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Abstract. In a single-hop radio network, nodes can communicate with each other by broadcasting
to a shared wireless channel. In each time slot, all nodes receive feedback from the channel depending
on the number of transmitters. In the Beeping Model, each node learns whether zero or at least one
node have transmitted. In such a model, a procedure estimating the size of the network can be used
for efficiently solving the problems of leader election or conflict resolution. We introduce a time-
efficient uniform algorithm for size estimation of single-hop networks. With probability at least 1−
1/f our solution returns (1+ε)-approximation of the network size n within O

(
log logn+ log f/ε2)

time slots. We prove that the algorithm is asymptotically time-optimal for any constant ε > 0 .

1 Introduction

The number of nodes in the network is a parameter that is necessary to effectively perform many
fundamental protocols and is useful for network analysis, gathering statistics etc. However, in
modern applications of communication networks we often cannot assume that the size of the
network or even its constant-factor approximation in known. Hence, the problem of designing
an algorithm to precisely and efficiently estimate the number of nodes in radio networks is an
important challenge. This is particularly clear in the context of networks with strictly limited
communication channel, wherein one needs a precise estimation of the number of nodes in order
to avoid collisions of transmissions caused by several nodes broadcasting at the same time. As
a consequence, the most efficient algorithms for classic problems in radio networks, like leader
election, use the size approximation as a subroutine.

In our paper we consider the problem of size estimation in a communication model that is
weaker than the classic Multiple Access Channel, namely in the Beeping Model.

We consider a wireless network of n devices (nodes). The size n of the network is unknown
to the nodes. The nodes have no identifiers or serial numbers that could be used to distinguish
them. The aim is to estimate the network’s size n by performing random transmissions and using
the feedback of the communication channel. The main result of this paper is an asymptotically
optimal (with respect to the time of execution) algorithm that returns a (1 + ε)-approximation
of the number of nodes in the network with controllable error probability. As the second result
we show the matching lower bound.

1.1 Model

We study a single-hop radio network of n nodes with the Beeping Model as a communication
model ([1,9]). The transmission of each node reaches all other nodes. That is, the network can be
represented as a complete graph. We assume that the nodes are identical and indistinguishable
and perform the same protocol. However, each node can independently sample any number of
random bits. Randomization can be used freely, but the final result of the protocol needs to be
deterministically computed based on the knowledge available to all the nodes. We ensure in this
way that all the nodes upon completing the procedure obtain the same result, which could also
be determined by a passive observer listening to the communication channel.
? This paper is supported by Polish National Science Center – decision number 2013/09/N/ST6/03440 (the
second author)
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We assume that the time is discrete, i.e., it is divided into slots. We also assume that the
nodes are synchronized as if they had access to a global clock. In every slot, each node in-
dependently decides whether to transmit to the channel or not. The nodes share a common
communication channel and in every slot the channel can be in one of the two following states:
NULL, when no node is transmitting and BEEP, if at least one node is transmitting (i.e., the
channel is busy). All nodes receive the state of the channel immediately after each communica-
tion round.

The Beeping Model can be contrasted with the classical model of Radio Networks with
Collision Detection where the channel can be in three states depending on whether zero, one,
or more than one, node is transmitting. The third state is called “collision”.

The result of any size estimation protocol is a random variable, an estimator n̂ of true
number of nodes n. We are interested in the probability of getting an approximation that differs
from the true value by at most a constant multiplicative factor.

Definition 1. For any ε > 0, we say that protocol P (1 + ε)-approximates the number of nodes
with probability at least 1− 1/f , if for any n it returns n̂ such that

P
(

n̂

1 + ε
≤ n < (1 + ε)n̂

)
≥ 1− 1

f
.

The time complexity of protocol is expressed as a function of three variables n, f and ε.

1.2 Related Work

There are many papers devoted to size approximation in radio networks. Most of them work
in the model of Radio Networks with Collision Detection. In [2] Bordim et al. presented a size
approximation protocol for the network of the (unknown) size n with execution time O

(
(logn)2)

that finds an approximation n̂ of the real number of nodes such that

n

16 logn < n̂ <
2n

logn

with probability at least 1−O
(
n−1.83) . The authors assume communication model with colli-

sion detection and aim at saving energy of the network. Greenberg et al. [13] proposed a size
approximation algorithm working in time logn +O (1) producing an estimate of n with mean
approximately 0.914n and standard deviation of 0.630n. Greenberg et al. [13] also showed that
a size approximation algorithm can be used to efficiently schedule transmissions such that each
node succeeds to transmit.

