
Optimal Distributed All Pairs Shortest Paths

and Applications
Preliminary full version - please check for updates.

Stephan Holzer Roger Wattenhofer

ETH Zurich, Switzerland

{stholzer, wattenhofer}@tik.ee.ethz.ch

22.05.2012

Abstract

We present an algorithm to compute All Pairs Shortest Paths
(APSP) of a network in a distributed way. The model of distributed
computation we consider is the message passing model: in each syn-
chronous round, every node can transmit a different (but short) mes-
sage to each of its neighbors. We provide an algorithm that computes
APSP in O(n) communication rounds, where n denotes the number of
nodes in the network. This implies a linear time algorithm for comput-
ing the diameter of a network. Due to a lower bound these two algo-
rithms are optimal up to a logarithmic factor. Furthermore, we present
a new lower bound for approximating the diameter D of a graph: Be-
ing allowed to answer D+ 1 or D can speed up the computation by at
most a factor D. On the positive side, we provide an algorithm that
achieves such a speedup of D and computes an 1 + ε multiplicative
approximation of the diameter. We extend these algorithms to com-
pute or approximate other problems, such as girth, radius, center and
peripheral vertices. At the heart of these approximation algorithms is
the S-Shortest Paths problem which we solve in O(|S|+D) time.

1

1 Introduction

In networks, basically two types of routing algorithms are known: distance-
vector and link-state. Link-state algorithms embody the school of cen-
tralized algorithms. First all the information about the network graph is
collected, and then optimal routes between all nodes are computed, using
an efficient centralized algorithm. Distance-vector routing protocols on the
other hand represent the school of distributed algorithms. Nodes update
their routing tables by constantly exchanging messages with their neighbors.
Both approaches are used in the Internet, link-state for instance in OSPF
or IS-IS, distance-vector in RIP or BGP1. Among network researchers there
is a vivid debate on which approach is better. After all, both approaches
essentially do the same thing – compute shortest paths between all nodes –
a problem known as all pairs shortest paths (APSP). Despite its practical
relevance, the distributed time-complexity of APSP was so far not known.

In this paper we present a new distributed algorithm that computes
APSP in O(n) time. Because of a recent lower bound for computing the
diameter [22], this APSP-algorithm is essentially optimal (up to a logarith-
mic factor). In addition this demonstrates that computing the diameter
has about the same complexity as computing APSP in a distributed set-
ting. These statements contrast the sequential setting: It is open to provide
matching upper/lower bounds for APSP or to show whether determining the
diameter of a graph can be done faster than computing APSP (or performing
matrix multiplication.)

In addition, we present a new lower bound for approximating the di-
ameter D of a graph: Being allowed to answer D + 1 (in addition to the
correct answer D) can speed up the computation by at most a factor D.
On the bright side, we provide an algorithm that achieves a speedup of D
and computes an 1 + ε multiplicative approximation of the diameter. We
extend these algorithms to compute/approximate other problems, such as
girth, radius, center and peripheral vertices. At the heart of these approx-
imation algorithms is the S-Shortest Paths problem. We essentially show
that s breadth-first searches can be computed in time O(s+D) which is of
interest on its own.

2 Model and Basic Definitions

Model: We study the message passing model with limited bandwidth (also
known as CONGEST model, [32]): Our network is represented by an undi-
rected unweighted graph G = (V,E). Nodes V correspond to processors
(computers or routers), two nodes are connected by an edge from set E if
they can communicate directly with each other. We denote the number of

1These are presented in many textbooks, e.g. [6].

2

nodes of a graph by n, and the number of its edges by m. Furthermore
we assume that each node has an unique identifier (ID) in the range of
{1, . . . , 2O(logn)}, i.e. each node can be represented by O(log n) bits. We
assume that n is known to each node and there is a node with ID 1. These
are valid assumptions since the time to compute n or to find the node with
smallest ID and rename it to 1 would not affect the asymptotic runtime of
the presented algorithms. For simplicity, we refer to u ∈ V not only as a
node, we use u to refer to u’s ID as well when this is clear from the context.
Nodes initially have no knowledge of the graph G – except that they know
their immediate neighborhood. By Nk(v) we denote the k-neighborhood of
v, that is all nodes in G that can be reached from v using k hops/edges.
We define that v ∈ N1(v). Given a set S ⊆ V , set Nk(S) denotes the
k-neighborhood of S, that is ∪v∈SNk(S).

