
Communities in Preference Networks:
Refined Axioms and Beyond

Gang Zeng∗†§, Yuyi Wang‡, Juhua Pu§, Xingwu Liu∗†, Xiaoming Sun∗† and Jialin Zhang∗†
∗University of Chinese Academy of Sciences, Beijing, 100049, China

†Institute of Computing Technology, Chinese Academy of Sciences, 100190, Beijing, China

zenggang,liuxingwu,sunxiaoming,zhangjialin@ict.ac.cn
‡Distributed Computing Group, ETH Zürich

yuyiwang920@gmail.com
§State Key Laboratory of Software Development Environment, Beihang University

pujh@buaa.edu.cn

Abstract—Borgs et al. [2016] investigated essential require-
ments for communities in preference networks. They defined six
axioms on community functions, i.e., community detection rules.
Though having elegant properties, the practicality of this axiom
system is compromised by the intractability of checking two
critical axioms, so no nontrivial consistent community function
was reported in [Borgs et al., 2016]. By adapting the two
axioms in a natural way, we propose two new axioms that
are efficiently-checkable. We show that most of the desirable
properties of the original axiom system are preserved. More
importantly, the new axioms provide a general approach to
constructing consistent community functions. We further find
a natural consistent community function that is also enumerable
and samplable, answering an open problem in the literature.

I. INTRODUCTION

Clustering individuals in a social network, called community

detection, is a fundamental task in graph mining and has been

adequately studied. Community detection has different forms,

depending on whether overlapping communities are allowed

[Palla et al., 2005; Baumes et al., 2005; Zhang et al., 2007;

Ahn et al., 2009], whether hierarchical structures are taken

into account [Sibson, 1973], and in which form of the data is

provided, etc. People proposed a number of algorithms to find

communities, based on different principles such as spectral

clustering [Hoffman, 1973], density-based methods [Ester et
al., 1996], modularity-based method [Newman, 2006]. No

matter which form and which algorithm we choose, a com-

munity is usually considered as a group of closely related

individuals. However, “a group of closely related individuals”

is a rather rough concept, and there does not exist a widely

accepted definition of communities.

In this paper, we try to axiomatize the concept of communi-

ties. We allow overlapping communities and assume the data

is given in a preference network.

Kleinberg [2003] developed an axiomatic framework for

non-overlapping clusterings and defined clustering functions

*Correspondence should be addressed to Xingwu Liu.
This work is partially supported by the National Key Reaearch and De-

velopment Program of China (2016YFB1000201), National Natural Science
Foundation of China (11601375,61420106013), Science Foundation of Shen-
zhen City in China (JCYJ20160419152942010), and State Key Laboratory of
Software Development Environment Open Fund (SKLSDE-2015ZX-25).

whose inputs are a set V of n individuals and pairwise

distances between these n individuals and whose output is

a partition of these vertices (i.e., overlapping communities are

not allowed). He found that three desired clustering axioms

(scale-invariance, richness and consistency) cannot be satisfied

at the same time.

But this negative result did not prevent researchers from

investigating axiomatic aspects of clusterings. Meil [2005]

proposed axioms to compare clusterings. Ben-David and

Ackerman [2008] introduced axioms on clustering quality

measures. Zadeh and Ben-David [2009] presented a unique

theorem for clustering and showed that the impossibility result

in [Kleinberg, 2003] can be avoided by relaxing one of

clustering axioms. Ackerman et al. [2010] introduced several

more properties of clustering functions to taxonomize a set

of popular clustering algorithmic paradigms and strengthened

the impossibility result on these properties. Gollapudi and

Sharma [2009] devised an evaluation method to characterize

the axioms.

Following this line but in a more general sense, Borgs et
al. [2016] recently initiated the axiomization of overlapping

communities over preference networks. A preference network

is a finite set of individuals each having a preference indicating

his/her affinity with others. As an expressive model, it covers

graphs, a structure that is commonly used in the field of

community detection. Borgs et al. [2016] proposed a system

of six axioms for community functions and showed various

properties of this system.

Among the properties, the lattice structure and the intersec-

tion lemma are most striking, because they serve as a guideline

to construct desirable community functions. Specifically, the

lattice structure means that the axioms satisfying all the six ax-

ioms form a lattice under the natural “∪” and “∩” operations.

Borgs et al. also identified the bottom (the minimum, called

Ccliq) and the top (the maximum, called Ccomp) of this lattice.

The intersection lemma claims that a community function

satisfies all the axioms if and only if it is the intersection

of Ccomp and a community function satisfying four axioms

which are simple and easy to conform. The significance of

the intersection lemma is that it paves a way to construct a

2016 IEEE 16th International Conference on Data Mining

2374-8486/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDM.2016.32

599

community function satisfying all the axioms, while the lattice

structure enables to derive more such community functions on

this basis.

However, Borgs et al. [2016] did not construct any non-

trivial community function satisfying all the axioms. This is

mainly due to the fact that it is coNP-complete to check two of

the axioms, namely Group Stability (GS) and Self-Approval

(SA). Furthermore, GS and SA play critical roles in this ax-

iomization for two reasons. First, only they cover the stability

of communities, while an unstable community does not make

sense, especially in the context of preference networks. As an

analogue, consider the stable matching problem where affinity

among the players is determined by their preferences and the

stability of matchings is the focus (see e.g., Gusfield and Irving

[1989]). Second, these two axioms set the top of the lattice.

The coNP-completeness of the two most important axioms

surely compromises the practicality of the axiom system.

On this ground, we make an effort to improve the axiom

system in [Borgs et al., 2016] and construct desired commu-

nity functions. Our contributions are fourfold.

1) We show that axiom SA can degenerate so as to be

checkable in polynomial time, leaving the axiom system

equivalent.

2) We propose an efficiently checkable alternative axiom

SGS to the original GS . The modification is natural, and

preserves all the good properties of the original axiom

system.

3) We present a general approach to construct nontrivial

community functions that conform to the new axiom

systems.

4) We find a natural, consistent, constructive, enumerable,

and samplable community function, answering an open

problem in [Borgs et al., 2016]. Note that both this

community function and the just-mentioned general ap-

proach remain valid in the original axiom system, but

the construction essentially depends on the new axiom

SGS .

The structure of this paper is as follows. In Section II, we re-

view some necessary notions and notations, and show that SA
can be replaced by a simpler axiom. We define a strengthening

alternative to the crucial axiom GS in Section III, named SGS .

In Section IV, we prove that SGS is efficiently checkable, and

various desirable properties of the original axiom system are

prereserved. In Section V, we present a systematic approach to

finding consistent and constructive community functions, and

find an ideal community function. Finally, we conclude this

paper in Section VI with future works and open problems.

II. PRELIMINARIES

In this paper, we consider community detection as a task

that translates a preference network into a set of communities.

First of all, we review the definition of preference networks

and the axiom system introduced by Borgs et al. [2016], and

show some properties of the axiom system.