Some papers presented other, more complex protocols that use elaborated size-approximation
algorithms as a sub-procedure (e.g. [20]). In paper [19] Nakano and Olariu presented an energy-
efficient initialization algorithm which needs to know the number of nodes n or its fair approxi-
mation to work properly. In [24] Willard showed an algorithm for a selection problem that needs
O(log logn) steps on average with a respective lower bound. This result has been used exten-
sively for many other papers about fast leader election and size approximation in the context
of radio networks.

An energy-efficient size estimation algorithm is proposed in Jurdziński et al. [15] for a model
without collision detection. The algorithm requires O

(
log2+α n

)
time slots with nodes being

awake for at most O ((log logn)α) slots for any α > 0. The algorithm is a c-approximation
for some constant c (with respect to n). In [3] authors present approximation of the size of
the network in a similar model. Their protocol designed for collision detection model works
in O(logn log logn) steps and returns a 2-approximation. The second protocol for no-collision
detection settings needs O(log2 n) steps for a 3-approximation. Moreover, the authors of [3] take
into account energy of nodes necessary for completing the protocol. All the results aforemen-
tioned in this paragraph hold with high probability.
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The problem of size estimation has been extensively studied in the context of computer
databases ([10,11,23,12,5]). In that case, one is interested in estimating the cardinality (the
number of distinct elements) of some multiset. Many protocols for size estimation have been
proposed for radio networks ([16,7,8]). In many cases (including [13]) the proposed solutions
provide asymptotically unbiased estimator E (n̂) = n(1 + o (1)) that is not well concentrated,
i.e., (Var (n̂) = Ω(n2)). In such case one can have P (|n̂− n| ≥ c · n) = Θ(1). Thus one cannot
expect obtaining c-approximation with high probability. Moreover, in contrast to most of the
previous work, we use a controllable parameter of algorithm’s success f . This can be particularly
important for small n.

Independently, the problem of estimation of cardinality of a set emerged in the research
devoted to RFID (Radio Frequency IDentification) technologies. There are many significant
papers including [14,17,18,21,22,25] presenting different methods for various settings offering
also some extra features. The result closest to our contribution is included in [6] where authors
present a protocol for the model wherein both RFID and a single distinguished device called
the reader in each round can transmit O(1) bits. Using recent communication complexity result
([4]) they prove that every Monte Carlo counting protocol with relative error ε ∈ [1/

√
n, 0.5] and

probability of failure smaller than 0.2 needs Ω( 1
ε2 log 1/ε +log logn) execution time. For the same

range of ε they demonstrated how to construct a protocol with O( 1
ε2 + log logn) running-time.

The model of a single-hop radio network considered in our paper and models of RFID systems
are seemingly completely different. It turns, however, that the results from [6] can be almost
instantly applied to the settings investigated in our paper at least for some ranges of parameters.
On the other hand their results holds with constant probability while we demand probability of
failure limited by 1/f . As authors of [6] suggested repeating the basic algorithm and choosing
the median to obtain arbitrary small probability of failure. Nevertheless, such approach leads
to Θ(log f) multiplicative factor overhead.

1.3 Our Results

In Section 1.1 we recall our model and introduce some new definitions. In Section 2 we present a
time-efficient uniform algorithm for computing a (1+ε)-approximation of the size of the network
with probability 1− 1/f (where f is a parameter of the protocol) and provide its analysis. Our
protocol requires O

(
log logn+ log f/ε2) time slots.

In Section 3 we give a lower bound for the number of slots that are necessary to get a linear
size estimation. For n nodes and any f ≥ 2 we show that Ω(log logn+log f/ε) slots are required
to get a (1 + ε)-approximation with probability greater than 1− 1/f in the beeping model.

2 Size Estimation Algorithm

In this section we present an algorithm for (1 + ε)-approximation of network size working in
time O

(
log logn+ log f/ε2) with probability at least 1−1/f . With probability at most 1/f the

algorithm may return a wrong estimate or work for a larger number of steps (or both). First
in Subsection 2.1 we present a procedure for 64-approximation and later in Subsection 2.2 we
show how to improve it to (1 + ε)-approximation, for any ε > 0. An important feature of our
algorithm is its uniformity:

Definition 2. A randomized distributed algorithm A is called uniform if, and only if, in round
i every node that has not yet transmitted successfully, transmits independently with probability
pi (the same for all nodes).

