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ABSTRACT
MLS is a distributed location service to track the position of
mobile nodes and to route messages between any two nodes.
The lookup of nodes is achieved by searching in a hierarchy
of pointers that each node maintains. We show that MLS has
constant stretch for lookup requests. In contrast to previous
work, we consider a concurrent setup where nodes are truly
mobile and move even while messages are being routed to-
wards them. We prove correctness and efficiency of MLS and
determine the maximum speed at which the nodes might
move, which is up to 1/15 of the routing speed. To the best
of our knowledge, this is the first work that bounds the node
speed, a necessity to prove the success of a lookup algorithm.
We verified our theoretical results through extensive simu-
lation and show that the average lookup stretch is around
6.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks] Network Protocols; F.2.2 [Analy-
sis of Algorithms and Problem Complexity] Nonnumerical
Algorithms and Problems

General Terms: Algorithms, Performance

Keywords: Location Service, MANET, Mobility, Ad Hoc
Geo–Routing

1. INTRODUCTION
Ad hoc networking is used to communicate between hosts

in the absence of dedicated routing infrastructure, when
messages are forwarded by intermediate hosts if the sender
and receiver are out of communication range. The quality
of such a routing algorithm can be measured by its stretch;
that is, the length of the chosen route divided by the length
of the optimal route should be as small as possible. In this
paper we study ad hoc routing on a network of truly mo-
bile nodes and introduce a routing algorithm with constant
stretch.

For systems where each node is equipped with a loca-
tion sensing device, geographic routing has received much
attention recently and is considered to be the most effi-
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cient and scalable routing paradigm. In the simplest form of
georouting, every node greedily forwards messages towards
the neighbor closest to the destination node. However, these
geographic routing algorithms assume that the sender knows
the position of the destination node. This introduces a high
storage overhead if each node keeps track of the position
of all other nodes. Even more challenging is the situation
with mobile nodes: In a mobile ad hoc network (MANET),
nodes might be moving continuously and their location can
change even while messages are being routed towards them.
Clearly, a node cannot continuously broadcast its position to
all other nodes while moving. This would cause an excessive
message overhead.

In the home-based approach, each node is assigned a glob-
ally known home where it stores its current position. A
sender first queries the home of the destination node to ob-
tain the current position and then sends the message. This
can be implemented using distributed or geographic hashing
[15], and is a building block of many previous ad hoc routing
algorithms, including [7, 14, 17, 18]. Despite of its broad us-
age, the home-based approach is not desirable, as it does not
guarantee low stretch: The destination might be arbitrarily
close to the sender, but the sender first needs to learn this by
querying the destination’s home, which might be far away.
Similarly, a large overhead is introduced by moving hosts,
which need to periodically update their homes, which might
be far away. Even more important is the observation that
the destination node might have moved to a different loca-
tion by the time the message arrives. Thus, simultaneous
routing and node movement require special consideration.

1.1 Our Contribution
In this work, we consider an arbitrarily formed deploy-

ment area populated by mobile nodes. This area might con-
tain holes where no nodes are located. In the sequel, we
allegorize this situation as a world where land masses rep-
resent the deployment areas of the nodes, and lakes denote
holes. The mobile nodes might be moving continuously on
the land areas, even while messages are being routed towards
them.

We present a routing framework called MLS in which each
node can send messages to any other node without knowing
the position of the destination node. The routing (lookup)
algorithm works hand in hand with a publish algorithm,
through which moving nodes publish their current location
on a hierarchical data structure. In this paper we formally
prove that the stretch of the lookup algorithm is O(1) and
show in extensive simulation that the constant hidden in the
O()-notation is approximately 6. The amortized message



cost induced by the publish algorithm of a moving node is
O(d log d), where d is the distance the node moved. Again,
our simulations show that the hidden constants of the O()-
notation for the publish overhead are small, the average be-
ing 4.3 · d log d. Finally, MLS only requires a small amount
of storage on each node. For evenly distributed nodes, the
storage overhead is logarithmic in the number of nodes (with
high probability).

This paper formally proves the correctness of MLS for con-
current lookup requests and node movement. That is, while
a message is routed, the destination node might move con-
siderably, but the lookup stretch remains O(1). To prove
this property, we derive the maximum node speed vnode

max at
which nodes might move. We express this speed as a fraction
of vmsg

min , the speed at which messages are routed. Clearly,

if vnode
max ≥ vmsg

min , a message may not reach its destination
at all. As a main result of this paper, we show that MLS is
correct if vnode

max ≤ vmsg
min/15 in the absence of lakes1. I.e.

we show that the lookup stretch remains O(1) even though
the destination node might move at a speed up to 1/15 of
the message speed. To the best of our knowledge, this is
the first work that determines the maximum node speed to
allow concurrent lookup and node movement.

1.2 Related Work
Routing on ad hoc networks has been in the focus of re-

search for the last decade. The proposed protocols can be
classified as proactive, reactive, or hybrid. Proactive pro-
tocols distribute routing information ahead of time to en-
able immediate forwarding of messages, whereas the reac-
tive routing protocols discover the necessary information on
demand. In between are hybrid routing protocols that com-
bine the two techniques.

Much work has been conducted in the field of geographic
routing where the sender knows the position of the destina-
tion. Face routing is the most prominent approach for this
problem [5]. AFR [10] was the first algorithm that guaran-
tees delivery in O

�
d2
�

in the worst case, and was improved
to an average case efficient but still asymtotically worst case
optimal routing in GOAFR+ [9]. Similar techniques were
chosen for the Terminode routing [4], Geo-LANMAR rout-
ing [6], and in [8]. All of them combine greedy routing with
ingenious techniques to surround routing voids. Georouting
is not only used to deliver a message to a single receiver,
but also for geocasting, where a message is sent to all re-
ceivers in a given area. All these georouting protocols have
in common that the sender needs to know the position of
the receiver.

If we consider a MANET, a sender node needs some means
to learn the current position of the destination node. A
proactive location dissemination approach was proposed in
DREAM [3], where each node maintains a routing table
containing the position of all other nodes in the network.
Each node periodically broadcasts its position, where nearby
nodes are updated more frequently than distant nodes. In
addition to the huge storage and dissemination overhead,
DREAM does not guarantee delivery and relies on a recov-
ery algorithm, e.g. flooding.

An alternative to the fully proactive DREAM is the hy-
brid home-based lookup approach, as utilized in [7, 14, 17,
18]. However, this approach does not allow for low stretch
routing, as outlined in the introduction.

1In the presence of lakes, vnode
max is reduced by a factor equal

to the largest routing stretch caused by the lakes.

Awerbuch and Peleg [2] proposed to use regional match-
ings to build a hierarchical directory server, which resem-
bles our approach. However, to handle concurrent lookup
and mobility, a Clean Move Requirement was introduced,
which hinders nodes to move too far while messages are
routed towards them. With other words, a lookup request
can (temporarily) stop its destination node from moving.
Furthermore, the lookup cost of [2] is polylogarithmic in the
size of the network, which restrains scalability.

A novel position dissemination strategy was proposed by
Li et al. in [12]: For each node n, GLS stores pointers to-
wards n in regions of exponentially increasing size around n.
In each of these regions, one node is designated to store n’s
position based on its ID. The lookup path taken by GLS is
bounded by the smallest square that surrounds the sender
and destination node. As outlined in [1], GLS cannot lower
bound the lookup stretch and lacks support for efficient posi-
tion publishing due to node movement. Xie et al. presented
an enhanced GLS protocol called DLM in [19], and Yu et al.
proposed HIGH-GRADE [20], which is similar to [13]. In
contrast to GLS, in DLM and HIGH-GRADE most location
pointers do not store the exact position of the corresponding
nodes, which reduces the publish cost. Nevertheless, neither
of them can lower bound the publish cost (e.g. due to the
problem described in Figure 3) and they do not tackle the
concurrency issue described above.

Recently, Abraham et al. proposed LLS [1], a locality
aware lookup system with worst case lookup cost of O

�
d2
�
,

where d is the length of the shortest route between the sender
and receiver. Similar to GLS, LLS publishes position infor-
mation on a hierarchy of regions (squares) around each node.
A lookup requests circles around the sender node with in-
creasing radius until it meets one of the position pointers of
the destination node, and then follows this pointer. MLS bor-
rows some ideas from LLS and HIGH-GRADE, adding sup-
port for concurrent mobility and routing, improving the
lookup to have linear stretch and bounding the publish over-
head.

1.3 Outline
In the following sections, we present the MLS algorithm.

We start with our model assumptions and the hierarchical
lookup system through which messages are routed. Then, we
discuss in more detail the routing of messages, and define a
policy when a moving node needs to update its position data
in Section 5. We introduce the issues of concurrent message
routing and node movement in Section 6 and present the
MLS algorithm in a concise and formal way in Section 7,
such that we can proof its correctness in the sequel. Finally,
we describe our simulation setup and conclude our work.

