
Sebastian Brandt, Orr Fischer, Juho Hirvonen, Barbara Keller,
Tuomo Lempiäinen, Joel Rybicki, Jukka Suomela, Jara Uitto

A Lower Bound for the Distributed
Lovász Local Lemma

Aalto University, Comerge AG, ETH Zurich, Tel Aviv University

The Lovász Local Lemma

•«Bad» events 𝐸1, 𝐸2, … , 𝐸𝑛 with Pr 𝐸𝑖 < 1

⇒ Pr ¬𝐸1 ∧ ¬𝐸2 ∧ ⋯∧ ¬𝐸𝑛 > 0

•Each event is independent of all but 𝑑 other events

•Pr 𝐸𝑖 < 𝑝 where 𝑒𝑝 𝑑 + 1 ≤ 1

⇒ Pr ¬𝐸1 ∧ ¬𝐸2 ∧ ⋯∧ ¬𝐸𝑛 > 0

mutually independent

Lovász Local Lemma

The Constructive LLL

•Mutually independent random variables 𝑋1, 𝑋2, … , 𝑋𝑘

•Bad events 𝐸1, 𝐸2, … , 𝐸𝑛

•Each event is independent of all but 𝑑 other events

𝑋1 ∨ ¬𝑋2 ∧ ¬𝑋1 ∨ 𝑋3 ∧ 𝑋3 ∨ 𝑋4

•Dependency graph

𝐸1

𝐸3𝐸2

𝐸1 𝐸2 𝐸3

𝑋1, 𝑋2

𝑋1, 𝑋3 𝑋3, 𝑋4

Distributed Computing

Distributed Computing

Distributed Computing

Distributed Computing

Distributed Computing

The Distributed LLL

•Input: dependency graph

•Additional input for each node 𝐸𝑖: the random variables that
𝐸𝑖 depends on (and how 𝐸𝑖 depends on them)

•Output of each node 𝐸𝑖: an assignment of the variables it
depends on such that:

1) it agrees with its neighbours

2) the bad event 𝐸𝑖 is avoided

Our result

•Moser and Tardos (2010): 𝑂 log2 𝑛

•Chung et al. (2014): 𝑂(log 𝑛) for bounded-degree graphs

Ω(log∗ 𝑛)

•Ω(log log 𝑛) (Monte-Carlo, w.h.p.)

Sinkless Orientation

•Input: edge 𝑑-coloured, 𝑑-regular graph

•Output of each node: non-conflicting orientations of the
incident edges such that the node itself is not a sink

Sinkless Orientation

•Input: edge 𝑑-coloured, 𝑑-regular graph

•Output of each node: non-conflicting orientations of the
incident edges such that the node itself is not a sink

Sinkless Orientation

•Input: edge 𝑑-coloured, 𝑑-regular graph

•Output of each node: non-conflicting orientations of the
incident edges such that the node itself is not a sink

Sinkless Orientation

•Input: edge 𝑑-coloured, 𝑑-regular graph

•Output of each node: non-conflicting orientations of the
incident edges such that the node itself is not a sink

Reduction from SO to LLL

Instance for SO,
3-regular

Output for SO,
4-regular

Instance for LLL

Output for SO,
3-regular

Instance for SO,
4-regular

Output for LLL

Sinkless Colouring

•Input: edge 𝑑-coloured, 𝑑-regular graph

•Output of each node: one of the 𝑑 colours such that no
forbidden configuration occurs

Forbidden!

Fine!

SO algorithm𝑡 SC algorithm

SO algorithm𝑡

SO algorithm𝑡 + 1

SC algorithm

SO algorithm𝑡

𝑡 − 1 SC algorithm

SO algorithm𝑡

𝑡 − 1 SO algorithm SC algorithm

SO algorithm𝑡

𝑡 − 1

…

0

SO algorithm

SC algorithm

SC algorithm

… ……

SO algorithm,
Pr(failure) ≤ 𝑝

𝑡

𝑡 − 1

…

0

SO algorithm,
Pr(failure) ≤ 𝑝′

SC algorithm,
Pr(failure) ≤ ?

SC algorithm,
Pr(failure) ≤ 𝑞

… ……

SO algorithm,
Pr(failure) ≤ 𝑝

𝑡

𝑡 − 1

…

0

SO algorithm,
Pr(failure) ≤ 𝑝′

SC algorithm,
Pr(failure) ≤ ?

SC algorithm,
Pr(failure) ≤ 𝑞

… ……

𝑝′ = 𝐶 ⋅ 12 𝑝

SO algorithm,
Pr(failure) ≤ 𝑝

𝑡 ∈ Θ(log log 𝑛)

𝑡 − 1

…

0

SO algorithm,
Pr(failure) ≤ 𝑝′

SC algorithm

SC algorithm,
Pr(failure) ≤ 𝑞

… ……

𝑝′ = 𝐶 ⋅ 12 𝑝

w.h.p.