For k active nodes the probability that exactly j nodes transmit in the i-th round is(k
j

)
(pi)j(1 − pi)k−j . Note that pi may depend on the state of the communication channel in

previous rounds. In general, pi can be even chosen randomly from some distribution during the
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execution of the protocol (finally, all nodes have to use, however, the same value pi). Due to
their simplicity and robustness, uniform algorithms are commonly used.

2.1 64-approximation

Function 1 Broadcast(n̂)
transmit with probability 1/n̂
return the status of the channel

Function 2 Phase1()
l← 0
u← 1
while Broadcast(2u) 6= NULL do
u← 2u

while l + 1 < u do
m← d(l + u)/2e
if Broadcast(2m) = NULL then
u← m

else
l← m

return u

Function 3 Phase2(u, L)
M← [ ]
for k = 1 to L do
append u toM
status← Broadcast(2u)
if status = NULL then
u← max(u− 3, 0)

else if status = BEEP then
u← u+ 3

return the most frequent value inM

Algorithm 1 SizeApprox1(f)
u← Phase1()
d← d(log f + log log f + log log u+ 5)/3e
L← 100 log(2f) + d125d/4e+ 13
u← Phase2(u, L)
return 2u

Fig. 1. The pseudocode of a 64-approximation algorithm.

Phase 1 in the Algorithm is based on Leader Election Protocol by Nakano and Olariu [20].
Similarly, Phase 2 is a modification of a subprocedure used in [20]. Both phases make use of
Broadcast function to determine (with a certain probability) if the current estimation of the
network size is too high or too low. Intuitively, in Phase 1 nodes try to bound from above the
network size by doubling the estimate until the status of the channel suggests that it is too high.
In each round of Phase 2 nodes adjust the estimate by factor 8 according to the status of the
channel. We should note here that the closer the estimate is to the real network size, the more
probable it is that the decision based on an output of call to Broadcast is incorrect. Because of
this, after Phase 2 we return the most common estimate. The following lemmas provide bounds
on time complexity and accuracy of the returned estimator.

Lemma 1 (Nakano, Olariu [20]). With probability exceeding 1− 1
2f , Phase1 takes at most

O (log logn+ log f) rounds after which the returned value, u, satisfies the double inequality
n

ln(4(dlog log(4nf)e+ 1)f) ≤ 2u ≤ 4(dlog log(4nf)e+ 1)fn. (1)

Let us introduce the following notation (we assume that n ≥ 2). Parameters p(N)
α , p(B)

α will
denote probabilities of NULL and BEEP conditioned that the broadcast probability in the
current round is min{ 1

αn , 1}. If α · n > 1, then

p(N)
α = P (NULL | 2u = α · n) =

(
1− 1

α · n

)n
,

p(B)
α = P (BEEP | 2u = α · n) = 1−

(
1− 1

α · n

)n
,

where 1/2u is the probability of transmission for each node and n is the real number of nodes.
Otherwise, with αn ≤ 1 we set p(N)

α = 0 and p(B)
α = 1. For any fixed α we can bound the values

of p(N)
α , p

(B)
α using basic inequalities. The following Proposition can be easily verified.



Approximating the Size of a Radio Network in Beeping Model 5

Proposition 1. For n ≥ 25 we have:

1. p(N)
1/8 ≤ 0.06,

2. p(B)
8 ≤ 0.12,

3. p(B)
1/64 ≥ 0.99,

4. p(N)
64 ≥ 0.98.

In the following Lemma we analyze Phase2 and show that Algorithm 1 is a 64-approximation.

Lemma 2. If n ≥ 25, then Algorithm 1 with probability at least 1 − 1/f returns value n̂ = 2u
such that n/64 ≤ n̂ ≤ 64 · n in time O (log logn+ log f).

