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Example: Maximal Independent Set (MIS) 

• Given a network with n nodes, nodes have unique IDs. 

• Find a Maximal Independent Set (MIS) 

– a non-extendable set of pair-wise non-adjacent nodes 
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• Given a network with n nodes, nodes have unique IDs. 

• Find a Maximal Independent Set (MIS) 

– a non-extendable set of pair-wise non-adjacent nodes 

 

 

 

 

 

 

 

 

 

 

 

• Traditional (sequential) computation:  
The simple greedy algorithm finds MIS (in linear time) 
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What about a Distributed Algorithm? 

 

• Nodes are agents with unique ID’s that can communicate with neighbors 
by sending messages. In each synchronous round, every node can send a 
(different) message to each neighbor. 
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A Simple Distributed Algorithm 

 

• Wait until all neighbors with higher ID decided 

• If no higher ID neighbor is in MIS  join MIS 
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• What’s the problem with this distributed algorithm? 
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Example 

 

• Wait until all neighbors with higher ID decided 

• If no higher ID neighbor is in MIS  join MIS 

 

 

 

 

• What if we have minor changes? 

 

 

 

 

 

• Proof by animation: In the worst case, the algorithm is slow (linear in the 
number of nodes). In addition, we have a terrible „butterfly effect“. 
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What about a Fast Distributed Algorithm? 

 

• Can you find a distributed algorithm that is polylogarithmic in the number 
of nodes n, for any graph? 
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What about a Fast Distributed Algorithm? 

 

• Surprisingly, for deterministic distributed algorithms, this is an  
open     problem! 

 

• However, randomization helps! In each synchronous round, nodes should 
choose a random value. If your value is larger than the value of your 
neighbors, join MIS! 
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• How many synchronous rounds does this take in expectation (or whp)? 
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Analysis 

• Event (𝑢 → 𝑣) : node 𝑢 got largest random value 
in combined neighborhood 𝑁𝑢 ∪ 𝑁𝑣. 

• We only count edges of 𝑣 as deleted. 

 

 

 

 

 

 

• Similarly event (𝑣 → 𝑢) deletes edges of 𝑢. 

• We only double-counted edges. 

• Using linearity of expectation, in expectation 
at least half of the edges are removed in each round. 

• In other words, whp it takes 𝑂(log 𝑛) rounds to compute an MIS. 

 

 

 

𝑢 𝑣 



Results: MIS 

1          log∗ 𝑛                log 𝑛                𝑛𝜖                                𝑛
                     
  

General Graphs, Randomized 
[Alon, Babai, and Itai, 1986] 
[Israeli and Itai, 1986] 
[Luby, 1986] 
[Métivier et al., 2009] Naïve Algo 

Decomposition, Determ. 
[Awerbuch et al., 1989]  
[Panconesi et al., 1996] 



Local Algorithms 

 

• Each node can exchange a message with all neighbors, for t 
communication rounds, and must then decide. 

• Or: Given a graph, each node must determine its decision as a function of 
the information available within radius t of the node. 

• Or: Change can only affect nodes up to distance t.  

• Or: … 
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[Afek, Alon, Barad, et al., 2011] 



What about an Even Faster Distributed Algorithm? 

 

• Since the 1980s, nobody was able to improve this simple algorithm. 

 

• What about lower bounds? 

 

• There is an interesting lower bound, essentially using a Ramsey theory 
argument, that proves that an MIS needs at least Ω(log*n) time. 

– log* is the so-called iterated logarithm – how often you need to take the 
logarithm until you end up with a value smaller than 1. 

– This lower bound already works on simple networks such as the linked list 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



• Build graph 𝐺𝑡, where nodes are possible views of nodes for distributed 
algorithms of time 𝑡. Connect views that could be neighbors in ring.  

• Here is for instance of 𝐺1:  

 

 

 

 

 

 

 

 

 

 

 

• Chromatic number of 𝐺𝑡 is exactly minimum possible colors in time 𝑡. 
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Example: Minimum Vertex Cover (MVC) 

• Given a network with n nodes, nodes have unique IDs. 

• Find a Minimum Vertex Cover (MVC) 

– a minimum set of nodes such that all edges are adjacent to node in MVC 
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Differences between MIS and MVC 

 

• Central (non-local) algorithms: MIS is trivial, whereas MVC is NP-hard 

• Instead: Find an MVC that is “close” to minimum (approximation) 

• Trade-off between time complexity and approximation ratio  

 

 

 

 

 

 

 

 

 

• MVC: Various simple (non-distributed) 2-approximations exist! 

• What about distributed algorithms?!? 
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𝑆1 

Finding the MVC (by Distributed Algorithm) 

 

• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1  

• The MVC is just all the nodes in 𝑆1 

• Distributed Algorithm… 

𝑆0 
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• Given the following bipartite graph with 𝑆0 = 𝛿 𝑆1  

• The MVC is just all the nodes in 𝑆1 

• Distributed Algorithm… 



𝑆1 

𝑆0 

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1 

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1) 



𝑆1 

𝑆0 

7 7 7 7 7 7 7 7 3 2 1 3 4 1 1 2 1 4 4 2 2 4 1 1 

𝑁2(node in 𝑆0) 𝑁2(node in 𝑆1) Graph is “symmetric”,  
yet highly non-regular! 