A. Preference networks

A preference network is a finite set of individuals each of

which ranks all the individuals (including herself) in (strict)

order of preference.

Formally, consider a non-empty set V = {1, 2, . . . , n} and

L(V), the set of all total orders on V .

A total order π ∈ L(V) is equivalently defined as a bijection

π : V → V , denoted by [v1v2 . . . vn] where vi = π−1(i) for

i = 1, 2, . . . , n. For any u, v ∈ V and π ∈ L(V), π(u) is

referred to as the rank of u in π, and we say that π prefers u
to v if π(u) < π(v), denoted by u �π v.

A preference profile Π on V is a list of total orders

{πu}u∈V ∈ L(V)V on V . Given u, v, w ∈ V , we say that

u prefers v to w if so does πu, denoted by v �πu
w. Given

a preference profile Π on V , the pair N = (V,Π) is called a

preference network.

A community function is a function C that maps each

preference network N = (V,Π) to a collection C(N) ⊆ 2V .

Each S ∈ C(N) is called a community of N defined by C, and

the term “defined by C” will be omitted if clear from context.

As an example, consider the community function

Ccliq(V,Π) = {S ⊆ V : ∀u, v ∈ S, ∀w ∈ V − S, v �πu
w}.

Every community S defined by Ccliq is called a clique1.

Roughly speaking, a clique is a subset of individuals preferring

each other to those not in the subset.

Example 1: We consider two families in a village and each

family has three members. The members in a family have the

same preference and they prefer their own family members

to other villagers. In this case, every family is a community.

Formally, suppose N = (V,Π) is the preference network

where V = {1, 2, 3, 4, 5, 6}, π1 = π2 = π3 = [123456] and

π4 = π5 = π6 = [456123]. Sets {1, 2, 3} and {4, 5, 6} are in

Ccliq(N).
Actually preference frameworks have been used in various

occasions, e.g., voting [Gale and Shapley, 1962; Gusfield and

Irving, 1989; Roth, 1984a], network routing [Rekhter and Li,

1994; Caesar and Rexford, 2005], and coalition formation

in collaborative games [Brams et al., 2003; Roth, 1984b].

Balcan et al. [2013] further elaborated on how the concept of

preference networks properly models social networks and why

it essentially captures their underlying community structures.

B. Existing axioms

Borgs et al. [2016] proposed six axioms for community

functions. They are included here for the paper to be self-

containing. Let’s arbitrarily fix a non-empty finite set V and

a community function C.

Axiom 1 (Anonymity(A)): Let S, S′ ⊆ V , and Π,Π′ be two

preference profiles on V . Assume that S′ = σ(S) and Π′ =
σ(Π) for some permutation σ : V → V . Then S ∈ C(N) if

and only if S′ ∈ C(N ′), where N = (V,Π) and N ′ = (V,Π′).

1Note that a clique in a preference network does not mean it is a complete
subgraph.

600

This axiom means that whether S is a community is

determined by the preference profile rather than by labels of

the individuals.

Axiom 2 (Monotonicity(Mon)): Let S ⊆ V , and Π,Π′ be

two preference profiles on V . If u �πs v ⇒ u �π′s v for

∀s, u ∈ S and ∀v ∈ V , then S ∈ C(N)⇒ S ∈ C(N ′), where

N = (V,Π) and N ′ = (V,Π′).
Intuitively, monotonicity means that if the change of the

preference profile does not decrease the ranking of any mem-

ber of a community and preserves the relative ranking among

the members, then the community remains. This is reasonable

since the affinity among the members of the community is

improved after the preference profile is changed.

Axiom 3 (Embedding(Emb)): Given two preference net-

works N = (V,Π) and N ′ = (V ′,Π′) such that V ′ ⊆ V and

π′u(v) = πu(v) for all u, v ∈ V ′, then C(N ′) = C(N) ∩ 2V
′
.

Intuitively, though V ′ is embedded into V , its preferences

are not influenced. Hence it is reasonable that communities

inside V ′ are formed independently of individuals outside V ′.
Axiom 4 (World Community(WC)): For any preference

network N = (V,Π), V ∈ C (N).

This axiom is self-explanatory.

Before introducing the remaining two axioms, the concept

of preference should be extended to group-preference2 so that

equal-sized sets can be compared. Given a preference network

N = (V,Π) and non-empty disjoint sets G,G′ ⊆ V of the

same size, we say that s ∈ V group-prefers G′ to G, denoted

by G′ �πs
G, if one can align the elements g1, g2, · · · , g|G|

of G and g′1, g
′
2, · · · , g′|G| of G′ so that g′i �πs gi for all

i = 1, 2, · · · , |G|.
For example, in the preference network in Example 1,

{3, 4} �π2
{5, 6} since 3 �π2

5 and 4 �π2
6. But

{3, 4} �π5
{5, 6} does not hold, because 5 �π5

3 and

6 �π5
3.

A set S ⊆ V is called self -approving with respect to Π if

for any S′ ⊆ V −S with |S′| = |S|, S′ is not group-preferred

to S by some s ∈ S. S is called group-stable with respect to Π
if for any non-empty G � S and G′ ⊆ V −S with |G′| = |G|,
G′ is not group-preferred to G by some s ∈ S −G. Roughly

speaking, a set is group-stable if no subset agrees to leave and

join another set.

For instance, consider again the preference network in

Example 1. The set S = {2, 5} is not group-stable, since there

exist G = {2} and G′ = {4} such that 5 ∈ S−G group-prefers

G′ to G. Actually, S is not self -approving either, because

for any s ∈ S, s group-prefers {1, 4} to S.

Axiom 5 (Self-Approval(SA)): For any preference network

N = (V,Π), if S ∈ C(N), then S is self-approving with

respect to Π.

Axiom 6 (Group Stability(GS)): Given a preference network

N = (V,Π), if S ∈ C(N), then S is group-stable with respect

to Π.

2It is referred to as lexicographic preference in [Borgs et al., 2016].

There exist community functions satisfying all the axioms,

e.g., Ccliq and

Ccomp(N) = {S ⊆ V : S is self-approving and group-stable}.
C. Properties

Borgs et al. [2016] showed that this axiom system has nice

properties. The most impressive ones include the intersection

lemma and the lattice structure.

Lemma 1 (Lattice, [Borgs et al., 2016]): Under the opera-

tions ∩ and ∪, the community functions satisfying A, Mon ,

Emb, WC , GS , and SA form a lattice whose top is Ccomp

and bottom is Ccliq .

Due to the lattice structure, given some community func-

tions satisfying all the six axioms, one can construct more such

community functions using a mixture of ∩ and ∪ operations.

Lemma 2 (Intersection Lemma, [Borgs et al., 2016]): For

any community function C satisfying A, Mon , Emb and WC ,

C ∩ Ccomp satisfies all the six axioms.