Proof. Assume that u, after Phase1 satisfies the double inequality from Lemma 1. We want
to show that, conditioned on such an event, the approximation returned by Algorithm 1 is
a 64-approximation with probability at least 1 − 1

2f . Thus we need to analyze Phase2. The
phase can be seen as a biased random walk of length L on a line, where points on the line
correspond to the values of the estimator 2u and transition probabilities equal p(N)

α and p
(B)
α

(see Figure 2). Consider a sequence U = {. . . , u−2, u−1, u0, u1, u2, . . . }, such that 2u0 ≤ n < 2u1

αn
8

αn 8αn

p
(B)
α

p
(N)
α

Fig. 2. An illustration of transition probabilities in Phase2.

and ui+1 = ui + 3 for all i ∈ Z. Let P = {u−1, u0, u1, u2}. Let us call a

– good step – a step that starts and ends inside P,
– improving step – a step that start outside P moving towards P (a NULL or BEEP such that

the estimator after the step is better),
– bad step – a step that is leaving P or the one that starts outside set P moving further from
P.

We want to show that the state with the maximum number of visits will be a state from
set P, and thus the returned estimator will be a 64-approximation. Observe that during a good
step an estimate from set P is added to setM.

Denote by G,B, I the number of good, bad and improving steps during L steps of Phase2.
By Lemma 1 the probability of a bad step is at most 0.12. Clearly, steps are dependent, however
all the bounds for each step hold independently from other steps. Thus we can limit B by the
sum of stochastically independent 0− 1 random variables and apply a Chernoff bound to get:

P (B ≥ 1.5 · 0.12 · L) ≤ e1/12·0.12L ≤ 1
2f .

Assume that B < 0.12L. Recall that d is the initial distance to set P. Thus G ≤ B + d.
Since in a step (either good, bad or improving), the walk traverses an edge between two different
states, the maximum number of visits to one state outside set P is at most⌈

B

2

⌉
+
⌈
I

2

⌉
≤ B + d

2 + B

2 + 2 = B + d

2 + 2 ≤ 0.18L+ d

2 + 2.

The total number of steps inside P is at least L− I −B ≤ L− (0.18L+ d/2 + 2) = 0.82L−
d/2− 2. Since P contains exactly four steps, there exists a step with at least 0.2L− d/6− 2/3
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visits. Since the maximum number of visits to a state outside P is at most 0.18L + d
2 + 2, we

need to show that
0.2L− d/8− 1/4 ≥ 0.18L+ d

2 + 2,

which is equivalent to
4L ≥ 125d+ 450 .

We know from the definition of the algorithm that

L = 100 log(2f) + 125d/4 + 13 = 100 log f + 125d/4 + 113 > 125d/4 + 450/4.

Thus the state with the maximum number of visits is a state from set P which corresponds
to a 64-approximation of the correct value of n. Now, by Lemma 1 with probability at least
1 − 1

2f , the total time of Phase1 is O (log logn) and the value of u after the phase satisfies
the double inequality (1). Conditioned on this event, with probability at least 1 − 1

2f Phase2
returns a 64-approximation. The time of Phase2 is always O (log f + log log logn). Thus overall
our algorithm returns u such that 2u is a 64-approximation of n in time O (log logn+ log f)
with probability at least 1− 1

f .

2.2 A (1 + ε)-approximation.

We now describe how to enhance the algorithm from the previous section with an additional
phase to obtain a (1 + ε)-factor approximation for any ε > 0. Intuitively, the procedure Vote
checks whether the current estimate n̂ is too big or too small. We let the nodes transmit with
probability 1/n̂ for a fixed number of rounds. If our estimate is too small, a lot of nodes will
transmit and there will not be enough silent rounds and thus we increase our estimate by a
factor of (1 + ε). Similarly, if our estimate is too large, too many rounds will be silent and thus
we decrease our estimate by a factor of (1 + ε).

Let c = 1 + ε, and denote pl = e−c and ph = e−1/c.

