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ABSTRACT
To date, topology control in wireless ad hoc and sensor
networks—the study of how to compute from the given com-
munication network a subgraph with certain beneficial prop-
erties—has been considered as a static problem only; the
time required to actually schedule the links of a computed
topology without message collision was generally ignored.
In this paper we analyze topology control in the context of
the physical Signal-to-Interference-plus-Noise-Ratio (SINR)
model, focusing on the question of how and how fast the
links of a resulting topology can actually be realized over
time.

For this purpose, we define and study a generalized ver-
sion of the SINR model and obtain theoretical upper bounds
on the scheduling complexity of arbitrary topologies in wire-
less networks. Specifically, we prove that even in worst-case
networks, if the signals are transmitted with correctly as-
signed transmission power levels, the number of time slots
required to successfully schedule all links of an arbitrary
topology is proportional to the squared logarithm of the
number of network nodes times a previously defined static
interference measure. Interestingly, although originally con-
sidered without explicit accounting for signal collision in the
SINR model, this static interference measure plays an im-
portant role in the analysis of link scheduling with physi-
cal link interference. Our result thus bridges the gap be-
tween static graph-based interference models and the phys-
ical SINR model. Based on these results, we also show that
when it comes to scheduling, requiring the communication
links to be symmetric may imply significantly higher costs
as opposed to topologies allowing unidirectional links.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—geometrical
problems and computations, sequencing and scheduling ;
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G.2.1 [Discrete Mathematics]: Combinatorics—combi-
natorial algorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
Algorithmic analysis, interference, scheduling complexity,
topology control, wireless ad hoc networks

1. INTRODUCTION
A common complaint within the networking community

in general, and the ad hoc and sensor networking commu-
nity in particular, is that there exists a wide chasm between
theory and practice. What tends to be overlooked, how-
ever, is the fact that there are seemingly insurmountable
gaps even within the theory community itself! A particu-
larly distinct divide reveals itself with the question of the
underlying communication models. On the one hand, the
graph-theoretically oriented theory community has tried to
come up with efficient network protocols for problems such
as routing, clustering, data gathering, or topology control.
Typically, these analytical results are derived in a type of
static graph model that captures certain aspects of wireless
communication while abstracting away many others. On the
other hand, there has been a large body of theoretical work
taking a more communication or information theoretic ap-
proach. Often based on the physical Signal-to-Interference-
plus-Noise-Ratio (SINR) model of communication, these pa-
pers derive fundamental scaling laws that describe the the-
oretically achievable capacity in different modalities of com-
munication and model assumptions. It is the goal of this
paper to analytically identify previously unknown ties be-
tween these two approaches.

Specifically, we study topology control—until now an in-
herently graph-theoretic notion—and analyze its impact in
the information-theoretic SINR model. In a very general
sense, topology control in wireless ad hoc and sensor net-
works can be considered the task of—given a network con-
nectivity graph—computing a subgraph with specific desired
properties, such as connectivity, short stretches, sparsity,
low interference, or low node degree. Accordingly, there
has been considerable research effort towards achieving and



combining more and more of these properties [4, 18, 19, 20,
27, 30, 33].

All these approaches have in common, however, that they
model wireless networks as static graphs, hence neglecting
one of the most crucial aspects of wireless communication:
Eventually messages—or, even more exactly, radio signals—
will have to be sent over these static links in the topolo-
gies selected by a topology control algorithm, that is, the
static graph of communication links must be scheduled on
the physical layer. In general, not all of these messages can
be sent simultaneously, as mutual interference may prevent
proper message reception. Hence, what has been inherently
lacking in the study of topology control so far is the notion
of time required to actually realize the selected links, that
is, to successfully transmit messages over them.

In particular, it has not been clear—even from a theoret-
ical point of view—whether the graph-theoretic measures of
topology control really bear any significance when it comes
to actually scheduling messages in an SINR environment. In
this paper, we demonstrate and prove the existence of fun-
damental theoretical ties between topology control and the
theoretically achievable efficiency of scheduling protocols.

Consider an arbitrary topology computed by a topology
control algorithm, or more generally a set of communica-
tion requests. In one time slot, only a subset of all the
desired communication links can be scheduled in parallel;
and in every subsequent time slot, a subset of the remaining
unscheduled links may be scheduled, until finally all links
are scheduled. Against this background, it is clearly advan-
tageous to find a short schedule, ideally one with minimal
length. This allows for higher bandwidth and, ultimately,
higher throughput. We call this measure describing the min-
imal amount of time required to physically establish a set of
communication requests or a desired network topology the
scheduling complexity of the topology.

In this paper, we show that the initially mentioned gap
in the field of topology control is neither inherent nor in-
evitable. Specifically, we study two problems: First, what
is the scheduling complexity of arbitrary topologies, that
is, what is the time required to physically schedule an ar-
bitrary set of requests? And second, which fundamental
graph-theoretic measures determine the scheduling complex-
ity? In other words, what properties should a topology have
such that provably efficient scheduling becomes possible?
Strongly coupled with the first problem is the question of
how we can actually find a schedule (and corresponding
transmission power assignments) which enable a fast real-
ization of a topology. Interestingly, studying these questions
also reveals the intricacy of the interplay between scheduling
complexity and transmission power assignment.

More specifically, we make the following contributions:

• As the main technical result of this paper we present a
scheduling algorithm which assigns transmission power
levels to the network nodes and schedules all links of
an arbitrary network topology. The subsequent analy-
sis reveals that this algorithm computes a schedule of
length O(Iin · log2n) , where n is the number of nodes
and Iin is a previously defined static interference mea-
sure that reflects a static property of wireless network
graphs. Intriguingly, in spite of its static nature, the
measure Iin appears to play an important role concerning
the scheduling complexity of arbitrary network topolo-
gies. Our result proves that topology control algorithms

choosing good static topologies—topologies with small
Iin—allow for faster scheduling on the physical SINR
communication level. Note that our results also yield
the first general scaling laws on the scheduling complex-
ity of an arbitrary set of communication requests.

• We show that there exists an inherent gap with respect
to link symmetry: Network topologies preserving connec-
tivity of the given communication network using unidi-
rectional links have significantly lower Iin values and can
therefore be scheduled much faster than connectivity-
preserving topologies using exclusively symmetric links.
This result sheds new light on the question of practicality
of directed as opposed to symmetric links in wireless ad
hoc and sensor networks: It shows that demanding com-
munication links to be symmetric theoretically incurs a
high overhead when it comes to scheduling.

• In this paper we explicitly analyze topology control with
special emphasis on the physical definition of interfer-
ence, or more specifically the Signal-to-Interference-plus-
Noise-Ratio (SINR). Simply expressed, this characteri-
zation of interference reflects the fact that a radio sig-
nal can be correctly decoded by the intended receiver
only if the ratio between the sensed power of the ac-
tual signal to be received and the sum of all power levels
experienced due to other signals concurrently transmit-
ted (plus an ambient noise power level) is above a cer-
tain hardware-dependent threshold. In reality, obstacles
to signal propagation can shadow, reflect, scatter, and
diffract radio signals. In order to capture these effects,
we extend the SINR approach by a generalized signal
propagation model ; in particular, we allow the received
signal strength to deviate from the theoretically com-
puted value in the absence of any obstacles by a constant
factor which is reflected in the subsequent analysis.

