
ETH Zurich – Distributed Computing – www.disco.ethz.ch

Roger Wattenhofer

 Distributed Algorithms
for Wireless Multihop Networks

Overview

Distributed Algorithms …

MIS

Local Model

Time Complexity

Randomized Algorithm

Applications

Ring Lower Bound

Ring Upper Bound

General Lower Bound

… for Wireless Multihop Networks

Connectivity Models

Interference Models

Communication Models

Distributed
Algorithms

Message
Passing

Shared
Memory

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

69

17

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

69

17

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

69

17

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

69

17

11

10 7

Example: Maximal Independent Set (MIS)

• Given a network with n nodes, nodes have unique IDs.

• Find a Maximal Independent Set (MIS)

– a non-extendable set of pair-wise non-adjacent nodes

• Traditional (sequential) computation:
The simple greedy algorithm finds MIS (in linear time)

69

17

11

10 7

What about a Distributed Algorithm?

• Nodes are agents with unique ID’s that can communicate with neighbors
by sending messages. In each synchronous round, every node can send a
(different) message to each neighbor.

69

17

11

10 7

What about a Distributed Algorithm?

• Nodes are agents with unique ID’s that can communicate with neighbors
by sending messages. In each synchronous round, every node can send a
(different) message to each neighbor.

69

17

11

10 7

A Simple Distributed Algorithm

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

69

17

11

10 7

A Simple Distributed Algorithm

69

17

11

10 7

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

A Simple Distributed Algorithm

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

• What’s the problem with this distributed algorithm?

69

17

11

10 7

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

• What if we have minor changes?

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

Example

• Wait until all neighbors with higher ID decided

• If no higher ID neighbor is in MIS join MIS

• What if we have minor changes?

• Proof by animation: In the worst case, the algorithm is slow (linear in the
number of nodes). In addition, we have a terrible „butterfly effect“.

69 17 11 10 7 4 3 1

69 17 11 10 7 4 3 1

What about a Fast Distributed Algorithm?

• Can you find a distributed algorithm that is polylogarithmic in the number
of nodes n, for any graph?

69

17

11

10 7

69 17 11 10 7 4 3 1

What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an
open problem!

• However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!

What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an
open problem!

• However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!

69

17

21

10 7

What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an
open problem!

• However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!

69

17

21

10 7

What about a Fast Distributed Algorithm?

• Surprisingly, for deterministic distributed algorithms, this is an
open problem!

• However, randomization helps! In each synchronous round, nodes should
choose a random value. If your value is larger than the value of your
neighbors, join MIS!

• How many synchronous rounds does this take in expectation (or whp)?

69

17

21

10 7

Analysis

• Event (𝑢 → 𝑣) : node 𝑢 got largest random value
in combined neighborhood 𝑁𝑢 ∪ 𝑁𝑣.

• We only count edges of 𝑣 as deleted.

• Similarly event (𝑣 → 𝑢) deletes edges of 𝑢.

• We only double-counted edges.

• Using linearity of expectation, in expectation
at least half of the edges are removed in each round.

• In other words, whp it takes 𝑂(log 𝑛) rounds to compute an MIS.

𝑢 𝑣

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009] Naïve Algo

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Local Algorithms

• Each node can exchange a message with all neighbors, for t
communication rounds, and must then decide.

• Or: Given a graph, each node must determine its decision as a function of
the information available within radius t of the node.

• Or: Change can only affect nodes up to distance t.

• Or: …

v

Local
Algorithms

Locality

Sublinear
Algorithms

Local
Algorithms

Locality is Everywhere!

Self-
Stabilization

Dynamics

Self-
Assembling

Robots

Sublinear
Algorithms

Applications
e.g. Multicore

Local
Algorithms

Locality is Everywhere!

Self-
Stabilization

Dynamics

Self-
Assembling

Robots

Sublinear
Algorithms

Applications
e.g. Multicore

[Afek, Alon, Barad, et al., 2011]

What about an Even Faster Distributed Algorithm?

• Since the 1980s, nobody was able to improve this simple algorithm.

• What about lower bounds?

• There is an interesting lower bound, essentially using a Ramsey theory
argument, that proves that an MIS needs at least Ω(log*n) time.

– log* is the so-called iterated logarithm – how often you need to take the
logarithm until you end up with a value smaller than 1.

– This lower bound already works on simple networks such as the linked list

• Build graph 𝐺𝑡, where nodes are possible views of nodes for distributed
algorithms of time 𝑡. Connect views that could be neighbors in ring.

• Here is for instance of 𝐺1:

• Chromatic number of 𝐺𝑡 is exactly minimum possible colors in time 𝑡.

