Distributed Algorithms for Wireless Multihop Networks

Overview

Distributed Algorithms ...

MIS
Local Model
Time Complexity
Randomized Algorithm
Applications
Ring Lower Bound
Ring Upper Bound
General Lower Bound
... for Wireless Multihop Networks
Connectivity Models
Interference Models
Communication Models

חF

Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

Example: Maximal Independent Set (MIS)

- Given a network with n nodes, nodes have unique IDs.
- Find a Maximal Independent Set (MIS)
- a non-extendable set of pair-wise non-adjacent nodes

- Traditional (sequential) computation:

The simple greedy algorithm finds MIS (in linear time)

What about a Distributed Algorithm?

- Nodes are agents with unique ID's that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

What about a Distributed Algorithm?

- Nodes are agents with unique ID's that can communicate with neighbors by sending messages. In each synchronous round, every node can send a (different) message to each neighbor.

A Simple Distributed Algorithm

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

A Simple Distributed Algorithm

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

each round:
every node:

1. send msgs
2. rcv msgs
3. compute

A Simple Distributed Algorithm

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

each round:
every node:

1. send msgs
2. rcv msgs
3. compute

- What's the problem with this distributed algorithm?

Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

- What if we have minor changes?

Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

- What if we have minor changes?

Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

- What if we have minor changes?

Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

- What if we have minor changes?

Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

- What if we have minor changes?

7

Example

- Wait until all neighbors with higher ID decided
- If no higher ID neighbor is in MIS \rightarrow join MIS

- What if we have minor changes?

11

- Proof by animation: In the worst case, the algorithm is slow (linear in the number of nodes). In addition, we have a terrible „butterfly effect".

What about a Fast Distributed Algorithm?

- Can you find a distributed algorithm that is polylogarithmic in the number of nodes n, for any graph?

What about a Fast Distributed Algorithm?

- Surprisingly, for deterministic distributed algorithms, this is an (1)ill problem!
- However, randomization helps! In each synchronous round, nodes should choose a random value. If your value is larger than the value of your neighbors, join MIS!

What about a Fast Distributed Algorithm?

- Surprisingly, for deterministic distributed algorithms, this is an (1)ill problem!
- However, randomization helps! In each synchronous round, nodes should choose a random value. If your value is larger than the value of your neighbors, join MIS!

What about a Fast Distributed Algorithm?

- Surprisingly, for deterministic distributed algorithms, this is an (1)T problem!
- However, randomization helps! In each synchronous round, nodes should choose a random value. If your value is larger than the value of your neighbors, join MIS!

What about a Fast Distributed Algorithm?

- Surprisingly, for deterministic distributed algorithms, this is an (1)ill problem!
- However, randomization helps! In each synchronous round, nodes should choose a random value. If your value is larger than the value of your neighbors, join MIS!

- How many synchronous rounds does this take in expectation (or whp)?

Analysis

- Event $(u \rightarrow v)$: node u got largest random value in combined neighborhood $N_{u} \cup N_{v}$.
- We only count edges of v as deleted.

- Similarly event $(v \rightarrow u)$ deletes edges of u.
- We only double-counted edges.
- Using linearity of expectation, in expectation at least half of the edges are removed in each round.
- In other words, whp it takes $O(\log n)$ rounds to compute an MIS.

Results: MIS

Local Algorithms

- Each node can exchange a message with all neighbors, for t communication rounds, and must then decide.
- Or: Given a graph, each node must determine its decision as a function of the information available within radius t of the node.
- Or: Change can only affect nodes up to distance t.
- Or: ...

Locality is Everywhere!

Locality is Everywhere!

What about an Even Faster Distributed Algorithm?

- Since the 1980 s, nobody was able to improve this simple algorithm.
- What about lower bounds?
- There is an interesting lower bound, essentially using a Ramsey theory argument, that proves that an MIS needs at least $\Omega\left(\log ^{*} n\right)$ time.
- log* is the so-called iterated logarithm - how often you need to take the logarithm until you end up with a value smaller than 1.
- This lower bound already works on simple networks such as the linked list

Coloring Lower Bound on Oriented Ring

- Build graph G_{t}, where nodes are possible views of nodes for distributed algorithms of time t. Connect views that could be neighbors in ring.
- Here is for instance of G_{1} :

- Chromatic number of G_{t} is exactly minimum possible colors in time t.

Coloring Lower Bound on Oriented Ring

- Build graph G_{t}, where nodes are possible views of nodes for distributed algorithms of time t. Connect views that could be neighbors in ring.
- Here is for instance of G_{1} :

- Chromatic number of G_{t} is exactly minimum possible colors in time t.

Results: MIS

Results: MIS

Results: MIS

$$
\left|I S\left(N_{2}\right)\right| \in O(1)
$$

Results: MIS

Results: MIS

Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
- a minimum set of nodes such that all edges are adjacent to node in MVC

Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
- a minimum set of nodes such that all edges are adjacent to node in MVC

Example: Minimum Vertex Cover (MVC)

- Given a network with n nodes, nodes have unique IDs.
- Find a Minimum Vertex Cover (MVC)
- a minimum set of nodes such that all edges are adjacent to node in MVC

Differences between MIS and MVC

- Central (non-local) algorithms: MIS is trivial, whereas MVC is NP-hard
- Instead: Find an MVC that is "close" to minimum (approximation)
- Trade-off between time complexity and approximation ratio

- MVC: Various simple (non-distributed) 2-approximations exist!
- What about distributed algorithms?!?