• Finally, combining our novel scheduling algorithm with
a known low-interference topology control algorithm for
strong connectivity with Iin ∈ O(log n), we show that
in the physical model of communication, the scheduling
complexity of connectivity is O(log3n), thus improving
the bound given in [25] by a logarithmic factor.

As a general remark, we would like to point out that we
are aware of the fact that—primarily due to its missing local-
ity, as shown later in the paper,—our scheduling algorithm
does not lend itself to direct implementation as a network
protocol. Instead, we believe that the algorithm is of great
theoretical interest, as it proves a first upper bound on the
scheduling complexity of arbitrary topologies in wireless net-
works. Specifically, it explicitly shows that fast scheduling of
arbitrary topologies is theoretically possible even in worst-
case wireless networks when assigning proper power levels
to the nodes.

The paper is organized as follows: After giving an overview
of related work in the following section, we formally intro-
duce the considered communication model in Section 3 and
define the concepts of scheduling complexity and Iin inter-
ference in Section 4. In Sections 5 and 6 we present the
scheduling algorithm for arbitrary network topologies and
its analysis, respectively. Section 7 finally demonstrates the
existence of a gap with respect to scheduling complexity
between topologies allowing unidirectional links and topolo-
gies containing exclusively symmetric connections. Section 8
concludes the paper.



2. RELATED WORK
Early work that can be considered precursors of topology

control focused on the question of the required node density
to achieve connectivity when randomly placing nodes [14,
31]. A first generation of topology control in its modern
sense [15, 27, 29] adopted structures from the field of com-
putational geometry and mainly aimed at preserving energy-
efficient paths or computing planar subgraphs for geographic
routing [5, 17]. In a second wave of research, constructions
were proposed which are based on local information and si-
multaneously reconcile several properties, such as planarity,
the spanner property, or constant-bounded node degree [18,
19, 20, 33]. Other approaches tried to build on minimal as-
sumptions about the capabilities of nodes and signal prop-
agation characteristics [34].

All these contributions have in common that they do not
consider interference or—if interference is mentioned as an
issue—at most implicitly. In contrast, recent work [6, 22, 24,
32] has modeled interference explicitly as a graph property,
similar to other topology control properties. The main defi-
ciency of this approach is however that—also staying in the
tradition of topology control—interference is modeled stat-
ically based on graphs, without specifically considering the
physical consequences of simultaneously transmitted signals.

An approach that does consider the time aspect of signals
and in particular message scheduling is coloring in wireless
networks. According to the definition of the problem of
correct message reception—for instance such that a signal
is successfully received if only one of the receiver’s neigh-
bors transmits at every instant of time—reduces to coloring
problems of various types [21, 23, 28]. Modeling the inter-
ference issue as coloring problems is however—compared to
the physical SINR—overly pessimistic on the one hand in
that it does not reflect the fact that even nearby communi-
cation is tolerable if it takes place at a sufficiently low power
level; on the other hand such an approach is too optimistic
since also weak signals transmitted simultaneously by many
remote sources can build up considerable interference [1, 12].

The computation of efficient schedules in the SINR model
has been studied in previous work in various flavors. The
work of [3] proposes a mathematical programming formula-
tion for deriving optimal schedules. However, the resulting
formulations are infeasible from a computational point of
view. The authors then propose a heuristic based on a so-
called column-generation approach, which they show to pro-
duce fast schedules in practical scenarios. Finally, it is shown
in [3] that the problem of deriving optimal schedules is NP-
hard, even in a much more restricted model. The work of
[2, 16] also derives mathematical programming formulations
and investigates the impact of power assignments to nodes
on the achievable throughput capacity. As these solutions
are based on complex non-linear program formulations that
can only be solved in exponential time, they provide little
insight into the structural property of scheduling in SINR
models.

In [9, 11], various protocols for scheduling in SINR-based
models were proposed and evaluated under different traf-
fic and random node distribution models. These protocols
being evaluated by means of simulation, none of them pro-
vides theoretical bounds on the efficiency in a worst-case
sense. The algorithms in [7, 8] study the problem of find-
ing schedule and power control policies that minimize the
total average transmission power in the wireless multi-hop

network. The algorithm in [8], for instance, is based on
guaranteeing a certain “spatial reuse” distance between all
pairs of simultaneously transmitting nodes. As shown in
[25], such an approach inherently cannot yield competitive
results in worst-case networks. That is, all these protocols
may produce schedules such that in certain networks and for
certain request sequences, these algorithms may compute a
schedule that is significantly worse than the optimal solu-
tion. Moreover, none of these contributions provide bounds
on the fundamental scheduling complexity in wireless net-
works.

Recently, an efficient scheduling algorithm in the SINR
model has been presented in [25]. This algorithm finds a
schedule of length O(log4n) for efficiently scheduling a set
of links that combines for a strongly connected topology. In
this paper, we improve and generalize the approach of [25]
and provide provable bounds on the scheduling complexity
for all sets of requests and topologies.

3. GENERALIZED PHYSICAL MODEL
For our analysis we model a wireless network as a set of

nodes X = {x1, . . . , xn} that are arbitrarily located in the
Euclidean plane. The Euclidean distance between two nodes
xi, xj ∈ X, is denoted by d(xi, xj). For a directed commu-
nication link (xi, xj), dij = d(xi, xj) denotes the distance
between its endpoints. The ball B(xi, r) of radius r around
node xi contains all nodes xj ∈ X for which d(xi, xj) ≤ r.
For simplicity and without loss of generalization, we assume
that the minimal distance between any two nodes in X is 1.
Furthermore we define the Euclidean diameter ∆ to be the
largest distance between two nodes.

The core aspect of the communication model underlying
our analysis is the description of the circumstances under
which a message is correctly received by its intended recip-
ient. In the Signal-to-Interference-plus-Noise-Ratio (SINR)
model (also called physical model in [13]), the successful re-
ception of a transmission depends on the received signal
strength, the interference caused by simultaneously trans-
mitting nodes, and the ambient noise level. Let Pr be the
received power of a signal sent to a node xr, and denote by Ir

the interference power generated by other nodes in the net-
work. Finally, let N be the ambient noise power level. Then,
a node xr receives a transmission if and only if Pr

N+Ir
≥ β,

where β is the minimum signal-to-interference-ratio that is
required for a message to be successfully received at xr.

1

In wireless networks, the value of the received signal power
Pr of a signal is a decreasing function of the distance d(xs, xr)
between the transmitter node xs and the receiver node xr.
Theoretically, the received signal power Pr can be modeled
as decaying with distance d(xs, xr) as

Pr =
Ps

d(xs, xr)α
,

where Ps is the sending power of the transmitting node.
The so-called path-loss exponent α is a constant between 2
and 6 and depends on external conditions of the medium,
as well as the exact sender-receiver distance. As common,
we assume that α > 2 [13].

In practice, the received signal power may however devi-
ate from the above theoretical bound for various reasons.

1Our analysis can be generalized such that every node xi

can define its own βi.



On the one hand, the signal-emitting characteristics of an-
tennas may not be perfectly omni-directional. Moreover,
shadowing, reflection, scattering, and diffraction caused by
the presence of obstacles to wireless signal propagation may
have an impact on the signal power actually sensed at the
receiver.

