∆0/(c5 · χ) nodes u ∈ N(v) ∩ Sc there exists another node w ∈ N(v) \ {u} ∩ Sc
with the same color. Thus to color all of these ∆0/(c5 ·χ) nodes only ∆0/(2c5 ·χ)
colors are used.

Theorem 8 If ∆ ∈ Ω(log1+1/ log∗ n n) and χ ∈ O(∆/ log1+1/ log∗ n n) then Algo-
rithm FastRandColoring computes a (1− 1/O(χ))∆ coloring in time O(logχ+
log∗ n) w.h.p..

Proof. Extending Theorem 7 to all nodes using Theorem 4 we have w.h.p.
that each node v with d(v) ≥ ∆0/2 has at most (∆0 + 1) · (1 − 1/(c5χ))
uncolored neighbors after the first two choices. However, node v is allowed
to use d(v) + 1 colors and, additionally, half of the conserved colors, i.e.,

∆0/(8c2χ) ≥ log1+1/ log∗ n n/(4c5) (see Theorem 7), colors to get a color it-
self. Nodes with initial degree d(v) < ∆0/2 can use much more colors, i.e.,
at least 3∆0/4. When executing Algorithm DeltaPlus1Coloring [15] the maxi-
mum degree is reduced by a factor 2 in O(1) rounds as long as it is larger than

Ω(log n) due to Theorem 8 in [15]. Thus, since ∆0/χ ∈ O(log1+1/ log∗ n n) the
time until the maximum degree ∆ is less than O(max(∆0/χ, log n)) is given by
O(log∆0−log(∆0/χ)) =O(logχ). Thus, we have at least 2∆ colors available, i.e.,

at least log1+1/ log∗ n n/(4c5) additional colors, when calling Algorithm Const-
DeltaColoring [15]. Therefore, the remaining nodes are colored in time O(log∗ n)
using Corollary 14 [15].

6 Conclusion

It is still an open problem, whether deterministic ∆ + 1 coloring in a general
graph is possible in time ∆1−ε + log∗ n for a constant ε. Our algorithm indicates

that this might well be the case, since we broke the bound for a wide class of
graphs.

Though it is hard in a distributed setting – and sometimes not even possible
– to use less than ∆+ 1 colors, we feel that one should also keep an eye on the
original definition of the coloring problem in a distributed environment: Color a
graph with as little colors as possible. To strive for a ∆+ 1 coloring is of much
appeal and gives interesting insights but as we have shown (in many cases) better
bounds regarding the number of used colors and the required time complexity
can be achieved by taking the chromatic number of the graph into account.

References

1. S. Arora and E. Chlamtac. New approximation guarantee for chromatic number.
In Symp. on Theory of computing(STOC), 2006.

2. L. Barenboim and M. Elkin. Sublogarithmic distributed MIS algorithm for sparse
graphs using nash-williams decomposition. In PODC, 2008.

3. L. Barenboim and M. Elkin. Distributed (δ + 1)-coloring in linear (in δ) time. In
Symp. on Theory of computing(STOC), 2009.

4. L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylog-
arithmic time. In Symp. on Principles of distributed computing(PODC), 2010.

5. A. Blum. New approximation algorithms for graph coloring. Journal of the ACM,
41:470–516, 1994.

6. B. Bollobas. Chromatic nubmer, girth and maximal degree. Discrete Math., 24:311–
314, 1978.

7. D. A. Grable and A. Panconesi. Fast distributed algorithms for Brooks-Vizing
colorings. J. Algorithms, 37(1):85–120, 2000.

8. M. M. Halldórsson and J. Radhakrishnan. Greed is good: approximating indepen-
dent sets in sparse and bounded-degree graphs. In STOC, 1994.

9. M. Karchmer and J. Naor. A fast parallel algorithm to color a graph with delta
colors. J. Algorithms, 9(1):83–91, 1988.

10. F. Kuhn. Weak Graph Coloring: Distributed Algorithms and Applications. In
Symp. on Parallelism in Algorithms and Architectures (SPAA), 2009.

11. F. Kuhn and R. Wattenhofer. On the Complexity of Distributed Graph Coloring.
In Symp. on Principles of Distributed Computing (PODC), 2006.

12. N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

13. A. Panconesi and A. Srinivasan. Improved distributed algorithms for coloring and
network decomposition problems. In Symp. on Theory of computing (STOC), 1992.

14. J. Schneider and R. Wattenhofer. A Log-Star Distributed Maximal Independent
Set Algorithm for Growth-Bounded Graphs. In Symp. on Principles of Distributed
Computing(PODC), 2008.

15. J. Schneider and R. Wattenhofer. A New Technique For Distributed Symmetry
Breaking. In Symp. on Principles of Distributed Computing(PODC), 2010.

