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Credit to Nakkiran et al. [6]: The Deep double descent phenomemon : given a fixed dataset
size, a the test performance of a model will plateau as it is scaled past overfitting

Despite being invented in 2015 [7], diffusion image models only came into prominence
in 2020. Despite being slightly more computationally intensive to train, such models are
more data efficient: given a fixed dataset size they can learn to generate much higher quality
samples than their alternatives, provided they have sufficiently large computational resources
for training.

Recently, diffusion models have been applied [1] and scaled on text data, and seem
poised to challenge autoregressive (predict-the-next-token) LLMs for state-of-the-art text
generation. The question we would like to answer with this project is: “Are diffusion LLMs
more data efficient than autoregressive LLMs?”.

In the current year of 2025, this question is particularly salient: frontier LLMs are transi-
tioning from a regime where compute is scarce to a regime where data are scarce. Following
the so-called scaling laws, which determine the most compute-efficient dataset sizes to train
autoregressive LLMs, frontier models are now trained on all ~ 15 Trillion useful tokens on
the internet [3], with Ilya Sutskever referring to text data as the “fossil fuel of AI”. Improving
data efficiency also has implications for capabilities: currently, autoregressive LLMs struggle
to generalize past their vast training dataset, which covers > 10,000x more language input
than and single person receives in their lifetime. If diffusion models are more data efficient
than their alternatives for text generation (as they are for image generation), this could mean
that they will exhibit greater capabilities once there exists sufficient computational resources
to scale them to these large sizes.

Practically, this project will look like exploring & replicating results such as the “Kaplan”
[5] and “chinchilla” [4] scaling laws and deep double descent [2, 6] with a small dataset for
both diffusion and autoregressive LLMs to investigate their data efficiency.
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