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The Lovász Local Lemma

•«Bad» events 𝐸1, 𝐸2, … , 𝐸𝑛 with Pr 𝐸𝑖 < 1

⇒ Pr ¬𝐸1 ∧ ¬𝐸2 ∧ ⋯∧ ¬𝐸𝑛 > 0

•Each event is independent of all but 𝑑 other events

•Pr 𝐸𝑖 < 𝑝 where 𝑒𝑝 𝑑 + 1 ≤ 1

⇒ Pr ¬𝐸1 ∧ ¬𝐸2 ∧ ⋯∧ ¬𝐸𝑛 > 0

mutually independent

Lovász Local Lemma



The Constructive LLL

•Mutually independent random variables 𝑋1, 𝑋2, … , 𝑋𝑘

•Bad events 𝐸1, 𝐸2, … , 𝐸𝑛

•Each event is independent of all but 𝑑 other events

𝑋1 ∨ ¬𝑋2 ∧ ¬𝑋1 ∨ 𝑋3 ∧ 𝑋3 ∨ 𝑋4

•Dependency graph

𝐸1

𝐸3𝐸2

𝐸1 𝐸2 𝐸3

𝑋1, 𝑋2

𝑋1, 𝑋3 𝑋3, 𝑋4
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The Distributed LLL

•Input: dependency graph

•Additional input for each node 𝐸𝑖: the random variables that 
𝐸𝑖 depends on (and how 𝐸𝑖 depends on them)

•Output of each node 𝐸𝑖: an assignment of the variables it 
depends on such that:

1) it agrees with its neighbours

2) the bad event 𝐸𝑖 is avoided



Our result

•Moser and Tardos (2010): 𝑂 log2 𝑛

•Chung et al. (2014): 𝑂(log 𝑛) for bounded-degree graphs

Ω(log∗ 𝑛)

•Ω(log log 𝑛) (Monte-Carlo, w.h.p.)



Sinkless Orientation

•Input: edge 𝑑-coloured, 𝑑-regular graph

•Output of each node: non-conflicting orientations of the 
incident edges such that the node itself is not a sink
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Sinkless Orientation

•Input: edge 𝑑-coloured, 𝑑-regular graph

•Output of each node: non-conflicting orientations of the 
incident edges such that the node itself is not a sink



Reduction from SO to LLL

Instance for SO,
3-regular

Output for SO,
4-regular

Instance for LLL

Output for SO,
3-regular

Instance for SO,
4-regular

Output for LLL



Sinkless Colouring

•Input: edge 𝑑-coloured, 𝑑-regular graph

•Output of each node: one of the 𝑑 colours such that no 
forbidden configuration occurs

Forbidden!

Fine!
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SO algorithm,   
Pr(failure) ≤ 𝑝

𝑡 ∈ Θ(log log 𝑛)

𝑡 − 1

…

0

SO algorithm,   
Pr(failure) ≤ 𝑝′

SC algorithm

SC algorithm,   
Pr(failure) ≤ 𝑞

… ……

𝑝′ = 𝐶 ⋅ 12 𝑝

w.h.p.

Pr(failure) ≤
1

10



Any Monte-Carlo algorithm for the 
distributed LLL that gives a correct 
output w.h.p. needs Ω(log log 𝑛) rounds. 



Any Monte-Carlo algorithm for the 
distributed LLL that gives a correct 
output w.h.p. needs Ω(log log 𝑛) rounds. 

Any Monte-Carlo algorithm for finding a 
node 𝑑-colouring in 𝑑-regular, bipartite, 
Ω(log 𝑛)-girth graphs that gives a correct 
output w.h.p. needs Ω(log log 𝑛) rounds. 

The randomised time complexity of 
finding a node 𝑑-colouring in trees with 
maximum degree 𝑑 is Θ(logd log 𝑛), the 
deterministic complexity is Θ(logd 𝑛).

Chang et al. (2016)
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The Constructive LLL

•Each 𝐸𝑖 shares variables with at most 𝑑 other events

•Pr 𝐸𝑖 < 𝑝 where 𝑒𝑝 𝑑 + 1 ≤ 1

⇒ An assignment of the random variables that avoids all bad 
events can be found efficiently

•Example: 𝑋𝑖 binary

𝑋1 ∨ ¬𝑋2 ∧ ¬𝑋1 ∨ 𝑋3 ∨ ¬𝑋4 ∧ 𝑋2 ∨ 𝑋4 ∧ (¬𝑋3 ∨ 𝑋4)

vbl 𝐸1 = {𝑋1, 𝑋2}, vbl 𝐸2 = {𝑋1, 𝑋3, 𝑋4},

vbl 𝐸3 = {𝑋2, 𝑋4}, vbl 𝐸4 = {𝑋3, 𝑋4}

Moser and Tardos, 2010

𝑑 = 3, 𝑝 =
1

4



The Dependency Graph

•Nodes: events

•Edges: the events share a variable

•Example:

vbl 𝐸1 = {𝑋1}

vbl 𝐸2 = {𝑋1, 𝑋2}

vbl 𝐸3 = {𝑋1, 𝑋3}

vbl 𝐸4 = {𝑋2, 𝑋3, 𝑋4}

vbl 𝐸5 = {𝑋4}

•Maximum degree 𝑑

𝐸2

𝐸4

𝐸3

𝐸5

𝐸1



Distributed Computing

•Input: simple undirected graph (+ some task-specific input)

•Nodes: computational entities

•Edges: communication channels

•Synchronous rounds

•In each round, each node ...

1) sends an arbitrarily large message to each neighbour

2) receives sent messages

3) performs local computations

•Each node has to output a correct answer

•Time complexity: number of rounds (worst-case input)
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Technicalities

•Monte-Carlo algorithms, w.h.p.

•Girth ≥ 2𝑡 + 1

•𝑑 = 3

•Failure probability 𝑝𝑓 𝑣 resp. 𝑝𝑓 𝑒


