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Abstract. We study the verification problem in distributed networks, stated as follows. Let H

be a subgraph of a network G where each vertex of G knows which edges incident on it are in H.
We would like to verify whether H has some properties, e.g., if it is a tree or if it is connected (every
node knows at the end of the process whether H has the specified property or not). We would like to
perform this verification in a decentralized fashion via a distributed algorithm. The time complexity
of verification is measured as the number of rounds of distributed communication.

In this paper we initiate a systematic study of distributed verification, and give almost tight
lower bounds on the running time of distributed verification algorithms for many fundamental prob-
lems such as connectivity, spanning connected subgraph, and s-t cut verification. We then show
applications of these results in deriving strong unconditional time lower bounds on the hardness
of distributed approximation for many classical optimization problems including minimum spanning
tree, shortest paths, and minimum cut. Many of these results are the first non-trivial lower bounds
for both exact and approximate distributed computation and they resolve previous open questions.
Moreover, our unconditional lower bound of approximating minimum spanning tree (MST) subsumes
and improves upon the previous hardness of approximation bound of Elkin [STOC 2004] as well as
the lower bound for (exact) MST computation of Peleg and Rubinovich [FOCS 1999]. Our result
implies that there can be no distributed approximation algorithm for MST that is significantly faster
than the current exact algorithm, for any approximation factor.

Our lower bound proofs show an interesting connection between communication complexity and
distributed computing which turns out to be useful in establishing the time complexity of exact and
approximate distributed computation of many problems.
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1. Introduction. Large and complex networks, such as the human society, the
Internet, or the brain, are being studied intensely by different branches of science.
Each individual node in such a network can directly communicate only with its neigh-
boring nodes. Despite being restricted to such local communication, the network itself
should work towards a global goal, i.e., it should organize itself, or deliver a service.

In this work we investigate the possibilities and limitations of distributed/decen-
tralized computation, i.e., to what degree local information is sufficient to solve global
tasks. Many tasks can be solved entirely via local communication, for instance, how
many friends of friends one has. Research in the last 30 years has shown that some
classic combinatorial optimization problems such as matching, coloring, dominating
set, or approximations thereof can be solved using small (i.e., polylogarithmic) local
communication. For example, a maximal independent set can be computed in time
O(log n) [29], but not in time Ω(

√
log n) [21] (n is the network size). This lower bound

even holds if message sizes are unbounded.
However many important optimization problems are “global” problems from the

distributed computation point of view. To count the total number of nodes, to de-
termining the diameter of the system, or to compute a spanning tree, information
necessarily must travel to the farthest nodes in a system. If exchanging a message
over a single edge costs one time unit, one needs Ω(D) time units to compute the re-
sult, where D is the network diameter. If message size was unbounded, one can simply
collect all the information in O(D) time, and then compute the result. In reality, how-
ever, there are communication limits, i.e., each node can exchange messages with each
of its neighbors in each step of a synchronous system, but each message can have at
most B bits (typically B is small, say O(log n)). In this case, to compute a spanning
tree, even single-bit messages are enough, as one can simply breadth-first-search the
graph in time O(D) and this is optimal [33].

But, can we verify whether an existing subgraph that is claimed to be a spanning
tree indeed is a correct spanning tree?! In this paper we show that this is not generally
possible in O(D) time – instead one needs Ω(

√
n + D) time. (Thus, in contrast to

traditional non-distributed complexity, verification is harder than computation in the
distributed world!). Our paper is more general, as we show interesting lower and
upper bounds (these are almost tight) for a whole selection of verification problems.
Furthermore, we show a key application of studying such verification problems to
proving strong unconditional time lower bounds on exact and approximate distributed
computation for many classical problems.

1.1. Technical Background and Previous Work.

Distributed Computing. Consider a synchronous network of processors with un-
bounded computational power. The network is modeled by an undirected n-vertex
graph, where vertices model the processors and edges model the links between the
processors. The processors (henceforth, vertices) communicate by exchanging mes-
sages via the links (henceforth, edges). The vertices have limited global knowledge,
in particular, each of them has its own local perspective of the network (a.k.a graph),
which is confined to its immediate neighborhood. The vertices may have to compute
(cooperatively) some global function of the graph, such as a spanning tree (ST) or
a minimum spanning tree (MST), via communicating with each other and running
a distributed algorithm designed for the task at hand. There are several measures
to analyze the performance of such algorithms, a fundamental one being the running
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time, defined as the worst-case number of rounds of distributed communication. This
measure naturally gives rise to a complexity measure of problems, called the time
complexity. On each round at most B bits can be sent through each edge in each
direction, where B is the bandwidth parameter of the network. The design of efficient
algorithms for this model (henceforth, the B model), as well as establishing lower
bounds on the time complexity of various fundamental graph problems, has been the
subject of an active area of research called (locality-sensitive) distributed computing
(see [33] and references therein.)

Distributed Algorithms, Approximation, and Hardness. Much of the initial re-
search focus in the area of distributed computing was on designing algorithms for
solving problems exactly, e.g., distributed algorithms for ST, MST, and shortest paths
are well-known [33, 30]. Over the last few years, there has been interest in designing
distributed algorithms that provide approximate solutions to problems. This area is
known as distributed approximation. One motivation for designing such algorithms
is that they can run faster or have better communication complexity albeit at the
cost of providing suboptimal solution. This can be especially appealing for resource-
constrained and dynamic networks (such as sensor or peer-to-peer networks). For
example, there is not much point in having an optimal algorithm in a dynamic net-
work if it takes too much time, since the topology could have changed by that time.
For this reason, in the distributed context, such algorithms are well-motivated even
for network optimization problems that are not NP-hard, e.g., minimum spanning
tree, shortest paths etc. There is a large body of work on distributed approximation
algorithms for various classical graph optimization problems (e.g., see the surveys by
Elkin [7] and Dubhashi et al. [6], and the work of [16] and the references therein).

While a lot of progress has been made in the design of distributed approximation
algorithms, the same has not been the case with the theory of lower bounds on the
approximability of distributed problems, i.e., hardness of distributed approximation.
There are some inapproximability results that are based on lower bounds on the
time complexity of the exact solution of certain problems and on integrality of the
objective functions of these problems. For example, a fundamental result due to Linial
[26] says that 3-coloring an n-vertex ring requires Ω(log∗ n) time. In particular, it
implies that any 3/2-approximation protocol for the vertex-coloring problem requires
Ω(log∗ n) time. On the other hand, one can state inapproximability results assuming
that vertices are computationally limited; under this assumption, any NP-hardness
inapproximability result immediately implies an analogous result in the distributed
model. However, the above results are not interesting in the distributed setting, as
they provide no new insights on the roles of locality and communication [10].

There are but a few significant results currently known on the hardness of dis-
tributed approximation. Perhaps the first important result was presented for the MST
problem by Elkin in [10]. Specifically, he showed strong unconditional lower bounds
(i.e., ones that do not depend on complexity-theoretic assumptions) for distributed
approximate MST (more on this result below). Later, Kuhn, Moscibroda, and Wat-
tenhofer [20, 21] showed lower bounds on time approximation trade-offs for several
problems.

1.2. Distributed Verification. The above discussion summarized two major
research directions in distributed computing, namely studying distributed algorithms
and lower bounds for (1) exact and (2) approximate solutions to various problems.
The third aspect — that turns out to have remarkable applications to the first two —
called distributed verification, is the main subject of the current paper. In distributed
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verification, we want to efficiently check whether a given subgraph of a network has a
specified property via a distributed algorithm1. Formally, given a graph G = (V,E),
a subgraph H = (V,E′) with E′ ⊆ E, and a predicate Π, it is required to decide
whether H satisfies Π (i.e., when the algorithm terminates, every node knows whether
H satisfies Π). The predicate Π may specify statements such as “H is connected”
or “H is a spanning tree” or “H contains a cycle”. (Each vertex in G knows which
of its incident edges (if any) belong to H.) The goal is to study bounds on the
time complexity of distributed verification. The time complexity of the verification
algorithm is measured with respect to parameters of G (in particular, its size n and
diameter D), independently from H.

We note that verification is different from construction problems, which have
been the traditional focus in distributed computing. Indeed, distributed algorithms
for constructing spanning trees, shortest paths, and other problems have been well
studied ([33, 30]). However, the corresponding verification problems have received
much less attention. To the best of our knowledge, the only distributed verification
problem that has received some attention is the MST (i.e., verifying if H is a MST);
the recent work of Kor et al. [17] gives a Ω(

√
n/B + D) deterministic lower bound

on distributed verification of MST, where D is the diameter of the network G. That
paper also gives a matching upper bound. (We also note that the MST verification
problem is also studied in the setting where labels are given and in the area of self-
stabilization. See [18, 19] and references therein.) Note that distributed construction
of MST has rather similar lower and upper bounds [35, 12]. Thus in the case of the
MST problem, verification and construction have the same time complexity. We later
show that the above result of Kor et al. is subsumed by the results of this paper, as
we show that verifying any spanning tree takes so much time.

Motivations. The study of distributed verification has two main motivations. The
first is understanding the complexity of verification versus construction. This is ob-
viously a central question in the traditional RAM model, but here we want to focus
on the same question in the distributed model. Unlike in the centralized setting, it
turns out that verification is not in general easier than construction in the distributed
setting! In fact, as was indicated earlier, distributively verifying a spanning tree turns
out to be harder than constructing it in the worst case. Thus understanding the
complexity of verification in the distributed model is also important. Second, from an
algorithmic point of view, for some problems, understanding the verification problem
can help in solving the construction problem or showing the inherent limitations in
obtaining an efficient algorithm. In addition to these, there is yet another motivation
that emerges from this work: We show that distributed verification leads to showing
strong unconditional lower bounds on distributed computation (both exact and approx-
imate) for a variety of problems, many hitherto unknown. For example, we show that
establishing a lower bound on the spanning connected subgraph verification problem
leads to establishing lower bounds for the minimum spanning tree, shortest path tree,
minimum cut etc. Hence, studying verification problems may lead to proving hardness
of approximation as well as lower bounds for exact computation for new problems.

1.3. Our Contributions. In this paper, our main contributions are twofold.
First, we initiate a systematic study of distributed verification, and give almost tight
uniform lower bounds on the running time of distributed verification algorithms for

1Such problems have been studied in the sequential setting, e.g., Tarjan [38] studied verification
of MST.
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many fundamental problems. Second, we make progress in establishing strong hard-
ness results on the distributed approximation of many classical optimization problems.
Our lower bounds also apply seamlessly to exact algorithms. We next state our main
results (the precise theorem statements are in the respective sections as mentioned
below).