Lower Bound: The Argument 

 

• The example graph is for t = 3. 

• All edges are in fact special bipartite graphs 
with large enough girth. 

 

 

 

 

 

 

 

 

 

• If you use the graph of recursion level t, then a distributed algorithm 
cannot find a good MVC approximation in time t.  



Lower Bound: The Math 

 

• Choose degrees 𝛿𝑖  such that 𝛿𝑖+1 𝛿𝑖 = 2𝑖𝛿.  

• We have 𝑆0 > 𝛿/2 𝐿1 , with 𝐿1  nodes on level 1 
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• By induction we have a (1 − Θ(1/δ)) fraction of the nodes is in 𝑆0. 

• Now δ, 𝑛, Δ are depending on the recursion level 𝑡. 
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• By induction we have a (1 − Θ(1/δ)) fraction of the nodes is in 𝑆0. 

• Now δ, 𝑛, Δ are depending on the recursion level 𝑡. 

Graph useful for proving lower 
bounds in sublinear algos? 



Lower Bound: Results 

 

• We can show that for 𝜖 > 0, in 𝑡 time, the approximation ratio is at least 

 

 

 

 

 

 

 

• Constant approximation needs at least Ω(log Δ) and Ω( log 𝑛) time. 

• Polylog approximation Ω(log Δ/ log log Δ) and Ω( log 𝑛/ log log 𝑛). 

 

𝑡 𝑡 
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• Polylog approximation Ω(log Δ/ log log Δ) and Ω( log 𝑛/ log log 𝑛). 

 

𝑡 𝑡 

tight for MVC 



Lower Bound: Reductions 

 

• Many “local looking” problems need non-trivial t, in other words, the 

bounds Ω(log Δ) and Ω( log 𝑛) hold for a variety of classic problems. 
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line graph 

cloning 

MVC through MM 

line graph 
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Summary so far… 

1             log*n          log 𝑛 … log 𝑛   Diameter  

        

MIS, maximal 
matching, etc. 

Growth-Bounded Graphs  
(various problems) 

MST, Sum, 
etc. 

Approximations of 
dominating set, 
vertex cover, etc. 

Covering and 
packing LPs E.g., dominating 

set approximation 
in planar graphs 



Ad Hoc & Sensor Networks? 



Ad hoc Network Connectivity Models 

 

• Formal models help us understanding a problem 

 

• Formal proofs of correctness and efficiency 

• Common basis to compare results 

• Unfortunately, for ad hoc and sensor networks, a myriad of models exist, 
most of them make sense in some way or another. On the next few slides 
we look at a few selected models 

 



Unit Disk Graph (UDG) 

 

• Classic computational geometry model, special case of disk graphs 

 

• All nodes are points in the plane,  

two nodes are connected iff (if and  

only if) their distance is at most 1,  
that is {u,v} 2 E , |u,v| · 1 

 

+ Very simple, allows for strong analysis 

– Not realistic: “If you gave me $100 for each paper written with the 

unit disk assumption, I still could not buy a radio that is unit disk!” 

– Particularly bad in obstructed environments (walls, hills, etc.) 

• Natural extension: 3D UDG 

 

 



Quasi Unit Disk Graph (QUDG) 

 

• Two radii, 1 and ½, with ½ · 1 

• |u,v| · ½  {u,v} 2 E 

• 1 < |u,v|  {u,v} 2 E 

• ½ < |u,v| · 1  it depends! 

• … on an adversary 

• … on probabilistic model 

• …  

 

+ Simple, analyzable 

+ More realistic than UDG 

– Still bad in obstructed 

environments (walls, hills, etc.) 

• Natural extension: 3D QUDG 

 

 



Bounded Independence Graph (BIG) 

 

• How realistic is a QUDG? 

– u and v can be close but not adjacent 

– model requires very small ½  
in obstructed environments (walls) 

 

• However: in practice, neighbors are often also neighboring 

 

• Solution: BIG Model 

– Bounded independence graph 

– Size of any independent set grows  
polynomially with hop distance r 

– e.g., f(r) = O(r2) or O(r3) 

– A set S of nodes is an independent set, if  
there is no edge between any two nodes in S. 

– BIG model also known as bounded-growth 

– Unfortunately, the term bounded-growth is ambiguous 



Unit Ball Graph (UBG) 

 

• 9 metric (V,d) with constant doubling dimension. 