Function 4 Vote(n̂, c, f)
pl ← e−c, ph ← e−1/c

δc ← (ph − pl)/(ph + pl)
`← d3 · e3 · log f/δ2

ce
nulls← 0
for i = 1 to ` do

if Broadcast(n̂) = NULL then
nulls← nulls + 1

if nulls < (1 + δc) · pl · ` then
return UNDERSTIMATED

else
return OVERESTIMATED

Function 5 Refine(n̂, c, f)
if Vote(n̂, c1/2, f) = UNDERSTIMATED then

return c1/4 · n̂
else

return c−1/4 · n̂

Function 6 Phase3(n̂, f)
f ′ ← 14f
initial← Vote(n̂,

√
2, f ′)

if initial=UNDERSTIMATED then
φ←

√
2

else
φ← 1/

√
2

for i = 1 to 13 do
n̂← φ · n̂
if initial 6= Vote(n̂,

√
2, f ′) then

return n̂
return n̂

Algorithm 2 SizeApprox2(f, c)
n̂← SizeApprox1(4f)
n̂← Phase3(n̂, 4f)
t← dlog4/3 logc 2e
for i = t downto 1 do
n̂← Refine(n̂, c(4/3)i

, 2i+1f)
return n̂

Fig. 3. The pseudocode of c-approximation algorithm.
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We have:

P (NULL|n̂ ≥ cn) ≥
(

1− 1
cn

)n
≥ e−1/c

(
1− 1

cn

)
≥ ph/2. (2)

P (NULL|n̂ ≤ n/c) ≤
(

1− c

n

)n
≤

≤ e−c = pl (3)

Thus ph/2 upper bounds the probability of NULL in a round under the condition that approx-
imation n̂ is c times too high. On the other hand pl lowerbounds the probability of NULL in a
round conditioned that n̂ is c times too low.

Denote δ = ph−pl
ph+pl , and observe that for such δ we have

ph/2 (1− δ) = pl (1 + δ) . (4)

Moreover since ph − pl = e−1/c − e−c > 0, then δ > 0. Observe also that δ < 1/2.
In the following lemmas we bound the probability that procedure Vote returns OVERES-

TIMATED and UNDERSTIMATED, assuming that estimator n̂ deviates from n by factor c.
We note that in all calls to Vote in the algorithm the inequality c < 3 holds.

Lemma 3. If n̂ < n/c, then procedure Vote(n̂, c, f) returns UNDERSTIMATED with proba-
bility at least 1− 1

f .

Proof. By (3), the probability that no node transmits is upperbounded by pl. Let Xi denote
the random variable that is 0 if at least one node transmits and 1 otherwise. Thus, if we let the
nodes transmit ` times, we obtain as expected value for X =

∑`
i=1Xi, E [X] ≤ ` · pl. Chernoff

bound yields:

P (X ≥ (1 + δ) pll) = P
(
X ≥ (1 + δ)

(
1 + pll − E[X]

E[X]

)
E [X]

)
≤ e−

((1+δ)pll−E[X])2

E[X] .

We know that E[X] ≤ pll hence ((1 + δ)pll − E[X])2 ≥ (δpll)2. Since ` ≥ 3
δ2 e

3 log f , then
δ2pll ≥ log f hence ((1 + δ)pll − E[X])2 ≥ E[X] log f and P (X ≥ (1 + δ) pll) ≤ 1

f . Thus, with
probability at least 1 − 1/f , variable nulls in procedure Vote satisfies nulls < (1 + δ) · pl · `.
Thus Vote returns UNDERSTIMATED with probability at least 1− 1/f .

Lemma 4. If n̂ > cn, then procedure Vote(n̂, c, f) returns OVERESTIMATED with probability
at least 1− 1

f .

Proof. By (2), the probability that no node transmits is lowerbounded by ph/2. Let Xi denote
the random variable that is 0 if at least one node transmits and 1 otherwise. Thus, if we let
the nodes transmit ` times, we obtain as expected value for X =

∑`
i=1Xi, E [X] ≥ ` · ph/2.

Chernoff bound yields:

P (X ≤ (1 + δ) pll) = P (X ≤ (1− δ) phl/2) ≤ P (X ≤ (1− δ)E[X]) ≤ e−
δ2
2 E[X] ≤ 1

f
.

This holds for ` ≥ 3
δ2 e

3 log f , since ph > e−1. Thus with probability at least 1 − 1/f ,
variable nulls does not satisfy the condition after if, thus Vote returns OVERESTIMATED
with probability at least 1− 1/f .

Lemma 5. If n̂ is a 64-approximation of the number of nodes n, then procedure Phase3(n̂, f)
returns a 2-approximation of n with probability at least 1− 1/f using O (log f) slots.
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Proof. We call an execution of Vote(n̂,
√

2, 14f) successful if it:

– returns OVERESTIMATED when n̂ ≥
√

2n,
– returns UNDERSTIMATED when n̂ ≤ n/

√
2.