By this lemma, designing a community function satisfying

all the axioms is reduced to find one satisfying the four axioms,

which is relatively easier to be satisfied. However, even we

have a community function satisfying the four axioms, it

remains hard to check whether a given set is a community,

since it is computationally hard to check the key axioms GS
and SA.

Theorem 3 ([Borgs et al., 2016]): It is coNP-complete to

decide whether a subset S ⊆ V is self-approval or group-

stable with respect to a preference profile.

Actually, we find that SA can degenerate so as to be

efficiently checkable, keeping the axiom system equivalent to

the original one. This is because GS almost implies SA, which

immediately follows from the next theorem.

Theorem 4: Given a preference network N = (V,Π) and

a community S ⊆ V with |S| ≥ 2, if S is group-stable with

respect to Π, then it is self-approving with respect to Π.

Proof. Suppose that |S| ≥ 2 and S is not self-approving with

respect to Π. Then there exists S′ ⊆ V \ S such that for all

individuals s ∈ S, s group-prefers S′ to S. Fix such a S′ and

arbitrarily choose s ∈ S. Assume that s′ ∈ S′ is the least

favorite individual in S′ by the preference of s. We have that

s group-prefers S′ − {s′} to S − {s}.
Since |S| ≥ 2, S − {s} is a non-empty set. It follows that

S is not group-stable with respect to Π. �
Therefore, we present a degenerate version of SA so that

it only deals with the case where |S| = 1. The degenerate

version is

SA′: For any preference network N = (V,Π), if {s} ∈
C(N), then πs(s) = 1.

By Theorem 4, any community function conforms with

{GS ,SA} if and only if it conforms with {GS ,SA′}. Consid-

ering that SA′ is efficiently checkable, we will use SA′ instead

of SA in the remainder of the paper.

III. STRENGTHENING AXIOM GS

After replacing SA with SA′, axiom GS becomes the

only difficult-to-check axiom in the axiom system. It is this

601

intractability that causes difficulty in constructing community

functions. In order to solve this problem, we modify GS in

a natural way, resulting in an efficient-to-check axiom called

SGS . Besides, we show that a community function satisfies

GS if it satisfies SGS .

A. Weak preferences
The hardness of checking group stability of a subset S is

partially rooted at enumerating equal-sized subsets of S and

V −S. A natural idea for tackling this problem is to compare

subsets of S directly with V −S, rather than with its subsets.

The first technical obstacle is to compare subsets of different

sizes, so we further extend the concept of preference.
Definition 1 (Weak Preferences): Suppose S, S′ ⊆ V , π ∈

L(V) and k = min(|S|, |S′|). The preference profile π weakly
prefers S to S′, denoted by S �π S′, if π group-prefers the

set of the top k elements of S to that of S′.
Consider Example 1 again. We can show that individual 4

weakly prefers {4, 1} to {2, 3, 5}. Specifically, since {2, 3, 5}
has three individuals and {4, 1} only has two, select the

top two individuals {2, 5} from {2, 3, 5} (according to the

preference of 4). The result follows because 4 group-prefers

{4, 1} to {2, 5}.
It is reasonable to borrow the notation “�” from group-

preference, since weak preference is equivalent to group-

preference if |S| = |S′|. When |S| > |S′|, S �π S′ means that

there is T � S with |T | = |S′| such that π group-prefers T
to S′. When |S| < |S′|, S �π S′ means that π group-prefers

S to any T � S′ with |S| = |T |.
The following properties of weak preferences will be fre-

quently used in the rest of this paper. They immediately follow

from the definition of weak preference, so the proofs are

omitted.
Lemma 5: Given π ∈ L(V), for any S ⊆ V and S′ ⊆ U ⊆

V with |S′| ≥ |S|, if π weakly prefers S′ to S, then π weakly

prefers U to S.
Lemma 6: Given π ∈ L(V), for any S, S′ ⊆ V , if π weakly

prefers S′ to S, then for all T ⊆ S, π weakly prefers S′ to T .
In Example 1, suppose S = {2, 4} and S′ = {1, 3}, then

individual 4 weakly prefers S′ to S. Suppose U = {1, 3, 5}
and T = {2}, then S′ ⊆ U and T ⊆ S, which means that

individual 4 weakly prefers U to S by Lemma 5 and weakly

prefers S′ to T by Lemma 6.

B. Alternative to GS

Now we are ready to define the alternative SGS (namely

strong group stability) to GS .
Consider a preference network N = (V,Π). A set S ⊆ V

is called strongly group − stable with respect to Π if for

any non-empty G � S, there exists s ∈ S − G which does

not weakly prefers V − S to G. Strong group-stability differs

from group-stability mainly in that weak preference rather than

group-preference is used.
Let’s arbitrarily fix a community function C.
Axiom 7 (SGS): For any preference network N = (V,Π)

and any subset S ⊆ V , if S ∈ C(N), then S is strongly

group-stable with respect to Π.

Roughly speaking, GS rules out a community S if there

exists a subset T � S such that all members of S − T agree

to replace T with a common, equal-sized group outside of S,

while SGS does so under a weaker condition that essentially

captures two facts. First, T can be replaced by a group of a

different size. Second, members of S − T might not have a

common replacement of T (in case that |V − S| > |T |), but

they agree on kicking T out. In this case, it is reasonable to

rule out such communities; see the following example.

In Example 1, individual 4 weakly prefers {5, 6} to

{1, 2, 3}, which means that {1, 2, 3, 4} is not strongly group-

stable and cannot be a community according to SGS . This

coincides with commonsense, since 4 tends to leave {1, 2, 3}
and join {5, 6}. However, {1, 2, 3, 4} is group-stable and is a

candidate of community in the original axiom system.

Theorem 7: For any community function C, if it satisfies

SGS , then it also satisfies GS .

Proof. If some community function C satisfies SGS but does

not satisfy GS , there must exist a preference network N =
(V,Π) and a community S ∈ C(N) which is strongly group-

stable but not group-stable with respect to Π. By the definition

of group stability, there are two non-empty subsets T � S and

T ′ ⊆ V −S such that |T ′| = |T | and u group-prefers T ′ to T
for all individuals u ∈ S−T . By Lemma 5, u weakly prefers

V − S to T , meaning that S is not strongly group-stable. A

contradiction is reached. �

IV. COMPLEXITY AND LATTICE

This section shows that the lattice structure, the intersection

lemma, and richness of the axiom system in Borgs et al. [2016]

still hold in our axiom system. More importantly, we show that

it takes polynomial time to check whether a given community

satisfies SGS .

A. Intersection lemma and lattice structure

Let A = {A,Mon,WC ,Emb,GS ,SA′} and SA =
{A,Mon,WC ,Emb,SGS ,SA′}. For a collection X ∈
{A,SA} of axioms, a community function is said to be X -

consistent if it conforms with all axioms in X .

We go on with showing that many good properties of A are

preserved by SA. An example is the intersection lemma, one

of the most important properties of A.