1. Distributed Verification. We show a lower bound of Ω(
√

n/(B log n) +D) for
many verification problems in the B model, including spanning connected subgraph, s-
t connectivity, cycle-containment, bipartiteness, cut, least-element list, and s-t cut (cf.
definitions in Section 5). These bounds apply to Monte Carlo randomized algorithms
as well and clearly hold also for asynchronous networks. Moreover, it is important to
note that our lower bounds apply even to graphs of small diameter (D = Θ(log n)).
Furthermore we present slightly weaker lower bounds for even smaller (constant)
diameters. (Indeed, the problems studied in this paper are “global” problems, i.e.,
the network diameter of G imposes an inherent lower bound on the time complexity.)

Additionally, we show that another fundamental problem, namely, the spanning
tree verification problem (i.e., verifying whether H is a spanning tree) has the same
lower bound of Ω(

√

n/(B log n) +D) (cf. Section 6). However, this bound applies to
only deterministic algorithms. This result strengthens the deterministic lower bound
result of minimum spanning tree verification by Kor et al. [17] in that it shows that
the same lower bound holds even on the simpler problem of spanning tree verification.
Moreover, we note the interesting fact that although finding a spanning tree (e.g., a
breadth-first tree) can be done in O(D) rounds [33], verifying if a given subgraph is a
spanning tree requires Ω̃(

√
n+D) rounds! Thus the verification problem for spanning

trees is harder than its construction in the distributed setting. This is in contrast
to this well-studied problem in the centralized setting. Apart from the spanning tree
verification problem, we also show deterministic lower bounds for other verification
problems, including Hamiltonian cycle and simple path verification.

Our lower bounds are almost tight as we show that there exist algorithms that run
in O(

√
n log∗ n + D) rounds (assuming B = O(log n)) for almost all the verification

problems addressed here (cf. Section 8).

2. Bounds on Hardness of Distributed Approximation. An important consequence
of our verification lower bound is that it leads to lower bounds for exact and ap-
proximate distributed computation. We show the unconditional time lower bound
of Ω(

√

n/(B log n) + D) for approximating many optimization problems, including
MST, shortest s-t path, shortest path tree, and minimum cut (Section 7). The impor-
tant point to note is that the above lower bound applies for any approximation ratio
α ≥ 1. Thus the same bound holds for exact algorithms as well (that is α = 1). All
these hardness bounds hold for randomized algorithms. (In fact, these bounds hold
for Monte Carlo randomized algorithms while previous lower bounds [35, 10, 27] hold
only for Las Vegas randomized algorithms.) As in our verification lower bounds, these
bounds apply even to graphs of small (Θ(log n)) diameter. Figure 1.1 summarizes our
lower bounds for various diameters.

Our results improve over previous ones (e.g., Elkin’s lower bound for approximate
MST and shortest path tree [10]) and subsumes some well-established exact bounds
(e.g., Peleg and Rubinovich lower bound for MST [35]) as well as show new strong
bounds (both for exact and approximate computation) for many other problems (e.g.,
minimum cut), thus answering some questions that were open earlier (see the survey
by Elkin [7]).

The new lower bound for approximating MST simplifies and improves upon the
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Previous lower bound for MST- New lower bound for MST-,
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(for exact algorithms, use α = 1) all problems in Fig. 1.2.
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Fig. 1.1. Lower bounds of randomized α-approximation algorithms on graphs of various diame-
ters. Bounds in the second column are for the MST and shortest path tree problems [10] while those
in the third column are for these problems and many other problems listed in Figure 1.2. We note
that these bounds almost match the O(

√
n log∗ n+D) upper bound for the MST problem [12, 24] and

are independent of the approximation-factor α. Also note a simple observation that lower bounds
for graphs of diameter D also hold for graphs of larger diameters.

previous Ω(
√

n/(αB log n)+D) lower bound by Elkin [10], where α is the approxima-
tion factor. [10] showed a tradeoff between the running time and the approximation ra-
tio of MST. Our result shows that approximating MST requires Ω(

√

n/(B log n)+D)
rounds, regardless of α. Thus our result shows that there is actually no trade-off,
since there can be no distributed approximation algorithm for MST that is signifi-
cantly faster than the current exact algorithm [24, 9], for any approximation factor
α > 1.

1.4. Overview of Technical Approach. We prove our lower bounds by estab-
lishing an interesting connection between communication complexity and distributed
computing. Our lower bound proofs consider the family of graphs evolved through
a series of papers in the literature [10, 27, 35]. However, while previous results
[35, 10, 27, 17] rely on counting the number of states needed to solve the mailing
problem where one node in the network wants to send a message to another node
in the network (along with some sophisticated techniques for its variant, called cor-
rupted mailing problem, in the case of approximation algorithm lower bounds) and use
Yao’s method [42] (with appropriate input distributions) to get lower bounds for ran-
domized algorithms, our results are achieved using a few steps of simple reductions,
starting from problems in communication complexity, as follows (also see Figure 1.2
for details).

(Section 3) First, we reduce the lower bounds of problems in the standard commu-
nication complexity model [23] to the lower bounds of the equivalent problems in the
“distributed version” of communication complexity. Specifically, we prove the Sim-
ulation Theorem (cf. Section 3) which relates the communication lower bound from
the standard communication complexity model [23] to compute some appropriately
chosen function f , to the distributed time complexity lower bound for computing
the same function in a specially chosen graph G. In the standard model, Alice and
Bob can communicate directly (via a bidirectional edge of bandwidth one). In the
distributed model, we assume that Alice and Bob are some vertices of G and they
together wish to compute the function f using the communication graph G. The
choice of graph G is critical. We use a graph called G(Γ, d, p) (parameterized by Γ, d
and p) that was first used in [10]. We show a reduction from the standard model to
the distributed model, the proof of which relies on some observations used in previous
results (e.g., [35]).
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Fig. 1.2. Problems and reductions between them to obtain randomized and deterministic lower
bounds. For all problems, we obtain lower bounds as in Figure 1.1. In order to get the whole picture
of the paper, we recommend reading along the black dashed line. Definitions of (Monte Carlo)
randomized algorithms can be found in Section 2.1. Definitions of problems in communication
complexity, distributed verification of functions, distributed verification of networks and distributed
approximation, can be found in Section 2.2, 2.3, 2.4 and 2.5, respectively.

(Section 4) The connection established in the first step allows us to bypass the
state counting argument and Yao’s method, and reduces our task in proving lower
bounds of verification problems to merely picking the right function f to reduce
from. The function f that is useful in showing our randomized lower bounds is the
set disjointness function [1, 15, 2, 37], which is the quintessential problem in the
world of communication complexity with applications to diverse areas and has been
studied for decades (see a recent survey in [3]). Following a result well known in
communication complexity [23], we show that the distributed version of this problem
has an Ω(

√

n/(B log n)) lower bound on graphs of small diameter.

(Section 5 & 6) We then reduce from the set disjointness problem to the verifi-
cation problems using simple reductions similar to those used in data streams [13].
The set disjointness function yields randomized lower bounds and works for many
problems (see Figure 1.2), but it does not reduce to certain other problems such as
spanning tree. To show lower bounds for these other problems, we use a different
function f called equality function. However, this reduction yields only deterministic
lower bounds for the corresponding verification problems.



8 Das Sarma, Holzer, Kor, Korman, Nanongkai, Pandurangan, Peleg and Wattenhofer

(Section 7) Finally, we reduce the verification problem to hardness of distributed
approximation for a variety of problems to show that the same lower bounds hold
for approximation algorithms as well. For this, we use a reduction whose idea is
similar to one used to prove hardness of approximating TSP (Traveling Salesman
Problem) on general graphs (see, e.g., [40]): We convert a verification problem to an
optimization problem by introducing edge weights in such a way that there is a large
gap between the optimal values for the cases where H satisfies, or does not satisfy a
certain property. This technique is surprisingly simple, yet yields strong unconditional
hardness bounds — many hitherto unknown, left open (e.g., minimum cut) [7] and
some that improve over known ones (e.g., MST and shortest path tree) [10]. As
mentioned earlier, our approach shows that approximating MST by any factor needs
Ω̃(

√
n) time, while the previous result due to Elkin gave a bound that depends on α

(the approximation factor), i.e. Ω̃(
√

n/α), using more sophisticated techniques.

Figure 1.2 summarizes these reductions that will be proved in this paper. Our
proof technique via this approach is quite general and conceptually straightforward to
apply as it hides all complexities in the well studied area of communication complex-
ity. Yet, it yields tight lower bounds for many problems (we show almost matching
upper bounds for many problems in Section 8). It also has some advantages over the
previous approaches. First, in the previous approach, we have to start from scratch
every time we want to prove a lower bound for a new problem. For example, ex-
tending from the mailing problem in [35] to the corrupted mailing problem in [10]
requires some sophisticated techniques. Our new technique allows us to use known
lower bounds in communication complexity to do such a task. Secondly, extending
a deterministic lower bound to a randomized one is sometimes difficult. As in our
case, our randomized lower bound of the spanning connected subgraph problem would
be almost impossible without connecting it to the communication complexity lower
bound of the set disjointness problem (whose strong randomized lower bound is a
result of years of studies [1, 15, 2, 37]). One important consequence is that this tech-
nique allows us to obtain lower bounds for Monte Carlo randomized algorithms while
previous lower bounds hold only for Las Vegas randomized algorithms. We believe
that this technique could lead to many new lower bounds of distributed algorithms.

Recent results. After the preliminary version of this paper ([5]) appeared, the con-
nection between communication complexity and distributed algorithm lower bounds
has been further used to develop some new lower bounds. In [32], the Simulation
Theorem (cf. Theorem 3.1) is extended to show a connection between bounded-
round communication complexity and distributed algorithm lower bounds. It is then
used to show a tight lower bound for distributed random walk algorithms. In [11],
lower bounds of computing diameter of a network and related problems are shown
by reduction from the communication complexity of set disjointness. This is done by
considering the communication at the bottleneck of the network (sometimes called bi-
section width [23, 25]). A similar argument is also used in [22] to show lower bounds on
directed networks. Regarding the diameter, a matching upper bound was found inde-
pendently by [14] and [34]. They essentially devise an O(n) algorithm for computing
All Pairs Shortest Paths and study related problems like computing the girth, center,
etc. and their approximations. Lower bounds on these (approximation) problems are
provided in [14].