In order to better account for some of these aspects of
wireless communication, we define and study the following
slight generalization of the physical model, which we call
the generalized physical model. In this generalized physical
model with parameter θ, the received signal power (as well
as the interference caused by simultaneously transmitting
nodes) can deviate arbitrarily from the theoretically received
power by a factor of θ. Formally, if Pr(xs) is defined to be
the actual received power of a signal transmitted by node xs

as sensed by the receiving node xr, the generalized physical
model states that Pr(xs) is in the range

1

θ
· Ps

d(xs, xr)α
≤ Pr(xs) ≤ θ · Ps

d(xs, xr)α
.

Note that the model leaves open the exact received sig-
nal power, and hence algorithms working in the generalized
physical model must be robust enough to cope with arbi-
trary (even worst-case) deviations within the stated bounds.
Clearly, for θ = 1, the generalized physical model is equiva-
lent to the standard physical model.

As for the notation in this paper, we occasionally use the
formulation Ir(xi) = Pr(xi) in order to emphasize that the
signal power transmitted by a node xi other than the intend-
ing sender is perceived at xr as interference. In summary,
if Pr(xs) and Ir(xi) are the received power levels sensed by
node xr in a specific time slot, a signal transmitted by a
node xs ∈ X is successfully received by xr if

Pr(xs)

N +
P

xi∈X\{xs}
Ir(xi)

≥ β. (1)

Finally, the total interference Ir experienced by a receiver
xr is the sum of the interference power values created by all
nodes in the network (except the intending sender xs), that
is, Ir =

P

xi∈X\{xs}
Ir(xi).

4. SCHEDULING COMPLEXITY AND IN-
TERFERENCE

In this section, we formally introduce the concepts of
the scheduling complexity of arbitrary topologies and of the
(static) interference Iin of a set of communication requests.

Following the example of [13], we assume without loss of
generality that transmissions are slotted into synchronized
time slots of equal length. In each time slot t, a node x can
either transmit or not transmit a message. If it transmits,
it chooses a power level Px > 0 that must be sufficiently
large in order to reach the receiver. A power assignment
determines the power level chosen by each node in a certain
time slot. Formally, a power assignment φt is a function
φt : X 7→ R

+ which maps every node in the network to a
power level. We denote by φt(xi) the power level of node xi

in time slot t. If a node is not scheduled to transmit in this
time slot, then φt(xi) = 0. Whenever the considered time
slot t is clear from the context, we also use the notational
shortcut Pi = φt(xi). A schedule S = (φ1, . . . , φT (S)) is a
sequence of T (S) power assignments, where φi denotes the
power assignment in time slot i. Finally, we call T (S) the

length of schedule S. That is, a schedule S of length T (S)
determines the power level Pi for every node xi ∈ X for
T (S) consecutive time slots.

A construction resulting from the operation of a topol-
ogy control algorithm is defined as a graph containing links
between the network nodes. Every such link can be consid-
ered a communication request to send a message over the
corresponding link. Consequently, the task of the algorithm
we present in this paper is to schedule a set of given com-
munication requests such that the corresponding messages
are successfully received. Each such request γij denotes a
directed link (xi, xj) and indicates that node xi is to suc-
cessfully transmit a message to node xj . The set of all com-
munication requests is called Γ.

To capture the minimal amount of time required to sched-
ule all requests γij ∈ Γ, we use the scheduling complexity
defined in the sequel.

Definition 4.1. Consider a time slot t and a power as-
signment φt. We say that a directed link (xi, xj) is success-
fully scheduled in time slot t if xj receives a message from
xi according to the SINR Inequality (1).

Let Lt be the set of all successfully scheduled links in time
slot t. Our goal is that after as few time slots as possible the
union of all sets Lt forms the given network topology. We
therefore define the scheduling problem for a given network
topology as follows:

Definition 4.2. Let Γ be the set of communication re-
quests of a given topology. The scheduling problem for Γ is
to find a schedule S of minimal length T (S) such that the

union of all successfully transmitted links
ST (S)

t=1 Lt equals Γ.

Finally, we define the scheduling complexity of an arbitrary
topology, that is of an arbitrary set of communication re-
quests Γ.

Definition 4.3. The scheduling complexity T (Γ) of a
set of communication requests Γ is the minimal number of
time slots T such that there exists a valid schedule S of length
T = T (S).

Given an arbitrary topology or a set of communication re-
quests Γ, the scheduling complexity of Γ reflects how fast
all requests in Γ can theoretically be satisfied (that is, when
scheduled by an optimal MAC-layer protocol). The schedul-
ing complexity of arbitrary topologies being a fundamental
measure in wireless networks, we are interested in obtain-
ing scaling laws that describe the asymptotic behavior of
the scheduling complexity as the network grows. Also, we
seek algorithms that achieve good performance with regard
to the scheduling complexity since such algorithms would
come close to an “optimal” MAC-layer protocol.

In general, this scheduling complexity of arbitrary topolo-
gies may not allow for a concise expression better than the
trivial bound of n, which is achieved if nodes are sched-
uled one after the other. In fact, it is possible to construct
examples—as the one depicted in Figure 1—with n requests
in which the scheduling complexity grows linearly, Ω(n),
even if all sender and receiver pairs are different.

In view of these trivial tight bounds, it is more interesting
to express the scheduling complexity of arbitrary topologies
in terms of additional properties besides n. In this regard, it
is particularly intriguing to derive the scheduling complex-
ity of arbitrary requests in dependence on a graph theoretic
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Figure 1: The scheduling complexity of the requests
in this example is n/2. In each time slot, at most
one link can be scheduled successfully.

measure that captures the inherent complexity of scheduling
in wireless multi-hop networks. If the scheduling complex-
ity in wireless networks could be expressed by means of a
simple, intuitive graph theoretical measure, this would serve
as a legitimation for studying graphs when reasoning about
scheduling in wireless networks. In a sense, such a corre-
spondence would thus help bridging the gap between com-
munication and information theoretical SINR models and
algorithmic graph models.

As a second basic concept we therefore introduce the static
interference measure Iin of a set of communication requests
(that is a network topology), originally introduced in a graph-
theoretic context in [32]. This interference measure is based
on the question of how many other nodes can potentially
disturb a node in the network.2 Note that the definition
of Iin is independent of the SINR model and argues using
circular transmission ranges. Also, we do not assume that
actual signal propagation behaves according to this interfer-
ence measure; this measure is introduced as a static graph
property whose significance will become clearer in the anal-
ysis of our scheduling algorithm.

With the assumption that the network nodes use perfectly
omnidirectional antennas, the maximal disk Di of a node xi

represents the transmission range such that all intended re-
ceivers of xi are reached, or, in other words, the disk covering
all nodes that are potentially affected by message transmis-
sion of xi to one of its intended receivers. Then the inter-
ference of a node xj is defined as the number of other nodes
that potentially affect message reception at node xj :

Definition 4.4. Given a set of communication requests
Γ, the in-interference of a node xj ∈ X is defined as

Iin(xj) = |{xi|xi ∈ X \ {xj}, xj ∈ Di)}|.