2. MODEL
For the analysis of our algorithm, we consider a world built

of land and lakes. The nodes are distributed on the land ar-
eas, whereas no nodes can be placed on lakes. In order to
allow for total connectivity, we assume that there are no is-
lands, i.e. there are no disconnected land areas. The nodes
are expected to contain a positioning system such as GPS,
Cricket [16], cell tower or WLAN triangulation. Further-
more, each node is equipped with a communication module
that provides reliable inter-node communication with mini-
mal range rmin.

In our model, the nodes actively participate in ad hoc
routing to deliver messages. To guarantee the reachability
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Figure 1: The left figure shows the entire world sur-
rounded by LM , the square of side length ρ·2M . The land
masses are filled with solid color (green), lakes are filled
with waves. For each node t, Lt

i contains a level pointer

LPt
i that points to the sub square Lt

i−1 of size ρ ·2i−1 that
contains t. The right picture shows the smallest three
levels around t and how each level for i > 0 contains a
pointer that points to the next smaller level.

of any location on land, we consider a relatively dense node
distribution and require that for any position p on land,
there is a node at most λ = rmin/3 away. Furthermore, this
invariant should hold over time while nodes are moving.

Using MLS, each node can send messages to any other
node without knowing the position of the destination. To
perform this task, MLS stores information about the nodes’
whereabout in well defined positions (see Section 3). Then,
the messages are routed to some of these special positions,
where they learn about the current location of their destina-
tion. Because the positions of the intermediate destinations
are known, this underlying routing might be performed by
a geographic routing algorithm.

For the rest of this paper, we abstract from this low level
routing and assume the following communication capability:
For any two positions ps and pt on land, a node s in the
λ-proximity of ps can send a message to a node in the λ-
proximity of pt. The time to route the message is bounded
by η · |pspt|, where |pspt| is the Euclidean distance2 between
ps and pt. We assume that this underlying routing algorithm
selects the shortest path if it has a choice.

Note that this underlying routing capability is orthogonal
to the main routing problem discussed in this paper, where
the sender does not know the position of the receiver.

3. POSITION INFORMATION
In this section, we describe how each node t maintains

a lookup system through which MLS routes messages to t.
This lookup system is based on several layers, where the
top layer is the smallest square of side length ρ · 2M that
encloses the entire world. M is dependent on the size of
the world, and ρ = λ/

√
2 = rmin/(3

√
2) is given by the

radio range (see Section 2). In the following, we denote this
square by level-M and write LM . (Please refer to Table 1
for a summary of the notation used in this paper.) Similar
to a geographic hash table (GHT) [15], each node has a
designated position on land where it stores directions to its

2Note that if |pspt| → 0, the message would have to be
delivered instantaneously. However, unless the sender and
receiver are identical, at least one hop is necessary, which
requires time. We can safely ignore this boarder case be-
cause this paper presents a worst case analysis, where the
shortest distance to be routed is λ.

Lt
i Level that contains t with side-length ρ · 2i

(Ls
i )

8 The 8 surrounding squares of Ls
i

LPt
i Level pointer on Li for node t; points to Li−1

∗LPt
i The Li−1 where LPt

i points to
δt

i distance of a node t to ∗LPt
i+1

FPt
i Forwarding pointer if LPt

i /∈ ∗LPt
i+1

∗FPt
i The Li where ∗FPt

i points
TFPt

i Temporary forwarding pointer, before a pointer
to t is removed

∗TFPt
i The Li where TFPt

i points
TTLi Time to live of a TFPi

vnode
max Max. speed of nodes

rmin Min. communication range of a node
λ Min. distance to a node from any land point

ρ Side length of L0; ρ = λ/
√

2 = rmin/(3
√

2)
M LM surrounds the entire world

α When δt
i ≥ α · ρ · 2i, LPt

i+1 is updated
β(βT ) Max. number of forwarding hops to reach LPt

i

from a FPt
i (TFPt

i)
γ See Lemma 8.2
η Routing overhead to route to a given position

Table 1: Nomenclature used throughout the paper.

position. But instead of storing its exact position, a node
t only stores in which of the four possible sub squares it is
located, as depicted in Figure 1. Recursively, each selected
square contains a pointer to its sub square that surrounds t.
Finally, the chain is broken when the size of the sub square
reaches ρ. Thus, a message for node t can be routed along
these pointers until it reaches the smallest square.

We use the term LM−1 to denote any of the squares re-
ceived when LM is divided into 4 sub squares of side length
ρ · 2M−1. Recursively, Li denotes any square of side-length
ρ · 2i that can be obtained by dividing a Li+1 square into
its 4 sub squares. The recursion stops for L0, which is a
square of side length ρ. To denote the Li that surrounds a
specific node t, we use the notation Lt

i. Clearly, Lx
M is the

same for all nodes x, namely the square that surrounds the
entire world.

On each Lt
i for i > 0, node t has a well defined position

where it stores in which of the 4 possible Li−1 it is located.
We call this information Level Pointer and write LPt

i to
denote the level pointer on Lt

i that points to Lt
i−1. Also, we

write ∗LPt
i to denote the Lt

i−1 where LPt
i points.

We have seen that every node t stores a LPt
i on each of

its levels Lt
i. This information needs to be hosted on a node

somewhere in Lt
i. But because the nodes are mobile, we can-

not designate a specific node on each Lt
i to store the LPt

i.
Therefore, we propose to store this pointer at a specific po-
sition p on land in Lt

i. Due to the minimal node density, we
know that there exists at least one node in the λ-proximity
of p, which we can use to store LPt

i. If there are several
nodes in the λ-proximity of p, we pick the one closest to
p. The selected node then hosts LPt

i until it moves away
from p by more than λ. At that point, it passes on LPt

i to
its neighbor node closest to p, which must exist due to the
minimal node density. Over time, the LPt

i is not necessarily
stored on the node closest to p, but by an arbitrary node in
the λ-proximity of p.

Each node t stores a LPt
i at a well defined position pt on

land within Lt
i, where pt is determined through the unique

IDt of t. Any consistent hash function that maps the ID of
a node onto a position on land can be used for this purpose,



as long as the chosen positions are evenly distributed over
the land area for different IDs.

One possible function is the following, where we use two
hash-functions H1() and H2() to map the ID of t to real
numbers in the range ]0, 1]. pt is determined as an offset
(∆x, ∆y) from the top left corner of Lt

i. ∆y is chosen such
that, when only considering Lt

i, the fraction of land above
∆y is H1(IDt). Once ∆y is fixed, we must choose ∆x such
that pt lies on land. We concatenate the line-segments where
pt can be placed to a single line and determine ∆x such that
the length of the line left to pt is H2(IDt) of the total line
length.

Given this mapping, any node can determine the potential
position pt where a node t might store a LPt

i for any Lt
i. All

the node needs to know is the ID of the receiver and the
position of the lakes. Amongst others, this is necessary to
route a message along the level pointers towards t: Once
a message has been routed to a LPt

i, the node hosting LPt
i

determines p′t in ∗LPt
i and forwards the message to LPt

i−1,
which is located at p′t.

We can already see that the number of levels only depends
on the size of the deployment area and the transmission
radius rmin. Therefore, every node needs to maintain only
a constant number of level pointers. Because the positions
of the level pointers are chosen randomly on the different
levels, the storage overhead is balanced smoothly on the
nodes if the nodes themselves are evenly distributed. This
is an important property of MLS, and avoids overloading a
few nodes with excessive amounts of data.

4. LOOKUP
Because messages are routed to a priori unknown posi-

tions, we denote them as lookup requests. When a sender
node s wants to send a message to a destination node t, it
issues a lookup request for node t, which encapsulates the
message to be sent. So far, we have described where each
node publishes its level pointers and how a lookup request is
forwarded along the level pointers towards t once a first LPt

i

has been found. This section is devoted to the first phase
of the lookup algorithm, which routes the lookup request to
the first LPt

i.
We propose a lookup algorithm that first searches t in

the immediate neighborhood of s and then incrementally
increases the search area until a LPt

i is found. From there,
the lookup request can be routed towards the smaller levels,
as described in the previous section. Using this approach,
we find t quickly if it is close to s. In particular, we prove
that the lookup time is linear in the distance between s and
t. As for the search areas, we use an extended version of the
levels of node s, who issued the lookup request. For each
Ls

i , we define (Ls
i )

8 to be the 8 Li squares adjacent to Ls
i .