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $\left|S_{0}\right|=\delta\left|S_{1}\right|$
- The MVC is just all the nodes in S_{1}
- Distributed Algorithm...

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $\left|S_{0}\right|=\delta\left|S_{1}\right|$
- The MVC is just all the nodes in S_{1}
- Distributed Algorithm...

Finding the MVC (by Distributed Algorithm)

- Given the following bipartite graph with $\left|S_{0}\right|=\delta\left|S_{1}\right|$
- The MVC is just all the nodes in S_{1}
- Distributed Algorithm...

Graph is "symmetric", yet highly non-regular!

Lower Bound: The Argument

- The example graph is for $t=3$.
- All edges are in fact special bipartite graphs with large enough girth.

- If you use the graph of recursion level t, then a distributed algorithm cannot find a good MVC approximation in time t.

Lower Bound: The Math

- Choose degrees δ_{i} such that $\delta_{i+1} / \delta_{i}=2^{i} \delta$.
- We have $\left|S_{0}\right|>\delta / 2\left|L_{1}\right|$, with $\left|L_{1}\right|$ nodes on level 1

Lower Bound: The Math

- Choose degrees δ_{i} such that $\delta_{i+1} / \delta_{i}=2^{i} \delta$.
- We have $\left|S_{0}\right|>\delta / 2\left|L_{1}\right|$, with $\left|L_{1}\right|$ nodes on level 1

- By induction we have a $(1-\Theta(1 / \delta))$ fraction of the nodes is in S_{0}.
- Now δ, n, Δ are depending on the recursion level t.

Lower Bound: The Math

Graph useful for proving lower bounds in sublinear algos?

- Choose degrees δ_{i} such that $\delta_{i+1} / \delta_{i}=2^{i} \delta$.
- We have $\left|S_{0}\right|>\delta / 2\left|L_{1}\right|$, with $\left|L_{1}\right|$ nodes on level 1

- By induction we have a $(1-\Theta(1 / \delta))$ fraction of the nodes is in S_{0}.
- Now δ, n, Δ are depending on the recursion level t.

Lower Bound: Results

- We can show that for $\epsilon>0$, in t time, the approximation ratio is at least

$$
\Omega\left(n^{\frac{1 / 4-\varepsilon}{t^{2}}}\right) \text { and } \Omega\left(\Delta^{\frac{1-\varepsilon}{t+1}}\right)
$$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

Lower Bound: Results

- We can show that for $\epsilon>0$, in t time, the approximation ratio is at least
tight for MVC

$$
\Omega\left(n^{\frac{1 / 4-\varepsilon}{t^{2}}}\right) \text { and } \Omega\left(\Delta^{\frac{1-\varepsilon}{t+1}}\right)
$$

- Constant approximation needs at least $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ time.
- Polylog approximation $\Omega(\log \Delta / \log \log \Delta)$ and $\Omega(\sqrt{\log n / \log \log n})$.

Lower Bound: Reductions

- Many "local looking" problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

Lower Bound: Reductions

- Many "local looking" problems need non-trivial t, in other words, the bounds $\Omega(\log \Delta)$ and $\Omega(\sqrt{\log n})$ hold for a variety of classic problems.

Results: MIS

Summary so far...

Ad Hoc \& Sensor Networks?

Ad hoc Network Connectivity Models

- Formal models help us understanding a problem
- Formal proofs of correctness and efficiency
- Common basis to compare results
- Unfortunately, for ad hoc and sensor networks, a myriad of models exist, most of them make sense in some way or another. On the next few slides we look at a few selected models

Unit Disk Graph (UDG)

- Classic computational geometry model, special case of disk graphs
- All nodes are points in the plane, two nodes are connected iff (if and only if) their distance is at most 1 , that is $\{u, v\} \in E \Leftrightarrow|u, v| 1$
+ Very simple, allows for strong analysis

- Not realistic: "If you gave me $\$ 100$ for each paper written with the unit disk assumption, I still could not buy a radio that is unit disk!"
- Particularly bad in obstructed environments (walls, hills, etc.)
- Natural extension: 3D UDG

Quasi Unit Disk Graph (QUDG)

- Two radii, 1 and, with 1
- $|u, v| \Leftrightarrow\{u, v\} \in E$
- $1<|u, v| \Leftrightarrow\{u, v\} \notin E$
- $<|u, v| 1 \Leftrightarrow$ it depends!
- ... on an adversary
- ... on probabilistic model
+ Simple, analyzable
+ More realistic than UDG
- Still bad in obstructed environments (walls, hills, etc.)
- Natural extension: 3D QUDG

Bounded Independence Graph (BIG)

- How realistic is a QUDG?
- u and v can be close but not adjacent
- model requires very small in obstructed environments (walls)