Coloring Lower Bound on Oriented Ring

2 3 6

1 2 3 4 2 3

3 6 7 3 6 9

• Build graph 𝐺𝑡, where nodes are possible views of nodes for distributed
algorithms of time 𝑡. Connect views that could be neighbors in ring.

• Here is for instance of 𝐺1:

• Chromatic number of 𝐺𝑡 is exactly minimum possible colors in time 𝑡.

Coloring Lower Bound on Oriented Ring

2 3 6

1 2 3

3 6 7 3 6 9

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009] Naïve Algo

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Growth-Bounded Graphs
[Schneider et al., 2008]

|𝐼𝑆 𝑁2 | ∈ 𝑂(1)

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Growth-Bounded Graphs
[Schneider et al., 2008]

|𝐼𝑆 𝑁2 | ∈ 𝑂(1)
Other problems
e.g., [Kuhn et al., 2006]

e.g., covering/packing
LPs with only local
constraints: constant
approximation in time
𝑂(log 𝑛) or 𝑂(log2 Δ)

e.g., coloring, CDS,
matching, max-min
LPs, facility location

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Results: MIS

1 log∗ 𝑛 log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Growth-Bounded Graphs
[Schneider et al., 2008]

|𝐼𝑆 𝑁2 | ∈ 𝑂(1)
Other problems
e.g., [Kuhn et al., 2006]

General Graphs
[Kuhn et al., 2004, 2006]

e.g., covering/packing
LPs with only local
constraints: constant
approximation in time
𝑂(log 𝑛) or 𝑂(log2 Δ)

e.g., coloring, CDS,
matching, max-min
LPs, facility location

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Example: Minimum Vertex Cover (MVC)

• Given a network with n nodes, nodes have unique IDs.

• Find a Minimum Vertex Cover (MVC)

– a minimum set of nodes such that all edges are adjacent to node in MVC

69

17

11

10 7

Example: Minimum Vertex Cover (MVC)

• Given a network with n nodes, nodes have unique IDs.

• Find a Minimum Vertex Cover (MVC)

– a minimum set of nodes such that all edges are adjacent to node in MVC

69

17

11

10 7

Example: Minimum Vertex Cover (MVC)

• Given a network with n nodes, nodes have unique IDs.

• Find a Minimum Vertex Cover (MVC)

– a minimum set of nodes such that all edges are adjacent to node in MVC

69

17

11

10 7

Differences between MIS and MVC

• Central (non-local) algorithms: MIS is trivial, whereas MVC is NP-hard

• Instead: Find an MVC that is “close” to minimum (approximation)

• Trade-off between time complexity and approximation ratio

• MVC: Various simple (non-distributed) 2-approximations exist!

• What about distributed algorithms?!?

69

17

11

10 7

𝑆1

Finding the MVC (by Distributed Algorithm)

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1

• The MVC is just all the nodes in 𝑆1

• Distributed Algorithm…

𝑆0

𝑆1

Finding the MVC (by Distributed Algorithm)

𝑆0

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1

• The MVC is just all the nodes in 𝑆1

• Distributed Algorithm…

𝑆1

Finding the MVC (by Distributed Algorithm)

𝑆0

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1

• The MVC is just all the nodes in 𝑆1

• Distributed Algorithm…

𝑆1

𝑆0

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1)

𝑆1

𝑆0

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1) Graph is “symmetric”,
yet highly non-regular!

Lower Bound: The Argument

• The example graph is for t = 3.

• All edges are in fact special bipartite graphs
with large enough girth.

• If you use the graph of recursion level t, then a distributed algorithm
cannot find a good MVC approximation in time t.

Lower Bound: The Math

• Choose degrees 𝛿𝑖 such that 𝛿𝑖+1 𝛿𝑖 = 2𝑖𝛿.

• We have 𝑆0 > 𝛿/2 𝐿1 , with 𝐿1 nodes on level 1

Lower Bound: The Math

• Choose degrees 𝛿𝑖 such that 𝛿𝑖+1 𝛿𝑖 = 2𝑖𝛿.

• We have 𝑆0 > 𝛿/2 𝐿1 , with 𝐿1 nodes on level 1

• By induction we have a (1 − Θ(1/δ)) fraction of the nodes is in 𝑆0.

• Now δ, 𝑛, Δ are depending on the recursion level 𝑡.

Lower Bound: The Math

• Choose degrees 𝛿𝑖 such that 𝛿𝑖+1 𝛿𝑖 = 2𝑖𝛿.

• We have 𝑆0 > 𝛿/2 𝐿1 , with 𝐿1 nodes on level 1

• By induction we have a (1 − Θ(1/δ)) fraction of the nodes is in 𝑆0.

• Now δ, 𝑛, Δ are depending on the recursion level 𝑡.

Graph useful for proving lower
bounds in sublinear algos?