In the very first step of a lookup, node s checks whether t
is in its immediate neighborhood. In this case, the message
can be sent directly to t. Otherwise, the lookup request is
sent to Ls

1 to check whether it finds a LPt
1. If this is not

the case, the lookup request is forwarded in sequence to the
8 squares of (Ls

1)
8, where it tries to find LPt

1. This step is
repeated recursively: while the lookup request fails to find
a LPt

i on Ls
i and (Ls

i )
8, it is forwarded to Ls

i+1 and then in
sequence to squares of (Ls

i+1)
8, where it tries to find LPt

i+1.
A possible lookup path through the first 3 levels is depicted
in Figure 2. Note that when the lookup request is forwarded
through the levels of (Ls

i )
8, the sequence is chosen such that

the last visited Li is contained in Ls
i+1, and the request is

s

Figure 2: When s issues a lookup request for node t, the
request is forwarded to the potential positions of a LPt

i

in Ls
i ∪ (Ls

i )
8 for increasing i. The bold gray squares in

the left image indicate the first 4 levels of node s. Note
that we have only drawn the nodes visited by the chosen
route. The right image shows a lookup path found by our
simulation framework. The square dots indicate the LP
of the destination node. Because no lakes were present
in the lookup area, the lookup path is regular and draws
quadratic shapes.

always forwarded to a neighboring Li that shares an edge
with the current Li. (Skip Li that are completely covered
by lakes.)

In the first phase of the lookup algorithm, the lookup
request is routed to a series of levels Li, where it tries to
find a level pointer LPt

i. In the following lemma, we provide
an upper bound for the time needed to search i levels. Note
that this also gives an upper bound for the time needed to
find LPt

i on Li, given that LPt
i ∈ Li.

Lemma 4.1. The accumulated time for searching a level
pointer of node t on the levels 0 through i is bounded by
η2i+1ρ(

√
2 + 8

√
5).

Proof. When a lookup request for node t issued by a
node s starts its search on Lj , it first queries for LPt

j in
Ls

j . From the lookup algorithm presented above, we know

that the lookup request tries3 to end its search of the levels
Lj−1 on a node in Ls

j . Thus, in the worst case, the request
has to be routed over the diagonal of Ls

j to reach the po-

tential place of LPt
j , which implies a maximal route-time of

η2jρ
√

2. Then, to check for LPt
j in (Ls

j)
8, the lookup request

is repeatedly sent to a neighboring Li to which the previous
Li shares an edge. At the worst, this takes η2jρ

√
5 for each

of the 8 neighbors. Thus, the total time to query for LPt
j on

level j is at most η2jρ(
√

2+8
√

5), and the accumulated time

to query i levels is bounded by t ≤
Pi

j=0 η2jρ(
√

2 + 8
√

5) <

η2i+1ρ(
√

2 + 8
√

5).

Because LM is the same square for all nodes, we are sure
that a lookup request finds a level pointer for t at the latest
on Ls

M
4. In a later section, we give an upper bound on the

time the lookup request needs to find a first LPt
i based on

the distance between s and t.

3This fails, if Ls
j−1 is the only sub-level of Ls

j covering land.
In this case, the lookup request first needs to move into
Ls

j . This additional overhead is well compensated on the
previous level, where at least 3 Ls

j−1 were not visited.
4This holds also under lazy publishing and in the concurrent
setting, two concepts that are introduced in the following
sections.
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and b in the left picture, immediate updating of its level
pointers would cause an enormous amount of traffic. In
black are the level pointers necessary if t is at a, the
level pointers necessary at b are gray. Lazy publishing
delays the updating of LPt

i+1 until node t has moved away

from ∗LPt
i+1 by more than αρ2i, as depicted in the right

picture. Only when t moves across A, LPt
i+1 is updated

to A’. Similarly, only when t crosses B, A’ is deleted and
B’ is added.

5. LAZY PUBLISHING
In this and the following section, we analyze the impli-

cations of mobile nodes. In particular, this section focuses
on the publish algorithm, through which every node keeps
its level pointers up to date when it moves. Remember that
every node t maintains a LPt

i on each of its Lt
i for 0 < i ≤ M .

Clearly, if a node t must update its LPt
i+1 as soon as it

changes Lt
i, the publish cost might be extremely high. The

left part of Figure 3 depicts a situation where many level
pointers would have to be updated due to an arbitrarily
small move of node t. If t oscillates between the two points
a and b, and immediately sends messages to update the level
pointers after moving an ε-distance, an enormous amount of
traffic would be generated. To reduce this overhead, we em-
ploy lazy publishing, a concept that is similar to the lazy
update technique utilized in [1].

Lazy publishing allows a node t to move out of ∗LPt
i+1 up

to a certain distance without updating LPt
i+1, and reduces

the overhead due to oscillating nodes. The following publish
policy defines when a node t needs to update its LPt

i.
We use the notation δt

i to denote the air distance of node
t to ∗LPt

i+1. Formally, δt
i is the shortest distance of t to any

edge of ∗LPt
i+1 if t /∈ ∗LPt

i+1. Otherwise, δt
i = 0.

Definition 5.1. (Publish Policy) When a node t has
moved away from ∗LPt

i+1 by more than α · ρ · 2i, it needs
to update LPt

i+1, such that LPt
i+1 points to the current Lt

i.

Formally, a node t must update LPt
i+1 if δt

i ≥ α · ρ · 2i, for
a fixed α ∈ R+.

We need to consider two cases while updating a LPt
i+1:

If the outdated LPt
i+1 is in Lt

i+1, it suffices to change the
value of LPt

i+1 such that it points to Lt
i. In the right half of

Figure 3, this is the case when t moves over the line marked
A. However, if t has moved to a different Li+1, the outdated
LPt

i+1 needs to be removed and a new one must be added to
Lt

i+1. An example of this case is depicted in Figure 3, when
t moves over the line marked B.

The implementation of such an update is straight forward:
Node t sends an update message to the outdated LPt

i+1 to
change its value. If a new LPt

i+1 needs to be created, t
sends a remove message to the outdated LPt

i+1 and a create
message to the position of the new LPt

i+1.

LPti

ρ2i

LPti+1

t

αρ2i

αρ2i−1

FPti

[A] [D]

[B] [C]

Figure 4: A node t is outside ∗LPt
i+1, but does not need

to update LPt
i+1. Instead of removing its LPt

i in ∗LPt
i+1,

t maintains a FPt
i that points to the neighboring Li there

LPt
i can be found. When t moves upwards along the

indicated (solid) path, it eventually leaves ∗LPt
i by more

that αρ2i−1 and needs to add a new LPt
i in [D], update

FPt
i in [B] and remove the LPt

i in [C]. To prevent a racing

condition with a concurrent lookup, LPt
i in [C] is not

removed, but transformed to a TFPt
i that points to [D].

6. CONCURRENCY
Clearly, the lookup algorithm presented in Section 4 does

not support lazy publishing in its second phase, where the
lookup request follows the level pointers in order to find a
destination node t. So far, we have assumed that for i > 1,
∗LPt

i contains a LPt
i−1. However, under the lazy publishing

policy, LPt
i−1 might be outside ∗LPt

i. We now derive modifi-
cations to the lookup and publish algorithms, such that they
support lazy publishing. At the same time, we introduce the
issue of simultaneous lookup and publish requests.

6.1 Forwarding Pointer
MLS uses a forwarding pointer to guide a lookup request

to LPt
i. If LPt

i /∈ ∗LPt
i+1,

∗LPt
i+1 contains a forwarding

pointer at the location where the LPt
i would be. This for-

warding pointer points to the neighboring Li that contains
LPt

i. In the following, we denote such a forwarding pointer
by FPt

i and write ∗FPt
i to denote the Li where FPt

i points.
Figure 4 depicts a situation where a FP is necessary. Note
that we restrict the value of α to the range [0, 1[ such that
a FPt

i might only point to an adjacent Li. This simplifies
our analysis, but does not restrain the final result, where α
is chosen clearly smaller than 1 in order to maximize the
allowed speed at which nodes move.

With the forwarding pointers, a lookup request has an
easy means to find the LPt

i if LPt
i /∈ ∗LPt

i. However, this
simplistic approach only works in a static setup, where all
publish requests of node t have terminated before a lookup
request queries for t. Consider again Figure 4 and suppose
that t moves upwards. When δt

i > αρ2i−1, t needs to send
three messages: one to remove LPt

i from [C], one to add a
new LPt

i in [D] and one to change the direction of FPt
i in

[B]. Because the messages might be delayed randomly by
the presence of lakes, it is possible that a lookup request
reads FPt

i before it is updated, and then fails to find LPt
i

in ∗FPt
i because LPt

i was already removed. This is a racing
condition between a lookup request and the publish request
which we need to avoid.