Procedure Phase3 makes at most 14 calls to Vote and by Lemmas 3 and 4 each call is successful
with probability at least 1− 1/(14f). Therefore the probability that all calls are successful is at
least 1− 1/f .

We want to argue that if all calls to procedure Vote are successful, then we obtain 2-
approximation. If n̂ ≥

√
2n, then the first call to Vote returns OVERESTIMATED and we

start decreasing the estimate. After at most log√2 64 + 1 = 13 iterations, the value n̂ satisfies
n̂ ≤ n/

√
2 and Vote returns UNDERSTIMATED. The returned estimator is a 2-approximation

of n because we divide the estimator by
√

2 until it is at most n/
√

2 for the first time. We
make similar argument if the initial estimate is too small, i.e., n̂ ≤ n/

√
2. If the initial estimate

is correct, then after making at most 2 increases we will obtain an estimate that is at least√
2 times too big, thus the third call to Vote returns OVERESTIMATED and we finish the

procedure. Using the same argument as above we can show that the returned estimator is a
2-approximation. Similarly, if the initial value is correct, we make at most 2 decreases.

Each call to Vote(n̂,
√

2, 14f) requires O (log f) slots.

Lemma 6. If n̂ is a c-approximation of the number of nodes then procedure Refine(n̂, c, f)
returns c3/4-approximation with probability at least 1− 1/f using O

(
log f/ε2) slots.

Proof. Observe that if n̂ is already a c1/2-approximation, then regardless of the output of Vote
we obtain a c3/4-approximation.

On the other hand if cn ≥ n̂ ≥ c1/2n, then by Lemma 4, with probability at least 1− 1/f ,
procedure Vote returns OVERESTIMATED and we decrease the estimate by factor of c1/4.
Finally if n/c ≤ n̂ ≤ c−1/2n, then with probability at least 1− 1/f , by Lemma 3 Vote returns
UNDERSTIMATED and we increase the estimate by factor of c1/4.

To bound the time complexity of procedure Refine we need to bound the number of steps
of procedure Vote. With c = 1 + ε and ε > 0 we have

δ1+ε = e−
1

1+ε − e−(1+ε)

e−
1

1+ε + e−(1+ε)
= e−1

e−1
e

ε
1+ε − e−ε

e
ε

1+ε + e−ε
≥ e

ε
1+ε − e−

ε
1+ε

e
ε

1+ε + e−
ε

1+ε
= tanh

(
ε

1 + ε

)
.

Therefore
δ−2 ≤ coth2

(
ε

1 + ε

)
= 1 + 1

sinh2
(

ε
1+ε

) ≤ 1
ε2 + 2

ε
+ 2,

where the last inequality is the result of sinh(x) ≥ x for x ≥ 0. Hence δ−2
ε = O(ε−2) as ε → 0.

We call procedure Vote with c1/2 = (1 + ε)1/2 ≥ 1 + ε/4 for ε < 1. Hence the complexity of a
single execution of procedure Vote is O(ε−2 log f).

Theorem 1. For ε > 0 algorithm SizeApprox2(f, 1 + ε) returns (1+ε)-approximation of num-
ber of nodes with probability at least 1− 1/f using O

(
log f
ε2 + log logn

)
slots.

Proof. With probability at least 1−1/(4f) call to SizeApprox1 returns 64-approximation, which
we turn into 2-approximation with probability at least 1− 1/(4f) by calling Phase3. Next, we
refine the approximation using t = dlog4/3 log1+ε 2e iterations. The probability of failure of the
i-th iteration is at most 1/(2i+1f), for 1 ≤ i ≤ t. Therefore, by union bound, the probability of
failure of the SizeApprox2 is at most

1
4f + 1

4f + 1
2f ·

t∑
i=1

2−i ≤ 1
f
.
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Assuming that none of the Vote calls failed we compute the quality of the resulting estimate.
We can show by induction using Lemma 6 that after i-th iteration of the loop in algorithm
SizeApprox2, the current estimate n̂ is a (1 + ε)(4/3)i−1-approximation. Hence after t iterations
we get a (1 + ε)-approximation.