In other words, the interference Iin of a node xj represents
the number of nodes covering xj with their disks induced by
their transmission ranges set to a value as to reach all their
intended receivers. Note that the in-degree of a node in

2The notation Iin reflects the fact that this measure is based
on how many other nodes can disturb a given network node.
Similar interference measures have been defined assuming
in a sense an antipodal perspective by asking how many
other nodes a given node can disturb. It can be shown that
the results of our analysis in the remainder of the paper
asymptotically also hold for such Iout-interference measures.

a given topology Γ does not correspond to its interference;
the in-degree merely forms a lower bound for its interference
since it can be “covered” by disks of non-neighboring nodes.
The node-level interference defined so far is now extended
to an interference measure for Γ:

Definition 4.5. Given a set of nodes X and a set of
communication requests Γ, the in-interference of Γ is Iin(Γ) =
maxxi∈X Iin(xi).

We end this section with some helpful notation used in the
remainder of the paper. If Γ is the set of all communication
requests to be scheduled, Γi denotes the set of requests for
which node xi is the sender, formally Γi = {γij ∈ Γ}. The
set of intended receivers to which a node xi is to successfully
transmit is Ri = {xj | γij ∈ Γ}. The Euclidean distance
of a node xi to its most distant intended receiver is the
radius of the node xi: ri = maxxj∈Ri d(xi, xj). In case
there is no communication request for which node xi is the
sender, that is, if xi has no intended receiver at all, we define
ri = 0. Finally, the maximal disk of a node xi, formally
defined as Di = B(xi, ri), is the smallest disk centered at xi

that contains all intended receivers, that is, xj ∈ Di for all
xj ∈ Γi (also see the above definition of Iin).

5. SCHEDULING ALGORITHM
In this section, we present the paper’s main technical con-

tribution, an algorithm that achieves the first known bound
on the scheduling complexity of an arbitrary set of requests
Γ.

Theorem 5.1. Given an arbitrary network and a set of
communication requests Γ with in-interference Iin, all re-
quests γij ∈ Γ can be successfully scheduled in time O(Iin ·
log(nθ2) · (θ 4

α + log n)). That is, the scheduling complexity
T (Γ) of a topology with in-interference Iin is

T (Γ) ∈ O(Iin · log(nθ2) · (θ 4
α + log n)).

We prove the theorem in Section 6 by showing that, given
a set of requests Γ, Algorithm 1 computes a schedule of
the respective length in which all requests are successfully
scheduled. In this section, we give an intuitive overview of
Algorithm 1.

The task faced by any MAC-layer or scheduling protocol
is twofold. The protocol not only decides which node trans-
mits in which time slot, it also assigns proper power levels.
In [25], it was shown that particularly the second task—
assigning transmission powers—is a non-trivial task, and
MAC-layer protocols that employ uniform or linear power
assignments fail to achieve reasonable performance. There-
fore, in order to achieve the scheduling complexity stated
in Theorem 5.1, Algorithm 1 employs a power-assignment
policy that favors nodes with small radii over nodes with
large radii. Furthermore, the schedule computed by the al-
gorithm has the characteristic that every node xi establishes
links to all its intended receivers Ri in a single time slot by
successfully broadcasting within its radius ri. However, the
transmission power assigned to node xi is not proportional
to rα

i , which would inherently lead to a very slow schedule.
Consider for example the instance depicted in Figure 2.

For the following considerations we momentarily neglect the
presence of ambient noise N for simplicity. If all of the four
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Figure 2: An example in which scheduling many
requests in parallel requires a non-trivial power as-
signment policy.

links are to be scheduled individually, setting the transmis-
sion power of the respective sender xi to β · rα

i is sufficient
for the signal to be correctly received. Should however more
than one link be scheduled simultaneously, the situation be-
comes more intricate. If link γ12 is scheduled successfully,
the signal power received by x2 is at least β, and hence
the intended receivers of all other links face an interference
of at least β/2α. It follows that if we want some of the
smaller links to be scheduled simultaneously, every sender
xi of any one of these links must transmit at a power that
is at least by a factor β/2α greater than rα

i . The problem is
the interference created by long link cascades, that is, if all
four links are scheduled in the same time slot, the third and
fourth senders (x5 and x7) must transmit with a power of
at least β3/22α · rα

5 and β4/23α · rα
7 , respectively, in order to

guarantee successful simultaneous reception.3 This obser-
vation weighs particularly heavily for the following reason:
If we want fast, say, polylogarithmic schedules, there must
exist time slots in which at least n/ logcn nodes are sched-
uled simultaneously for some constant c. The dependence
of the chosen transmission power on other simultaneously
scheduled links—together with the requirement to schedule
relatively many links at the same time—shows that every
provably efficient scheduling protocol must inevitably em-
ploy a complex and sophisticated power assignment strat-
egy. In Algorithm 1, the transmission power of a node xi

is scaled by a factor of (3nβθ2)τ(xi), where τ (xi) is a value
that reflects the relative position of ri in an ordering of all
radii.

Unfortunately, scaling up the transmission powers of nodes
with small radii in turn entails new problems. Specifically,
since a node xi with small radius ri now transmits at a
transmission power that is high relative to the length ri of
its longest communication link, xi may cause significant in-
terference at a receiver xj even if the distance d(xi, xj) is
exponentially larger than ri.

It is important to observe that this non-locality of inter-
ference is in stark contrast to all generally studied graph-
based interference models. In fact, the above intuition shows
that fast scheduling in the SINR model is inherently a non-
local task and simple local approaches that typically work
in graph-based models fail to produce reasonable solutions.

In the sequel, we describe the algorithm on a more tech-
nical level. At the outset of Algorithm 1, the algorithm
partitions the set of nodes X into at most blog ∆c + 1 pos-
sibly empty disjoint sets S = S0, . . . , Sblog ∆c. Each such set

Si contains every node xj ∈ X with radius 2i ≤ rj < 2i+1.
If no such node exists, the set Si remains empty. In the
next step, the algorithm removes all these empty sets and

3For our illustration we assume that β > 2α; otherwise the
node distances can be adapted to produce a similar situation
in which the nodes’ transmission powers are disproportion-
ate compared to their radii.

Algorithm 1 Scheduling Algorithm

Input: - An arbitrarily located set of nodes X
- A set of communication requests Γ

Output: A schedule SALG in which all requests γij ∈ Γ
are successfully scheduled

1: Define two constants ν and µ such that ν := 4N and

µ := 1 + 2
8
α

+2 α

q

β(α−1)
α−2

; t := 1;

2: Partition X into sets S = S0, . . . , Sblog ∆c such that Si

contains all nodes xj with 2i ≤ rj < 2i+1;
3: Delete all empty sets Si ∈ S and rename S such that Si

is the ith non-empty set in decreasing order of the radii
of the contained nodes;

4: for k = 1 to dlog(3nβθ2)e do
5: Let Fk be the union of all sets

Smdlog(3nβθ2)e+k ∈ S for m ∈ N0;
6: for each xi ∈ Fk do
7: τ (xi) := χ, where xi ∈ S` and S` is the χth set

in Fk (in decreasing order of radii);
8: end for
9: while not all links with intending sender in Fk have

been scheduled do
10: Et := ∅;
11: Consider all nodes xi ∈ Fk in decreasing

order of ri:
12: if allowed(xi, Et) then Et := Et ∪ {xi};
13: Schedule all xi ∈ Et in time slot t and assign xi a

transmission power of Pi = ν(3nβθ2)τ(xi) · rα
i ;

14: Remove all scheduled senders (Fk := Fk \ Et);
15: t := t + 1;
16: end while
17: end for

allowed(xi,Et)
1: for each xj ∈ Et do
2: δij := τ (xi) − τ (xj);

3: if τ (xi) = τ (xj) and µθ
2
α · ri > d(xi, xj)

4: return false

5: else if ri · (3nβθ2)
δij+1

α + rj > d(xi, xj)
6: return false
7: end for
8: return true

renames the remaining non-empty sets such that Si is the
ith non-empty set in decreasing order of the radii of the con-
tained nodes, for i = 1, 2, . . . (see Figure 3). In the resulting
partition, the radius of all nodes in the same set are still
within a factor of 2, whereas the radius of two nodes in sets
Si and Si+1 may differ by an arbitrarily large factor if many
empty sets were deleted between Si and Si+1.