We consider a synchronous communication model, where every node can
send B bits of information over all its edges in one synchronous round of
communication. In principle it is allowed that in a round, a node can send
different messages of size B to each of its neighbors (and likewise receive
different messages from each of its neighbors). Typically we have B =
O(log n) bits, which allows us to send a constant number of node or edge
IDs per message. Since communication cost usually dominates the cost of
local computation, local computation is considered free. We are interested
in the number of rounds that a distributed algorithm needs until a problem
is solved – this is the time complexity of the algorithm. By solving a problem
we refer to evaluating a function h : Cn → SOL over the underlying network-
structure. Here Cn is the set of all graphs over n vertices and SOL is e.g.
{0, 1} or N. We define distributed round complexity as follows:

Definition 1. (distributed round complexity). Let Aε be the set of dis-
tributed algorithms that use (public) randomness (indicated by “pub”) and
evaluate a function h on the underlying graph G over n nodes with an error
probability smaller than ε. Denote by Rdc−pubε (A(G)) the distributed round
complexity (indicated by “dc”) representing the number of rounds that an
algorithm A ∈ Aε needs in order to compute h(G) on G. We define

Rdc−pubε (h) = min
A∈Aε

max
G∈Cn

Rdc−pubε (A(G))

to be the smallest amount of rounds any algorithm needs in order to compute
h.

Throughout the paper we often state results in a less formal way. Ex-
ample: when h is diam (the function that maps a graph to its diameter)

and Rdc−pub0 (diam) = O(n), we often just write “the deterministic round
complexity of computing the diameter is O(n)”.

Let us denote by d(u, v) the distance of nodes u and v in G, which is the
length of a shortest u− v-path in G. The problems we consider are:

3

Definition 2. (APSP, S-SP) Let G = (V,E) be a graph. The all pairs
shortest paths (APSP) problem is to compute the shortest paths between any
pair of vertices in V × V . In the S-Shortest Paths (S-SP) problem, we are
given a set S ⊆ V and need to compute the shortest paths between any pair
of vertices in S × V .

Like in [18], at the end of an S-SP computation, each node in V knows
its distances to every node in S. Accordingly we assume that the result of
APSP/S-SP is stored in a distributed way as well. Note that there exist
graphs where storing all distance information of all pairs at all nodes takes
Ω(n2) time, such that a distributed approach is crucial.

Definition 3. (eccentricity,diameter, radius, girth) The eccentricity ecc(u)
of a node u ∈ V is defined to be ecc(u) := maxv∈V d(u, v) and is the
maximum distance to any other node in the graph. The diameter D :=
maxu∈V ecc(u) = maxu,v∈V d(u, v) of a graph G is the maximum dis-
tance between any two nodes of the graph. The radius of G denoted by
rad := minu∈V ecc(u) is the minimum eccentricity of any vertex. The girth
g of a graph G is the length of the shortest cycle in G. If G is a forest its
girth is infinity.

Definition 4. (center vertices, peripheral vertices). The center of a graph
G is the set of nodes whose eccentricity equals the radius of the graph. A
node u is a peripheral vertex of a graph if its eccentricity equals the diameter
of the graph.

Definition 5. (approximation). Given an optimization problem P , de-
note by OPT the cost of the optimal solution for P and by solA the cost
of the solution of an algorithm A for P . Let ρ ≥ 1. We say A is a
(×, ρ)-approximation (multiplicative approximation) for P if OPT ≤ solA ≤
ρ ·OPT for any input. Let γ ≥ 0. We say A is a (+, γ)-approximation (ad-
ditive approximation) for P if OPT ≤ solA ≤ OPT + γ for any input.