Before introducing the intersection lemma, we define the

intersection between community functions. Given two commu-

nity functions C1 and C2, we define C1 ∩C2 as the community

function that (C1 ∩ C2) (N) = C1(N)∩ C2(N). Similarly, one

can define (C1 ∪ C2) (N) = C1(N) ∪ C2(N).
Then we define three community functions that will be used:

CSGS , CSA′ , and Cscomp, which are the maximum community

functions satisfying SGS , SA′, and both of them, respectively.

Formally, given a preference network N = (V,Π),

CSGS(N) = {S ⊆ V : S is strongly group-stable},

CSA′(N) = {S ⊆ V : if S = {s} then πs(s) = 1}, and

Cscomp = CSGS ∩ CSA′ .

602

Lemma 8 (Intersection Lemma): If a community function

C satisfying any axiom X ∈ {A,Mon,WC ,Emb}, then C ∩
Cscomp satisfies X , SGS and SA′.
Proof. Let C̃ = C∩Cscomp. If X ∈ {A,WC ,Emb}, C̃ satisfies

X because Cscomp is obviously {A,WC ,Emb}-consistent.

Hence, we just consider the case where X = Mon .

Assume that preference networks N = (V,Π), N ′ =
(V,Π′), and community S ∈ C̃(N) satisfy the condition of

Mon , namely, for all s, u ∈ S and v ∈ V , if u �πs
v then

u �π′s v. The rest of the proof consists of two steps.

Step 1: Since C satisfies Mon and S ∈ C(N), we immedi-

ately have S ∈ C(N ′).
Step 2: We prove that S ∈ Cscomp(N

′) as following.

If S is a singleton {s}, then S ∈ Cscomp(N) implies that

πs(s) = 1, namely s �πs
u for any u �= s. Hence, s �π′s u

for any u �= s and we have S ∈ Cscomp(N
′).

When |S| > 1, S ∈ Cscomp(N
′) if and only if S ∈

CSGS(N
′), so we only have to prove that S ∈ CSGS(N

′).
For contradiction, suppose S /∈ CSGS(N

′). Then there exists

a non-empty set T � S such that V − S �π′s T for all

s ∈ S − T . Thus, for all s ∈ S − T and 1 ≤ i ≤ k where

k = min{|T |, |V − S|}, the top-ith individual ui ∈ V − S
and the top-ith individual vi ∈ T satisfy ui �π′s vi . Recalling

the assumption about N,N ′, S, we have ui �πs vi for all

1 ≤ i ≤ k and s ∈ S − T , meaning that V − S �πs
T for all

s ∈ S−T . This indicates that S /∈ CSGS(N). A contradiction

is reached. Therefore, S ∈ Cscomp(N
′).

Altogether, we have shown that if N,N ′ and S ∈ C̃(N)
satisfy the condition of Mon , then S ∈ C̃(N ′). This means

that C̃ satisfies Mon , and the lemma follows immediately. �
In some sense, the critical role of the intersection lemma

lies in that it provides a normal form of consistent community

functions: the intersection of a simple community function

with Cscomp. Hence finding a SA-consistent community func-

tion is reduced to finding a {A,Mon,WC ,Emb}-consistent

one. This reduction will greatly help us construct desirable

community functions, as shown in Section V-B. The intersec-

tion lemma also leads to the lattice structure of SA-consistent

community functions, which is also true for A and is one of

the most striking results in [Borgs et al., 2016].

Theorem 9: Let C be the class of all SA-consistent commu-

nity functions. The algebraic structure T = {C,∪,∩} forms

a bounded lattice whose top and bottom are Cscomp and Ccliq ,

respectively.

The proof of Theorem 9 is straightforward by the intersec-

tion lemma (Lemma 8) and the proof of Theorem 3.1 in Borgs

et al. [2016], so the detail is omitted.

The significance of the lattice structure lies in that given

some SA-consistent community functions, one can produce

more such community functions by a mixture of ∩ and ∪
operations.

According to the lattice structure, the richness of SA-

consistent community functions is to some extent determined

by the difference between Cscomp and Ccliq . Actually, the

difference is significant, with evidence from the number of

communities. On the one hand, for any preference network

N , the size of Ccliq(N) is linear, by Lemma 19. On the other

hand, an example inspired by [Borgs et al., 2016] indicates that

the size Cscomp(N) can be exponential for some preference

network N .

Lemma 10: For any positive integer n, there exists a

preference network N = (V,Π) with |V | = n such that

|Cscomp(N)| ≥ 2�n/2�.
Proof. Let m =
n/2�. Let H = {h1, h2, ..., hm} be a set of

m heroes, S = {s1, s2, ..., sm} be a set of m sidekicks, and

V = H ∪ S. For all 1 ≤ i ≤ m, define preferences πhi =
πsi = [hi, h1, h2, ..., hm, si, s1, ...si−1, si+1, ..., sm]. Let Π
be the preference profile consisting of all πhi

’s and πsi ’s.

Consider the preference network N = (V,Π). Arbitrarily

choose a subset U ⊆ S. We will prove that H∪U ∈ CSGS(N).
For contradiction, suppose H ∪ U /∈ CSGS(N). Then there

exists a non-empty set T � H∪U such that V −(H∪U) �πw

T for all w ∈ (H∪U)−T . Since any individual in H is always

preferred to any individual in S, it must hold that T ⊂ U ⊂ S,

implying that H ⊆ (H∪U)−T . Therefore, V−(H∪U) �πh
T

for any h ∈ H . Now choose 1 ≤ i ≤ m such that si ∈ U .

We have V − (H ∪ U) �πhi
T , contradictory to the fact that

si �πhi
v for any v ∈ V − (H ∪ U) ⊆ S. Hence H ∪ U ∈

CSGS(N).
Since |H ∪ U | > 1, by the definition of Cscomp and CSA′ ,

H∪U ∈ CSGS(N) implies that H∪U ∈ Cscomp(N). Because

there are 2m different U ’s, |Cscomp(N)| ≥ 2m. �
Since the size of Ccliq(N) is at most linear (proved in

Lemma 19), Lemma 10 suggests that the collection of SA-

consistent community functions may be rich and the lattice

may be far from collapsing. The above lemma also implies

that the though SGS is stronger than GS , the restriction is

not too much.

B. SGS is efficient to check

Now we present the most important property of SGS , that

it can be efficiently checked. This is shown constructively,

through an algorithm inspired by the following observation.

Consider a preference network N = (V,Π) and a subset

S � V . Suppose that S /∈ CSGS(N). There must exist a non-

empty set T � S that all individuals in S − T weakly prefer

V −S to T . If we extend any set U ⊆ T by adding any u ∈ S
that does not weakly prefer V − S to U , Lemma 6 indicates

that no individual in S−T can be added since all individuals

in S−T weakly prefer V −S to U . So, if we happen to start

with U = {u} for some u ∈ T and extend U step-by-step, the

process must stop before U = S.