2. Preliminaries. To make it easy to look up for definitions, we collect all
necessary definitions in this section. We recommend the readers to skip this section
in the first read and come back when necessary.
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This section is organized as follows (also see Figure 1.2 for a pointer to a subsec-
tion for each definition). In Subsection 2.1, we define the notion of ε-error randomized
public-coin algorithms and the worse-case running time of these algorithms. In Sub-
section 2.2, we define the communication complexity model and the set disjointness
and equality problems. We then extend this model to the model of distributed veri-
fication of functions in Subsection 2.3. In Subsection 2.4, we give a formal definition
of the distributed verification problem which we explained informally in Section 1.
We also define the specific distributed verification problems considered in this paper.
Finally, in Subsection 2.5, we define the notion of approximation algorithms.

2.1. Randomized (Monte Carlo) Public-Coin Algorithms and the Worst-
Case Running Time. In this paper, we show lower bounds of distributed algorithms
that are Monte Carlo. Recall that a Monte Carlo algorithm is a randomized algo-
rithm whose output may be incorrect with some probability. Formally, let A be any
algorithm for computing a function f . We say that A computes f with ε-error if for
every input x, A outputs f(x) with probability at least 1 − ε. Note that a 0-error
algorithm is deterministic.

We note the fact that lower bounds of Monte Carlo algorithms also imply lower
bounds of Las Vegas algorithms (whose output is always correct but the running time
is only in expectation). Thus, lower bounds in this paper hold for both types of
algorithms.

Public coin. We say that a randomized distributed algorithm uses a public coin
if all nodes have an access to a common random string (chosen according to some
probability distribution). In this paper, we are interested in the lower bounds of
public-coin randomized distributed algorithms. We note that these lower bounds also
imply time lower bounds of private-coin randomized distributed algorithms, where
nodes do not share a random string, since allowing a public coin only gives more
power to the algorithms.

Worst-case running time. For any public-coin randomized distributed algorithm
A on a network G and input I (given to nodes in G), we define the worst-case running
time of A on input I to be the maximum number of rounds needed to run A among all
possible (shared) random strings. The worst-case running time of A is the maximum,
over all inputs I, of the worst-case running time of A on I.

As noted earlier, although we show only the lower bounds of worst-case running
time, these bounds also hold for the expected running time. This is because we can
convert algorithms with randomized running time into algorithms with deterministic
running time by terminating such algorithms early with a cost of small errors (see,
e.g., [31], for details).

2.2. Communication Complexity. In this paper, we consider the standard
model of communication complexity. To avoid confusion, we define the model as a
special case of the distributed algorithm model. We refer to [23] for the conventional
definition, further details and discussions.

In this model, there are two nodes in the network connected by an edge. We call
one node Alice and the other node Bob. Alice and Bob each receive a b-bit binary
string, for some integer b ≥ 1, denoted by x and y respectively. Together, they both
want to compute f(x, y) for a Boolean function f : {0, 1}b × {0, 1}b → {0, 1}. In the
end of the process, we want both Alice and Bob to know the value of f(x, y). We are
interested in the worst-case running time of distributed algorithms on this network
when one bit can be sent on the edge in each round (thus the running time is equal
to the number of bits Alice and Bob exchange).
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For any Boolean function f and ε > 0, we let Rcc−pub
ε (f) denote the minimum

worst-case running time of the best ε-error randomized algorithm for computing f in
the communication complexity model.

In this paper, we are interested in two Boolean functions, set disjointness (disj)
and equality (eq) functions, defined as follows.

• Set Disjointness function (disj). Given two b-bit strings x and y, the
set disjointness function, denoted by disj(x, y), is defined to be one if the
inner product 〈x, y〉 is 0 (i.e., there is no i such that xi = yi = 1) and zero
otherwise.

• Equality function (eq). Given two b-bit strings x and y, the equality
function, denoted by eq(x, y), is defined to be one if x = y and zero otherwise.

2.3. Distributed Verification of Functions. We consider the same problem
as in the case of communication complexity. That is, Alice and Bob receive b-bit
binary strings x and y respectively and they want to compute f(x, y) for some Boolean
function f . However, Alice and Bob are now distinct vertices in a B-model distributed
network G (cf. Section 1.1). We denote Alice’s node (which receives x) by s and Bob’s
node (which receives y) by r. At the end of the process, both s and r will output
f(x, y). We are interested in the worst-case running time a distributed algorithm
needs in order to compute function f .

For any network G (with two nodes marked as s and r), Boolean function f and
ε > 0, we let RG

ε (f) denote the worst-case running time of the best ε-error randomized
distributed algorithm for computing f on G.

In this model, we consider the set disjointness and equality functions as in the
communication complexity model (cf. Subsection 2.2).

2.4. Distributed Verification of Networks. We already gave an informal
definition of this problem in Section 1. We now define the problem formally. In the
distributed network G, we describe its subgraph H as an input as follows. Each node
v in G with neighbors u1, . . . , ud(v), where d(v) is the degree of v, has d(v) Boolean
indicator variables Yv(u1), . . . , Yv(ud(v)) indicating which of the edges incident to v
participate in the subgraph H. The indicator variables must be consistent, i.e., for
every edge (u, v), Yv(u) = Yu(v) (this is easy to verify locally with a single round of
communication).

Let HY be the set of edges whose indicator variables are 1; that is,

HY = {(u, v) ∈ E | Yu(v) = 1}.

Given a predicate Π (which may specify statements such as “HY is connected” or “HY

is a spanning tree” or “HY contains a cycle”), the output for a verification problem
at each vertex v is an assignment to a (Boolean) output variable Av, where Av = 1 if
HY satisfies the predicate Π, and Av = 0 otherwise.

We say that a distributed algorithm AΠ verifies predicate Π if, for every graph
G and subgraph HY of G, all nodes in G knows whether HY satisfies Π after we
run AΠ; that is, after the execution of AΠ on graph G, at each vertex v the output
variable Av is one if HY satisfies predicate Π, and zero otherwise. Note again that
the time complexity of the verification algorithm is measured with respect to the size
and diameter of G (independently from HY ). When Y is clear from the context, we
use H to denote HY .

We now define problems considered in this paper.
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• connected spanning subgraph verification: We want to verify whether
H is connected and spans all nodes of G, i.e., every node in G is incident to
some edge in H.

• cycle containment verification: We want to verify if H contains a cycle.
• e-cycle containment verification: Given an edge e inH (known to vertices
adjacent to it), we want to verify if H contains a cycle containing e.

• bipartiteness verification: We want to verify whether H is bipartite.
• s-t connectivity verification: In addition to G and H, we are given two

vertices s and t (s and t are known by every vertex). We would like to verify
whether s and t are in the same connected component of H.

• connectivity verification: We want to verify whether H is connected.
• cut verification: We want to verify whether H is a cut of G, i.e., G is not
connected when we remove edges in H.

• edge on all paths verification: Given two nodes u, v and an edge e. We
want to verify whether e lies on all paths between u and v in H. In other
words, e is a u-v cut in H.

• s-t cut verification: We want to verify whether H is an s-t cut, i.e., when
we remove all edges EH of H from G, we want to know whether s and t are
in the same connected component or not.

• least-element list verification [4, 16]: The input of this problem is dif-
ferent from other problems and is as follows. Given a distinct rank (integer)
r(v) to each node v in the weighted graph G, for any nodes u and v, we say
that v is the least element of u if v has the lowest rank among vertices of
distance at most d(u, v) from u. Here, d(u, v) denotes the weighted distance
between u and v. The Least-Element List (LE-list) of a node u is the set
{〈v, d(u, v)〉 | v is the least element of u}.
In the least-element list verification problem, each vertex knows its rank as an
input, and some vertex u is given a set S = {〈v1, d(u, v1)〉, 〈v2, d(u, v2)〉, . . .}
as an input. We want to verify whether S is the least-element list of u.

• Hamiltonian cycle verification: We would like to verify whether H is a
Hamiltonian cycle of G, i.e., H is a simple cycle of length n.

• spanning tree verification: We would like to verify whether H is a tree
spanning G.

• simple path verification: We would like to verify that H is a simple path,
i.e., all nodes have degree either zero or two in H except two nodes that have
degree one and there is no cycle in H.

2.5. Approximation Algorithms. In a graph optimization problem P in a
distributed network, such as finding a MST, we are given a non-negative weight ω(e)
on each edge e of the network (each node knows the weights of all edges incident to
it). Each pair of network and weight function (G,ω) comes with a nonempty set of
feasible solutions for a problem P; e.g., for the case of finding a MST, all spanning
trees of G are feasible solutions. The goal of P is to find a feasible solution that
minimizes or maximizes the total weight. We call such a solution an optimal solution.
For example, a spanning tree of minimum weight is an optimal solution for the MST
problem.

For any α ≥ 1, an α-approximate solution of P on weighted network (G,ω) is
a feasible solution whose weight is not more than α (respectively, 1/α) times of the
weight of the optimal solution of P if P is a minimization (respectively, maximization)
problem. We say that an algorithm A is an α-approximation algorithm for problem
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P if it outputs an α-approximate solution for any weighted network (G,ω). In case of
randomized algorithms (cf. Subsection 2.1), we say that an α-approximation T -time
algorithm is ε-error if it outputs an answer that is not α-approximate with probability
at most ε and always finishes in time T , regardless of the input and the choice of
random string.

In this paper, we consider the following problems.

• In the minimum spanning tree problem [10, 35], we want to compute the
weight of the minimum spanning tree (i.e., the spanning tree of minimum
weight). In the end of the process all nodes should know this weight.

• Consider a network with two cost functions associated to edges, weight and
length, and a root node r. For any spanning tree T , the radius of T is the
maximum length (defined by the length function) between r and any leaf
node of T . Given a root node r and the desired radius `, a shallow-light
tree [33] is the spanning tree whose radius is at most ` and the total weight
is minimized (among trees of the desired radius).

• Given a node s, the s-source distance problem [8] is to find the distance
from s to every node. In the end of the process, every node knows its distance
from s.

• In the shortest path tree problem [10], we want to find the shortest path
spanning tree rooted at some input node s, i.e., the shortest path from s to
any node t must have the same weight as the unique path from s to t in the
solution tree. In the end of the process, each node should know which edges
incident to it are in the shortest path tree.

• The minimum routing cost spanning tree problem [41] is defined as
follows. We think of the weight of an edge as the cost of routing messages
through this edge. The routing cost between any node u and v in a given
spanning tree T , denoted by cT (u, v), is the distance between them in T .
The routing cost of the tree T itself is the sum over all pairs of vertices of the
routing cost for the pair in the tree, i.e.,

∑

u,v∈V cT (u, v). Our goal is to find
a spanning tree with minimum routing cost.