We extend the above definition to sets: assume we are given the problem
of computing a set Sc := {v | cost(v) ≤ c} of nodes, where each node has a
certain cost. A (+, k)-approximation to Sc is any subset of {v | cost(v) ≤ c+
k} that includes Sc. As an example, consider the eccentricity of a node as its
cost which allows us to think of the center of G as the set of nodes with cost
rad(G). A k-approximation to the center in unweighted graphs would be any
subsets of the center’s k-neighborhood such that center ⊆ S ⊆ Nk(center).

Definition 6. In the problem of computing/approxima-ting eccentricities,
we require that each node in the graph knows (an approximation to) its
own eccentricity in the end. In the problem of computing/approximating
the diameter/radius /girth , we require that each node in the graph knows
(the same estimate of) the networks diameter/radius /girth in the end. In

4

the problem of computing (approximations to) the center/peripheral vertices,
we require that each node in the graph knows whether it belongs to (the
approximation of) the center/peripheral vertices.

Sometimes we use the following facts and notion of (partial) BFS trees.

Fact 1. It is well known that the eccentricity of any node is a good multi-
plicative approximation of the diameter: For any node u ∈ V we know that
ecc (u) ≤ D ≤ 2 · ecc (u).

Fact 2. If G is not a forest, then the girth can be bounded using the diameter
by g ≤ 2 ·D + 1.

Definition 7. (k-BFS tree). A (partial) k-BFS tree rooted in v is the subtree
of a BFS tree rooted in v that contains only the nodes at distance at most k
to v.

During the paper we denote a set {0, . . . , k} by [k] and the degree of a
node by d(v).

3 Related Work and Our Contributions

3.1 All Pairs Shortest Paths

In the synchronous model, a link-state APSP algorithm will finish in D
time, since nodes have to learn about all the edges. Likewise a distance-
vector APSP algorithm will finish in D time: Nodes with distance d will
learn about each other in round d. So both algorithms have the same time
complexity. However, both algorithms severely violate our restriction for
message size! A link-state algorithm must exchange information about all
edges, hence potentially messages are of a size which is quadratic in the
number of nodes. Likewise, nodes in a distance-vector algorithm may have
to send routing table updates about almost all the nodes in each round. In
real networks, one can often not exchange information about all nodes in
one single message. If we restrict link-state and distance-vector algorithms
to messages of size O(log n) (by serializing the long messages), they will
need strictly superlinear (and sometimes quadratic) time.

Due to its importance in network design, shortest path-problems in gen-
eral and the APSP problem in particular were among the earliest studied
problems in distributed computing. Developed algorithms were immediately
used e.g. as early as in 1969 in the ARPANET (see [28], p.506). Routing
messages via shortest paths were extensively discussed to be beneficial in
[11, 29, 30, 38, 41] and in many other papers. It is not surprising that there
is plenty of literature dealing with algorithms for distributed APSP, but
most of them focused on secondary targets such as trading time for message
complexity. E.g. papers [1, 12, 45] obtain a communication complexity of

5

roughly O(n ·m) bits/messages and still require superlinear runtime. Also a
lot of effort was spent to obtain fast sequential algorithms for various versions
of computing APSP or related problems such as the diameter problem, e.g.
[3, 4, 7, 13, 39, 40]. These algorithms are based on fast matrix multiplication
such that currently the best runtime is O(n2.3727) due to [46]. Despite these
advances the nature of distributed computing makes it unlikely to design
fast algorithms based on matrix multiplication. It seems that combinatorial
algorithms for APSP (not using fast matrix multiplication) are much better
suited to be implemented in a distributed way. Combinatorial APSP algo-
rithms were studied first in [21] and then [9, 10, 15, 19, 23, 42, 43, 50] but
only yield polylogarithmic improvements over O(n3).