The task of each of the dlog(3nβθ2)e iterations of the sub-
sequent for-loop is to schedule a subset of all the links. In
particular, in the kth iteration of the loop, nodes in the sets
Smdlog(3nβθ2)e+k are scheduled for all integers m. All these
nodes form the set of nodes Fk that is to be scheduled in
the kth iteration. The reason for partitioning the entire set
of requests into dlog(3nβθ2)e subsets is to guarantee (cf.
Lemma 6.6) that two nodes scheduled in the same time slot
either have almost the same radius (when they are in the
same set of the partition S) or their radii differ significantly.
We will use this property in the key Lemmas 6.7 and 6.8.
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Figure 3: Naming of the sets in partition S. The up-
permost row represents the names given in Line 2
of Algorithm 1, the second row reflects the situation
after the renaming in Line 3, and the τi at the bot-
tom stand for the power scaling factors assigned in
Line 7.

It may not be possible to schedule all links in Fk in a sin-
gle time slot. Even scheduling the links of Fk alone turns
out to be a challenging task, as we show in the following. In
Lines 6 and 7 of Algorithm 1, each node xi ∈ Fk designated
to be scheduled in this iteration of the for-loop determines
its τ (xi) value. If node xi is in the set with the largest radii
of the sets selected in Fk, τ (xi) is set to 1. Or generally
speaking, if a node xi is in set S` and S` is the χth set (still
in decreasing order of radii) of all sets forming Fk, then
τ (xi) := χ (cf. Figure 3). Intuitively, nodes with small radii
have a large τ (xi), while nodes with large radii have a small
τ (xi). In other words, τ (xi) is a power scaling factor reflect-
ing the fact that—as illustrated in the example of Figure
2—nodes with small radii may have to send with dispropor-
tionately high transmission powers compared to nodes with
larger radii.

At the heart of Algorithm 1 is the while-loop which sched-
ules all nodes in Fk using essentially at most O(Iin · log n)
time slots, as shown later in Lemmas 6.5 and 6.8. The set of
nodes scheduled in parallel in time slot t is denoted by Et; at
the end of each iteration, all nodes that were scheduled are
removed from Fk (Line 14). The selection of nodes for Et

proceeds as follows. The nodes in Fk are considered one by
one in decreasing order of ri. When considering such a node
xi, the algorithm checks whether scheduling xi conflicts with
previously selected nodes in Et (that is nodes with larger ra-
dius) in the sub-procedure allowed(xi, Et). This procedure
returns true if and only if

1. All (outgoing) links of xi can be successfully scheduled
in spite of the interference created by the nodes already
in Et.

2. All senders in Et can still successfully transmit in spite
of the additional interference caused by xi.

As shown in Section 6, these two properties can be guaran-
teed by requiring that for all xj ∈ Et it holds that d(xi, xj) <

ri·µθ2/α if τ (xi) = τ (xj) or d(xi, xj) < ri·(3nβθ2)(δij+1)/α+
rj otherwise. The constant µ is set to a large enough value
as to ensure low interference.

At this point, we would like to emphasize that Algorithm 1
is not primarily intended for being employed as a practical
network protocol. Besides being rather complex, the neces-
sity that each node knows its value τ (xi) for the purpose
of determining its own transmission power renders the al-
gorithm non-trivial to implement in a distributed or local
way. Specifically, τ (xi) depends on the relative position of
the set S` in S to which xi belongs. However, the algorithm
proves that, theoretically, even complex topologies can be
scheduled efficiently also in large-scale worst-case networks
provided that Iin is small.

6. ANALYSIS
The analysis of Algorithm 1 consists of two parts. First,

we need to guarantee that the obtained schedule SALG is
valid, that is, all links are successfully received by the in-
tended receivers. Second, we will prove that the number
of time slots required in the worst case does not exceed

O(Iin · log(nθ2) · (θ 4
α + log n)). We start with correctness.

In order to guarantee that each node xs scheduled by the
algorithm in a time slot t is capable of successfully sending
to all its intended receivers, we bound the total interference
accrued at each of these receivers. For this purpose, we first
bound the interference created by simultaneously transmit-
ting nodes yi with significantly larger radii.

Lemma 6.1. Consider a time slot ts in which the algo-
rithm schedules a node xs for transmission. It holds for
all intended receivers xr ∈ Rs and for any simultaneously
transmitting node yi ∈ X \ {xs} with τ (yi) < τ (xs) that

Ir(yi) ≤ νθ(3nβθ2)τ(xs)−1.

Proof. Because the radius of yi must be significantly
larger than the radius of xs, yi was already in Et at the
time allowed(xs, Et) evaluated to true and the algorithm
selected node xs for scheduling. Consequently, the distance
d(xs, yi) must have been at least

d(xs, yi) ≥ rs · (3nβθ2)
δsi+1

α + ri > rs + ri,

where ri is yi’s radius, and therefore d(xr, yi) > ri. The
interference caused by yi at xr is consequently at most

Ir(yi) ≤ θ · Pi

d(xr, yi)α
≤ θν(3nβθ2)τ(yi)rα

i

rα
i

= νθ(3nβθ2)τ(yi) ≤ νθ(3nβθ2)τ(xs)−1,

which concludes the proof.

In the following lemma we show that also the interference
caused by concurrently transmitting nodes with significantly
smaller radii than rs is bounded.

Lemma 6.2. Consider a time slot ts in which the algo-
rithm schedules a node xs for transmission. It holds for
all intended receivers xr ∈ Rs and for any simultaneously
transmitting node yi ∈ X \ {xs} with τ (yi) > τ (xs) that

Ir(yi) ≤ νθ(3nβθ2)τ(xs)−1.

Proof. The interference Ir(yi) incurred by a node yi at
xr is at most

Ir(yi) ≤ θ · ν(3nβθ2)τ(yi) · rα
i

d(yi, xr)α
.



Assume for contradiction that there exists a node yi with
τ (yi) > τ (xs) and Ir(yi) > νθ(3nβθ2)τ(xs)−1. Then

θ · ν(3nβθ2)τ(yi) · rα
i

d(yi, xr)α
> νθ(3nβθ2)τ(xs)−1

holds and hence d(yi, xr) < α
p

(3nβθ2)τ(yi)−τ(xs)+1 · ri. Be-
cause it holds by the triangle inequality that d(yi, xs) ≤
d(yi, xr) + rs,

d(yi, xs) < α

q

(3nβθ2)τ(yi)−τ(xs)+1 · ri + rs

= ri · (3nβθ2)
δis+1

α + rs

follows. However, this contradicts the fact that yi and xs are
selected for scheduling in the same time slot. Particularly,
at the time allowed(yi, Et) is invoked for yi, xs is already
in Et, and the procedure would evaluate to false. Hence, yi

and xs cannot be scheduled in the same time slot.