 

• Metric: Each edge has a distance d, with  

1. d(u,v) ¸ 0   (non-negativity) 

2. d(u,v) = 0 iff u = v   (identity of indiscernibles) 

3. d(u,v) = d(v,u)   (symmetry) 

4. d(u,w) · d(u,v) + d(v,w)  (triangle inequality) 

 

• Doubling dimension: log(#balls of radius r/2 to cover ball of radius r) 

– Constant: you only need a constant number of balls of half the radius 

 

• Connectivity graph is same as UDG: 

 such that:  d(u,v) · 1 : (u,v) 2 E 
such that:  d(u,v) > 1  : (u,v) 2 E 

 

 

 



Connectivity Models: Overview 

too pessimistic too optimistic 

General 

Graph 
UDG 

Quasi 

UDG 

Bounded  

Independence 

Unit Ball 

Graph 



Models are related 

QUDG 

UBG 

BIG 

GG 

UDG 

 

• BIG is special case of general graph, BIG µ GG 

 

• UBG µ BIG because the size of the independent 

sets of any UBG is polynomially bounded 

 

 

• QUDG(constant ½) µ UBG 

 

 

• QUDG( ½=1) = UDG 

 

 

 



Wireless Interference Models: Protocol Model 

 

• For lower layer protocols, a model needs to be specific about 
interference. A simplest interference model is an extension of the UDG. In 
the protocol model, a transmission by a node in at most distance 1 is 
received iff there is no conflicting transmission by a node in distance at 
most R, with R ¸ 1, sometimes just R = 2. 

 

+ Easy to explain 

– Inherits all major drawbacks from the UDG model 

– Does not easily allow for designing  
distributed algorithms/protocols 

– Lots of interfering transmissions just  
outside the interference radius R do  
not sum up 

• Can be extended with the same 
extensions as UDG, e.g. QUDG 

 

 

 



Hop Interference (HI) 

 

• An often-used interference model is hop-interference. Here a UDG is 
given. Two nodes can communicate directly iff they are adjacent, and if 
there is no concurrent sender in the k-hop neighborhood of the receiver 
(in the UDG). Sometimes k = 2. 

 

• Special case of the protocol model,  
inheriting all its drawbacks 

+ Simple 

+ Allows for distributed algorithms 

– A node can be close but not 
produce any interference  
(see picture) 

• Can be extended with the same 
extensions as UDG, e.g. QUDG 

 

 

 

 



Physical (SINR) Model 

• We look at the signal-to-noise-plus-interference (SINR) ratio. 

• Message arrives if SINR is larger than  at receiver 

 

 

 

 

 

 

 

 

 

 

 

• Mind that the SINR model is far from perfect as well. 

Minimum signal-to-

interference ratio, 

depending on quality 

of hardware, etc. 

Power level 

of sender u 
Path-loss exponent, ® = 2,...,6 

Noise 

Distance between 

transmitter w and 
receiver v 



SINR Discussion 

 

+ In contrast to other low-layer models such as PM the SINR model allows 
for interference that does sum up. This is certainly closer to reality. 
However, SINR is not reality. In reality, e.g., competing transmissions may 
even cancel themselves, and produce less interference. In that sense the 
SINR model is pessimistic (interference summing up) and optimistic (if we 
remove the “I” from the SINR model, we have a UDG, which we know is 
not correct) at the same time. 

 

– SINR is “complicated”, hard to analyze 

– Similarly as PM, SINR does not really allow for distributed algorithms 

– Also, in reality, e.g. the signal fluctuates over time. Some of these issues 
are captured by more complicated fading channel models. 



More on SINR 

 

• Often there is more than a single threshold ¯, that decides whether 
reception is possible or not. In many networks, a higher S/N ratio allows 
for more advanced modulation and coding techniques, allowing for higher 
throughput (e.g. Wireless LAN 802.11) 

 

• However, even more is possible: For example, assume that a receiver is 
receiving two signals, signal S1 being much stronger than signal S2. Then 
S2 has a terrible S/N ratio. However, we might be able to “subtract” the 
strong S1 from the total signal, and with “S – S1 = S2” also get S2. 

 

• These are just two examples of how to get more than you expect. 



Model Overview 

 

 

 

 

 

 

 

 

 

 

 

 

• Try to proof correctness in an as “high” as possible model 

• For efficiency, a more optimistic (“lower”) model is fine 

• Lower bounds should be proved in “low” models. 

[Schmid et al., 2006] 



Wireless Media Access? 

 

• Radio Network Model 

– Slotted time (unslotted time only costs factor 2) 

– In each slot, each node can either transmit, receive, or sleep 

– Nodes receive transmissions depending on connectivity & interference models 

– With or without collision detection 

– With or without synchronous start 

– With or without … 

 

• Beeper Model 

– Nodes can just beep 

– If at least one neighbor beeps, a node will receive that (no interference) 

– Yes, this can be done in reality, e.g. slotted programming 
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Thank You! 
Questions & Comments? 

 
 
 
 

TexPoint fonts used in EMF.  

Read the TexPoint manual before you delete this box.: 
AAAAAAA 

www.disco.ethz.ch 



Open Problems 

 

• Close the gap between log 𝑛 and log 𝑛 (for randomized algorithms)! 

• Find a fast deterministic MIS algorithm (or strong det. lower bound)! 

• Where are the boundaries between constant, log*, log, and diameter? 

• What about algorithms that cannot even exchange messages? 

• Can the lower bound graph be used in the context of sublinear 
algorithms? 

 