Based on this observation, we design an algorithm which for

each individual u ∈ S, initializes U to be {u}, and iteratively

extends U by adding an individual in S that does not weakly

prefer V − S to U . If and only if we get some U � S that

cannot be extended any more, decide S /∈ CSGS(N). The

details are specified in Algorithm 1.

We illustrate how Algorithm 1 works using the preference

network in Example 1. Let S be {1, 2, 3, 4}. At the beginning,

u is 1 at Line 2 and U = {1}. Individual 2 is added to U at

Line 7 since individual 2 does not weakly prefer V −S = {5}

603

Algorithm 1 Decide membership of CSGS(N)

Input A preference network (V,Π), a subset S � V
Output A boolean value indicating whether S ∈ CSGS(N)

1: procedure DECIDE(V,Π, S)

2: for u ∈ S do
3: U ← {u}
4: while U �= S do
5: if ∃s ∈ S − U such that V − S �πs

U then
6: Arbitrarily choose such an s
7: U ← U ∪ {s}
8: else
9: return False

10: return True

to U . Then U = {1, 2}, and individual 3 is added to U since

individual 3 does not weakly prefer V − S = {5} to U . Now

U = {1, 2, 3} and S−U = {4}. Because individual 4 weakly

prefers {5} to U , the algorithm returns False at Line 9.

Now we prove the correctness of Algorithm 1 and show

that its running time is O(|S|4).
Lemma 11: Given a preference network N = (V,Π) and

S ⊆ V , it is in time O
(
|S|4

)
to decide whether S ∈ CSGS(N).

Proof. Correctness:
Suppose S /∈ CSGS(N). There must exist a non-empty set

T � S that V − S �πs
T for all s ∈ S − T . Note that the

For loop enumerates all u ∈ S. If the algorithm terminates

before any u ∈ T is chosen at line 3, it surely outputs False.

Otherwise, we eventually have u ∈ T at line 3. By Lemma

6, U ⊆ T always holds. Hence, the While loop will reach a

state where U �= S and the condition at Line 5 is false. Then,

the algorithm also returns False.

On the other hand, if the algorithm returns False, all

individuals in S−U weakly prefer V −S to U , which means

that S /∈ CSGS(N).

Complexity:
There are two nested loops in Algorithm 1 and each loop

runs at most |S| times. The complexity of checking the

condition at line 5 is O(|S|2). So, the complexity of Algorithm

1 is O(|S|4). �
We are ready to show that Cscomp is efficiently checkable,

in contrast to the coNP-completeness of checking the mem-

bership of Ccomp.

Theorem 12: Given a preference network N = (V,Π)
and S ⊆ V , it takes O(|S|4) time to decide whether S ∈
Cscomp(N) or not.

Proof. If |S| ≥ 2, it is equivalent to decide whether S ∈
CSGS(N), which can be done in O(|S|4) by Algorithm 1.

By Lemma 11, it takes O(|S|4) time to decide whether

S ∈ CSGS , which means that it is in O(|S|4) to decide whether

S ∈ Cscomp.

Otherwise, S is a singleton {s}. In this case, S ∈
Cscomp(N) if and only if πs(s) = 1, which can be decided in

constant time. �

V. CONSTRUCTING COMMUNITY FUNCTIONS

Borgs et al. [2016] proposed an open problem: Is there an

ideal community function in their axiom system A? In this

section, we first solve the problem in the our axiom system

SA by constructing such a community function. Since SA is

stronger than A, this community function is also A-consistent,

answering the original open problem.

A. Consistent, constructive community functions

A community function C is said to be constructive if for

any preference network N = (V,Π), the membership of

C(N) can be checked in polynomial-time in |V |. Constructive

community functions are desirable, but it is not easy to figure

out a natural, nontrivial, A-consistent one (nontrivial means

different from Ccliq). Borgs et al. [2016] mainly considered

two families of candidates, namely Ccliq(g) and Charmonious(λ)

with non-negative function g and real number λ ∈ [0, 1]. They

showed that though Ccliq(g)∩Ccomp and Charmonious(λ)∩Ccomp

are A-consistent, they are not constructive in general. The

definitions of Ccliq(g) and Charmonious(λ) are presented here

in order to make this paper self-contained.

Definition 2 (Ccliq(g)): Given a non-negative function g :
{1, 2, 3, ...} → {0, 1, 2, 3, ...}, for any preference network

N = (V,Π) and S ⊆ V , S ∈ Ccliq(g)(N) if ∀u, s ∈
S, πs(u) ∈ [1 : |S|+ g(|S|)].

Definition 3 (Charmonious(λ)): Given λ ∈ [0, 1], for any

preference network N = (V,Π) and S ⊆ V , S ∈
Charmonious(λ)(N) if ∀u ∈ S, v ∈ V −S, at least a λ-fraction

of {πs : s ∈ S} prefer u to v.

In the context of SA, we have the following theorem which

helps finding consistent constructive community function.

Theorem 13: If a constructive community function C is {A,

Mon , Emb, WC}-consistent, then C∩Cscomp is SA-consistent

and constructive.

Proof. The theorem follows immediately from Lemma 8 and

Theorem 12. �
This theorem greatly simplifies the task of finding SA-

consistent constructive community functions, since it is rela-

tively easier to find a constructive one that is {A, Mon , Emb,

WC}-consistent.

For example, for any non-negative function g and real num-

ber λ ∈ [0, 1], both Ccliq(g) and Charmonious(λ) conform with

A, Mon , Emb, and WC . Hence, Theorem 13 immediately

implies the following lemma.

Lemma 14: The community functions Ccliq(g) ∩Cscomp and

Charmonious(λ) ∩ Cscomp are SA-consistent and constructive,

for any non-negative function g and any real number λ ∈ [0, 1].
Furthermore, by Theorem 7, the two families of community

functions in Lemma 14 are also A-consistent and constructive.

In the next subsection we go further in this direction and find

a community function having more nice properties, solving the

open problem posed by Borgs et al. [2016].

B. Cgrow: an ideal community function

An ideal community function should not only be construc-

tive, but also allows to efficiently enumerate the communities.

604

Borgs et al. [2014] (the full version of [Borgs et al., 2016])

defined two more properties for community functions C:

• Samplable: given a preference network N = (V,Π), one

can randomly sample any community from C(N) in time

P (|V |), where P (·) is a polynomial function;

• Enumerable: given a preference network N = (V,Π),
one can enumerate C(N) in time O(nk|C(N)|) for some

constant k.

Borgs et al. [2016] proposed the following open problem.

Problem 1 (ACCSE): Find a natural nontrivial community

function that is A-consistent, constructive, samplable, and

enumerable.

We solve the ACCSE problem in this subsection. Actually,

the following stronger problem is solved.

Problem 2 (SACCSE): Find a natural community function

that allows nontrivially overlapping communities and is SA-

consistent, constructive, samplable, and enumerable.