6.2 Temporary Forwarding Pointer
Inspired by the fact that the racing condition in the pre-

vious example arose because of a LPt
i that was removed too



early, MLS does not remove LPt
i immediately, but leaves

behind a Temporary Forwarding Pointer, denoted TFPt
i.

Such a TFPt
i points to the neighboring Li where t was lo-

cated when it decided to remove the LPt
i. We will write

∗TFPt
i to denote the Li where the TFPt

i points.
To come back to Figure 4, t changes the LPt

i in [C] to a
TFPt

i instead of removing it. A lookup request that follows
the outdated FPt

i then might find such a TFPt
i instead of

the expected LPt
i and follows the TFPt

i to finally find LPt
i

in [D].
At the time when LPt

i+1 is updated, the FPt
i in ∗LPt

i+1

becomes obsolete and needs to be removed. But deleting
the FPt

i could cause similar racing conditions with a concur-
rent lookup request as when a LPt

i is removed. Therefore,
MLS overwrites a FPt

i with a TFPt
i instead of removing the

FPt
i.

According to its name, a TFP does only exist for a limited
time. TFP are automatically removed after a given time,
which we denote TTLi for a TFPt

i. Thus, the lifetime TTLi

of a TFPt
i depends on the value of i. We give constraints

on the value of TTLi while proving the correctness of MLS.
Given that TTLi can be determined statically, a TFPt

i can
be removed by the hosting node without any interaction of
node t.

7. THE MLS ALGORITHM
We have now gathered all parts of MLS and present it here

in a concise form before proving its correctness and perfor-
mance. As before, the algorithm comes in two parts, the
publish and the lookup algorithm. The publish algorithm
is executed permanently by each moving node as to main-
tain valid information on its hierarchy of levels, whereas the
lookup algorithm is used to route a message to a given node.

7.1 MLS Publish
During the startup phase of node t, initialize all level

pointers LPt
i+1 to point to Lt

i.
While t is moving, it executes the following code:

1 if(δt
i ≥ α · ρ · 2i) {

2 if(i>0) {change FPt
i in ∗LPt

i+1 to TFPt
i;}

3 if(LPt
i+1 ∈ Lt

i+1) {
4 change LPt

i+1 to point to Lt
i;

5 } else {
6 if(LPt

i+1 ∈ ∗LPt
i+2) {

7 change LPt
i+1 to FPt

i+1 that points to Lt
i+1;

8 } elseif(Lt
i+1 = ∗LPt

i+2) {
9 change LPt

i+1 to TFPt
i+1 that points to Lt

i+1;

10 } else {
11 change LPt

i+1 to TFPt
i+1 that points to Lt

i+1;

12 change FPt
i+1 to point to Lt

i+1;

13 }
14 on Lt

i+1, add LPt
i+1 that points to Lt

i;

15 }
16 if(i>0 and LPt

i /∈ Lt
i) {

17 add FPt
i on Lt

i that points to Li 3 LPt
i;

18 }
19 }

In the initialization phase, t sends a message to the position
of LPt

i on each Li. This message tells the receiving node to
store LPt

i, which points to Lt
i−1. We assume that there are

no lookup requests for t during this initial phase.
While t is moving, it utilizes lazy publishing (line 1). If

t updates LPt
i+1, FPt

i becomes obsolete and is changed to

a TFPt
i that points to Lt

i (line 2). The simplest case arises
when only the value of LPt

i+1 needs to be changed, because
LPt

i+1 can still point to the current Lt
i (lines 3,4). This cor-

responds to the situation in the right part of Figure 3 where
t crosses A. Otherwise, LPt

i+1 is added to the current Li+1

of t (line 14). In between, we update the forwarding pointers
according to the three different cases: (1) If the old LPt

i+1

is on the lookup-path because it is in ∗LPt
i+2, it is modi-

fied to a FPt
i+1 (lines 6,7). (2) If t returned to ∗LPt

i+2, we
replace the old LPt

i+1 with a temporary forwarding pointer
to ∗LPt

i+2 (lines 8,9). The FPt
i+1 in ∗LPt

i+2 is implicitly
overwritten by line 14. (3) In all other cases where t moves
from one square to another in (∗LPt

i+2)
8, we replace the old

LPt
i+1 with a temporary forwarding pointer to the new Li

and update FPt
i+1, which is located in ∗LPt

i+2 (lines 11,12).
Finally, if the new LPt

i+1 does not point to the Li that con-
tains LPt

i, a forwarding pointer is added to Lt
i. This FPt

i

points to the Li that contains LPt
i (lines 16, 17). This last

case arises for example in Figure 4 when t moves along the
dashed path, such that the publish algorithm is triggered at
the circled area. In that case, a FPt

i is added in square [D]
and points to square [C], which holds LPt

i.
When t needs to update a pointer (LPt

i or FPt
i) on an

arbitrary Li, t sends a command message to the node that
hosts the pointer, where the command message indicates
how the pointer should be modified. In order to create a
new pointer on a Li, t sends a create message to the node
closest to the position pt in Li. If t sends a create message
to set a LPt

i or FPt
i at position pt, but there already exists

a pointer (LPt
i, FPt

i or TFPt
i) at this position, the existing

pointer is overwritten.

7.2 MLS Lookup
A lookup request for node t issued by a node s is routed

according to the following code:

1 if(t ∈ Ls
0 ∪ (Ls

0)8) { exit(); }
2 for(i=1; true; i++) {
3 if(P t

i ∈ Ls
i || P t

i ∈ (Ls
i )

8) {
4 p = P t

i ;
5 break;
6 }
7 }
8 Follow p until LPt

1 is reached.

9 Route to a node closest to an arbitrary point on land in ∗LPt
1.

10 Forward to t.

If the destination node t is in the same unit square or an
immediate neighbor, node s and t can communicate directly
over their radio. Because s needs to know all its neighbors
in Ls

0 ∪ (Ls
0)

8 for routing, this situation can be detected im-
mediately and the lookup stops (line 1).

Then, for increasing size of the levels, s searches a pointer
of t in Ls

i and then in the squares of (Ls
i )

8. Note that the
lookup request accepts any kind of pointer of node t, whether
it is an LPt

i, FPt
i or TFPt

i. Furthermore, remember from
Section 4 that the squares of (Ls

i )
8 need to be accessed in a

given order.
In the second phase of the lookup algorithm, the lookup

request is routed along the pointers until it reaches LPt
1

(line 8). Because ∗LPt
1 does not contain a LPt

0, the lookup
picks an arbitrary position p on land in ∗LPt

1 and routes the
lookup request to the node closest to p (line 9). From that
node, the lookup can be sent directly to t (line 10).



8. ANALYSIS
We devote this section to the analysis of MLS. In partic-

ular, we show that MLS works in a concurrent setup, where
publish requests and lookup requests occur simultaneously.
We prove that a lookup request finds its destination in O(d)
hops, where d is the distance between the sender and the
destination. Also, we show that the amortized cost for pub-
lishing the position data is O(d log d), where d denotes the
distance a node has moved. In order to prove these proper-
ties, we need to limit the maximum speed of nodes, denoted
vnode

max . Throughout the proofs, we introduce different con-
straints on the value of vnode

max . After proving the correctness
of MLS, we determine the maximum node speed that satisfies
all these constraints.

We base the lookup performance on the distance |st| be-
tween two nodes s and t. In the static case, this distance is
well defined during an entire lookup operation. However, in
the concurrent setting, both nodes, s and t, might be mov-
ing while a lookup request is executing, and the distance
|st| changes over time. In our analysis of the lookup algo-
rithm, we determine the distance |st| when a lookup request
is issued and base the performance analysis on this value.

8.1 Lookup Analysis
For the first phase of the lookup algorithm, we show that

a lookup request for a node t can be routed such that it finds
a level pointer to node t. Then, for the second phase of the
lookup algorithm, we prove that the lookup request can be
routed along the pointers of t to finally reach t.

Lookup – Phase 1
We consider a lookup request for a node t issued by a

node s, where d = |st| is the distance between s and t at
the moment when s issues the request. In this section, we
prove that the time needed to find a first location pointer
for t is O(d). To start, we give a lower bound on TTLi such
that a lookup request cannot miss a pointer5 to t due to
concurrency. Then, we show that the lookup request meets
a pointer to t at the latest while visiting Ls

k+1 ∪ (Ls
k+1)

8 for
a given k dependent on d.

Lemma 8.1. Given that t is (and remains) located in Ls
i ∪

(Ls
i )

8 and maintains a LPt
i in this area, a lookup request

issued by s finds a pointer to t at the latest while visiting
Ls

i ∪ (Ls
i )

8, if TTLi ≥ η2iρ(
√

2 + 8
√

5).