• A set of edges E′ is a cut of G if G is not connected when we delete E′.
The minimum cut problem [7] is to find a cut of minimum weight. A set of
edges E′ is an s-t cut if there is no path between s and t when we delete E′

from G. The minimum s-t cut problem is to find an s-t cut of minimum
weight.

• Given two nodes s and t, the shortest s-t path problem is to find the length
of the shortest path between s and t.

• The generalized Steiner forest problem [16] is defined as follows. We are
given k disjoint subsets of vertices V1, ..., Vk (each node knows which subset it
is in). The goal is to find a minimum weight subgraph in which each pair of
vertices belonging to the same subsets is connected. In the end of the process,
each node knows which edges incident to it are in the solution.

Note that in the minimum spanning tree, minimum cut, minimum s-t cut, and
shortest s-t path problems, an α-approximation algorithm should find a solution that
has total weight at most α times the weight of the optimal solution. For the s-source
distance problem, an α-approximation algorithm should find an approximate distance
d(v) of every vertex v such that distance(s, v) ≤ d(v) ≤ α · distance(s, v) where
distance(s, v) is the distance of s from v. Similarly, an α-approximation algorithm
for the shortest path tree problem should find a spanning tree T such that, for any
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Fig. 3.1. An example of G(Γ, d, p) (here d = 2).

node v, the length ` of the unique path from s to v in T satisfies ` ≤ α ·distance(s, v).
3. From Communication Complexity to Distributed Computing. In this

section, we show a connection between the communication complexity model (cf.
Section 2.2) and the model of distributed verification of functions (cf. Section 2.3)
on a family of graphs called G(Γ, d, p). This family of graphs was first defined in
[10] (which was extended from [35]). We will define this graph in Subsection 3.1 for
completeness.

The main result of this section shows that if there is a fast ε-error algorithm for
computing f on G(Γ, d, p), then there is a fast ε-error algorithm for Alice and Bob
to compute f in the communication complexity model. We call this the Simulation
Theorem. We state the theorem below. The rest of this section is devoted to defining
the graph G(Γ, d, p) and to proving the theorem.

Theorem 3.1 (Simulation Theorem). For any Γ, d, p, B, ε ≥ 0, and function
f : {0, 1}b × {0, 1}b → {0, 1}, if there is an ε-error distributed algorithm on G(Γ, d, p)
that computes f faster than dp

−1
2 time, i.e.,

RG(Γ,d,p)
ε (f) <

dp − 1

2

then there is an ε-error algorithm in the communication complexity model that com-

putes f in at most 2dpBR
G(Γ,d,p)
ε (f) time. In other words,

Rcc−pub
ε (f) ≤ 2dpBRG(Γ,d,p)

ε (f) .

We first describe the graph G(Γ, d, p) with parameters Γ, d and p and distinct
vertices s and r.

3.1. Description of G(Γ, d, p) [10]. We now describe the network G(Γ, d, p) in
detail. The two basic units in the construction are paths and a tree. There are Γ
paths, denoted by P1,P2, . . . ,PΓ, each having dp nodes, i.e., for ` = 1, 2, . . .Γ,

V (P`) = {v`0, . . . , v`dp−1} and E(P`) = {(v`i , v`i+1) | 0 ≤ i < dp − 1} .

There is a tree, denoted by T having depth p where each non-leaf node has d children
(thus, there are dp leaf nodes). We denote the nodes of T at level ` from left to right
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by u`
0, . . . , u

`
d`−1 (so, u0

0 is the root of T and up
0, . . . , u

p
dp−1 are the leaves of T ). For

any ` and j, the leaf node up
j is connected to the corresponding path node v`j by a

spoke edge (up
j , v

`
j). Finally, we set the two special nodes (which will receive input

strings x and y) as s = up
0 and r = up

dp−1. Figure 3.1 depicts this network. We note
the following lemma proved in [10].

Lemma 3.2. [10] The number of vertices in G(Γ, d, p) is n = Θ(Γdp) and its
diameter is 2p+ 2.

3.2. Terminologies. For any 1 ≤ i ≤ b(dp − 1)/2c, define the i-left and the
i-right of path P` as

Li(P`) = {v`j | j ≤ dp − 1− i} and Ri(P`) = {v`j | j ≥ i} ,

respectively. Thus, L0(P`) = R0(P`) = V (P`). Define the i-left of the tree T ,
denoted by Li(T ), as the union of the set S = {up

j | j ≤ dp − 1− i} and all ancestors
of all vertices in S. Similarly, the i-right Ri(T ) of the tree T is the union of set
S = {up

j | j ≥ i} and all ancestors of all vertices in S. Now, the i-left and i-right sets
of G(Γ, d, p) are the union of those left and right sets,

Li =
⋃

`

Li(P`) ∪ Li(T ) and Ri =
⋃

`

Ri(P`) ∪Ri(T ) .

For i = 0, we modify the definition and set L0 = V \ {r} and R0 = V \ {s} . See
Figure 3.2.

Let A be any deterministic distributed algorithm run on graph G(Γ, d, p) for
computing a function f . Fix any input strings x and y given to s and r respectively.
Let ϕA(x, y) denote the execution of A on x and y. Denote the state of the vertex v
at the end of round t during the execution ϕA(x, y) by σA(v, t, x, y).

We note the following important property of distributed algorithms. The state of
a vertex v at the end of time t is uniquely determined by its input and the sequence of
messages on each of its incoming links from time 1 to t. Intuitively, this is because
a distributed algorithm is simply a set of algorithms run on different nodes in a
network. The algorithm on each node behaves according to its input and the sequence
of messages sent to it so far. From this, for example, we can conclude that in two
different executions ϕA(x, y) and ϕA(x

′, y′), a vertex reaches the same state at time
t (i.e., σA(v, t, x, y) = σA(v, t, x

′, y′)) if and only if it receives the same sequence of
messages on each of its incoming links.

For a given set of vertices U = {v1, . . . , v`} ⊆ V , a configuration

CA(U, t, x, y) = 〈σA(v1, t, x, y), . . . , σA(v`, t, x, y)〉

is a vector of the states of the vertices of U at the end of round t of the execution
ϕA(x, y).

3.3. Observations. We note the following crucial observations developed in
[35, 10, 27, 17]. We will need Lemma 3.4 to prove Theorem 3.1 in the next subsection.

Observation 3.3. For any set U ⊆ U ′ ⊆ V , CA(U, t, x, y) can be uniquely
determined by CA(U

′, t− 1, x, y) and all messages sent to U from V \ U ′ at time t.
Proof. Recall that the state of each vertex v in U can be uniquely determined by

its state σA(v, t−1, x, y) at time t−1 and the messages sent to it at time t. Moreover,
the messages sent to v from vertices inside U ′ can be determined by CA(U

′, t−1, x, y).
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Thus if the messages sent from vertices in V \U ′ are given then we can determine all
messages sent to U at time t and thus we can determine CA(U, t, x, y).

From now on, to simplify notations, when A, x and y are clear from the context,
we use CLt

and CRt
to denote CA(Lt, t, x, y) and CA(Rt, t, x, y), respectively. The

lemma below states that CLt
(CRt

, respectively) can be determined by CLt−1
(CRt−1

,
respectively) and dp messages generated by some vertices in Rt−1 (Lt−1 respectively)
at time t. It essentially follows from Observation 3.3 and an observation that there
are at most dp edges between vertices in V \Rt−1 (V \Lt−1 respectively) and vertices
in Rt (Lt respectively).

Lemma 3.4. Fix any deterministic algorithm A and input strings x and y.
For any 0 < t < (dp − 1)/2, there exist functions gL and gR, B-bit messages

M
Lt−1

1 , . . . ,M
Lt−1

dp sent by some vertices in Lt−1 at time t, and B-bit messages M
Rt−1

1 ,

. . ., M
Rt−1

dp sent by some vertices in Rt−1 at time t such that

CLt
= gL(CLt−1

,M
Rt−1

1 , . . . ,M
Rt−1

dp ), and (3.1)

CRt
= gR(CRt−1

,M
Lt−1

1 , . . . ,M
Lt−1

dp ) . (3.2)

Proof. We prove Eq. (3.2) only. (Eq. (3.1) is proved in exactly the same way.)
First, observe the following facts about neighbors of nodes in Rt.

• All neighbors of all path vertices in Rt are in Rt−1. Example: In Figure 3.2,
path vertices in R2 are v`2, . . . , v

`
dp−1 for ` = 1, . . . ,Γ. Observe that all neigh-

bors of these vertices, i.e. v`1, . . . , v
`
dp−1 for all ` and up

1, . . . , u
p
dp−1, are in

R1.
• All neighbors of all leaf vertices in V (T ) ∩Rt are in Rt−1. Example: In Fig-
ure 3.2, leaf vertices inR2 are u

p
2, . . . , u

p
dp−1. Their neighbors, i.e. v

`
2, . . . , v

`
dp−1

for all ` and up−1
1 , . . . , up−1

dp−1−1, are all in R1.

• For any non-leaf tree vertex u`
i , for any ` and i, if u`

i is in Rt then its parent
and vertices u`

i+1, u
`
i+2, . . . , u

`
d`−1 are in Rt−1. Example: In Figure 3.2, up−1

1

is in R2. Thus, its parent (u
p−2
0 ) and up−1

2 , . . . , up−1
dp−1−1 are in R1.
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• For any i and `, if u`
i is in Rt then all children of u`

i+1 are in Rt (otherwise, no
child of u`

i can be in Rt and therefore u`
i is also not in Rt, a contradiction).

Example: In Figure 3.2, up−1
1 is in R2. Thus, all children of up−1

2 are in R2.

Let u`(Rt) denote the leftmost vertex that is at level ` of T and in Rt, i.e.,
u`(Rt) = u`

i where i is such that u`
i ∈ Rt and u`

i−1 /∈ Rt. (For example, in Figure 3.2,

up−1(R1) = up−1
0 and up−1(R2) = up−1

1 .) From the above observations, we conclude
that the only neighbors of nodes in Rt that are not in Rt−1 are children of u`(Rt), for
all `. In other words, all edges linking between vertices in Rt and V \Rt−1 are in the
following form: (u`(Rt), u

′) for some ` and child u′ of u`(Rt).

Setting U ′ = Rt−1 and U = Rt in Observation 3.3, we have that CRt
can be

uniquely determined by CRt−1
and messages sent to each u`(Rt) from its children in

V \ Rt−1 in time t. Note that each of these messages contains at most B bits since
they correspond to a message sent on an edge in one round.