Lower Bound: Results

• We can show that for 𝜖 > 0, in 𝑡 time, the approximation ratio is at least

• Constant approximation needs at least Ω(log Δ) and Ω(log 𝑛) time.

• Polylog approximation Ω(log Δ/ log log Δ) and Ω(log 𝑛/ log log 𝑛).

𝑡 𝑡

Lower Bound: Results

• We can show that for 𝜖 > 0, in 𝑡 time, the approximation ratio is at least

• Constant approximation needs at least Ω(log Δ) and Ω(log 𝑛) time.

• Polylog approximation Ω(log Δ/ log log Δ) and Ω(log 𝑛/ log log 𝑛).

𝑡 𝑡

tight for MVC

Lower Bound: Reductions

• Many “local looking” problems need non-trivial t, in other words, the

bounds Ω(log Δ) and Ω(log 𝑛) hold for a variety of classic problems.

Lower Bound: Reductions

• Many “local looking” problems need non-trivial t, in other words, the

bounds Ω(log Δ) and Ω(log 𝑛) hold for a variety of classic problems.

line graph

cloning

MVC through MM

line graph

Results: MIS

1 log∗ 𝑛 log 𝑛 … log 𝑛 𝑛𝜖 𝑛

Linked List
[Linial, 1992]

General Graphs, Randomized
[Alon, Babai, and Itai, 1986]
[Israeli and Itai, 1986]
[Luby, 1986]
[Métivier et al., 2009]

Linked List, Deterministic
[Cole and Vishkin, 1986]

Growth-Bounded Graphs
[Schneider et al., 2008]

|𝐼𝑆 𝑁2 | ∈ 𝑂(1)
Other problems
e.g., [Kuhn et al., 2006]

General Graphs
[Kuhn et al., 2004, 2006]

e.g., covering/packing
LPs with only local
constraints: constant
approximation in time
𝑂(log 𝑛) or 𝑂(log2 Δ)

e.g., coloring, CDS,
matching, max-min
LPs, facility location

Decomposition, Determ.
[Awerbuch et al., 1989]
[Panconesi et al., 1996]

Naïve Algo

Summary so far…

1 log*n log 𝑛 … log 𝑛 Diameter

MIS, maximal
matching, etc.

Growth-Bounded Graphs
(various problems)

MST, Sum,
etc.

Approximations of
dominating set,
vertex cover, etc.

Covering and
packing LPs E.g., dominating

set approximation
in planar graphs

Ad Hoc & Sensor Networks?

Ad hoc Network Connectivity Models

• Formal models help us understanding a problem

• Formal proofs of correctness and efficiency

• Common basis to compare results

• Unfortunately, for ad hoc and sensor networks, a myriad of models exist,
most of them make sense in some way or another. On the next few slides
we look at a few selected models

Unit Disk Graph (UDG)

• Classic computational geometry model, special case of disk graphs

• All nodes are points in the plane,

two nodes are connected iff (if and

only if) their distance is at most 1,
that is {u,v} 2 E , |u,v| · 1

+ Very simple, allows for strong analysis

– Not realistic: “If you gave me $100 for each paper written with the

unit disk assumption, I still could not buy a radio that is unit disk!”

– Particularly bad in obstructed environments (walls, hills, etc.)

• Natural extension: 3D UDG

Quasi Unit Disk Graph (QUDG)

• Two radii, 1 and ½, with ½ · 1

• |u,v| · ½ {u,v} 2 E

• 1 < |u,v| {u,v} 2 E

• ½ < |u,v| · 1 it depends!

• … on an adversary

• … on probabilistic model

• …

+ Simple, analyzable

+ More realistic than UDG

– Still bad in obstructed

environments (walls, hills, etc.)

• Natural extension: 3D QUDG

Bounded Independence Graph (BIG)

• How realistic is a QUDG?

– u and v can be close but not adjacent

– model requires very small ½
in obstructed environments (walls)

• However: in practice, neighbors are often also neighboring

• Solution: BIG Model

– Bounded independence graph

– Size of any independent set grows
polynomially with hop distance r

– e.g., f(r) = O(r2) or O(r3)

– A set S of nodes is an independent set, if
there is no edge between any two nodes in S.

– BIG model also known as bounded-growth

– Unfortunately, the term bounded-growth is ambiguous

Unit Ball Graph (UBG)

• 9 metric (V,d) with constant doubling dimension.