In this paper we do not follow these approaches but present a simpler
algorithm with simple analysis that computes APSP by extending a classical
approach to compute APSP that is taught in many lectures: Perform a
breadth-first search (BFS) from each node in the graph. The depth of a
node in a BFS tree is its distance to the tree’s root. Since one computes all
BFS trees, all distances are known in the end. This takes timeO(n2+n·m) in
most sequential models of computing. In the distributed model considered in
this paper, this approach (if not modified) takes time O(n ·D) as mentioned
e.g. in [18] since each BFS requires O(D) time. In Section 4.1 we modify
this approach by starting the breadth-first searches in a special order at
special times. We prove that the chosen start times and the order yield no
congestion and thus a linear runtime. This is optimal up to a logarithmic
factor due to a lower bound presented in [22] which extended the techniques
used in [14].

3.2 S-Shortest Paths

Sometimes one might be satisfied by obtaining approximate distances in the
sense that they differ by at most a small additive term. In the literature this
problem is known as APASPk (All Pairs Almost Shortest Paths), where all
computed estimates of the distances are at most an additive term k longer
than the actual distances. In [2] a sequential algorithm for APASP2 was pre-
sented that runs in time Õ(min{n3/2 ·m1/2, n7/3}). Dor, Halperin and Zwick

extended this to APASPk with a runtime of Õ(min{n2−
2
k+2 ·m

2
k+2 , n2+

2
3·k−2 })

in [17]. This line of research led to approximate distance oracles [44], where
one is not interested in an additive but a multiplicative error (called stretch).
These were recently extended to the distributed setting in [37]. Previously
Elkin [18] suggested an approached to obtain distributed algorithms for
APASPk (and APASP with small stretch) by considering almost shortest
paths for the S-SP problem (denoted by S-ASP) and mainly focused on
the number of bits exchanged. When comparing Elkin’s results with our
results we need to keep in mind that the aim of the two papers is differ-
ent, which makes comparison difficult. For our model, the runtime provided

6

in [18] is O(|S| · D + n1+ξ/2) for computing almost shortest paths in the
sense that the estimated distance is at most (1 + ε) · d(u, v) + β(ξ, ρ, ε),
where β(ξ, ρ, ε) is constant when ξ, ρ and ε are. The runtime of our algo-
rithm for computing exact shortest paths runs in O(|S|+D) time, which is
faster for all parameters. However, our approach requires the exchange of
O((|S|+D) ·m · log n) bits while [18] needs only O(m · nρ + |S| · n1+ξ) bits.

In the case max{S,D} ≤ nρ/ log n and m ≤ n1+ξ/ log n and D ≤ |S|·n1+ξ

m·logn ,
our algorithm sends fewer bits. Besides the synchronous model that we
study, [18] also investigated an asynchronous setting. While Elkin focused
on very precise approximations, the authors of [25] were interested in rather
loose approximation factors when considering the S-ASP problem and thus
obtained better time complexities. It is stated in Theorem 4.11. of [25]
that an (expected) O(log n)-multiplicative approximation to S-SP (called
k-source shortest paths in [25]) can be computed in O(|S| · D · log n) time
using O(|E| · (min(D, log n) + |S|) + |S| ·n log n) messages in an unweighted
graph. In contrast to this we can compute exact S-SP faster by using less
messages, that is in time O(|S|+D) with O((|S|+D) · |E|) messages.

Based on these results, lower and upper bounds for computing exact and
approximate solutions of a variety of other problems can be derived, as listed
in Table 1 . Note that our algorithm demonstrates how to compute s BFS
trees from s nodes in just O(s+D) time, which is of independent interest.

3.3 Diameter

Based on the APSP algorithm we derive an algorithm that can compute
the diameter in linear time. As for APSP, this is optimal due to a lower
bound stated in Theorem 5.1. of [22]. Since the authors of [22] also showed
an Ω(

√
n/B +D)-lower bound for any (×, 3/2− ε)-approximation it would

be nice to obtain a matching upper bound. One approach towards this
end is to consider a combinatorial (×, 3/2)-approximation in a sequential
setting by Aingworth, Chekuri, Indyk and Motwani [2]. According to the
runtime of O(m ·

√
n · log n+ n2 · log n) it seems possible to implement it in

our distributed model in time O(
√
n + D). As a first crucial step towards

this approximation, [2] shows how to distinguish graphs of diameter 2 from
graphs of diameter 4 in O(m ·