Observe further that, for any t < (dp−1)/2, V \Rt−1 ⊆ Lt−1 since Lt−1 and Rt−1

share some path vertices. Moreover, each u`(Rt) has d children. Therefore, if we let

M
Lt−1

1 , . . . ,M
Lt−1

dp be the messages sent from children of u0(Rt), u
1(Rt), . . . , u

p−1(Rt)
in V \ Rt−1 to their parents (note that if there are less than dp such messages then
we add some empty messages) then we can uniquely determine CRt

by CRt−1
and

M
Lt−1

1 , . . . ,M
Lt−1

dp . Eq. (3.2) thus follows.

Using the above lemma, we can now prove Theorem 3.1.

3.4. Proof of the Simulation Theorem (cf. Theorem 3.1). Let f be the
function in the theorem statement. Let Aε be any ε-error distributed algorithm for
computing f on network G(Γ, d, p). Fix a random string r̄ used by Aε (shared by all
vertices in G(Γ, d, p)) and consider the deterministic algorithm A run on the input
of Aε and the fixed random string r̄. Let TA be the worst case running time of
algorithm A (over all inputs). We note that TA < (dp − 1)/2, as assumed in the
theorem statement. We show that Alice and Bob, when given r̄ as the public random
string, can simulate A using at most 2dpBTA communication bits, as follows.

Alice and Bob make TA iterations of communications. Initially, Alice computes
CL0

which depends only on x. Bob also computes CR0
which depends only on y.

In each iteration t > 0, we assume that Alice and Bob know CLt−1
and CRt−1

,
respectively, before the iteration starts. Then, Alice and Bob will exchange at most
2dpB bits so that Alice and Bob know CLt

and CRt
, respectively, at the end of the

iteration.

To do this, Alice sends to Bob the messages M
Lt−1

1 , . . . ,M
Lt−1

dp as in Lemma 3.4.
Alice can generate these messages since she knows CLt−1

(by assumption). Then, Bob
can compute CRt

using Eq. (3.2) in Lemma 3.4. Similarly, Bob sends dp messages to
Alice and Alice can compute CLt

. They exchange at most 2dpB bits in total in each
iteration since there are 2dp messages, each of B bits, exchanged.

After TA iterations, Alice knows C(LTA
, TA, x, y) and Bob knows C(RTA

, TA, x, y).
In particular, they know the output of A (output by s and r) since Alice and Bob
know the states of s and r, respectively, after A terminates. They can thus output
the output of A.

Since Alice and Bob output exactly the output of A, they will answer correctly
if and only if A answers correctly. Thus, if A is ε-error then so is the above commu-
nication protocol between Alice and Bob. Moreover, Alice and Bob communicate at
most 2dpBTA bits. The theorem follows.
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4. Distributed Verification of Set Disjointness and Equality Functions.
In this section, we show lower bounds of distributed algorithms for verifying set dis-
jointness and equality. The definitions of both problems can be found in Section 2.2
and the model of distributed verification of functions can be found in Section 2.3.
The results in this section are simple corollaries of the Simulation Theorem (cf. The-
orem 3.1) and will serve as important building blocks in showing lower bounds in later
sections.

4.1. Randomized Lower Bound of Set Disjointness Function. To prove
the lower bound of verifying disj, we simply use the communication complexity lower
bound of computing disj [1, 15, 2, 37], i.e., Rcc−pub

ε (disj) = Ω(b) where b is the size
of input strings x and y.

Lemma 4.1. For any Γ, d, p, there exists a constant ε > 0 such that

RG(Γ,d,p)
ε (disj) = Ω(min(dp,

b

dpB
)),

where b is the size of input strings x and y of disj; i.e., any ε-error algorithm com-
puting function disj on G(Γ, d, p) requires Ω(min(dp, b

dpB )) time.

Proof. If R
G(Γ,d,p)
ε (disj) ≥ (dp − 1)/2 then R

G(Γ,d,p)
ε (disj) = Ω(dp) and we

are done. Otherwise the conditions of Theorem 3.1 are fulfilled and it implies that

Rcc−pub
ε (disj) ≤ 2dpB · RG(Γ,d,p)

ε (disj). Now we use the fact that Rcc−pub
ε (disj)

= Ω(b) for the function disj on b-bit inputs, for some ε > 0 [1, 15, 2, 37] (also see [23,

Example 3.22] and references therein). It follows that R
G(Γ,d,p)
ε (disj) = Ω(b/(dpB)).

We note that ε in the above theorem must be a sufficiently small constant. It is
not clear whether there is a better algorithm when a large error is allowed, e.g. some
0 < ε < 1/2 (the case of ε ≥ 1/2 is obvious).

4.2. Deterministic Lower Bound of Equality Function. To prove the lower
bound of verifying eq, we simply use the deterministic communication complexity
lower bound of computing eq [43], i.e., Rcc−pub

0 (eq) = Ω(b) where b is the size of input
strings x and y (see, e.g., [23, Example 1.21] and references therein).

Lemma 4.2. For any Γ, d, p,

R
G(Γ,d,p)
0 (eq) = Ω(min(dp,

b

dpB
)),

where b is the size of input strings x and y of eq; i.e., any deterministic algorithm
computing function eq on G(Γ, d, p) requires Ω(min(dp, b

dpB )) time.

Proof. If R
G(Γ,d,p)
0 (eq) ≥ (dp − 1)/2 then R

G(Γ,d,p)
0 (eq) = Ω(dp) and we are

done. Otherwise, the conditions of Theorem 3.1 are fulfilled and it implies that

Rcc−pub
0 (eq) ≤ 2dpB ·RG(Γ,d,p)

0 (eq). Now we use the fact that Rcc−pub
0 (eq) = Ω(b) for

the function eq on b-bit inputs. It follows that R
G(Γ,d,p)
ε (eq) = Ω(b/(dpB)).

5. Randomized Lower Bounds for Distributed Verification. In this sec-
tion, we present randomized lower bounds for many verification problems on graphs of
various diameters, as shown in Figure 1.1. These problems are defined in Section 2.4.
The key ingredient is the lower bound of verifying the set disjointness function on
distributed networks (cf. Lemma 4.1). The general theorem is as follows.

Theorem 5.1. For any p ≥ 1, B ≥ 1, and n ∈ {22p+1pB, 32p+1pB, . . .}, there
exists a constant ε > 0 such that any ε-error distributed algorithm for any of the
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following problems requires Ω((n/(pB))
1
2−

1
2(2p+1) ) time on some Θ(n)-vertex graph of

diameter 2p+ 2 in the B model: Spanning connected subgraph, cycle containment, e-
cycle containment, bipartiteness, s-t connectivity, connectivity, cut, edge on all paths,
s-t cut and least-element list.

In particular, for graphs with diameter D = 4, we get Ω((n/B)1/3) lower bound
and for graphs with diameter D = log n we get Ω(

√

n/(B log n)). Similar analysis also

leads to a Ω(
√

n/B) lower bound for graphs of diameter nδ for any fixed δ > 0. We
can also get an Ω((n/B)1/4) lower bound for graphs of diameter D = 3 by applying
the same technique on graphs in [27]. We note again that the lower bounds hold even
in the public coin model where every vertex shares a random string. We also note
that the situation is completely different when the diameter is one and two where
there is an O(log log n) and O(log n)-time algorithm, respectively [27, 28].

Organization. This section is organized as follows. In the first three subsections,
we show lower bounds that need a reduction from the set disjointness problem (i.e.,
problems in the third column in Figure 1.2): spanning connected subgraph verification
in Subsection 5.1, s-t connectivity verification in Subsection 5.2 and cycle containment,
e-cycle containment, and bipartiteness verification in Subsection 5.3 (these problems
are proved together as they use the same construction). The lower bounds on the
remaining problems (connectivity, cut, edges on all paths, s-t cut and least-element
list verification) are in Subsection 5.4.

5.1. Lower Bound of Spanning Connected Subgraph Verification Prob-
lem. The lower bound of spanning connected subgraph verification essentially follows
from the following lemma which says that an algorithm for solving spanning connected
subgraph verification can be used to compute disj as well.

Lemma 5.2. For any Γ, d ≥ 2, p and ε ≥ 0, if there exists an ε-error distributed
algorithm for the spanning connected subgraph verification problem on graph G(Γ, d, p)
then there exists an ε-error algorithm for verifying disj (on Γ-bit inputs) on G(Γ, d, p)
that uses the same time complexity.

Proof. Consider an ε-error algorithm A for the spanning connected subgraph
verification problem, and suppose that we are given an instance of the set disjointness
problem with Γ-bit input strings x and y (given to s and r). We use A to solve this
instance of the set disjointness problem by constructing H as follows.

First, we mark all path edges and tree edges as participating in H. All spoke
edges are marked as not participating in subgraph H, except those incident to s and
r for which we do the following: For each bit xi, 1 ≤ i ≤ Γ, vertex s indicates that
the spoke edge (s, vi0) participates in H if and only if xi = 0. Similarly, for each bit
yi, 1 ≤ i ≤ Γ, vertex r indicates that the spoke edge (r, vidp−1) participates in H if
and only if yi = 0. (See Figure 5.1.)

Note that the participation of all edges, except those incident to s and r, is decided
independently of the input. Moreover, one round is sufficient for s and r to inform
their neighbors of the participation of edges incident to them. Hence, one round is
enough to construct H. Then, algorithm A is started.

Once algorithm A terminates, vertex r determines its output for the set dis-
jointness problem by stating that both input strings are disjoint if and only if the
spanning connected subgraph verification algorithm verified that the given subgraph
H is indeed a spanning connected subgraph.

Observe that H is a spanning connected subgraph if and only if for all 1 ≤ i ≤ Γ
at least one of the edges (s, vi0) and (r, vidp−1) is in H; thus, by the construction of H,
H is a spanning connected subgraph if and only if the input strings x, y are disjoint,
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1

Fig. 5.1. Example of H for the spanning connected subgraph problem (marked with dashed
edges (red edges)) when x = 0...10 and y = 1...00.

i.e., for every i either xi = 0 or yi = 0. Hence the resulting algorithm has correctly
solved the given instance of the set disjointness problem when A correctly solve the
spanning connected subgraph verification problem on the constructed subgraph H.
This happens with probability at least 1− ε.

Using Lemma 4.1, we obtain the following result.
Corollary 5.3. For any Γ, d, p, there exists a constant ε > 0 such that any

ε-error algorithm for the spanning connected subgraph verification problem requires
Ω(min(dp, Γ

dpB )) time on some Θ(Γdp)-vertex graph of diameter 2p+ 2.

In particular, if we consider Γ = dp+1pB then Ω(min(dp,Γ/(dpB))) = Ω(dp).
Moreover, by Lemma 3.2, G(dp+1pB, d, p) has n = Θ(d2p+1pB) vertices and thus the

lower bound of Ω(dp) becomes Ω((n/(pB))
1
2−

1
2(2p+1) ). Theorem 5.1 (for the case of

spanning connected subgraph) follows.