Pr(failure) ≤
1

10

Any Monte-Carlo algorithm for the
distributed LLL that gives a correct
output w.h.p. needs Ω(log log 𝑛) rounds.

Any Monte-Carlo algorithm for the
distributed LLL that gives a correct
output w.h.p. needs Ω(log log 𝑛) rounds.

Any Monte-Carlo algorithm for finding a
node 𝑑-colouring in 𝑑-regular, bipartite,
Ω(log 𝑛)-girth graphs that gives a correct
output w.h.p. needs Ω(log log 𝑛) rounds.

The randomised time complexity of
finding a node 𝑑-colouring in trees with
maximum degree 𝑑 is Θ(logd log 𝑛), the
deterministic complexity is Θ(logd 𝑛).

Chang et al. (2016)

Backup Slides

The Constructive LLL

•Each 𝐸𝑖 shares variables with at most 𝑑 other events

•Pr 𝐸𝑖 < 𝑝 where 𝑒𝑝 𝑑 + 1 ≤ 1

⇒ An assignment of the random variables that avoids all bad
events can be found efficiently

•Example: 𝑋𝑖 binary

𝑋1 ∨ ¬𝑋2 ∧ ¬𝑋1 ∨ 𝑋3 ∨ ¬𝑋4 ∧ 𝑋2 ∨ 𝑋4 ∧ (¬𝑋3 ∨ 𝑋4)

vbl 𝐸1 = {𝑋1, 𝑋2}, vbl 𝐸2 = {𝑋1, 𝑋3, 𝑋4},

vbl 𝐸3 = {𝑋2, 𝑋4}, vbl 𝐸4 = {𝑋3, 𝑋4}

Moser and Tardos, 2010

𝑑 = 3, 𝑝 =
1

4

The Dependency Graph

•Nodes: events

•Edges: the events share a variable

•Example:

vbl 𝐸1 = {𝑋1}

vbl 𝐸2 = {𝑋1, 𝑋2}

vbl 𝐸3 = {𝑋1, 𝑋3}

vbl 𝐸4 = {𝑋2, 𝑋3, 𝑋4}

vbl 𝐸5 = {𝑋4}

•Maximum degree 𝑑

𝐸2

𝐸4

𝐸3

𝐸5

𝐸1

Distributed Computing

•Input: simple undirected graph (+ some task-specific input)

•Nodes: computational entities

•Edges: communication channels

•Synchronous rounds

•In each round, each node ...

1) sends an arbitrarily large message to each neighbour

2) receives sent messages

3) performs local computations

•Each node has to output a correct answer

•Time complexity: number of rounds (worst-case input)

Reduction from SO to LLL

Reduction from SO to LLL

Reduction from SO to LLL

𝑋2
𝑋1 𝑋4

𝑋3 𝑋6𝑋5
𝑋7

Reduction from SO to LLL

𝑋2
𝑋1 𝑋4

𝑋3 𝑋6𝑋5
𝑋7

or

Reduction from SO to LLL

𝑋2
𝑋1 𝑋4

𝑋3 𝑋6𝑋5
𝑋7

or

𝐸3𝐸2 𝐸4

𝐸5

𝐸1

𝐸7𝐸6 𝐸8

Reduction from SO to LLL

𝑋2
𝑋1 𝑋4

𝑋3 𝑋6𝑋5
𝑋7

or

𝐸3𝐸2 𝐸4

𝐸5

𝐸1

𝐸7𝐸6 𝐸8

𝑓 4 ≤ 16

Reduction from SO to LLL

𝑋2
𝑋1 𝑋4

𝑋3 𝑋6𝑋5
𝑋7

or

𝐸3𝐸2 𝐸4

𝐸5

𝐸1

𝐸7𝐸6 𝐸8

𝑓 4 ≤ 16
𝑝 ⋅ 𝑓 𝑑 ≤ 1

Reduction from SO to LLL

𝑋2
𝑋1 𝑋4

𝑋3 𝑋6𝑋5
𝑋7

or

𝐸3𝐸2 𝐸4

𝐸5

𝐸1

𝐸7𝐸6 𝐸8

𝑓 4 ≤ 16
𝑝 ⋅ 𝑓 𝑑 ≤ 1
1

16
⋅ 16 ≤ 1

Reduction from SO to LLL

𝑋2
𝑋1 𝑋4

𝑋3 𝑋6𝑋5
𝑋7

or

𝐸3𝐸2 𝐸4

𝐸5

𝐸1

𝐸7𝐸6 𝐸8

𝑓 4 ≤ 16
𝑝 ⋅ 𝑓 𝑑 ≤ 1
1

16
⋅ 16 ≤ 1

Reduction from SO to LLL

Reduction from SO to LLL

Reduction from SO to LLL

Technicalities

•Monte-Carlo algorithms, w.h.p.

•Girth ≥ 2𝑡 + 1

•𝑑 = 3

•Failure probability 𝑝𝑓 𝑣 resp. 𝑝𝑓 𝑒