√
n · log n + n2 · log n). This is a key insight

that leads to their fast approximation-algorithm. They specifically mention
that a step towards fast exact algorithms is being able to distinguish graphs
of diameter 2 from graphs of diameter 3 in o(n ·m) (instead of distinguishing
2 from 4 as needed for their approximation). Following this approach we
show that a distributed algorithm can distinguish graphs of diameter 2 from
graphs of diameter 4 in time O(

√
n · log n), which is optimal. By extending

the argument used in the proof of Theorem 5.1. in [22] we show that in
contrast to this, distinguishing diameter 2 from 3 takes Ω(n/ log n) time by
refining the construction of [22].

7

Although we were not able to transfer this (×, 3/2)-approximation in
such a way that it would result in distributed time O(

√
n + D), we are

able to obtain an algorithm that yields a much better approximation factor.
However, as expected, this is done by trading runtime for accuracy such
that we use more than Ω(

√
n/ log n+D) time in most cases. Based on the

S-SP-algorithm, we obtain a (×, 1 + ε)-approximation to the diameter in
time O(n/D+D). This result is complemented by an Ω(n/(D · log n) +D)
lower bound for computing a (+, 1)-approximation in Theorem 4. Observe
that if D ≥

√
n, we are unable to improve the runtime of the (×, 1 + ε)-

approximation, even when considering a worse approximation factor. A
reason for this is that the upper bound of the algorithm matches the lower
bound for (×, 3/2−ε)-approximations for these parameters. For more recent
results, see Section 3.6.

3.4 Girth

In the sequential setting various results to approximate the girth are known,
e.g. [5, 24, 34, 35, 36, 49]. In a sequentially setting they run faster than e.g.
a (+, 1)-approximation that takes O(n2) time [24]. When trying to transfer
these algorithms into a distributed setting one has to compute a partial BFS
tree of a certain depth (i.e., depth k − 1 if the girth is 2 · k − 1) for each of
the n nodes. We show that in general computing all partial BFS trees of a
certain depth might be hard by constructing a family of graphs of girth 3
where computing all 2-BFS trees takes Ω(n/ log n) time.

In a model where all n processes are connected to all other processes
which want to verifying whether a subgraph contains a cycle of length d,
a deterministic distributed algorithm running in time O(n1−2/d/ log n) is
stated in [16]. In contrast to this model, our processes can only communicate
by using edges in the graph on which we want to compute the girth. We
show how to compute the girth in this model in time O(n) and extend this
to a (×, 1 + ε)- and a (×, 2− 1/g)-approximation with better runtime.

For more recent results, see Section 3.6.

3.5 Further Problems

We extend the results from above to the problems of computing the ec-
centricity, radius, center and peripheral vertices of a graph. Computing
the center of a graph turned out to be important in applications such as
PageRank [20, 31] and the analysis of social networks (centers will be e.g.
celebrities [8]) while in spam-detectors it is proven to be useful to investi-
gate peripheral vertices [48]. These settings are predestined to be solved by
large distributed systems: The data processed is huge and exact sequential
algorithms (or good approximations) for these problems usually have su-
perquadratic runtime. Computing the eccentricity and radius are strongly

8

P
ro

b
le

m
ex

ac
t

(+
,1

)
(×
,1

+
ε)

(×
,3
/2
−
ε)

(×
,3
/
2)

(×
,2

)

A
P

S
P

Θ̃
(n

)1
6
)

Θ̃
(n

)1
,1
3
)

Θ̃
(n

)1
,1
3
)

Θ̃
(n

)1
,1
3
)

–
–

ec
ce

n
tr

ic
it

y
Θ̃

(n
)5

,1
1
)

Ω
(

n
D
·lo

g
n

+
D

)1
1
)
O

(
n D

+
D

)3
)

Ω
(√ n lo

g
n

+
D
) 11)

–
Θ

(D
)1

8
)

d
ia

m
et

er
Θ̃

(n
)6

,2
0
)