Theorem 6.3. For every request γsr ∈ Γ, there exists a
unique time slot ts in which xr successfully receives a mes-
sage from xs.

Proof. We begin by showing that every xs with radius
rs > 0 is scheduled for sending exactly once during the exe-
cution of Algorithm 1. Every node xs belongs to a single set
Sh and each such set is considered in exactly one iteration of
the outermost for-loop (more precisely, set Sh is scheduled
in iteration k in which h = m log(3βn) + k for some integer
m ≥ 0). Consider this iteration. As long as xs is not sched-
uled, it remains in Fk and the while-loop (Lines 9–16) does
not terminate. Termination of this while-loop is guaranteed,
however, by the fact that in every iteration at least the node
in Fk with maximal radius is selected for scheduling in Et

and consequently removed from Fk. Because after at most
n iterations the set Fk is empty and the loop terminates,
there must be a time slot in which xs transmits. Further,
note that since every xs ∈ Et is removed from Fk, every
node has a unique time slot ts in which it transmits.

Hence, we now need to prove that in this time slot ts, the
message is received successfully by all its intended receivers
xr ∈ Rs. For this purpose, we bound the total interference
Ir =

P

yi∈X\{xs}
Ir(yi) received at any such receiver.

By Lemmas 6.1 and 6.2 we know that for all yi with
τ (yi) < τ (xs) and τ (yi) > τ (xs) the interference Ir(yi) is

bounded by νθ(3nβθ2)τ(xs)−1. Hence, because there are at
most n nodes in these sets, it holds that

X

yi:τ(xs)6=τ(yi)

Ir(yi) ≤ n · νθ(3nβθ2)τ(xs)−1. (2)

What remains to be bounded is the interference created by
concurrently transmitting nodes yi for which τ (yi) = τ (xs),
that is by nodes that are in the same set of the partition S.

Let T be the set of simultaneously transmitting nodes yi

with τ (yi) = τ (xs). By the definition of allowed(yj, Et) a

node yi ∈ T prevents all nodes yj ∈ T for which µθ
2
α · rj >

d(yi, yj) from being added to T . Because the radii of all
nodes in T , including xs, differ at most by a factor of 2,
it follows that around each yi ∈ T there can be no other

scheduled sender yj ∈ T within distance less than 1
2
µθ

2
α ·rs.

Hence, disks Di of radius 1
4
µθ

2
α rs centered at every node

yi ∈ T do not overlap.

Consider rings Rλ of width µθ
2
α rs around xs, that is,

Rλ contains all nodes yi ∈ T for which (λ − 1
2
)µθ

2
α rs <

d(xs, yi) ≤ (λ + 1
2
)µθ

2
α rs. Consider all transmitters yi ∈

T ∩ Rλ for some integer λ > 0. All corresponding disks Di

must be located entirely in an extended ring of area

A(R+
λ ) =

"

„„

λ+
3

4

«

µθ
2
α rs

«2

−
„„

λ− 3

4

«

µθ
2
αrs

«2
#

π

= 3λµ2θ
4
α r2

sπ.

The distance of a transmitter in Rλ to xr is at least ((λ −
1
2
)µθ

2
α − 1)rs, and each such node transmits with a power

of at most ν(3nβθ2)τ(xs) · (2rs)
α. By applying a standard

geometric area argument, we can bound the total interfer-
ence Iλ =

P

yi∈T ∩Rλ
Ir(yi) incurred by nodes yi ∈ T ∩ Rλ

as

Iλ ≤ A(R+
λ )

A(Di)
· θν(3nβθ2)τ(xs) · (2rs)

α

(((λ − 1
2
)µθ

2
α − 1)rs)α

<
3λµ2θ

4
α r2

sπ

( 1
4
µθ

2
α rs)2π

· θν(3nβθ2)τ(xs) · (2rs)
α

( 1
2
λθ

2
α (µ − 1)rs)α

≤ 48ν(3nβθ2)τ(xs)22α

θλα−1(µ − 1)α
.

Summing up the interference over all rings Rλ, we obtain

∞
X

λ=1

Iλ ≤ 48ν(3nβθ2)τ(xs)22α

θ(µ − 1)α

∞
X

λ=1

1

λα−1

<
48ν(3nβθ2)τ(xs)22α

θ(µ − 1)α
· α − 1

α − 2

<
ν

θ
· (3β)τ(xs)−1 · (nθ2)τ(xs),

where we exploit α > 2 to obtain the second inequality and
µ’s definition for the last inequality.

Adding up the total interference created by nodes for
which τ (yi) = τ (xs) and the total interference by all other
nodes as bounded in Inequality (2), we obtain

Ir ≤ ν

θ
(3β)τ(xs)−1(nθ2)τ(xs)+ νθ(3βθ2)τ(xs)−1nτ(xs)

=
2νθ

3
· (βθ2)τ(xs)−1 · (3n)τ(xs).

Finally, the SINR experienced at any intended receiver xr ∈
Rs is therefore at least

SINRr ≥
ν
θ
(3nβθ2)τ(xs)

N + 2
3
νθ(βθ2)τ(xs)−1 · (3n)τ(xs)

=
4
θ
(3nβθ2)τ(xs)

1 + 8
3
θ(βθ2)τ(xs)−1 · (3n)τ(xs)

≥
4
θ
(3nβθ2)τ(xs)

11
3

θ(βθ2)τ(xs)−1 · (3n)τ(xs)
> β,

where the second inequality follows from the definition of ν
and the third inequality from the fact that n, β ≥ 1. Hence,
all scheduled messages are received correctly.

We now turn our attention to the second aspect of the
analysis. Particularly, we prove that the number of time
slots required by Algorithm 1 is small, and hence the schedul-
ing complexity is low. We start with a simple helper lemma.



Lemma 6.4. In any disk D of diameter d, there can be at
most Iin + 1 nodes xi with ri ≥ d.

Proof. Assume for contradiction that there are Q >
Iin + 1 such nodes in the disk. Since ri ≥ d for all xi, each
node’s maximal disk covers the entire disk D. Hence, the
interference experienced by each node in D is at least Q−1,
which contradicts the definition of Iin if Q > Iin + 1.

The idea behind the proof about the schedule lengths
produced by Algorithm 1 is to upper-bound the number of
nodes which can prevent a node xs ∈ X from being selected
for scheduling. Since in every iteration of the while-loop at
least one node is scheduled, the number of such preventing
nodes is an upper bound on the time slots used before xs is
finally scheduled. We say that a node yi blocks node xs if
the presence of yi in Et is the reason why allowed(xs, Et)
evaluates to false. In other words, a node yi blocks xs if Al-
gorithm 1 does not schedule xs simultaneously with yi. In
the sequel, we bound the number of such blocking nodes for
each potential sender xs. We begin with a lemma that cap-
tures the number of blocking nodes for which τ (yi) = τ (xs).

Lemma 6.5. Let B0 be the set of nodes yi ∈ X that block

xs with τ (yi) = τ (xs). For all xs, |B0| ≤ ηµ2θ
4
α (Iin + 1)

holds for some constant η < 18.