Proof. When t needs to relocate its LPt
i, it sends a mes-

sage m to create a new LPt
i on Lt

i, which takes at most
∆tm ≤ η2iρ

√
2 time to arrive (traversing Lt

i). At the same
time, t sends a message m′ to transform the outdated LPt

i

to a FPt
i or TFPt

i. For this worst case analysis, we assume
that m′ is delivered instantaneously.6

A lookup request fails to find LPt
i if it interleaves with

these publish messages such that it arrives at the position
p of the new LPt

i before m, and if it reaches the position p′

of the outdated LPt
i after m′. In the worst case, t relocates

LPt
i into Ls

i at time T0 and the lookup request visits p just
before m arrives at T1 < T0 + ∆tm. The lookup request
then continues its search in the squares of (Ls

i )
8 and might

choose the path such that it visits p′ only on its last step,
which is at the latest after ∆tlookup ≤ η2iρ8

√
5 (see proof

of Lemma 4.1). Thus, the lookup request reaches p′ at the

5A pointer to t is either a LPt, a FPt or a TFPt.
6There might also be a message to update a potential FPt

i,
which is of no importance for this proof.

latest at T2 ≤ T1 + ∆tlookup < T0 + η2iρ(
√

2 + 8
√

5). Even
if the outdated LPt

i was transformed to a TFPt
i at T0, the

TFPt
i exists at least until T0 + TTLi > T2 and the lookup

request finds the TFPt
i. (Note that if the outdated LPt

i

is transformed to a FPt
i, the time during which p′ hosts a

pointer to t is even longer, because the FPt
i is transformed

to a TFPt
i after t updates LPt

i+1.)

In the static case where publish requests and lookup re-
quests do not interfere, a lookup request finds a pointer to t
at the latest while visiting Ls

k+1 ∪ (Ls
k+1)

8, if the side length

of Lk is at least d (d ≤ ρ2k). (We can argue that s ∈ Ls
k+1

and thus t is at most d away from Ls
k+1. At the same time,

the distance from t to any Lk outside Ls
k+1 ∪ (Ls

k+1)
8 is at

least ρ2k ≥ d. Because α < 1, t must have created a LPt
k+1

in Ls
k+1 ∪ (Ls

k+1)
8.)

For the concurrent case, we weaken this result and show
that the lookup request finds a pointer to t at the latest
while visiting Ls

k+γ ∪ (Ls
k+γ)8, where ρ2k ≥ d > ρ2k−1 and

γ ∈ N+, if the maximum node speed is bounded by

vnode
max <

1− α
2
− 2−γ

η
√

2
(1)

and the temporary forwarding pointers exist long enough:

TTLi ≥ η2i+1ρ(1/
√

2 + 8
√

5) (2)

Note that increasing the value of γ results in a higher node
speed, but a lookup request might need to search longer until
it finds a first pointer to t. We keep γ ≥ 1 as a parameter
of MLS to tune its performance.

Lemma 8.2. Consider a lookup request for t issued by s
and let d be the distance |st| at the moment when the request
is issued. For any γ ≥ 1, k ∈ N such that ρ2k−1 < d ≤ ρ2k,
and if the Equations (1) and (2) hold, the lookup request
finds a pointer to t at the latest on one of the levels in Ls

k+γ∪
(Ls

k+γ)8.

Proof. In a first step, we show that t has created a
LPt

k+γ in Ls
k+γ ∪ (Ls

k+γ)8 at the latest when the lookup
request is issued. This property is necessary to ensure that
the lookup request cannot arrive too early on Lk+γ and miss

LPt
k+γ because it is not yet created.

By definition, s ∈ Ls
k+γ and thus t is at most d ≤ ρ2k

away from Ls
k+γ . At the same time, the distance from t to

any Lk+γ−1 outside Ls
k+γ ∪ (Ls

k+γ)8 is at least ρ(2k+γ − 2k).
Furthermore, we know that t sent off a message to create
a LPt

k+γ in Ls
k+γ ∪ (Ls

k+γ)8 when it entered this region by

more than α2k+γ−1ρ (lazy publishing). Thus, t moved at
least a distance ∆d = ρ2k(2γ(1 − α

2
) − 1) after sending off

the message to create LPt
k+γ and when the lookup request

was issued.
At the limit, the update message to create LPt

k+γ needs

to be sent across Lk+γ which needs ∆tupdate ≤ η2k+γρ
√

2.
But the lookup request is only issued after t has moved ∆d,
which takes at least ∆tmove ≥ ∆d

vnode
max

. By Equation (1),

∆tmove > η2k+γρ
√

2 ≥ ∆tupdate, which shows7 that the

7Note that we did not consider that the lookup request needs
some time to visit the levels 1...k + γ − 1, because there are
situations where this time is negligible small. Including this
time would allow for a slightly better vnode

max , but unnecessar-
ily complicate the proofs.



lookup request is issued after a LPt
k+γ has been created in

Ls
k+γ ∪ (Ls

k+γ)8.

To conclude the proof, we show that a TFPt
k+γ lives long

enough to catch all cases where the lookup request does
not find a LPt

k+γ . From Lemma 8.1 we know that the
lookup request finds a pointer to t while t remains inside
Ls

k+γ ∪ (Ls
k+γ)8. Before t can relocate LPt

k+γ outside Ls
k+γ ∪

(Ls
k+γ)8, it must move at least ∆d′ = ρ2k(2γ(1+ α

2
)−1) after

the lookup was issued, which takes at least ∆t ≥ ∆d′

vnode
max

>

η2k+γρ
√

2 by (1). Thus, t might create a TFPt
k+γ in Ls

k+γ ∪
(Ls

k+γ)8 at least ∆t after the lookup request was issued. By
Lemma 4.1, the lookup request finishes visiting the levels of
Lk+γ at the latest after ∆tlookup ≤ η2k+γ+1ρ(

√
2 + 8

√
5).

Thus, to ensure that the TFPt
k+γ has not expired, it must

have lived for at least ∆tlookup −∆t, which holds by Equa-
tion (2).

The previous lemma states that a lookup request can find
a pointer to t. We now show that the lookup request meets
another pointer to t when it is routed along a forwarding
pointer (or temporary forwarding pointer). However, we
need to restrain the maximum node speed to

vnode
max <

α

η · 2(3
√

2 + α)
(3)

to ensure that this holds in all situations.

Lemma 8.3. A lookup request that finds a FPt
i or a TFPt

i

also finds a pointer to t in ∗FPt
i or ∗TFPt

i, respectively, if
the maximum node speed satisfies Equation (3).

Proof. We need to show that [a] a pointer p′ for t has
been written in ∗FPt

i (∗TFPt
i) before the lookup request

following FPt
i (TFPt

i) arrives, and that [b] p′ cannot expire
before the lookup request arrives, if p′ has been transformed
to a temporary forwarding pointer. Let us denote the found
FPt

i (TFPt
i) by p, the Li that contains p by A, and the Li

where p points by B. Throughout the proof, we refer to the
lines of the publish algorithm presented in Section 7.1.

The found pointer p was created by one of the lines 2, 7,
9, 11, 12, or 17. If p = TFPt

i was created by line 2, it points
to the Lt

i where t was located when t sent the message m
to change the FPt

i to p. By the lines 16-18, we know that
if B = ∗TFPt

i did not contain LPt
i, t sent a message m′

to create a FPt
i in B. If p = FPt

i was created by line 17,
B = ∗FPt

i contains LPt
i by definition. If p was created by

line 7, 9, 11, or 12, t sent a message m′ to create a LPt
i in

B at the same time while sending a message m to create p.
Because t sends the message m′ to create the necessary

pointer p′ in B no later than m that creates p, the lookup re-
quest cannot arrive at the location of p′ in B before m′. Oth-
erwise, m′ would have been sent over a sub-optimal route
contradicting the triangle inequality. Therefore, condition
[a] holds.

Consider the case where p is a TFPt
i and T0 is the time

when t sent message m to crate p. Then, B (where p points)
is the Li where t was located at T0, and B contains as p′

either a LPt
i or a FPt

i (lines 14, 16-18). Because t is located
in B at T0, it needs to move at least α2i−1ρ away from B
until p′ is changed to a TFPt

i. Also, at T0, t is at most α2iρ
away from A (line 1), and therefore m arrives no later than

T1 ≤ T0 + η2iρ(
√

2 + α) to create p = TFPt
i. At the limit,

the lookup request reads p just before it expires at time
T2 = T1 + TTLi, and then moves to p′ in B. Because the

air-distance p− p′ is bounded by 2iρ
√

8, the lookup request
might arrive at p′ no later than T3 ≤ T2 + η2iρ

√
8 ≤ T0 +

TTLi+η2iρ(3
√

2+α). By this time, p′ must not be expired,
which requires that it was created after T4 > T3 − TTLi.
Before T4, t moved at most ∆d = (T4 − T0) · vnode

max . By
Equation (3), ∆d < ρ2i−1α, which shows that t has changed
p′ to a TFPt

i after T4 and that p′ cannot expire before the
lookup request arrives.