Ω
(

n
D
·lo

g
n

+
D

)2
)
O

(
n D

+
D

)1
7
)

Ω
(√ n lo

g
n

+
D
) 21)∗

O
(n

3
/
4

+
D

)1
4
)

Θ
(D

)1
8
)

ra
d

iu
s
O

(n
)8

)
–

O
(
n D

+
D

)1
7
)

–
–

Θ
(D

)1
8
)

ce
n
te

r
Θ̃

(n
)9

,1
2
)

Ω
(

n
D
·lo

g
n

+
D

)1
2
)
O

(
n D

+
D

)1
7
)

Ω
(√ n lo

g
n

+
D
) 12)

–
01

9
)

p
.

v
er

ti
ce

s
Θ̃

(n
)1

0
,1
1
)

Ω
(

n
D
·lo

g
n

+
D

)1
1
)
O

(
n D

+
D

)1
7
)

Ω
(√ n lo

g
n

+
D
) 11)

–
01

9
)

gi
rt

h
O

(n
)7

)
–

O
(m

in
{ n
/g

+
D
·l

og
D g
,
n
}) 4)

–
–

F
or

th
e

g
ir

th
,

tw
o

ad
d

it
io

n
al

ra
ti

os
ar

e
of

in
te

re
st

:
P

ro
b

le
m

(×
,2
−
ε)

(×
,2
−

1/
g
)

g
ir

th
Ω
(√ n lo

g
n

+
D
) 22)∗

O
(n

2
/
3

+
D
·l

og
D g

) 15)
1)

T
h

m
.

1

2)
T

h
m

.
4

3)
T

h
m

.
6

4)
T

h
m

.
7

5)
L

em
.

2

6)
L

em
.

3

7)
L

em
.

7

8)
L

em
.

4

9)
L

em
.

5

10
)

L
em

.
6

11
)

L
em

.
1
0

12
)

L
em

.
1
1

13
)

L
em

.1
6

14
)

C
or

.
1

15
)

C
or

.
2

16
)

C
or

.
3

17
)

C
or

.
4

18
)

R
em

.
1

19
)

R
em

.
2

20
)

[2
2]

–T
h

m
.

5
.1

21
)

[2
2]

–T
h

m
.

6
.1

22
)

[2
2]

–T
h

m
.

7
.1

T
a
b

le
1
:

T
h

e
tw

o
ta

b
le

s
ab

ov
e

su
m

m
ar

iz
e

th
e

re
su

lt
s

of
th

is
p

ap
er

an
d

sh
ow

w
h

ic
h

p
ar

ts
re

m
ai

n
op

en
.

A
ll

en
tr

ie
s

ar
e

an
n

ot
a
te

d
w

it
h

a
n
u

m
b

er
th

at
is

as
so

ci
at

ed
to

th
e

ac
co

rd
in

g
T

h
eo

re
m

/L
em

m
a/

C
or

ol
la

ry
in

th
e

li
st

n
ex

t
to

th
e

ta
b

le
s.

E
n
tr

ie
s

m
a
rk

ed
w

it
h

an
as

te
ri

sk
(*

)
w

er
e

p
re

v
io

u
sl

y
k
n
ow

n
.

S
om

e
fi

el
d

s
ar

e
m

ar
ke

d
b
y

“–
”

or
d

o
n

ot
ap

p
ea

r.
T

h
is

in
d

ic
at

es
op

en
p

ro
b

le
m

s:
w

h
er

e
1
)

n
o

al
m

os
t

ti
gh

t
b

ou
n

d
s

ar
e

k
n

ow
n

2)
on

ly
tr

iv
ia

l
b

ou
n
d

s
su

ch
as

Ω
(D

)
ar

e
k
n

ow
n

,
or

3)
n

o
b

et
te

r
u

p
p

er
/l

ow
er

b
ou

n
d

s
th

a
n

th
os

e
st

at
ed

fo
r

st
ro

n
ge

r/
w

ea
ke

r
ap

p
ro

x
im

at
io

n
ra

ti
os

ar
e

k
n

ow
n

.
A

ll
en

tr
ie

s
in

th
e

ta
b

le
s

re
fl

ec
t

a
ch

oi
ce

fo
r

b
a
n

d
w

id
th
B

of
B

=
lo

g
n

.
W

e
d

en
ot

e
b
y

Θ̃
th

at
ac

co
rd

in
g

u
p

p
er

an
d

lo
w

er
b

ou
n

d
s

d
iff

er
b
y

at
m

os
t

a
fa

ct
or

of
p

ol
y
lo

g
n

.