The basic idea of our solution is to reduce the problem

according to Theorem 13. Namely, if we find a community

function C satisfying A, Mon , WC , and Emb, then C∩Cscomp

is SA-consistent. Furthermore, if C is enumerable and |C(N)|
is polynomial in |V | for all preference networks N = (V,Π),
C ∩ Cscomp will be enumerable and samplable.

But how to find such a community function C? Our approach

is inspired by the method in [Palla et al., 2005]. Roughly s-

peaking, starting with best communities, i.e.,, cliques in a pref-

erence network, we produce new good communities as many

as possible by extending existing communities. Intuitively, this

growing process conforms with the formation of communities

in real life (for example, consider how friendship forms). The

key of the approach is properly defining good communities.

For this end, we consider the following community function

which is adapted from Charmonious(λ).

Definition 4 (Charmon): Given a preference network N =
(V,Π) and a subset S ⊆ V , S ∈ Charmon(N) if for all u ∈ S
and v ∈ V − S, more than half of the members of S − {u}
prefer u to v.

The following lemma shows that Charmon is efficiently

checkable.

Lemma 15: Given a preference network N = (V,Π) and a

set S ⊆ V , it takes O(|V |3) time to determine whether S is

in Charmon(N).
Proof. For each individual u in S and each individual v in

V − S, it takes O(|S|) time to determine whether a majority

of S − {u} prefer u to v, which means that it takes O(|V |3)
time to determine whether S ∈ Charmon(N) or not. �

Based on the idea preceding Definition 4, we define Cgrow
in terms of Algorithm 2, i.e., for any preference network N ,

Cgrow(N) := CLIQUEGROWING(N).
Algorithm 2 is self-explanatory. We now show that the size

of Cgrow(N) and the time complexity of Algorithm 2 are both

polynomial in |V |.
Lemma 16: For any preference network N = (V,Π), the

size of Cgrow(N) is O(|V |2), and Algorithm 2 terminates

within time O(|V |6).

Algorithm 2 The definition of Cgrow
Input A preference network N = (V,Π)
Output A collection R of communities

1: procedure CLIQUEGROWING(N)

2: C ← Ccliq(N) � C keeps the communities to be

extended

3: R← ∅ � R keeps the final communities

4: while C is not empty do
5: Arbitrarily choose an element S from C
6: C ← C \ {S}, R← R ∪ {S}
7: for u in V − S do
8: S′ ← S ∪ {u}
9: if S′ ∈ Charmon(N) then

10: C ← C ∪ {S′}
11: return R

Proof. According to the definition of Charmon, given S ⊆ V ,

if S ∪ {u} ∈ Charmon(N) for some u ∈ V − S, then for

any v ∈ V − S with v �= u, a majority of individuals in S
prefer u to v. As a result, for any v ∈ V − S with v �= u,

S∪{u} /∈ Charmon(N). This means that for any S ∈ C, it can

be extended by at most one u ∈ V −S in the for loop. Hence,

starting with any S ∈ Ccliq , at most O(|V |) communities can

be obtained. Since there are only O(|V |) cliques by Lemma

19, the size of Cgrow(N) is O(|V |2).
Then we discuss the time complexity of Algorithm 2. The

If statement at line 9 is executed for |V − S| times for each

community S. This fact, together with Lemma 15, implies that

the time complexity of Algorithm 2 is O(|V |6). �
Lemma 16 immediately indicates that Cgrow is enumerable,

samplable, and constructive. However, Cgrow is not SA-

consistent. For example, in the preference network of Example

1, the set {1, 2, 3, 4} is a community defined by Cgrow, but it

is not strongly group-stable since individual 4 weakly prefers

{5, 6} to {1, 2, 3}.
Fortunately, Cgrow ∩ Cscomp is a community function satis-

fying all the requirements in Problem 2.

Theorem 17: Cgrow∩Cscomp is a natural community function

that allows nontrivially overlapping communities and solves

both the SACCSE problem and the ACCSE problem.

Proof. By Lemma 16, we know that Cgrow is enumerable,

samplable, and constructive, and that the size of Cgrow(N) is

polynomial for any preference network N . Since Cscomp is

constructive, Cgrow ∩ Cscomp is enumerable, samplable, and

constructive.

It is straightforward to show that Cgrow satisfies A, Mon ,

WC , and Emb. According to Lemma 8, Cgrow ∩ Cscomp is

SA-consistent.

By Lemmas 19 and 20, Cgrow ∩ Cscomp �= Ccliq , namely,

Cgrow ∩ Cscomp is nontrivial.

As a result, Cgrow ∩ Cscomp solves the SACCSE problem.

By Theorem 7, it also solves the ACCSE problem. �
Now we prove Lemmas 19 and 20 just used. First, recall a

property of Ccliq .

605

Lemma 18 ([Borgs et al., 2016]): Given a preference net-

work N = (V,Π) and S1, S2 ∈ Ccliq(N), then either S1 ⊆ S2,

S2 ⊆ S1, or S1 ∩ S2 = ∅.
Lemma 19: For any preference network N = (V,Π), the

size of Ccliq(N) is O(|V |).
Proof. For any preference network N = (V,Π), construct a

graph T (N) corresponding to Ccliq(N) as follows. Each vertex

of T (N) stands for a clique in Ccliq(N), and an edge between

two vertices exists if and only if the corresponding two cliques

satisfy the condition that one is a maximal clique inside the

other. By Lemma 18, T (N) is a tree. Now construct another

tree T ′(N) by extending T (N) in this way: for any vertex

u of T (N), if the corresponding clique S is such that there

is only one maximal clique S′ inside S, add a virtual vertex

v corresponding to S − S′ and add an edge between u, v.

Obviously, T ′(N) remains a tree and the number of vertices

of T ′(N) is no smaller than that of T (N).
Now we view T ′(N) as a rooted tree whose root is the

vertex corresponding to V .

The rooted tree T ′(N) has two properties. First, every inner

vertex has degree at least 2. Second, the leaves are disjoint

subsets of V , implying that there are at most |V | leaves. It is

easy to see that such a tree has at most |V |− 1 inner vertices.

As a result, the number of vertices of T ′(N) is at most 2|V |−
1, meaning that the size of Ccliq(N) is at most 2|V | − 1. �

Lemma 20: For any finite set V , there exists a prefer-

ence profile Π such that the size of Cgrow ∩ Cscomp(N) is

Ω(|V | log |V |), where N = (V,Π).
This lemma will be proved constructively. Before presenting

the proof, we show the basic idea of the construction, and

briefly explain how the construction algorithm works.

Intuitively, to maximize the size of Cgrow ∩ Cscomp(N),
we should maximize the size of Ccliq(N). Besides, in or-

der to absorb as many individuals as possible, for any two

members inside a community, they should have the same

preference order on the individuals outside of the community.