Proof. The proof is based on an area argument. Since
all nodes yi ∈ B0 are in the same set of the partition S as xs,
we know that rs ≤ ri (every yi is considered before xs in the
algorithm) and rs ≥ 1

2
ri. By the definition of the algorithm,

a node yi is in B0 if and only if µθ
2
α ·rs > d(xs, yi). It follows

that all blocking nodes for xs must be located in a disk Ds

of radius µθ
2
α rs around xs.

Since ri ≥ rs for all yi, we know by Lemma 6.4 that there
can be at most Iin + 1 blocking nodes in any disk D of
diameter rs. Hence, the number of such disks D required to
cover the entire disk Ds times (Iin +1) constitutes an upper
bound on the number of blocking nodes in B0. All disks D
intersecting Ds are completely inside the disk D′

s, where D′
s

has radius (µθ
2
α + 1

2
)rs. Furthermore, the disks D can be

tesselated in a grid such that the whole area of D′
s is covered

while no point in D′
s is covered by more than two disks D.

Hence, defining ρ to be the number of disks D required to
cover D′

s, we can write

ρ ·
„

1

2
rs

«2

π ≤ 2 ·
„„

µθ
2
α +

1

2

«

rs

«2

π,

and by solving for ρ we obtain ρ ≤ 8·(µθ
2
α +1/2)2 ≤ ηµ2θ

4
α ,

which concludes the proof.

The more intricate part of the analysis is to bound the
number of blocking nodes in other sets of the partition. In
particular, note that it can be relatively easily shown that
there are only a constant number of blocking nodes for xs

in each set of the partition S. However, this bound is not
sufficient, as there can be as many as Ω(n/ log n) different
sets that are considered in the same outer for-loop iteration.
Hence, we need a much stronger bound in order to guaran-
tee the scheduling complexity as claimed in Theorem 5.1.
We start with a helper lemma that characterizes the ratio
between the radii of two nodes.

Lemma 6.6. Let xi and xj be two nodes that are consid-
ered in the same iteration of the for-loop, and let τ (xi) ≤

τ (xj). Then, for δij = τ (xi) − τ (xj), it holds that ri ≥
1
2
(3nβθ2)δij · rj.

Proof. In the same iteration of the for-loop, only links in
sets Sk, Sdlog(3nβθ2)e+k, S2dlog(3nβθ2)e+k, . . . are considered.
The value of δij denotes the number of these sets that sepa-
rate the sets containing xi and xj . Each such separating set
entails at least a doubling of the respective radii. All radii
differing at most by a factor of 2 within one set, it follows

that ri ≥ rj · 2δijdlog(3nβθ2)e−1 ≥ rj · 1
2
(3nβθ2)δij .

For the next couple of lemmas, we need to introduce
some additional notation. Specifically, we define the re-
duced distance ζi

s of yi from xs to be ζi
s = d(xs, yi) − ri. In

words, the reduced distance is a lower bound on the mini-
mum possible distance between xs and an intended receiver
of yi. Note that in procedure allowed(xi, Et) node xs is
blocked by a node yi ∈ Et, τ (xs) > τ (yi), if and only if

rs(3nβθ2)
δsi+1

α > ζi
s.

Lemma 6.7. For any ϕ ≥ 2 and σ = 72, there can be at
most σ(Iin +1) blocking nodes yi for a node xs with reduced
distance

(3nβθ2)
ϕ
α · rs < ζi

s ≤ (3nβθ2)ϕ · rs.

Proof. Assume for contradiction that there exists a set
of σ(Iin + 1) + 1 or more nodes yi that are blocking xs with
each ζi

s in the range specified in the lemma. Denote this
set of nodes by B ⊆ X. First note that if a node yi ∈ B
blocks xs and the reduced distance ζi

s > (3nβθ2)
ϕ
α · rs, then

δis > ϕ − 1 must hold and consequently δis ≥ ϕ. This is

true because if δis < ϕ, it holds that (3nβθ2)
δsi+1

α · rs < ζi
s

and consequently, by the definition of the algorithm, yi does
not block xs. Hence, in combination with Lemma 6.6, we
know that all blocking nodes yi ∈ B have radii of at least

ri ≥ 1

2
(3nβθ2)ϕ · rs. (3)

We now show that if |B| ≥ σ(Iin +1)+1, then there must
be a node that has in-interference at least Iin + 1, which
leads to a contradiction. For this purpose we first present a
transformation B′ of the node set B which does not increase
Iin. We then show that in this transformed instance B′,
in-interference is too high.

Consider the following transformation of the node set B
into a node set B′: We replace each node yi ∈ B with radius
ri by a node y′

i ∈ B′ with radius r′i = 1
2
(3nβθ2)ϕ ·rs. Specif-

ically, node y′
i is located on the straight line connecting xs

and yi at distance ζi
s + 1

2
(3nβθ2)ϕ · rs from xs, as shown

in Figure 4. Note that the disk with radius r′
i centered at

y′
i is entirely contained in the disk with radius ri around yi

(cf. Inequality (3)); this transformation cannot increase the
in-interference of any node in the network. Moreover, be-
cause the distance d(xs, yi) and ri are reduced by the same
amount, this transformation does not change the value ζi

s for

any transformed node, that is, ζi
s = ζi′

s for any yi ∈ B and
its transformation y′

i ∈ B′. Finally, note that transforming
B to B′ is always possible.

We now look at the in-interference of node set B′. Accord-
ing to the second inequality of the Lemma to be proven,
the reduced radius ζi

s of each node y′
i ∈ B′ is at most

(3nβθ2)ϕ · rs. All radii being r′i = 1
2
(3nβθ2)ϕ · rs, it follows

that all nodes y′
i ∈ B′ are located in a disk Dϕ

s of radius
3
2
(3nβθ2)ϕ · rs centered at xs.
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Figure 4: Example for the transformation used in

the proof of Lemma 6.7. with Rϕ/α = (3nβθ2)
ϕ

α · rs

and Rϕ = (3nβθ2)ϕ
· rs, respectively. The disk with

center yi and radius ri is replaced by the smaller

disk with center y′

i and radius r′

i, such that ζi
s = ζi′

s .
The transformation does not increase Iin.

Consider disks D of radius 1
4
(3nβθ2)ϕ·rs. By the standard

area argument also applied in the proof of Lemma 6.5, the
number of disks ρ required to cover the entire disk Dϕ

s is at
most

ρ ≤ 2 · ( 3
2
(3nβθ2)ϕrs)

2π

( 1
4
(3nβθ2)ϕrs)2π

= σ.

Since by assumption there are at least σ(Iin+1)+1 nodes in
B′, there must exist a disk D that contains at least Iin + 2
of these nodes. This, however, establishes a contradiction
because by Lemma 6.4 there can be at most Iin + 1 nodes
y′

i ∈ B′ in any disk D of diameter d = 1
2
(3nβθ2)ϕrs.

Using Lemmas 6.6 and 6.7, we can now establish the fol-
lowing key lemma.

Lemma 6.8. Let B+ be the set of nodes yi ∈ X that block
xs, with τ (yi) < τ (xs). It holds that for all xs, |B+| ≤
(logα

n
α

+ 1)σ(Iin + 1), for σ as defined in Lemma 6.7.