For the second case where p is a FPt
i, we use the fact that

p is changed to a TFPt
i if t moves away from A by more

than α · 2iρ (lines 1,2), and therefore an update message
m′′ from t to p sent at T0 arrives at the latest at T1 ≤
T0 + η2iρ(

√
2 + α). If t moves out of B and modifies p′ to

a TFPt
i at T0, it sends a message m′′ to p (line 2 or 12).

In the worst case, the lookup request reads p just before
m′′ arrives and visits p′. Because the air distance p − p′

is bounded by 2iρ
√

8, the lookup request arrives at p′ no
later than T2 ≤ T1 + η2iρ

√
8 ≤ T0 + η2iρ(α + 3

√
2). From

Equation (2), we know that TTLi ≥ η2i+1ρ(1/
√

2 + 8
√

5).
Because α < 1, p′ cannot expire before the lookup request
arrives.

We have shown that a lookup request can find a pointer to
t and that it can follow pointers to find new pointers. In the
following, we give upper bounds on the time needed to find
a LPt

i after a lookup request has been routed to an arbitrary
FPt

i or TFPt
i. We tackle this problem by limiting the maxi-

mum number of forwarding hops that the lookup request has
to follow until it reaches LPt

i. If the lookup request finds a
FPt

i, we show that it is routed to the corresponding LPt
i in

at most β forwarding hops, if the maximum node speed is
bounded by

vnode
max ≤ α(β − 2)

2η(
√

2 + α + β
√

8)
(4)

and β > 2. If the lookup request finds a TFPt
i, we show

that it is routed to the corresponding LPt
i in at most βT

forwarding hops, if the maximum node speed is bounded by

vnode
max ≤ α2i−1ρ(βT − 2)

η2iρ(
√

2 + α + βT

√
8) + TTLi

(5)

and βT > 2. The values of β and βT become two additional
tuning parameters of MLS which influence vnode

max and the time
a lookup needs to find its destination.

We will use the following helper lemma, which says that
a node t needs to move at least a certain distance between
consecutive updates to its LPt

i.

Lemma 8.4. Between successive updates to LPt
i, node t

moves at least ∆dupdate ≥ α2i−1ρ.

Proof. When a node t updates LPt
i, the new LPt

i points
to Lt

i, the Li that contains t. Due to the publish policy
(Definition 5.1), t only needs to update LPt

i after it has
moved out of Lt

i by α2i−1ρ and thus t must move at least
∆dupdate before it needs to update LPt

i.

Lemma 8.5. Given a lookup request for a node t that has
found a FPt

i, and that vnode
max satisfies Equation (4), the lookup

request can be routed to the corresponding LPt
i in at most

∆t ≤ βη2iρ
√

8 for a given β > 2.

Proof. Node t maintains FPt
i as long as δt

i < α2iρ (lines
1,2 of the publish algorithm in Section 7.1) and t does not
return to ∗LPt

i+1 (line 9). When t updates its LPt
i, it also



sends an update to FPt
i, which takes at most ∆tupdate ≤

η2iρ(
√

2 + α) time to arrive. When δt
i = α2iρ, t updates

LPt
i+1 and changes the FPt

i to a TFPt
i (line 2). Thus, when

the lookup request reads FPt
i, it reads a direction that is at

most ∆tupdate outdated.
Consider the case where a node t moved from level X to

Y and sent an update m to FPt
i, such that FPt

i points to
Y instead of X. If a lookup request reads FPt

i before m
arrives, it first visits XY , where it finds a TFPt

i that points
to Y 8. By Lemma 8.3, this TFPt

i has not yet expired.
For each forwarding (FPt

i or TFPt
i), the lookup request

has to move an air distance bounded by 2iρ
√

8. Thus,
the last lookup request relayed by X arrives in Y at most
∆tupdate + 2η2iρ

√
8 after m was sent off. But during this

time, t might have moved - and left behind yet other (pos-
sibly temporary) forwarding pointers.

In order to limit the routing time to βη2iρ
√

8, the lookup
request can follow at most β forwarding pointers until it
reaches LPt

i. Thus, the total time between sending m and
when the lookup request reaches LPt

i is ∆ttot ≤ ∆tupdate +

βη2iρ
√

8 ≤ η2iρ(
√

2 + α + β
√

8). During this time, t moves
at most ∆d ≤ ∆ttot · vnode

max . By Equation (4), ∆d ≤ ρ(β −
2)α · 2i−1 and causes at most ∆d/∆dupdate ≤ β − 2 addi-
tional forwarding pointers by Lemma 8.4. Including the two
forwarding hops to visit X and Y , the lookup request has to
follow maximally β pointers, which takes at most βη2iρ

√
8.

If ∗FPt
i does not contain a TFPt

i that points to Y , then
t must have returned to X and overwritten the TFPt

i with
a LPt

i, a FPt
i or a more recent TFPt

i. Following such a FPt
i

or TFPt
i short-cuts the path to LPt

i, and the lookup request
finds LPt

i even faster.

Lemma 8.6. Given a lookup request for a node t that has
found a TFPt

i, and that vnode
max satisfies Equation (5), the

lookup request can be routed to the corresponding LPt
i in at

most ∆t ≤ βT η2iρ
√

8 for a given βT > 2.

Proof. We distinguish if the found TFPt
i was created

due to [a] line 9 or 11 of the publish algorithm in Section 7.1
or [b] by line 2. For both cases, we consider the time T0

when t sends a message m to create TFPt
i. Also, if the

lookup request is forwarded along a FPt
i (TFPt

i), it finds

the next pointer to t at the latest after ∆tforward ≤ η2iρ
√

8,
because a FPt

i (TFPt
i) points to a neighboring Li. Therefore,

it is sufficient to show that the lookup request reaches LPt
i

at the latest after βT forwarding hops.
For case [a], t changed its old LPt

i to a TFPt
i because it

has moved away from the Li that contains LPt
i by more than

α2i−1ρ. Thus, message m needs ∆tupdate ≤ η2iρ(α/2+
√

2)
until it reaches the old LPt

i. From line 14 and Lemma 8.3,
we know that the lookup request finds a pointer to t in
∗TFPt

i. Also, a lookup request that reads the TFPt
i just

before it expires, arrives in ∗TFPt
i at the latest at T1 =

T0 + ∆tupdate + TTLi + ∆tforward, where it might not find
LPt

i (created due to line 14), because t has already moved
away. The lookup request must catch up with t and find LPt

i

at the latest at T2 = T0+∆tupdate+TTLi+∆t. By this time,
t has moved up to ∆d = (T2−T0)v

node
max , which is bounded by

∆d ≤ (βT −2)α2i−1ρ using Equation (5). From Lemma 8.4,
we deduce that t has caused at most b ∆d

∆dupdate
c ≤ βT − 2

(possibly temporary) forwarding pointers due to its motion,

8It is possible that ∗FPt
i does not contain a TFPt

i that points
to Y . We discuss this case later on.

and the lookup request needs to follow at most a total of βT

pointers until it reaches LPt
i.

We follow a similar argumentation for the second case [b],
where t changed a FPt

i to the found TFPt
i. At T0, δt

i = α2iρ
and thus the message m needs ∆tupdate ≤ η2iρ(α+

√
2) until

it reaches the outdated FPt
i. Case [b] is also different in that

∗TFPt
i might never contain a LPt

i, but only a FPt
i (lines 16-

18). Therefore, the lookup request might have to follow 2
pointers until it reaches LPt

i, even if t does not move at all
after T0. Again, the lookup request must catch up with t and
find LPt

i at the latest at T2 = T0+∆tupdate+TTLi+∆t. By
this time, t has moved up to ∆d = (T2 − T0)v

node
max , which is

bounded by ∆d ≤ (βT −2)α2i−1ρ using Equation (5). From
Lemma 8.4, we deduce that t has caused d ∆d

∆dupdate
e ≤ βT−2

(possibly temporary) forwarding pointers due to its motion.
(Note that we needed to round up the number of forwarding
pointers because t did not update LPt

i at T0.) Therefore, the
lookup request needs to follow at most a total of βT pointers
until it reaches LPt

i.

We are now ready to assemble the first pieces of the puzzle
and show that a lookup request finds a first LPt in bounded
time.

Lemma 8.7. Given that vnode
max satisfies the Equations (1),

(3), (4) and (5), and TTLi satisfies Equation (2) for fixed
values of 0 < α ≤ 1, γ ≥ 1, β > 2, and βT > 2, then,
a lookup request for node t issued by node s finds a level
pointer LPt in O(d) time, where d is the distance |st| at the
moment when the request is issued.