For example, let N = (V,Π) be a preference network where

V = {1, 2, 3, 4, 5} and π1 = [1, 2, 3, 4, 5], π2 = [2, 1, 3, 4, 5],
π3 = [3, 4, 1, 2, 5], π4 = [4, 3, 1, 2, 5] and π5 = [1, 2, 3, 4, 5],
then {1, 2, 3} and {3, 4, 1} are in Cgrow ∩ Cscomp(N) but not

in Ccliq(N).
Following the above idea, we design Algorithm 3 which

outputs the desired preference profile. Let’s first introduce the

notations.

Throughout the algorithm, σ stands for an arbitrarily fixed

total order on V . For any S ⊆ V , σ|S is defined to be the

total order restricted to S. For example, if S = {1, 2, 3, 5} ⊂
V = {1, 2, ...5} and σ = [1, 4, 3, 2, 5], then σ|S is [1, 3, 2, 5].
For a preference network N = (V,Π) and v ∈ V , we use Π|v
to stand for the preference of v in N . For any disjoint finite

sets W ′,W ′′ and preferences π′ ∈ L(W ′), π′′ ∈ L(W ′′), the

concatenation of π′ with π′′, denoted by π′ • π′′, is defined

to be the preference π ∈ L(W ′ ∪W ′′) as follows: ∀w′ ∈W ′,
π(w′) = π′(w′) and ∀w′′ ∈ W ′′, π(w′′) = |W ′| + π′′(w′′).
Intuitively, π locally preserves the ordering of π′ and π′′ on

W ′ and W ′′, but globally prefers W ′ to W ′′.

Algorithm 3 Find a preference profile with big Cgrow∩Cscomp

Input A set V
Output A preference profile Π on V

1: procedure GetProfile(V)

2: if V is a singleton {v} then πv ← [v]
3: else
4: Partition V into V1 & V2 s.t. 0 ≤ |V1| − |V2| ≤ 1
5: Π1 ← GETPROFILE(V1)
6: Π2 ← GETPROFILE(V2)
7: for v ∈ V1 do
8: πv ← Π1|v • (σ|V2)

9: for v ∈ V2 do
10: πv ← Π2|v • (σ|V1)

11: return Π = {πv}v∈V

The procedure GetProfile(V) is in a divide-and-conquer

style. It divides V into two subsets V1 and V2 which are

balanced in size. Then it recursively determine the preference

profiles Π1 and Π2 on V1 and V2, respectively. Finally, the

preferences in Π1 and Π2 are extended, resulting in the

preference profile Π on V . The extension of each preference

in Πi is by concatenating it with σ|V3−i , for i ∈ {1, 2}.
Now we prove that the preference profile Π meets the

requirement of Lemma 20.

Proof. Fix V throughout this proof. Let N = (V,Π) with Π
being the preference profile found by the algorithm. For any set

U ⊆ V that appears in the recursion, if |U | > 1, the algorithm

divides it into U1 and U2. Let K(U) = (Cgrow∩Cscomp)(N)∩
2U , the set of communities of N inside U . Define F (U) =
|K(U)|, and g(U) = |K(U)\(2U1∪2U2)|. Obviously, F (U) =
F (U1) + F (U2) + g(U) always holds. The show that g(U) is

linear in the size of U , we make two claims.

Claim 1: |(Cgrow(N) ∩ 2U) \ (2U1 ∪ 2U2)| = Θ(|U |).
This claim can be proved in two steps.

First, by Algorithm 3, each clique C ∈ Ccliq(N)∩ 2U with

C �= U must satisfy either C ⊆ U1 or C ⊆ U2. Recalling the

for loop of Algorithm 2, we have that if S ∈ Cgrow(N) is

obtained by extending S′ � U1 with some u ∈ V − S′, then

u ∈ U1. So, any community S ∈ (Cgrow(N)∩2U)\(2U1∪2U2)
must be extended from (hence include) either U1 or U2.

Second, recall how Algorithm 2 extends U1 with individual

in U2. Suppose σ|U2 = [u1, ...u|U2|]. Since |U1| ≥ |U2| and

πv|U2
= πv′ |U2

= σ|U2
for any v, v′ ∈ U1, one knows that

for any community S ∈ 2U with U1 ⊂ S, it is a community

in Cgrow(N) if and only if S = U1 ∪ {u1, ...uk} for some

k ≤ |U2|. Likewise, any community S ∈ 2U with U2 ⊂ S is

a community in Cgrow(N) if and only if S = U2 ∪{v1, ...vk}
for some k ≤ |U1|, where the vi ∈ U1 are such that σ|U1

=
[v1, ...v|U1|].

As a result, Claim 1 holds.

Claim 2: If U �= V , there are at most one community in

(Cgrow(N) ∩ 2U) \ (2U1 ∪ 2U2) \ Cscomp(N).
This claim can be proved as follows. Arbitrarily choose S ∈

(Cgrow(N)∩2U)\(2U1∪2U2). We begin with the case U1 ⊆ S.

606

Suppose that S /∈ Cscomp(N). Then there is T � S such that

V − S �πu T for any u ∈ S − T . Since U �= V , |V − U | ≥
|U | − 1 ≥ |T |. We again go in two steps.

First, arbitrarily choose v ∈ T ∩U1 if T ∩U1 �= ∅, otherwise

choose v ∈ T ∩ U2. Suppose that U1 � T ; arbitrarily choose

u ∈ U1 \ T . By Algorithm 3 and the characterization of

(Cgrow(N) ∩ 2U) \ (2U1 ∪ 2U2) in the proof of Claim 1,

we have v �πu
w for any w ∈ V − S. Considering that

|V − S| ≥ |V − U | ≥ |U | − 1 ≥ |T | and V − S �πu T ,

it holds that w �πu v for some w ∈ V − S, which is a

contradiction. Hence, U1 ⊆ T .

Second, arbitrarily choose u ∈ S − T ⊆ U . By Algorithm

3, for any v ∈ U,w ∈ V − U , it holds that v �πu
w. Recall

that V −S �πu
T and |V −S| ≥ |T |, so for any v ∈ T , there

is a wv ∈ V −S such that wv �πu
v. Because V −S = (U2−

S)∪(V −U), T = (T−U1)∪U1, and |U2−S| < |U2| ≤ |U1|,
we have wv ∈ V − U for some v ∈ T , contradictory to the

fact that v �πu
w for any v ∈ T ⊆ U,w ∈ V − U .

Therefore, for any S ∈ (Cgrow(N) ∩ 2U) \ (2U1 ∪ 2U2), if

U1 ⊆ S, we get S ∈ Cscomp(N).
Likewise, if U2 ⊆ S, we can show that S ∈ Cscomp(N)

except the unique case S = {u} ∪ U2 with u ∈ U1.

As a result, by Claim 1, Claim 2 holds.