Proof. By Lemma 6.7, we know that there can be at
most σ(Iin + 1) blocking nodes yi for xs with reduced dis-

tance (3nβθ2)
ϕ
α · rs < ζi

s ≤ (3nβθ2)ϕ · rs. In particular,
this means that there are at most σ(Iin + 1) blocking nodes

with reduced distance (3nβθ2)
1
α · rs < ζi

s ≤ (3nβθ2) · rs,

at most 2σ(Iin + 1) such nodes with (3nβθ2)
1
α · rs < ζi

s ≤
(3nβθ2)α ·rs, and so forth. More generally, there are at most
κσ(Iin + 1) blocking nodes with

(3nβθ2)
1
α · rs < ζi

s ≤ (3nβθ2)ακ−1 · rs.

Because the partition S consists of at most n non-empty
sets Si, it holds that τ (xs)− τ (yi) ≤ n for all yi. Therefore,
the reduced distance of any blocking node cannot exceed
rs(3nβθ2)

n
α . For κ = logα

n
α

+ 1, on the other hand, the

reduced distance is at most rs(3nβθ2)α
logα

n
α = rs(3nβθ2)

n
α .

Hence, there can be at most (logα
n
α

+ 1)σ(Iin + 1) blocking
nodes for xs, from which the lemma follows.

Finally, we can put everything together in the following
theorem, which also implies Theorem 5.1.

Theorem 6.9. The number of time slots required by Al-
gorithm 1 to successfully schedule all links γij ∈ Γ is at most

O
“

Iin · log(nθ2) · (θ 4
α + log n)

”

.

Proof. By Lemmas 6.5 and 6.8, there are at most

B0 + B+ ≤ ηµ2θ
4
α (Iin + 1) + (logα

n

α
+ 1)σ(Iin + 1)

blocking nodes for each node xs. Hence, after at most

ηµ2θ
4
α (Iin + 1) + (logα

n
α

+ 1)σ(Iin + 1) + 1 iterations of
the while-loop, all nodes that are considered in the same it-
eration of the outer for-loop are scheduled for transmission.
The number of for-loop iterations being dlog(3nβθ2)e, it fol-
lows that for constant β the scheduling complexity T (S) of
Algorithm 1 (that is the number of time slots required) is

T (S) ∈ O
“

Iin · log(nθ2) · (θ 4
α + log n)

”

.

In the standard physical model (θ = 1) the scheduling com-
plexity of Algorithm 1 reduces to O(Iin · log2n).

7. LOW-INTERFERENCE TOPOLOGIES
Having displayed the significance of static in-interference

in the previous section, we specify the value Iin in this sec-
tion more precisely for the most basic network property, that
is connectivity. In particular, we distinguish between strong
connectivity with directed links and connectivity with undi-
rected links, as it turns out that requesting links to be sym-
metric significantly complicates the task of quickly schedul-
ing communication requests.

In the following, we first take a look at connected topolo-
gies with asymmetric (also called directed or unidirectional)
links. In particular, we consider strongly connected topolo-
gies, meaning that there exists from every node xi in the
network to every other node xj a path containing only links
oriented from xi to xj .

Theorem 7.1. Given an arbitrary set of nodes X, there
exists a strongly connected topology with asymmetric links
having in-interference Iin ∈ O(log n). On the other hand,
there exist node sets for which every strongly connected topol-
ogy with asymmetric links has interference Iin ∈ Ω(log n).

Proof. In [10], a sink tree structure is presented which
contains directed paths from all nodes to a predefined sink
node; it is shown that this structure has interference Iin ∈
O(log n). If we add directed links from the sink node to
all other nodes in the network, the resulting structure is a
strongly connected topology with Iin increased by at most
1. Furthermore, it was shown that there exist node sets for
which all strongly connected topologies with directed links
have interference at least Iin ∈ Ω(log n).

It is often argued that communication over asymmetric
wireless links is costly [26] or in general unacceptably cum-
bersome; not even simple acknowledgement of a transmitted
packet is easily possible over an asymmetric link. In the fol-
lowing we however show that—from a scheduling perspec-
tive—demanding communication links to be symmetric does



not come for free. Specifically, it has been shown in [32] that
the in-interference experienced at a node if links are required
to be symmetric can be as high as Ω(

√
n). Notice that this

is significantly higher than the O(log n) interference bound
that holds in the case where links can be asymmetric.

Theorem 7.2 ([32]). There exist node sets for which
every connected topology with symmetric links exhibits in-
interference at least Iin ∈ Ω(

√
n).

A comparative interpretation of Theorems 7.1 and 7.2
therefore leads to the conclusion that the scheduling of a
connected topology with exclusively symmetric links is by
its nature significantly more costly than the scheduling of
a connected topology using asymmetric links. More pre-
cisely, combining the two results with the scheduling algo-
rithm proposed in Section 5 shows that essentially a strongly
connected topology with asymmetric links can theoretically
be scheduled in time O(log3n). On the other hand, any pro-
tocol that combines a low-interference algorithm with the al-
gorithm of Section 5 requires as much time as O(

√
n · log2n)

in order to schedule a connected topology consisting of sym-
metric links. In a sense, this result forms an antithesis to
the often made assumption that the use of symmetric links is
mandatory for practical reasons. At least, this observation
provides a new aspect to the discussion whether asymmet-
ric edges are valid to be considered for network forming or
if they ought to be disregarded altogether.

As mentioned above, combining the O(log n) in-interfer-
ence topology control algorithm of Theorem 7.1 with the
result on the scheduling complexity in Section 5 proves that
the scheduling complexity of connectivity, as studied in [25]
with directed links, is in O(log3n). This bound improves the
result presented in [25] by a logarithmic factor:

Corollary 7.3. In the physical model, the scheduling
complexity T (S) of strong connectivity in arbitrary worst-
case networks is at most T (S) ∈ O(log3n).

This result implies that the scheduling of connected topolo-
gies can, at least in theory, be performed highly efficiently
even in worst-case networks, with schedule lengths that scale
well even for large networks.

8. CONCLUSIONS
In this paper we introduce the concept of scheduling com-

plexity of arbitrary topologies in the physical SINR model,
focusing on the time required to actually schedule the com-
munication requests of a topology over time. Presenting
and analyzing a scheduling algorithm, we prove a sharp up-
per bound on this complexity. Intriguingly, this bound de-
pends on a previously defined static interference measure.
In this sense, we put the concept of static interference into
the context of physical message realization. With respect
to static interference—from the perspective of scheduling
complexity—, we also demonstrate the presence of a breach
between connected topologies consisting exclusively of sym-
metric communication links and connected topologies al-
lowed to contain asymmetric links. This analysis not only
sheds new light on the question of practicality of directed
links, but also improves an existing upper bound on the
scheduling complexity of connectivity. Finally, one of the
main conclusions of our paper is that—from a theoretical
point of view—arbitrary topologies can be realized in short
schedules that scale well even for large networks.

It would be interesting to simplify our scheduling algo-
rithm and come up with a practical protocol implementa-
tion, since a network protocol with guaranteed low schedul-
ing complexity for arbitrary topologies forms an ideal MAC
layer protocol. While we have clearly not yet reached this
point, we believe that this paper constitutes a step towards
that ultimate goal by laying a theoretical foundation that
provides the first known scaling laws for the achievable sched-
uling complexity of arbitrary topologies.
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