9

related to these two problems. Table 1 summarizes the results obtained in
this paper.

Remark 1. As in the case of approximating the diameter, a (×, 2)-
approximation to the radius/eccentricity of all nodes can be computed by
taking the eccentricity of any node. This can be done in O(D) by perform-
ing a breadth-first search rooted in this node.

Remark 2. Due to Fact 1, a (×, 2)-approximation to the center/peripheral
vertices is just the set of all nodes. Each node can decide to join the set
internally thus the runtime would be 0.

3.6 Combination with Independent Results by Peleg,
Roditty and Tal

Independently, a similar algorithm to compute APSP and Diameter in time
O(n) appears at ICALP 2012 [33]. In addition [33] demonstrates how to
implement the sequential (×, 3/2)-approximation algorithm mentioned in
Section 3.3 in a distributed way in time O(D ·

√
n). By combining this with

our Corollary 4 (choosing ε ≤ 1/2), we obtain:

Corollary 1. Combining both algorithms yields a (×, 3/2)-approximation to
the diameter with runtime O(min{D ·

√
n, n/D+D}), which is O(n3/4+D).

Furthermore, [33] provides a (×, 2 − 1/g)-approximation for the girth
running in time Õ(D +

√
gn). By combining this with Theorem 7 of our

paper, (choosing ε ≤ 1/2), we obtain:

Corollary 2. When combining both algorithms, one can compute a (×, 2−
1/g)-approximation to the in time

O
(

min

{
D +

√
gn , min

{
n/g +D · log

D

g
, n

}})
,

which is O
(
n2/3 +D · log D

g

)
.

4 All Pairs Shortest Paths

4.1 An Almost Optimal Algorithm

In this section we present a simple algorithm with a simple analysis that
allows us to compute APSP of the underlying network in the message passing
model with limited bandwidth B = O(log n) in time O(n). We argue that
this algorithm can be used to compute solutions to several other properties of
the graph in linear time as well. Combined with the Ω(n/ log n) lower bound
[22] for computing the diameter, the presented algorithm is asymptotically
nearly optimal (see Corollary 3.) We start with some notation.

10

Definition 8. (Tree Tv) Given a node v, we denote the spanning tree of G
that results from performing a breadth-first search BFSv starting at v by Tv.

Remark 3. A spanning tree of G can be traversed in time O(n) by sending
a pebble over an edge in each time slot. This can be done using e.g. a
depth-first search.

Algorithm 1 below computes shortest paths between all pairs of nodes
in a graph. Given a graph G, it computes BFS tree T1 (Line 1). Then it
sends a pebble P to traverse tree T1 (Lines 2–8). Each time pebble P enters
a node v for the first time, P waits one time slot (Line 5), and then starts
a breadth-first search (BFS) – using edges in G – from v with the aim of
computing the distances from v to all other nodes (Line 6). Since we start a
BFS from every node, each node learns its distance to all other nodes (that
is APSP).

Algorithm 1 as executed by each node v ∈ G simultaneously. Computes:
APSP on G

1: compute T1
2: send a pebble P to traverse T1
3: while P traverses T1 do
4: if P visits a node v for the first time then
5: wait one time slot //** avoid congestion
6: start a BFSv from node v

//** compute all distances to v
7: end if
8: end while

Remark 4. For simplicity of the write up of the algorithm and proofs we
do not state actual computations of distances. Algorithm 1 could be easily
modified to compute these: During each computation of a BFSv, tell each
node u its depth in Tv. The depth is equivalent to the distance d(u, v). In
the end all distances are known. Shortest paths are implicitly stored via BFS
trees.