Claims 1 and 2 implies that g(V) = O(|V |) and for any

set U � V that appears in the recursion of Algorithm 3,

g(U) = Θ(|U |). A simple calculation indicates that F (V) =
Θ(|V | log |V |). �

Remark 1: Actually, Borgs et al. [2016] did not define

enumerable or samplable community functions, but we find the

definitions in [Borgs et al., 2014], the arXiv version of [Borgs

et al., 2016]. Borgs et al. [2016] also defined the stability and

the open problem required that the community function has

stable communities which are samplable and enumerable. We

find that even Ccliq is not stable under their definition, so we

just ignore it.

Remark 2: Lemma 8 (the intersection lemma) plays an

important role in solving the problem SACCSE because

Cgrow itself does not satisfy SGS . To see this, consider

Example 1. Since {1, 2, 3} is in Ccliq(N) and {1, 2, 3, 4} is

in Charmon(N), {1, 2, 3, 4} is in Cgrow(N), while it is not in

CSGS(V,Π) because π4 weekly prefers {5} to {1, 2, 3}.
According to Theorem 3, if one uses axioms GS and

SA, then it is coNP-complete to determine whether a given

community is in Cgrow ∩ CGS ∩ CSA(N). This example also

shows the importance of getting rid of the computational

difficulties of checking the key axioms of GS and SA.

VI. CONCLUSION

In this paper, we focus on axiomization of network com-

munity detection. As far as we know, only one paper [Borgs

et al., 2016] in this line studied overlapping communities, and

it was on a general structure – preference networks. Among

the six axioms in [Borgs et al., 2016], two of them (GS
and SA) play a critical role, but the hardness in checking

them compromises the practicality of the axiom system. We

showed that in the context of the axiom system, SA can be

equivalently replaced by a degenerate version SA′. We also

naturally modified axiom GS to a stronger version called

SGS . We showed that both SGS and SA′ can be checked

in polynomial time, and most of the properties of the original

system are preserved. Furthermore, by the intersection lemma,

we found two constructive and SA-consistent community

functions. We also found an SA-consistent, constructive,

samplable and enumerable community function that allows

nontrivially overlapping communities, thus answering to an

open problem in [Borgs et al., 2016].

Although the current work is purely theoretical, it would

be beneficial to evaluate and improve existing community

detection algorithms in the framework of our axioms. This

is a direction of our future work.

Another direction is to further improve the axiom system.

Before Lemma 10, we discussed the richness, namely, many

community functions might be consistent with the axioms.

This seems advantageous since good community functions are

not likely to be precluded. However, selectivity should also be

considered, otherwise users would be burdened with selecting

desirable community functions from too many candidates. Can

we further improve the system of axiom by making a better

trade-off between richness and selectivity?

ACKNOWLEDGMENT

The authors would like to thank Shanghua Teng at USC

for introducing the topic and having helpful online meetings

with us. We also thank Wei Chen at MSR Asia and Pinyan

Lu at Shanghai University of Finance and Economics for their

valuable advice at the beginning of our work.

REFERENCES

Margareta Ackerman, Shai Ben-David, and David Loker. To-

wards property-based classification of clustering paradigms:

Supplementary material. NIPS2010 (1307), 2010.

Yong-Yeol Ahn, JP Bagrow, and Sune Lehmann. Communities

and hierarchical organization of links in complex networks.

arXiv preprint arXiv:0903.3178, 2009.

Maria-Florina Balcan, Christian Borgs, Mark Braverman, Jen-

nifer Chayes, and Shang-Hua Teng. Finding endogenously

formed communities. In Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 767–783. SIAM, 2013.

Jeffrey Baumes, Mark Goldberg, and Malik Magdon-Ismail.

Efficient identification of overlapping communities. In In-
telligence and Security Informatics, pages 27–36. Springer,

2005.

Shai Ben-David and Margareta Ackerman. Measures of

clustering quality: A working set of axioms for clustering.

In Advances in Neural Information Processing Systems 21,
Proceedings of the Twenty-Second Annual Conference on
Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 8-11, 2008, pages 121–128,

2008.

Christian Borgs, Jennifer T. Chayes, Adrian Marple, and

Shang-Hua Teng. Fixed-points of social choice: An ax-

607

iomatic approach to network communities. CoRR, ab-

s/1410.5152, 2014.

Christian Borgs, Jennifer Chayes, Adrian Marple, and Shang-

Hua Teng. An axiomatic approach to community detection.

In Proceedings of the 7th conference on Innovations in
Theoretical Computer Science. ACM, 2016.

Steven J Brams, Michael A Jones, and D Marc Kilgour.

Dynamic models of coalition formation: fallback vs. build-

up. In Proceedings of the 9th conference on Theoretical
aspects of rationality and knowledge, pages 187–200. ACM,

2003.

Matthew Caesar and Jennifer Rexford. Bgp routing policies

in isp networks. Network, IEEE, 19(6):5–11, 2005.

M. Ester, H P Kriegel, J. Sander, and X. Xu. A density-based

algorithm for discoverying clusters in large spatial databases

with noise. pages 226–231, 1996.

David Gale and Lloyd S Shapley. College admissions and

the stability of marriage. American mathematical monthly,

pages 9–15, 1962.

Sreenivas Gollapudi and Aneesh Sharma. An axiomatic

approach for result diversification. In Proceedings of the
18th international conference on World wide web, pages

381–390. ACM, 2009.

Dan Gusfield and Robert W Irving. The stable marriage
problem: structure and algorithms. MIT press, 1989.

A. J. Hoffman. Lower bounds for the partitioning of graphs.

Ibm Journal of Research & Development, 17(5):420–425,

1973.

Jon Kleinberg. An impossibility theorem for clustering.

Advances in neural information processing systems, pages

463–470, 2003.

Marina Meil. Comparing clusterings an axiomatic view. In

International Conference, Bonn, Germany, August, pages

577–584, 2005.

Mark EJ Newman. Modularity and community structure in

networks. Proceedings of the national academy of sciences,

103(23):8577–8582, 2006.

Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek.

Uncovering the overlapping community structure of com-

plex networks in nature and society. Nature, 435(7043):814–

818, 2005.

Y. Rekhter and T. Li. A border gateway protocol 4 (bgp-4).

RFC, 19(6):193–199, 1994.

Alvin E Roth. The evolution of the labor market for medical

interns and residents: a case study in game theory. The
Journal of Political Economy, pages 991–1016, 1984.

Alvin E Roth. Stable coalition formation: aspects of a dynamic

theory. Business History, 1984.

R. Sibson. Slink: an optimally efficient algorithm for the

single-link cluster method. Computer Journal, 16(1), 1973.

Reza Bosagh Zadeh and Shai Ben-David. A uniqueness

theorem for clustering. In Proceedings of the twenty-fifth
conference on uncertainty in artificial intelligence, pages

639–646. AUAI Press, 2009.

Shihua Zhang, Rui-Sheng Wang, and Xiang-Sun Zhang. Iden-

tification of overlapping community structure in complex

networks using fuzzy c-means clustering. Physica A:
Statistical Mechanics and its Applications, 374(1):483–490,

2007.

608