• Metric: Each edge has a distance d, with

1. d(u,v) ¸ 0 (non-negativity)

2. d(u,v) = 0 iff u = v (identity of indiscernibles)

3. d(u,v) = d(v,u) (symmetry)

4. d(u,w) · d(u,v) + d(v,w) (triangle inequality)

• Doubling dimension: log(#balls of radius r/2 to cover ball of radius r)

– Constant: you only need a constant number of balls of half the radius

• Connectivity graph is same as UDG:

 such that: d(u,v) · 1 : (u,v) 2 E
such that: d(u,v) > 1 : (u,v) 2 E

Connectivity Models: Overview

too pessimistic too optimistic

General

Graph
UDG

Quasi

UDG

Bounded

Independence

Unit Ball

Graph

Models are related

QUDG

UBG

BIG

GG

UDG

• BIG is special case of general graph, BIG µ GG

• UBG µ BIG because the size of the independent

sets of any UBG is polynomially bounded

• QUDG(constant ½) µ UBG

• QUDG(½=1) = UDG

Wireless Interference Models: Protocol Model

• For lower layer protocols, a model needs to be specific about
interference. A simplest interference model is an extension of the UDG. In
the protocol model, a transmission by a node in at most distance 1 is
received iff there is no conflicting transmission by a node in distance at
most R, with R ¸ 1, sometimes just R = 2.

+ Easy to explain

– Inherits all major drawbacks from the UDG model

– Does not easily allow for designing
distributed algorithms/protocols

– Lots of interfering transmissions just
outside the interference radius R do
not sum up

• Can be extended with the same
extensions as UDG, e.g. QUDG

Hop Interference (HI)

• An often-used interference model is hop-interference. Here a UDG is
given. Two nodes can communicate directly iff they are adjacent, and if
there is no concurrent sender in the k-hop neighborhood of the receiver
(in the UDG). Sometimes k = 2.

• Special case of the protocol model,
inheriting all its drawbacks

+ Simple

+ Allows for distributed algorithms

– A node can be close but not
produce any interference
(see picture)

• Can be extended with the same
extensions as UDG, e.g. QUDG

Physical (SINR) Model

• We look at the signal-to-noise-plus-interference (SINR) ratio.

• Message arrives if SINR is larger than at receiver

• Mind that the SINR model is far from perfect as well.

Minimum signal-to-

interference ratio,

depending on quality

of hardware, etc.

Power level

of sender u
Path-loss exponent, ® = 2,...,6

Noise

Distance between

transmitter w and
receiver v

SINR Discussion

+ In contrast to other low-layer models such as PM the SINR model allows
for interference that does sum up. This is certainly closer to reality.
However, SINR is not reality. In reality, e.g., competing transmissions may
even cancel themselves, and produce less interference. In that sense the
SINR model is pessimistic (interference summing up) and optimistic (if we
remove the “I” from the SINR model, we have a UDG, which we know is
not correct) at the same time.

– SINR is “complicated”, hard to analyze

– Similarly as PM, SINR does not really allow for distributed algorithms

– Also, in reality, e.g. the signal fluctuates over time. Some of these issues
are captured by more complicated fading channel models.

More on SINR

• Often there is more than a single threshold ¯, that decides whether
reception is possible or not. In many networks, a higher S/N ratio allows
for more advanced modulation and coding techniques, allowing for higher
throughput (e.g. Wireless LAN 802.11)

• However, even more is possible: For example, assume that a receiver is
receiving two signals, signal S1 being much stronger than signal S2. Then
S2 has a terrible S/N ratio. However, we might be able to “subtract” the
strong S1 from the total signal, and with “S – S1 = S2” also get S2.

• These are just two examples of how to get more than you expect.

Model Overview

• Try to proof correctness in an as “high” as possible model

• For efficiency, a more optimistic (“lower”) model is fine

• Lower bounds should be proved in “low” models.

[Schmid et al., 2006]

Wireless Media Access?

• Radio Network Model

– Slotted time (unslotted time only costs factor 2)

– In each slot, each node can either transmit, receive, or sleep

– Nodes receive transmissions depending on connectivity & interference models

– With or without collision detection

– With or without synchronous start

– With or without …

• Beeper Model

– Nodes can just beep

– If at least one neighbor beeps, a node will receive that (no interference)

– Yes, this can be done in reality, e.g. slotted programming

Summary
General Graph

Growth-Bounded Graph

Bounded Degree Graph

M
IS

𝑂
(Δ
)-C

o
lo

rin
g

𝜒
-C

o
lo

rin
g

lo
ca

l

co
n

ge
st

w
ir

el
es

s

Thank You!
Questions & Comments?

TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAA

www.disco.ethz.ch

Open Problems

• Close the gap between log 𝑛 and log 𝑛 (for randomized algorithms)!

• Find a fast deterministic MIS algorithm (or strong det. lower bound)!

• Where are the boundaries between constant, log*, log, and diameter?

• What about algorithms that cannot even exchange messages?

• Can the lower bound graph be used in the context of sublinear
algorithms?