By Lemma 6 the number of slots used by t iterations is

t∑
i=1
O
(

log(2i+1f)
ε2(4/3)2i

)
≤
∞∑
i=1
O
(

log(2i+1f)
ε2(4/3)2i

)
= O

( log f
ε2

)
,

where the last inequality is justified by the fact that the O (·) notation from Lemma 6 holds
uniformly (i.e., the hidden constant is independent from f , i and ε).

Adding the slots used by SizeApprox1 and Phase3 we get the final time complexity.

3 Lower Bound

In this section we show that any (not necessarily uniform) size estimation algorithm returning
a (1 + ε)-approximation of the number of nodes with probability at least 1− 1/f works in time
Ω(log logn+ log f

ε ).
We start the analysis of beeping model by showing how the execution by different number

of nodes relates to each other. Namely, we prove that (in probability) history of the channel
state observed in case of n and m nodes performing any randomized protocol are similar for
n close to m. We subscript symbol P with n to denote probability conditioned on the number
of nodes running some algorithm, Pn(A) = P(A | |N | = n) for any event A. For a vector
h ∈ {NULL,BEEP}t we write P (h) to denote the probability that during the first t slots of the
execution of algorithm the global history of channel is h.

Lemma 7. Let A be any randomized algorithm for a single-hop radio network with beeping
communication model. For a global history of channel state, h ∈ {NULL,BEEP}∗ and m ≥ n ≥
1, there is Pm(h) ≥ (Pn(h))m/n .

Proof. We proceed with a coupling argument. Let us consider a set S = {s1, . . . , snm} consisting
of nm nodes. Even though the nodes are indistinguishable, for the purpose of analysis we can
identify them by the random sources they use. That is, we assume that node si has access to
an infinite sequence of random bits Xi = X

(1)
i , X

(2)
i , . . .. Clearly, if Xi = Xj , then nodes si

and sj behave identically during an execution of any algorithm (of course P (Xi = Xj) = 0 for
i 6= j). We partition S in two different ways – into n independent networks N1, . . . , Nn with m
nodes each (called big networks) and m independent networks N ′1, . . . , N ′m with n nodes each
(called small networks). We require that for each big network Ni there exists at least one small
network N ′j such that N ′j ⊆ Ni. We assume that all networks are independent from each other,
i.e., there are no interferences of communication channels. In these two settings, however, each
node from S belongs to exactly one big and one small network and in both cases uses the same
random source for making its decisions. Our goal is to compare the execution of algorithm A
performed by the same nodes grouped into big and small networks.

Let H1, . . . , Hn and H ′
1, . . . , H ′

m denote global histories of channel states during the
executions of algorithm A by big and small networks, respectively. We are going to show by
induction on h’s length that if h is a prefix of channel histories of all small networks, H ′

1, . . . ,
H ′

m, then it is also a prefix of channels histories of all big networks, H1, . . . , Hn. The base
case of empty string h = ε holds trivially. Therefore, let us assume that the statement is true
for all global histories of length t ≥ 0 and that h = h1, h2, . . . , ht, ht+1 is a prefix of channel
histories of small networks. By induction, h1, h2, . . . , ht is a prefix of each H1, . . . , Hn. At
the beginning of the (t + 1)-st slot each node decides whether to transmit or not based on its
random source, local history and the global history h1, h2, . . . , ht. However, in this case the local
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history is redundant as it can be reconstructed from Xi and the global history. Therefore, if in
the (t+ 1)st slot the resulting channel states of each small network are ht+1 = NULL,

H
′(t+1)
1 = . . . = H ′(t+1)

m = NULL,

then all nodes decided not to transmit and

H
(t+1)
1 = . . . = H(t+1)

n = NULL.

Otherwise, if
H
′(t+1)
1 = . . . = H ′(t+1)

m = BEEP,

then in every small network there is at least one node that decided to transmit during the (t+1)st
slot. For each big network Ni there is some small network N ′j ⊆ Ni, hence H

′(t+1)
j = BEEP

implies H(t+1)
i = BEEP. Therefore, h is a prefix of H1, . . . , Hn. Finally, all networks are

independent, thus

(Pn(h))m = P
(
H ′

1 starts with h ∧ . . . ∧H ′
m starts with h

)
≤ P (H1 starts with h ∧ . . . ∧Hn starts with h)
= (Pm(h))n.

