A Lower Bound for the Distributed Lovász Local Lemma

<u>Sebastian Brandt</u>, Orr Fischer, Juho Hirvonen, Barbara Keller, Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, Jara Uitto

Aalto University, Comerge AG, ETH Zurich, Tel Aviv University

The Lovász Local Lemma

• «Bad» events $E_1, E_2, ..., E_n$ with $Pr(E_i) < 1$ mutually independent

$$\Rightarrow \Pr(\neg E_1 \land \neg E_2 \land \cdots \land \neg E_n) > 0$$

Lovász Local Lemma

•Each event is independent of all but d other events • $\Pr(E_i) < p$ where $ep(d + 1) \le 1$

$$\Rightarrow \Pr(\neg E_1 \land \neg E_2 \land \cdots \land \neg E_n) > 0$$

The Constructive LLL

- Mutually independent random variables X_1, X_2, \dots, X_k
- Bad events E_1 , E_2 , ..., E_n
- Each event is independent of all but d other events

$$(X_1 \lor \neg X_2) \land (\neg X_1 \lor X_3) \land (X_3 \lor X_4)$$

$$E_1 \qquad E_2 \qquad E_3 \qquad X_1, X_3 \qquad X_3, X_4$$

• Dependency graph

$$X_1, X_2 \qquad E_1 \qquad E_2 \qquad E_3$$

The Distributed LLL

- •Input: dependency graph
- •Additional input for each node E_i : the random variables that E_i depends on (and how E_i depends on them)
- •Output of each node E_i : an assignment of the variables it depends on such that:
 - 1) it agrees with its neighbours
 - 2) the bad event E_i is avoided

Our result

• Moser and Tardos (2010): $O(\log^2 n)$

•Chung et al. (2014): $O(\log n)$ for bounded-degree graphs $\Omega(\log^* n)$

• $\Omega(\log \log n)$ (Monte-Carlo, w.h.p.)

- •Input: edge *d*-coloured, *d*-regular graph
- •Output of each node: non-conflicting orientations of the incident edges such that the node itself is not a sink

- •Input: edge *d*-coloured, *d*-regular graph
- •Output of each node: non-conflicting orientations of the incident edges such that the node itself is not a sink

- •Input: edge *d*-coloured, *d*-regular graph
- •Output of each node: non-conflicting orientations of the incident edges such that the node itself is not a sink

- •Input: edge *d*-coloured, *d*-regular graph
- •Output of each node: non-conflicting orientations of the incident edges such that the node itself is not a sink

Sinkless Colouring

- •Input: edge *d*-coloured, *d*-regular graph
- •Output of each node: one of the *d* colours such that no *forbidden configuration* occurs

t

Any Monte-Carlo algorithm for the distributed LLL that gives a correct output w.h.p. needs $\Omega(\log \log n)$ rounds.

Any Monte-Carlo algorithm for the distributed LLL that gives a correct output w.h.p. needs $\Omega(\log \log n)$ rounds.

Any Monte-Carlo algorithm for finding a node d-colouring in d-regular, bipartite, $\Omega(\log n)$ -girth graphs that gives a correct output w.h.p. needs $\Omega(\log \log n)$ rounds.

Chang et al. (2016)

The randomised time complexity of finding a node d-colouring in trees with maximum degree d is $\Theta(\log_d \log n)$, the deterministic complexity is $\Theta(\log_d n)$.

Backup Slides

The Constructive LLL

•Each E_i shares variables with at most d other events •Pr $(E_i) < p$ where $ep(d + 1) \le 1$

 \Rightarrow An assignment of the random variables that avoids all bad events can be found efficiently

Moser and Tardos, 2010

•Example: X_i binary $(X_1 \lor \neg X_2) \land (\neg X_1 \lor X_3 \lor \neg X_4) \land (X_2 \lor X_4) \land (\neg X_3 \lor X_4)$

$$vbl(E_1) = \{X_1, X_2\}, vbl(E_2) = \{X_1, X_3, X_4\}, \\ vbl(E_3) = \{X_2, X_4\}, vbl(E_4) = \{X_3, X_4\}$$
 $d = 3, p = \frac{1}{4}$

The Dependency Graph

•Nodes: events

• Edges: the events share a variable

•Example:

$$vbl(E_1) = \{X_1\}$$

$$vbl(E_2) = \{X_1, X_2\}$$

$$vbl(E_3) = \{X_1, X_3\}$$

$$vbl(E_4) = \{X_2, X_3, X_4\}$$

$$vbl(E_5) = \{X_4\}$$

• Maximum degree *d*

- •Input: simple undirected graph (+ some task-specific input)
- •Nodes: computational entities
- Edges: communication channels
- •Synchronous rounds
- •In each round, each node ...
 - 1) sends an arbitrarily large message to each neighbour
 - 2) receives sent messages
 - 3) performs local computations
- Each node has to output a correct answer
- •Time complexity: number of rounds (worst-case input)

Technicalities

- •Monte-Carlo algorithms, w.h.p.
- •Girth $\geq 2t + 1$
- •d = 3
- Failure probability $p_f(v)$ resp. $p_f(e)$