5.2. Lower Bound of s-t Connectivity Verification Problem. We again
modify the proof of Lemma 5.2 to prove the following lemma.

Lemma 5.4. For any Γ, d ≥ 2, p and ε ≥ 0 if there exists an ε-error distributed
algorithm for the s-t connectivity verification problem on graph G(Γ, d, p) then there
exists an ε-error algorithm for verifying disj (on Γ-bit inputs) on G(Γ, d, p) that uses
the same time complexity.

Proof. We use the same argument as in the proof of Lemma 5.2 except that we
construct the subgraph H as follows.

First, all path edges are marked as participating in subgraph H. All tree edges
are marked as not participating in H. All spoke edges, except those incident to s and
r, are also marked as not participating. For each bit xi, 1 ≤ i ≤ Γ, vertex s indicates
that the spoke edge (s, vi0) participates in H if and only if xi = 1. Similarly, for each
bit yi, 1 ≤ i ≤ Γ, vertex r indicates that the spoke edge (r, vidp−1) participates in H
if and only if yi = 1. (See Figure 5.2.)

Observe that s and r are connected in H if and only if there exists 1 ≤ i ≤ Γ
such that both edges (vi0, s), (v

i
dp−1, r) are in H; thus, by the construction of H, H is

s-r connected if and only if the input strings x and y are not disjoint.
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Fig. 5.2. Example of H for s-t connectivity problem (marked with dashed edges (red edges))
when x = 0...10 and y = 1...00.

  


  


  


   









 

P1

PΓ−1

PΓ

v1
0

v1
1 v1

2 v1
dp−1

vΓ−1

0
vΓ−1

1 vΓ−1
2 vΓ−1

dp−1

vΓ
0

vΓ
1 vΓ

2 vΓ
dp−1

s = u
p
0

u
p

dp−1
= ru

p
1 u

p
2

u0
0

u
p−1

0
u
p−1

1

Fig. 5.3. Example of H for the cycle and e-cycle containment and bipartiteness verification
problem when x = 0...10 and y = 1...00.

5.3. Lower Bounds of Cycle Containment, e-Cycle Containment, and
Bipartiteness Verification Problems. We modify the proof of Lemma 5.4 to prove
the following lemma which says that an algorithm for solving problems in this section
can be used to compute disj.

Lemma 5.5. For any Γ, d ≥ 2, p and ε ≥ 0 if there exists an ε-error distributed
algorithm for solving either the cycle containment, e-cycle containment or bipartite-
ness verification problem on graph G(Γ, d, p) then there exists an ε-error algorithm for
verifying disj (on Γ-bit inputs) on G(Γ, d, p) that uses the same time complexity.

Proof. We prove this lemma by modifying the proof of Lemma 5.4. We only note
the key difference here.

Cycle containment verification problem: We constructH in the same way as in the
proof of Lemma 5.4 except that the tree edges are participating in H (see Figure 5.3).

In the case that the input strings are disjoint, H will consist of the tree connecting
s and r as well as 1) paths connected to s but not to r, 2) paths connected to r but
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not to s and 3) paths connected neither to r nor s. Thus there is no cycle in H. In the
case that the input strings are not disjoint, we let i be an index that makes them not
disjoint, that is xi = yi = 1. This causes a cycle in H consisting of some tree edges
and path Pi that are connected by edges (s, vi0) and (vidp−1, r) at their endpoints.
Thus we have the following claim.

Claim 5.6. H contains a cycle if and only if the input strings are not disjoint.
e-cycle containment verification problem: We use the previous construction for H

and let e be the tree edge adjacent to s (i.e., e connects s to its parent). Observe that,
in this construction, H contains a cycle if and only if H contains a cycle containing
e. Therefore, we have the following claim.

Claim 5.7. e is contained in a cycle in H if and only if the input strings are not
disjoint.

Bipartiteness verification problem: Finally, we can verify if such an edge e is
contained in a cycle by verifying the bipartiteness. First, we replace e = (s, up−1

0 ) by
a path (s, v′, up−1

0 ), where v′ is an additional/virtual vertex. This can be done without
changing the input graph G by having vertex s simulated algorithms on both s and
v′. The communication between s and v′ can be done internally. The communication
between v′ and up−1

0 can be done by s. We construct H ′ the same way as H with
both (s, v′) and (v′, up−1

0 ) marked as participating.
We observe that if the input strings are not disjoint, then either H or H ′ are not

bipartite. To see this, consider two cases: when dp is even and odd. When dp is even
and the input strings are not disjoint, there exists i such that there is a cycle in H
consisting of some tree edges (including e) and path Pi that are connected by edges
(s, vi0) and (vidp−1, r) at their endpoints. This cycle is of length 2p+ (dp − 1) + 2 – an
odd number causing H to be not bipartite. If dp is odd, then by the same argument
there is an odd cycle of length (2p + 1) + (dp − 1) + 2 in H ′ (this cycle includes the
edges (s, v′) and (v′, up−1

0 ) that replaces e); thus H ′ is not bipartite.
Now we consider the converse: If the input strings are disjoint, then H does not

contain a cycle by the argument of the proof of the cycle containment problem (which
uses the same graph). It follows that H ′ does not contain a cycle as well. Therefore,
we have the following claim.

Claim 5.8. H and H ′ are both bipartite if and only if the input strings are
disjoint.

Thus, we can check whether the input strings are disjoint by constructing both H
and H ′ and checking if they are both bipartite. We note that the above reduction for
the bipartiteness verification problem might seem to suggest that one can also prove
the lower bound of this problem by reducing from the e-cycle verification problem.
However, this is not the case. The reason is that the above proof relies on the fact
that H and H ′ each contains at most one cycle and such cycle must contain e. In
general, this might not be the case.

5.4. Lower Bounds of Connectivity, Cut, Edges on All Paths, s-t Cut
and Least-element List Verification Problems. Lower bounds of verification
problems in this section are proven using the lower bounds of problems in Section 5.1,
5.2 and 5.3.

Connectivity verification problem. We reduce from the spanning connected sub-
graph verification problem. Let A(G,H) be an algorithm that verifies if H is con-
nected in O(τ(n)) time on any n-vertex graph G and subgraph H. Now we will use
this algorithm to verify whether a subgraph H ′ of G is connected or not.

Recall that, by definition, H ′ is a spanning connected subgraph if and only if
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every node is incident to at least one edge in H ′ and H ′ is connected. Verifying that
every node is incident to at least one edge in H ′ can be done locally and all nodes
can be notified if this is not the case in O(D) rounds (by broadcasting). Checking
if H ′ is connected can be done in O(τ(n)) rounds by running A(G,H ′). The total
running time for checking if H ′ is a spanning connected subgraph is thus O(τ(n)+D).
The lower bound of the spanning connected subgraph problem thus applies to the
connectivity verification problem as well.

Cut verification problem. We again reduce from the spanning connected subgraph
problem. Given a subgraph H, we verify if H is a spanning connected subgraph as
follows. Let H̄ be the graph obtained by removing edges E(H) of H from G. Recall
that H is a spanning connected subgraph if and only if H̄ is not a cut (see definition
of a cut in Section 2.4). Thus, we verify if H̄ is a cut and announce that H is a
spanning connected subgraph if and only if H̄ is not a cut.

s-t cut verification problem. We reduce from s-t connectivity. Similar to above,
we use the fact that H is s-t connected if and only if H̄ is not an s-t cut.

Least-element list verification problem. We reduce from s-t connectivity. We set
the rank of s to 0 and the rank of other nodes to any distinct positive integers. We
assign weight 0 to all edges in H and 1 to other edges. Give a set S = {< s, 0 >}
to vertex t. Then we verify if S is the least-element list of t. Observe that if s and
t are connected by H then the distance between them must be 0 and thus S is the
least-element list of t. Conversely, if s and t are not connected then the distance
between them will be at least one and S will not be the least-element list of t.

Edge on all paths verification problem. We reduce from the e-cycle containment
problem using the following observation: H does not contain a cycle containing e if
and only if e lies on all paths between u and v in H where u and v are two nodes
incident to e.

6. Deterministic Lower Bounds of Distributed Verification. In this sec-
tion, we present deterministic lower bounds for Hamiltonian cycle, spanning tree and
simple path verification. These problems are defined in Section 2.4. These lower
bounds are proved in almost the same way as in Section 5. The only difference
is that we reduce from the deterministic lower bound of the Equality problem (cf.
Lemma 4.2).

Theorem 6.1. For any p, B ≥ 1, and n ∈ {22p+1pB, 32p+1pB, . . .}, any deter-
ministic distributed algorithm for any of the following verification problems requires

Ω(( n
pB )

1
2−

1
2(2p+1) ) time on some Θ(n)-vertex graph of diameter 2p+2 in the B model:

Hamiltonian cycle, spanning tree, and simple path verification.

We first prove the lower bound of the Hamiltonian cycle problem and later extend
to other problems.

6.1. Lower Bound of Hamiltonian Cycle Verification Problem. We con-
struct G(Γ, d, p)′ from G(Γ, d, p) by adding edges and vertices to G(Γ, d, p). We argue
that the Simulation Theorem (cf. Theorem 3.1) holds on G(Γ, d, p)′ as well. Let m
be dp − 1.

First we add edges in such a way that the subgraph induced by the vertices
{v10 , . . . , vΓ0 } is a clique and the subgraph induced by the vertices {v1m, . . . , vΓm} is a
clique as well. Observe that the Simulation Theorem holds on G(Γ, d, p) with this
change since it only relies on Lemma 3.4 which is true on the modified graph as well.

Now we add edges (up
i , u

p
i+1) for all 0 ≤ i ≤ m− 1. Thus we shorten the distance

between each pair of nodes up
i and up

i+1 from at most three (using two spoke edges
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and one path-edge from the according P l) to one (red dashed edges in Figure 6.1).
This will affect the lower bound by at most a constant factor. Now for each node ul

i

we add a path of length p− l+1 containing p− l new nodes connecting ul
i to up

i·dp−l+1
(green dotted paths/nodes in Figure 6.1). This will increase the number of messages
needed in Lemma 3.4 by a factor of at most two. Thus, the Simulation Theorem still
holds.

Further, we add the edges (vΓ−2
m−1, u

p
0), (v

Γ−3
m , up

0) and (vΓm, u0
0). This will again

increase the number of messages needed in Lemma 3.4 by a constant factor of two
and thus the Simulation Theorem still holds.