- However: in practice, neighbors are often also neighboring
- Solution: BIG Model
- Bounded independence graph
- Size of any independent set grows polynomially with hop distance r
- e.g., $f(r)=O\left(r^{2}\right)$ or $O\left(r^{3}\right)$

- A set S of nodes is an independent set, if there is no edge between any two nodes in S .
- BIG model also known as bounded-growth
- Unfortunately, the term bounded-growth is ambiguous

Unit Ball Graph (UBG)

- \exists metric (V,d) with constant doubling dimension.
- Metric: Each edge has a distance d, with

1. $d(u, v) \geq 0$
2. $d(u, v)=0$ iff $u=v$
3. $d(u, v)=d(v, u)$
4. $d(u, w) d(u, v)+d(v, w)$
(non-negativity)
(identity of indiscernibles)
(symmetry)
(triangle inequality)

- Doubling dimension: $\log (\# b a l l s$ of radius $r / 2$ to cover ball of radius r)
- Constant: you only need a constant number of balls of half the radius
- Connectivity graph is same as UDG:
such that: $d(u, v) 1:(u, v) \in E$

$$
d(u, v)>1:(u, v) \in E /
$$

Connectivity Models: Overview

General Graph

UDG
too optimistic

Models are related

- BIG is special case of general graph, $\mathrm{BIG} \subseteq \mathrm{GG}$
- $\mathrm{UBG} \subseteq \mathrm{BIG}$ because the size of the independent sets of any UBG is polynomially bounded
- QUDG(constant) \subseteq UBG
- $\operatorname{QUDG}(=1)=$ UDG

Wireless Interference Models: Protocol Model

- For lower layer protocols, a model needs to be specific about interference. A simplest interference model is an extension of the UDG. In the protocol model, a transmission by a node in at most distance 1 is received iff there is no conflicting transmission by a node in distance at most R, with $R \geq 1$, sometimes just $R=2$.
+ Easy to explain
- Inherits all major drawbacks from the UDG model
- Does not easily allow for designing distributed algorithms/protocols
- Lots of interfering transmissions just outside the interference radius R do not sum up
- Can be extended with the same extensions as UDG, e.g. QUDG

Hop Interference (HI)

- An often-used interference model is hop-interference. Here a UDG is given. Two nodes can communicate directly iff they are adjacent, and if there is no concurrent sender in the k-hop neighborhood of the receiver (in the UDG). Sometimes $k=2$.
- Special case of the protocol model, inheriting all its drawbacks
+ Simple
+ Allows for distributed algorithms
- A node can be close but not produce any interference (see picture)
- Can be extended with the same extensions as UDG, e.g. QUDG

Physical (SINR) Model

- We look at the signal-to-noise-plus-interference (SINR) ratio.
- Message arrives if SINR is larger than β at receiver

- Mind that the SINR model is far from perfect as well.

SINR Discussion

+ In contrast to other low-layer models such as PM the SINR model allows for interference that does sum up. This is certainly closer to reality. However, SINR is not reality. In reality, e.g., competing transmissions may even cancel themselves, and produce less interference. In that sense the SINR model is pessimistic (interference summing up) and optimistic (if we remove the " 1 " from the SINR model, we have a UDG, which we know is not correct) at the same time.
- SINR is "complicated", hard to analyze
- Similarly as PM, SINR does not really allow for distributed algorithms
- Also, in reality, e.g. the signal fluctuates over time. Some of these issues are captured by more complicated fading channel models.

More on SINR

- Often there is more than a single threshold , that decides whether reception is possible or not. In many networks, a higher S / N ratio allows for more advanced modulation and coding techniques, allowing for higher throughput (e.g. Wireless LAN 802.11)
- However, even more is possible: For example, assume that a receiver is receiving two signals, signal S_{1} being much stronger than signal S_{2}. Then S_{2} has a terrible S / N ratio. However, we might be able to "subtract" the strong S_{1} from the total signal, and with " $S-S_{1}=S_{2}$ " also get S_{2}.
- These are just two examples of how to get more than you expect.

Model Overview

- Try to proof correctness in an as "high" as possible model
- For efficiency, a more optimistic ("lower") model is fine
- Lower bounds should be proved in "low" models.

Wireless Media Access?

- Radio Network Model
- Slotted time (unslotted time only costs factor 2)
- In each slot, each node can either transmit, receive, or sleep
- Nodes receive transmissions depending on connectivity \& interference models
- With or without collision detection
- With or without synchronous start
- With or without ...
- Beeper Model
- Nodes can just beep
- If at least one neighbor beeps, a node will receive that (no interference)
- Yes, this can be done in reality, e.g. slotted programming

Summary

Thank You!
 Questions \& Comments?

Open Problems

- Close the gap between $\sqrt{\log n}$ and $\log n$ (for randomized algorithms)!
- Find a fast deterministic MIS algorithm (or strong det. lower bound)!
- Where are the boundaries between constant, log*, log, and diameter?
- What about algorithms that cannot even exchange messages?
- Can the lower bound graph be used in the context of sublinear algorithms?