Proof. By combination of the Lemmas 8.2, 8.5, and 8.6:
A first pointer p to t is found at the latest in one of the
squares Ls

u ∪ (Ls
u)8, where u = dlog2

d
ρ
e + γ (Lemma 8.2).

The necessary time the lookup request needs to visit all these
levels is bounded by T1 ≤ η2u+1ρ(

√
2 + 8

√
5) (Lemma 4.1).

If p is a FPt
i, the lookup request reaches the corresponding

LPt
i in T2 ≤ βη2iρ

√
8 (Lemma 8.5), and if p is a TFPt

i,
the lookup request reaches the corresponding LPt

i in T3 ≤
βT η2iρ

√
8 (Lemma 8.6). For T2 and T3, i ≤ u. The total

time T to find a first LPt
i is bounded by

T ≤ T1 + max(T2, T3)

≤ η2dlog2 (d/ρ)e+γ+1ρ(
√

2 + 8
√

5 + max(β, βT )
√

2)

≤ d · η2γ+2(
√

2 + 8
√

5 + max(β, βT )
√

2)| {z }
constant

∈ O(d)

Lookup – Phase 2
For the second phase of the lookup algorithm, we need to

show that once a lookup request has found a first LPt
i, it

can follow the pointers and find the destination node t. We
start with another helper lemma stating that if LPt

i points
to Li−1 and t is at most α2i−1ρ away from Li−1, then Li−1

contains a LPt
i−1 or a FPt

i−1.

Lemma 8.8. As long as δt
i < α2iρ, ∗LPt

i+1 contains a
node that hosts either a LPt

i or a FPt
i.

Proof. By inspection of the publish algorithm presented
in Section 7.1. The only places where pointers are trans-
formed to TFPt

i are on the lines 2, 9 and 11. On line 2, a
FPt

i is removed, because LPt
i+1 will no longer point to the



level that contains the FPt
i. But this only happens when

δt
i ≥ αρ2i (line 1).
Line 9 or 11 is executed when δt

i−1 ≥ αρ2i−1. However,
if line 9 or 11 executes, we know from line 6 that the LPt

j

that is overwritten is not in ∗LPt
j+1. We conclude that the

pointer for t in ∗LPt
i+1 is transformed to a TFPt

i iff δt
i ≥

αρ2i.

The following lemma states that a lookup request that has
reached a LPt

i can be routed along LPt
i and find LPt

i−1.

Lemma 8.9. Under the condition that i > 0, and all con-
straints on vnode

max and TTLi are satisfied, a lookup request can
follow LPt

i+1 and find LPt
i after ∆t ≤ η2iρ

√
8(1+max(β, βT )).

Proof. First, we show that ∗LPt
i+1 contains a pointer

p to t when the lookup request arrives. Then, we apply
Lemma 8.5 and Lemma 8.6 to bound the time to find LPt

i.
While δt

i < αρ2i, ∗LPt
i+1 contains a LPt

i or a FPt
i (by

Lemma 8.8). At T0, when δt
i ≥ αρ2i, the FPt

i in ∗LPt
i+1

is changed to a TFPt
i (line 2 of the publish algorithm in

Section 7.1) and a message m is sent to change LPt
i+1, where

it arrives at T1 ≤ T0 + η2iρ(α +
√

8). A lookup request
that follows the outdated LPt

i+1 before m arrives reaches

the TFPt
i in ∗LPt

i+1 at the latest at T2 = T1 + η2iρ
√

8 ≤
T0 + η2iρ(α + 4

√
2). By Equation (2), TTLi > T2−T0, and

thus the TFPt
i does not expire before the lookup request

arrives.
So far, we have shown that the lookup finds a pointer

to t in ∗LPt
i+1. Following LPt

i+1 to reach p takes at most

η2iρ
√

8. If p is a FPt
i, the additional time to route to LPt

i

is bounded by βη · 2iρ
√

8 (Lemma 8.5). If p is a TFPt
i, the

additional time to route to LPt
i is bounded by βT η2iρ

√
8

(Lemma 8.6). Thus, the total time to LPt
i is upper-bounded

by ∆t ≤ η2iρ
√

8(1 + max(β, βT )).

Using the previous lemma, we can show that a lookup
request can be routed from a LPt

i to LPt
i−1 until it reaches

LPt
1, from where it is forwarded to ∗LPt

1. It remains to
verify that the lookup request can be sent directly to t from
within ∗LPt

1, which we show under the constraint that

vnode
max <

√
2− α

η(α + 4
√

2)
(6)

Lemma 8.10. If vnode
max satisfies (6), a lookup request that

has found LPt
1 can be sent directly to t from within ∗LPt

1.

Proof. When t moves out of ∗LPt
1 by more than αρ,

it sends an update message m to change LPt
1 at time T0

(Definition 5.1). This message arrives at T1 ≤ T0 + ηρ(α +√
8). A lookup request that reads LPt

1 just before m arrives,
is forwarded to ∗LPt

1. Because ∗LPt
1 does not contain a LPt

0,
the lookup request is routed towards an arbitrary point on
land in ∗LPt

1, and might end up on a node u that is up
to λ away from ∗LPt

1 (lines 8-10 of the lookup algorithm
in Section 7.2). At the limit, this forwarding to u requires
to traverse Lt

1, and the lookup request arrives at u at T2 ≤
T1+ηρ

√
8. By this time, t has moved ∆d ≤ (T2−T0)v

node
max <

ρ(
√

2−α) and is at most ∆d+αρ ≤ λ away from ∗LPt
1. Both,

u and t are at most λ away from ∗LPt
1, and the diameter of

∗LPt
1 is ρ

√
2 = λ. Thus, the total distance between u and t

is at most 3λ = rmin, which shows that u can forward the
lookup request directly to t.

Theorem 8.11. (Lookup) Given that vnode
max satisfies the

Equations (1), (3), (4), (5), and (6), and that TTLi satisfies
the Equation (2) for fixed values of 0 < α ≤ 1, γ ≥ 1, β > 2,
and βT > 2, then, a lookup request for a node t issued from
a node s takes O(d) time to reach t, where d = |st| is the
distance between s and t when the request is issued.

Proof. By Lemma 8.7, we know that the time to find
a first level pointer is bounded by T1 ≤ d · η2γ+2(

√
2 +

8
√

5 + max(β, βT )
√

2) Also, we know that this first level
pointer is found at the latest on level dlog2

d
ρ
e + γ. From

Lemma 8.9, we deduce that following the level pointers from
level dlog2

d
ρ
e+ γ downto 1 takes

T2 ≤
dlog2 d/ρe+γX

j=1

η2jρ
√

8(1 + max(β, βT ))

and the time to forward the lookup request from LPt
1 to t

can be bounded using Lemma 8.10 to

T3 ≤ ηρ
√

8(1 + max(β, βT ))

The total time until the lookup request reaches t is therefore
bounded by

Tlookup ≤ T1 + T2 + T3

≤ T1 +

dlog2 d/ρe+γX
j=0

η2jρ
√

8(1 + max(β, βT ))

< T1 + dη2γ+2
√

8(1 + max(β, βT ))

≤ d · η2γ+2(3
√

2(1 + max(β, βT )) + 8
√

5)| {z }
constant

∈ O(d)

8.2 Maximum Node Speed
While proving the lemmas in the previous section, we for-

mulated constraints on the value of vnode
max and TTLi. In this

section, we collect all of these constraints and present the
maximum node speed for which MLS is proven to work. The
value of TTLi only needs to satisfy Equation (2). Because
enlarging TTLi implies a reduction of vnode

max by Equation
(5), we choose TTLi as small as possible:

TTLi = η2i+1ρ(1/
√

2 + 8
√

5) (7)

To determine the maximum vnode
max , we need to fix the pa-

rameters 0 < α < 1, β > 2, γ ≥ 1 and βT > 1. The value
of η is given indirectly by the topology and the underly-
ing routing algorithm. While maximizing vnode

max , we opt to
minimize Tlookup, the worst case time of a lookup request,
which depends on the same parameters. Thus, we need to
determine α, β, γ and βT , such as to maximize vnode

max and
minimize Tlookup under the constraints that the Equations
(1), (3), (4), (5) and (6) are satisfied.

For γ → ∞; β → ∞, βT → ∞, we receive that vnode
max ≈

0.0845
η

for α ≈ 0.863. This is an unreachable upper bound,

because the maximum cost of a lookup request would grow
to infinity. Clearly, there is a tradeoff between maximizing
vnode

max and minimizing Tlookup. The higher we choose the
maximum node speed, the longer is the worst-case time of
a lookup request. But while Tlookup increases exponentially
with γ, the value of γ barely increases vnode

max . Similarly, β
and βT have an impact on vnode

max while they are below 20,
higher values only increase Tlookup. Twiddling the parame-
ters, we found γ = 1, β = 5, and βT = 19 to optimize



the tradeoff between vnode
max and Tlookup. Using these values,

vnode
max becomes maximal for α = 0.8. We can now state our

lower bound on the maximum node speed for which MLS is
proven to work.