Lemma 8. For any non-empty finite set of global histories of channel state H ⊆ {NULL,BEEP}∗
and m > n ≥ 1 there is

Pm(H) ≥ (Pn(H))m/n

|H|m/n−1 .

Proof. By Lemma 7 we get

Pm(H) =
∑
h∈H

Pm(h) ≥
∑
h∈H

(Pn(h))m/n.

Using Hölder inequality

n∑
i=1
|xiyi| ≤

( n∑
i=1
|xi|p

)1/p
·
( n∑
i=1
|yi|q

)1/q

with p = m/n and q = m/(m− n) we obtain

∑
h∈H

(Pn(h))p = 1
|H|p/q

(∑
h∈H

1q
)p/q

·
∑
h∈H

(Pn(h))p ≥ 1
|H|p/q

(∑
h∈H

Pn(h)
)p

= (Pn(H))m/n

|H|m/n−1 .

As we stated in Section 1.1, in any algorithm A the decision whether to stop the execution
after the current slot and what estimation to return is based only on the global history of
channel state. For any history h ∈ {NULL,BEEP}∗ that causes nodes to finish the execution
of A we denote by A(h) the estimated network size returned by A.

Theorem 2. Let A be a size estimation algorithm for a single-hop radio network assuming
the beeping communication model. If for any network size n algorithm A returns (1 + ε)-
approximation with probability at least 1 − 1/f and within at most Tn time slots (Tn non-
decreasing), then

Tn ≥ max
{ log2 f + (1 + ε)2 log2(1− 1/f)

(1 + ε)2 + 1/n− 1 , log2 log2(1 + 2εn+ ε2n)− log2 log2(1 + ε)− 1
}
.
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Proof. For k ∈ N+ let

Hk={h∈{NULL,BEEP}∗ : |h|≤Tk,
k

1+ε ≤A(h)≤(1 + ε)k}

be a set of all global histories of length at most Tk for which the value returned by algorithm
A is a (1 + ε)-approximation of k. Clearly, Pk(Hk) ≥ 1− 1/f . Let m = b(1 + ε)2n+ 1c, so that
m/(1 + ε) > (1 + ε)n and thus Hn ∩Hm = ∅. This way,

Pm(Hn) ≤ 1− Pm(Hm) ≤ 1/f.

On the other hand by Lemma 8 there is

Pm(Hn) ≥ (Pn(Hn))m/n

|Hn|m/n−1 ≥ (1− 1/f)m/n

|Hn|m/n−1 .

Therefore,
|Hn| ≥

(
f(1− 1/f)m/n

) 1
m/n−1 .

We know that set Hn contains words of length at most Tn and no word is a prefix of another,
so |Hn| ≤ 2Tn . Finally, we get

Tn ≥ log2 |Hn| ≥
log2 f + m

n log2(1− 1/f)
m/n− 1 ≥ log2 f + (1 + ε)2 log2(1− 1/f)

(1 + ε)2 + 1/n− 1 .

Now, let a1 = 1 and

ai = b(1 + ε)2ai−1 + 1c ≤ (1 + ε)2ai−1 + 1 ≤ (1 + ε)2i − 1
(1 + ε)2 − 1 .

All sets Hai must be non-empty and pairwise disjoint. Because Tn is non-decreasing, we have∣∣∣∣ ⋃
·

i : ai≤n
Hai

∣∣∣∣ ≤ 2Tn .

For
i ≤ log2(((1 + ε)2 − 1)n+ 1)

2 log2(1 + ε)
there is ai ≤ n. Therefore,

Tn ≥ log2 log2(1 + 2εn+ ε2n)− log2 log2(1 + ε)− 1.

Remark 1. For ε→ 0 and f ≥ 2 we get

Tn = Ω

( log f
2ε+ 1/n + log logn

)
.

For a constant ε (independent of n and f) there is

Tn = Ω(log f + log logn).

4 Final Remarks

We presented an algorithm for (1 + ε)-approximation of the size of a single-hop radio network
with Beeping Model that needs O

(
log logn+ log f/ε2) time slots, wherein n is the real number

of nodes and 1/f is the probability of failure. We also proved the matching lower bound for a
constant ε. In some subprocedures we used quite big constants for the sake of technical simplicity
of the analysis. As a future work we leave improving all those parameters. We believe that they
can be significantly lowered to make the protocol practical for real-life scenarios already for
moderate n.
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