Finally, we add the following three edges (u0
0, v

Γ
m), (s, vΓ−2

m−1), and (s, vΓ−3
m−1).

Adding these three edges will increase the number of messages needed in Lemma 3.4
by at most three and thus the Simulation Theorem still holds. This completes the
description of G(Γ, d, p)′.

u4
0 u4

15

u0
0

u3
0

u3
7

Fig. 6.1. Example of the modification of the tree-part of G(Γ, d, p) in the case p = 4 and d = 2.
The red dashed edges are new edges (up

i , u
p
i+1

) and the green dotted edges form new paths between

nodes connecting ul
i to u

p

i·dp−l+1
.

To simplify and shorten the proof, we do some preparation. First, we consider
strings x and y of length b and define Γ to be 2 + 12b – this changes the bound only
by a constant factor. Now, from x and y, we construct strings of length m. If m is
even, we define

x′ := 1x101x101x201x201 . . . 01xb01xb01x101x101 . . . 01xb01xb010,

y′ := 1y101y101y201y201 . . . 01yb01yb01y101y101 . . . 01yb01yb010

If m is odd, we define

x′ := 1x101x101x201x201 . . . 01xb01xb01x101x101 . . . 01xb01xb0100,

y′ := 1y101y101y201y201 . . . 01yb01yb01y101y101 . . . 01yb01yb0100

where xi and yi denote negations of xi and yi respectively.
Now we construct H in five stages. In the first stage we create some short paths

that we call lines. In the next two stages we construct from these lines two paths
S1 and S2 by connecting the lines in special ways with each other (the connections
depend on the input strings). In the fourth stage we construct a path S3 that will
connect the leftover lines with each other. These three paths, S1, S2, and S3, will
cover all nodes. The final stage is to connect all three paths together.

We will construct these paths in such a way that, the input strings are equal if
and only if the resulting graph H is a Hamiltonian cycle. Later we will observe that
in the case the strings are equal all three paths will look like disjoint paths when
using the graph layout of Figure 3.1. The formal description of the five stages will be
accompanied by a small example in Figures 6.2 and 6.3. Here, x = 01 = y.
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Stage 1. We create the lines by marking most path edges (to be more precise,
all edges (vij , v

i
j+1) for all i ∈ [1,Γ] and j ∈ {2, . . . ,m− 2} for j ∈ {1, . . . ,m− 1}) as

participating in subgraph H. In addition we add the edges (v1m−1, v
1
m) and (v10 , v

1
1)

to H. These basic elements are called lines now (see Figure 6.2).

Stage 2. Define path S1 as follows. All spoke edges incident to H1 are marked
as not participating in H, except those incident to s and r. For each bit x′

i, 1 ≤ i ≤ Γ,
vertex s indicates that the edge (vi0, v

i+1
0 ) participates in H if and only if x′

i = 1.
Similarly, for each bit y′i, 1 ≤ i ≤ Γ, vertex r indicates that the spoke edge (vim, vi+1

m )
participates in H if and only if y′i = 0. Furthermore for 2 ≤ i ≤ Γ each edge
(vi0, v

i
1) participates in H if and only if x′

i−1 6= x′
i. Similarly for 2 ≤ i ≤ Γ each edge

(vim−1, v
i
m) participates in H if and only if y′i−1 6= y′i. In addition we let edges (v10 , v

1
1)

and (v1m−1, v
1
m) participate in H. We denote the path that results from connecting

the lines according to the rules above by S1. An example is given in Figure 6.2.
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Fig. 6.2. Example of the reduction using input strings x = 01 = y. Note that Γ is 12 ·2+2 = 26
and we use d = 2 and p = 4. In Stage 1, we add blue paths to H, that are displayed by blue dashed
lines. In Stage 2, we create S1, the red-colored path that looks like a snake.

Stage 3. Define S2 as follows. We connect the lines not covered in Stage 3
(except the tree T ) and those nodes that are not covered by any path or line. In
particular, on the left side of the graph, for 0 ≤ i ≤ 2b, we do the following.

• If x′
2+6i = 0 (and thus x′

5+6i = 0 due to the definition of x′) then edges

(v3+6i
1 , v3+6i

0 ), (v3+6i
0 , v6+6i

0 ) and (v6+6i
0 , v6+6i

1 ) are indicated to participate in
H.
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• If x′
2+6i = 1 (and thus x′

5+6i = 1 due to the definition of x′), edges (v3+6i
m , v3+6i

m−1),

(v3+6i
1 , v6+6i

1 ) and (v6+6i
m−1, v

6+6i
m ) will participate in H.

On the right side of the graph, for 0 ≤ i ≤ 2b we indicate the following edges to
participate in H:

• (v5+6i
m , v

2+6(i+1)
m ) if y′5+6i = 0 and y′2+6(i+1) = 0.

• (v5+6i
m , v

3+6(i+1)
m−1 ) if y′5+6i = 0 and y′2+6(i+1) = 1.

• (v6+6i
m−1, v

2+6(i+1)
m ) if y′5+6i = 1 and y′2+6(i+1) = 0.

• (v6+6i
m−1, v

3+6(i+1)
m−1 ) if y′5+6i = 1 and y′2+6(i+1) = 1.

We denote the path that results from connecting lines according to the rules above
by S2. An example is given in Figure 6.3.

Stage 3 Stage 5

Fig. 6.3. Continuation of the example started in Figure 6.2. In Stage 3, we add S2 in dotted
green (dotted lines). S3 is displayed in dashed brown and added in stage four. Finally we connect
S1, S2 and S3 by bold blue edges to a Hamiltonian cycle in Stage 5.

Stage 4. We include edges of the modified tree in a canonical way in H to form
a path S3 that covers all nodes in T and starts and ends at up

0 and u0
0 respectively,

as follows. For all i such that 0 ≤ i ≤ m − 1 and i 6≡ −1 mod d, we include the
edge (up

i , u
p
i+1) in H. For all 0 ≤ l ≤ p − 1 and all 0 ≤ i ≤ dl we include the edges

(ul
i, u

l+1
i·d+1) in H, and if i 6≡ −1 mod d, we also include the path connecting ul

i to
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ui·dp−l+1 in H. An example is given in Figure 6.4.

u4
0 u4

15

u0
0

u3
0

u3
7

Stage 4

Fig. 6.4. The modified tree for p = 4 and d = 2. The red bold edges form path S3.

Stage 5 We now connect end points of the three paths. Let us investigate the
six endpoints of the three paths.

• End points of S3 are u0
0 and up

0 (see Figure 6.4).
• Path S2 has both endpoints on the r-side (see Figure 6.3). Let us denote

these endpoints by e1 and e2. Depending on the input strings, endpoint e1 is
either v3m−1 or v2m and the other endpoint e2 is either vΓ−2

m−1 or vΓ−3
m−1.

• The endpoints of S1 are both on the r-side (see Figure 6.2): vΓm and v1m.

Now we connect those endpoints in the following way.

• Connect S1 and S2, each at one endpoint on the r-side, by letting edge (e1, v
1
m)

participate in H.
• We connect the endpoint u0

0 of S3 to the endpoint vΓm of S1 by marking an
edge (u0

0, v
Γ
m) as participating.

• Connect the endpoint e2 to v and v to the endpoint up
0 of S3 by including the

corresponding edges of G(Γ, d, p)′ in H.

An example is given in Figure 6.3.

If the strings are equal then the result is a Hamiltonian cycle since it contains
the paths S1, S2, and S3 that will be three disjoint paths (connected to be a cycle)
that cover all nodes. Now we prove that if the strings are not equal, H will not be
a Hamiltonian cycle. Let i be a position in which Xs and Xr differ. Let us consider
the case that xi = 0 and yi = 1. Then the sequence x′

1+6i, . . . , x
′
6+6i will be 100100

while the sequence y′1+6i, . . . , y
′
6+6i will be 110110. When we look at the part of the

graph H corresponding to this sequence (see Figure 6.5), we see that H can not be a
cycle and thus not a Hamiltonian cycle: due to y′2+6i = 0 and x′

2+6i = 1 there are no
edges on the s- nor r-side of level 2+6i connecting the part of S1 below level 2+6i to
the part of S1 above level 2 + 6i. There will also be no edges of S2 that accidentally
connect those two parts to each other. The case that xi = 1 and yi = 0 is treated the
same way: due to the construction of x′ and y′ the sequence x′

6b+1+6i, . . . , x
′
6b+6+6i

is 100100 and y′6b+1+6i, . . . , y
′
6b+6+6i will be 110110 and we can use exactly the same

argument as before.

Now consider an algorithm Aham for the Hamiltonian cycle verification problem.
When Aham terminates, vertex s determines its output for the equality problem by
stating that both input strings are equal if and only if Aham verified that H is a
Hamiltonian cycle.

Hence a fast algorithm for the Hamiltonian cycle problem on G(Γ, d, p)′ can be
used to correctly solve the given instance of the equality problem on G(Γ, d, p)′ faster.
This contradicts the lower bound of the equality verification problem, which holds for
all d (here we used d = 2).
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x01+6i = 1

xi = x
0

2+6i = 0

x
0

3+6i = 0

x
0

4+6i = 1

xi = x
0

5+6i = 0

x06+6i = 0

1 = y01+6i

1 = y02+6i = yi

0 = y
0

3+6i

1 = y
0

4+6i

1 = y
0

5+6i = yi

0 = y06+6i

Fig. 6.5. Example of the case that xi = 0 and yi = 1.

6.2. Lower Bound of Spanning Tree and Path Verification Problems.
The remaining two deterministic lower bounds follow from the lower bound of the
Hamiltonian cycle verification problem, as follows.

Spanning Tree Verification Problem. We reduce Hamiltonian cycle verification to
spanning tree verification using O(D) rounds using the following observation: H is a
Hamiltonian cycle if and only if every vertex has degree exactly two and H \ e, for
any edge e in H, is a spanning tree.

Therefore, to verify that H is a Hamiltonian cycle, we first check whether every
vertex has degree exactly two in H. If this is not true then H is not a Hamiltonian
cycle. This part needs O(D) rounds. Next, we check if H \ {e}, for any edge e in H,
is a spanning tree. We announce that H is a Hamiltonian cycle if and only if H \ {e}
is a spanning tree.

Simple Path Verification Problem. Similar to the above proof, we reduce Hamil-
tonian cycle verification to path verification using O(D) rounds using the following
observation: H is a Hamiltonian cycle if and only if every vertex has degree exactly
two and H \ e is a path (without cycles).

7. Hardness of Distributed Approximation. In this section we show a time
lower bound of Ω(

√

n/(B log n)) for Monte Carlo randomized approximation algo-
rithms of many problems (defined in Section 2.5), as in the following theorem.