Theorem 8.12. For α = 0.8, β = 5, βT = 19 and γ = 1,
the nodes might move at speed vnode

max ≤ 1
15·η without breaking

MLS.

Proof. By plugging the parameters into the Equations
(1), (3), (4), (5) and (6).

In the absence of lakes, 1/η can be interpreted as the
minimum speed at which messages are routed by the under-
lying routing algorithm. Therefore, the above result shows
that nodes might move at a speed that is only 15 times
smaller than the routing speed, which is remarkably fast. If
we consider real-world nodes such as the mica2 nodes from
UC Berkeley, a data packet experiences around 50 ms delay
while being forwarded by a node. Thus, a packet can be
sent about 40 hops per second. If we assume that a message
is forwarded around 10 meters per hop, the message speed
reaches around 400 meters per second. In this setup and in
the absence of lakes, the maximum node speed is bounded
by 400/16 = 25 meters per second (90 km/h, about 56 mph),
which exceeds by far the node speed in typical network ap-
plications.

8.3 Publish Analysis
Last but not least, we need to consider the cost of the

publish algorithm. While a node is moving, it continuously
sends updates onto its different levels. This produces mes-
sages that need to be routed by the nodes of the system.
Thus, bounding the message overhead of the publish algo-
rithm is of critical importance to ensure that the overall
routing cost induced by the moving nodes is reasonable.
First, we derive the maximum cost of publishing to a level.
Then, we determine the amortized message cost for publish-
ing while a node is moving.

Throughout the paper, we made use of an underlying rout-
ing algorithm that can deliver a message to its destination in
η ·d time, when the air distance between the sender and des-
tination is d. For the following, we assume that the number
of routing hops needed to send a message over a distance d
is proportional to the routing time and write η̃ · d to denote
the number of routing hops needed to route a message to a
target that is d away.

Lemma 8.13. The cost to publish on level-i is bounded by
η̃2i+2ρ(

√
8 + α) message-hops.

Proof. By inspection of the publish algorithm in Sec-
tion 7.1. We determine the message cost c of each individual
line to pick the execution with maximum cost.

On line 2, FPt
i is in the neighboring level-i, which t just

left by more than α·2i, thus c2 ≤ η̃2iρ(α+
√

2). For the lines
4, 7, 9, and 11, the distance from t to LPt

i+1 is maximally

2i(α+
√

8) and the message cost is c4,7,9,11 ≤ η̃2iρ(α+
√

8).
FPt

i+1 on line 12 is contained in (Lt
i+1)

8, but only as long

as δt
i+1 < α2i+1. Thus, the cost to send a message to FPt

i+1

is bounded by c12 ≤ η̃2iρ(2α +
√

8). For line 14, LPt
i+1 is

contained in Lt
i+1, and therefore the cost is c14 ≤ η̃2iρ

√
8.

Finally, for line 17, t reaches FPt
i in c17 ≤ η̃2iρ

√
2 hops, as

FPt
i ∈ Lt

i. The execution with maximum cost visits the lines
2, 11, 12, 14 and 17. Summing up the corresponding costs
results in the indicated number of hops.
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Figure 5: The left plot shows the lookup stretch depend-
ing on the node speed, where 1 is the maximum speed.
The right plot shows the fraction of the time a lookup
spends following FP and TFP. The solid lines indicate
runs with Map1 (a world as shown in Figure 1), the dot-
ted lines show runs with Map2 (no lakes). The results
for the adapted fast-lookup are drawn with circles, the
results for the sequential lookup with squares.

Using an amortized analysis, we can now show that the
expected message overhead induced by the publish method
can be bounded.

Theorem 8.14. (Publish) The amortized message cost
of a node induced by the publish method is at most O(d log d)
message hops, where d denotes the distance the node moved.

Proof. A node t updates its LPt
i when δt

i−1 ≥ αρ2i−1

(Definition 5.1). After an update to LPt
i, t ∈ ∗LPt

i and thus
t needs to move at least αρ2i−1 before it needs to issue an-
other update for LPt

i (Lemma 8.4). Therefore, t needs to up-
date LPt

i at most d/(αρ2i−1) times while moving a distance

d. The cost to publish on Li is maximally η̃2i+2ρ(
√

8 + α)
(Lemma 8.13), and the total cost for updating Li while mov-

ing the distance d is bounded by dη̃8ρ(
√

8+α)/α. The total
publish cost is given by the sum of the cost of each level to
which t has to publish. Because ∀j : δt

j = 0 after the initial-
ization phase of the publish method, t only needs to publish
on Li if d ≥ αρ2i−1, and the total publish cost is bounded
by d log2(2d/α)η̃8ρ(

√
8 + α)/α ∈ O(d log d). Note that the

total number of levels is M (Section 2) and the publish cost

is further bounded by dMη̃8ρ(
√

8 + α)/α

9. SIMULATION
We support our theoretical results with a series of sim-

ulations, through which we show that the average lookup
time and publish cost are well below the worst case costs.
Our simulation framework implements mobile nodes that
select their route using the random waypoint model and
maintain their hierarchical lookup data according to Sec-
tion 7.1. However, being mainly a proof of concept, the
simulation abstracts from the underlying routing9, where
we delay messages according to the route length, but do not
simulate the node-to-node routing. Also, we simulate only
a (random) sub-set of the nodes as to improve the run-time.
As a consequence, the storage of pointers is performed by
the framework and relieves us from ensuring the minimum
node density.

The techniques of Le Boudec et al. [11] to obtain a sta-
tionary regime cannot be applied, because the nodes are not
memoryless with respect to their lookup hierarchy. There-
fore, we obtain a close to stationary regime through a long

9Remember that the underlying routing can route a message
to a given position. This is orthogonal to our main goal,
where the location of the destination node is unknown.



Figure 6: We captured over 600000 node motions during
our simulation. This figure shows the publish overhead
caused by a moving node plotted against the distance
the node moved. The (least-square) average is indicated
with the dashed line.

first phase, during which each node moves at least to its first
waypoint before any lookup request is issued. Afterwards,
the nodes issue lookup requests to randomly chosen nodes,
where each node only sends another lookup request when
the previous request arrived.

We ran the simulation with 5000 nodes issuing a total of
100000 lookup requests and repeated it for different node
speeds and two different world maps. Map1 corresponds to
the world shown in Figure 1. The maximal routing stretch
due to lakes is 10, the side-length is 5300 units and ρ was
chosen to be 1 unit. Map2 is of the same size, but contains no
lakes at all. The average lookup stretch is shown in the left
plot of Figure 5. For increased node speed (1 corresponds
to vnode

max ), nodes produce more TFP, which helps lookup
requests to find a first pointer to their destination, which in
turn decreases the lookup stretch. This fact is supported by
the right plot of Figure 5, which shows that lookup requests
spend more time following FP and TFP for increased node
speed.

In order to obtain the average lookup stretch of approxi-
mately 6, we slightly modified the lookup algorithm: Instead
of using the slow sequential search for a pointer in the 9 Li

of each level, the sender node s sends the lookup request to
all 9 Li in parallel. If a lookup request finds a pointer to
the destination node t, it is immediately forwarded towards
t and sends back a FOUND message to s. Lookup requests
that do not find a pointer to t send back a NOT FOUND mes-
sage and die. s collects all the responses and only sends the
lookup request to the next higher levels Li+1 if all responses
are negative.

This fast-lookup approach reduces the lookup time by a
factor 2 at the cost of increased message overhead. However,
more than one copy of the lookup request might be routed
towards t if no coordination between the 9 parallel lookup
requests takes place. Consequently, each node needs some
means to detect messages that were received several times.

For the publish requests, we measured the total message
cost dependent on the distance a node moved (Figure 6).
Using a least-square approach, we determined the average
publish overhead to be 4.3 · d log d, where d is the moved
distance. This overhead is reasonably small and ensures that
the network is not saturated with messages due to moving
nodes.

10. CONCLUSIONS
In this paper, we described a location service that sup-

ports truly mobile nodes, allowing concurrent routing and

mobility. We determined the maximum node speed and
proved that MLS has constant stretch for lookup requests
under the speed constraint.

Open questions remain in the field of bi-directional com-
munication, where nodes might be able to reuse position
information from the sender to reply. Also, we used some-
what strong model assumptions (dense node distribution,
reliable communication, and the knowledge of the position
of lakes). We intend to weaken these constraints in further
work.
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