Theorem 7.1. For any polynomial function α(n), numbers p, B ≥ 1, and
n ∈ {22p+1pB, 32p+1pB, . . .}, there exists a constant ε > 0 such that any α(n)-
approximation ε-error distributed algorithm for any of the following problems requires

Ω(( n
pB )

1
2−

1
2(2p+1) ) time on some Θ(n)-vertex graph of diameter 2p+2 in the B model:

minimum spanning tree [10, 35], shallow-light tree [33], s-source distance [8], shortest
path tree [10], minimum routing cost spanning tree [41], minimum cut [7], minimum
s-t cut, shortest s-t path and generalized Steiner forest [16].

In particular, for graphs with diameter D = 4, we get Ω((n/B)1/3) lower bound
and for graphs with diameter D = log n we get Ω(

√

n/(B log n)). Similar analysis

also leads to a Ω(
√

n/B) lower bound for graphs of diameter nδ for any δ > 0, and
Ω((n/B)1/4) lower bound for graphs of diameter three using the same analysis as in
[10].

The main tool used in this section is the randomized lower bound of network
verification problems defined in Section 2.4 and proved in Section 5.

The main proof idea is similar to the proof that the Traveling Salesman Problem
on general graphs cannot be approximated within α(n) for any polynomial computable
function α(n) (see, e.g., [40]): We will define a weighted graph G′ in such a way that if
the subgraph H satisfies the desired property then the approximation algorithm must
return some value that is at most f(n), for some function f . Conversely, if H does
not satisfy the property, the approximation algorithm will output some value that is
strictly more than f(n). Thus, we can distinguish between the two cases.



28 Das Sarma, Holzer, Kor, Korman, Nanongkai, Pandurangan, Peleg and Wattenhofer

To highlight the main idea, we first prove the theorem for the minimum spanning
tree problem in the next subsection. Proofs of other problems are in Subsection 7.2.

7.1. Lower Bound of Approximating the Minimum Spanning Tree. Re-
call that in the minimum spanning tree problem, we are given a connected graph G
and we want to compute a minimum spanning tree (i.e., a spanning tree of minimum
weight). At the end of the process each vertex knows which edges incident to it are
in the output tree.

Let Aε be an α(n)-approximation ε-error algorithm for the minimum spanning
tree problem. We show that Aε can be used to solve the spanning connected subgraph
verification problem using the same running time (thus the lower bound proved in
Theorem 5.1 applies).

To do this, construct a weight function on edges in G, denoted by ω, by assigning
weight 1 to all edges in H and weight nα(n) to all other edges. Note that constructing
ω does not need any communication since each vertex knows which edges incident to
it are members of H. Call this weighted graph G′. Now we find the weight W of the
α(n)-approximated minimum spanning tree of G′ using Aε and announce that H is a
spanning connected subgraph if and only if W is less than nα(n).

We will show that the weighted graph G′ has a spanning tree of weight less than
nα(n) if and only if H is a spanning connected subgraph of G and thus the algorithm
above is correct. Suppose that H is a spanning connected subgraph. Then, there is a
spanning tree that is a subgraph of H and has weight n− 1 < nα(n) since α(n) ≥ 1.
Thus the minimum spanning tree has weight less than nα(n). Conversely, suppose
that H is not a spanning connected subgraph. Then, any spanning tree of G′ must
contain an edge not in H. Therefore, any spanning tree has weight at least nα(n) as
claimed.

7.2. Lower Bounds of Other Problems. We now prove the remaining lower
bounds.

Shallow-light tree problem. The lower bound for the shallow-light tree problem
follows immediately from the lower bound of the MST problem when we set the length
of every edge to be one and radius requirement to be n. In this case, the spanning
tree satisfies the radius requirement and so the minimum-weight shallow-light tree
becomes the minimum spanning tree.

s-source distance and shortest path tree problems. We construct the graph G′ as
in Subsection 7.1 and the lower bounds follow in a similar way: H is a spanning
connected subgraph if and only if the distance from s to every node is at most n− 1
(i.e., A has approximated the distance to be at most (n − 1)α(n)), which is true if
and only if the shortest path spanning tree contains only edges of weight one (i.e., the
total weight of the shortest path spanning tree is at most (n− 1)α(n)).

Minimum routing cost spanning tree problem. We modify the construction of G′

in Subsection 7.1 as follows. We assign weight one to edges in H and n3α(n) to other
edges. Observe that if H is a spanning connected subgraph, the routing cost between
any pair will be at most n− 1 and thus the cost of the α(n)-approximation minimum
routing cost spanning tree will be at most (n − 1)

(

n
2

)

α(n) < n3α(n). Conversely, if
H is not a spanning connected subgraph, some pair of nodes will have routing cost
at least n3α(n) and thus the minimum routing cost spanning tree will cost at least
n3α(n).

Minimum cut problem. We define Ḡ′ by assigning weight one to all edges in
H̄ = (V,E(G) \ E(H)) and nα(n) to all other edges and use the fact that H̄ is a cut
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if and only if Ḡ′ has a minimum cut of weight at most n− 1, i.e., A outputs a value
of at most (n− 1)α(n).

Minimum s-t cut problem. The reduction is the same as in the case of the min-
imum cut problem. Observe that s and t are not connected in H if and only if H̄ is
a s-t cut which in turn is the case if and only if Ḡ′ has a minimum s-t cut of weight
n− 1. Thus, the lower bound of s-t cut verification problem implies the lower bound
of this problem.

Shortest s-t path problem. We again construct G′ as in Subsection 7.1. Observe
that s and t are in the same connected component in H if and only if the distance
between s to t in G′ is at most n−1, i.e., A outputs a value of at most (n−1)α(n). The
lower bound follows from the lower bound of s-t connectivity verification problem.

Generalized Steiner forest problem. We will reduce from the lower bound of s-t
connectivity. We have only one set V1 = {s, r}. Construct G′ as in Subsection 7.1.
Observe that the minimum generalized Steiner forest will have weight at most n− 1
if H is s-t connected and weight at least nα(n) otherwise. (Recall that G is assumed
to be connected in the problem definition.)

8. Tightness of Lower Bounds of Verification Problems. We note that
almost all lower bounds of verification problems stated so far are almost tight when
B = Θ(log n). To show this we will present deterministic O(

√
n log∗ n + D)-time

algorithms for all verification problems except the least-element list verification prob-
lem. This upper bound almost matches the Ω̃(

√
n) lower bounds shown in previous

sections. Our main tool is the MST algorithm by Kutten and Peleg [24] and the
connected component algorithm by Thurimella [39, Algorithm 5].

Recall that in the MST problem, we are given a weighted network G (that is
the weight of each edge is known to the nodes incident to it) and we want to find a
minimum spanning tree (for each edge e, nodes incident to it know whether e is in
the MST or not.) Kutten and Peleg [24] showed that this problem can be solved by
a O(

√
n log∗ n+D)-time distributed deterministic algorithm.

We also note the following connected component algorithm by Thurimella [39].
Given a subgraph H of G, the algorithm outputs a label `(v) for each node v such
that for any two nodes u and v, `(u) = `(v) if and only if u and v are in the same
connected component. Theorem 6 in [39] states that the distributed time complexity
of this algorithm is O(D+f(n)+ g(n)+

√
n) where f(n) and g(n) are the distributed

time complexities of finding a MST and a
√
n-dominating set (a set S such that, for

every node v in the network, there is a node in S at distance at most
√
n from v),

respectively. Due to [24] we have that f(n) = g(n) = O(D +
√
n log∗ n).

We are now ready to present algorithms for our verification problems.

Spanning connected subgraph, spanning tree, cycle containment and connectivity
verification problems. We construct a weighted graph G′ by assigning weight zero to
all edges in H and weight one to other edges (for each edge e, nodes incident to it
know its weight). Observe the followings.

• H is a spanning tree if and only if the MST of G′ has cost zero.
• H is a spanning connected subgraph if and only if the MST of G′ has cost
zero.

• H contains no cycle if and only if all edges in H are in the MST of G′, i.e.,
the cost of the MST of G′ is n − 1 − |E(H)| where |E(H)| is the number of
edges in H.

• H is connected if and only if there are |V (H)|−1 edges in the MST that have
cost zero, where V (H) is the set of nodes incident to some edges in H. This
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is because all edges in a spanning forest of H can be used in the MST and
there are less than V (H)− 1 such edges if and only if H is not connected.

Thus, we can verify these properties of H by finding a minimum spanning tree of
G′ using the O(

√
n log∗ n+D)-time algorithm of Kutten and Peleg [24].

Cut verification problem. To verify if H is a cut, we simply verify if G after
removing the edges in H, i.e. H ′ = (V,E(G) \ E(H)), is connected.

s-t connectivity verification problem. We simply run Thurimella’s algorithm (as
explained above) and verify whether s and t are in the same connected component by
verifying whether `(s) = `(t).

Edge on all paths verification problem. Observe that e lies on all paths between
u and v if and only if u and v are disconnected in H \ {e}. Thus, we can use the s-t
connectivity verification algorithm above to check this.

s-t cut verification problem. To verify if H is a s-t cut, we simply verify s-t
connectivity of G after removing the edges in H (i.e., H ′ = (V,E(G) \ E(H))).

e-cycle verification problem. To verify if e is in some cycle of H, we simply verify
s-t connectivity of H ′ = H \ {e} where s and t are the end nodes of e.

Bipartiteness verification problem. We run Thurimella’s algorithm to find the
connected components of H. We note that this algorithm can in fact output a rooted
spanning tree of each connected component of H and make each node knows its level
in such a tree. This level implies a natural two-coloring of nodes in H. Now all nodes
check if their neighbors have a color different from their own color. They will have a
different color if and only if H is bipartite.

9. Conclusion. We initiate the systematic study of verification problems in the
context of distributed network algorithms and present a uniform lower bound for sev-
eral problems. We also show how these verification bounds can be used to obtain
lower bounds on exact and approximation algorithms for many problems. Our tech-
niques exploit well-known bounds in communication complexity to show lower bounds
in distributed computing. Our techniques give a general and powerful methodology
for showing non-trivial lower bounds for various problems in distributed computing.

Several problems remain open. A general direction for extending all of this work
is to study similar verification problems in special classes of graphs, e.g., a complete
graph. A few specific open questions include proving better lower or upper bounds for
the problems of shortest s-t path, single-source distance computation, shortest path
tree, s-t cut, minimum cut. (Some of these problems were also asked in [7].) Also,
showing randomized bounds for Hamiltonian path, spanning tree, and simple path
verification remains open.
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