Lemma 1. In Algorithm 1, at no time a node w is simultaneously active
for both BFSu and BFSv.

Proof. Assume a BFSu is started at time tu at node u. Then node w will be
involved in BFSu at time tu + d(u,w). Now, consider a node v whose BFSv
is started at time tv > tu. According to Algorithm 1 this implies that the
pebble visits v after u and took some time to travel from u to v. In particular,
the time to get from u to v is at least d(u, v), in addition at least node v is
visited for the first time (which involves waiting at least one time slot), and
we have tv ≥ tu + d(u, v) + 1. Using this and the triangle inequality, we get

11

that node w is involved in BFSv strictly after being involved in BFSu since
tv+d(v, w) ≥ (tu+d(u, v)+1)+d(v, w) ≥ tu+d(u,w)+1 > tu+d(u,w).

Theorem 1. Algorithm 1 computes APSP in time O(n).

Proof. Since the previous lemma holds for any pair of vertices, no two BFS
“interfere” with each other, i.e. all messages can be sent on time without
congestion. Hence, all BFS stop at most D time slots after they were started.
We conclude that the runtime of the algorithm is determined by the time
O(D) we need to build tree T1, plus the time O(n) that P needs to traverse
tree T1, plus the time O(D) needed by the last BFS that P initiated. Since
D ≤ n, this is all in O(n).

4.2 Applications

Given a solution for APSP, many other graph properties can be computed
efficiently. The following lemmas and corollaries demonstrate several of these
extensions.

Lemma 2. The eccentricity of all nodes can be computed in O(n).

Proof. Compute APSP in O(n). Based on this, each node v of the network
computes its eccentricity internally by taking the maximum of all distances
to v. The total complexity remains O(n).

Lemma 3. The complexity of computing the diameter is O(n).

Proof. Compute APSP in O(n) and aggregate the maximum of all distances
using T1 in additional time O(D). The result is the diameter.

Corollary 3. Algorithm 1 is optimal up to a logarithmic factor due to
Lemma 3 and Theorem 5.1 of [22].

Lemma 4. The complexity of comp. the radius is O(n).

Proof. Compute all eccentricities in O(n) and aggregate the minimum of all
eccentricities using T1 in additional time O(D). The result is the radius.

Lemma 5. The complexity of comp. the center is O(n).

Proof. Compute all eccentricities and the diameter in O(n). Each node
checks internally if the radius equals its eccentricity. If yes, it is a center
vertex of the graph.

Lemma 6. The complexity of computing peripheral vertices is O(n).

Proof. Compute all eccentricities and the diameter in O(n). Each node
checks internally if the diameter equals its eccentricity. If yes, it is a periph-
eral vertex of the graph.

12

Lemma 7. The complexity of comp. the girth is O(n).

Claim 1. Executing BFS1 can be used to check whether G is a tree or not.

Proof. Consider the following implementation of BFS: Node 1 starts by send-
ing an arbitrary message to all its neighbors (each neighbor receives the same
message). Consider a node v that receives this message for the first time
in time slot tv. Then v forwards this message in time slot tv + 1 to all its
neighbors from which v did not receive a message in time slot tv. In all other
time slots, node v remains silent. Then G is a tree if and only if no node
received more than one message during the execution of BFS1 and this can
be verified in time O(D).

Proof. (of Lemma 7.) First, use Claim 1 to check inO(D) whetherG is a tree
or not. If yes, return ∞. If not, adopting a classical algorithm to compute
the girth g: First, perform a BFS from each node (which is essentially done
by Algorithm 1 in time O(n).) If during round t of a BFSv, a vertex u that
is already in Tv (or is included into Tv in round t) receives a second message
in round t, we know that u and w belong to a cycle. If u is at depth du in
Tv and receives a message from node w that is at depth dw in Tv, then there
is a cycle in G of length at most du + dw + 1. In case v is the least common
ancestor of nodes u and w in Tv, the cycle is exactly of size du + dw + 1.
If C is a minimal cycle in G – that is C defines the girth – the algorithm
definitely detects C while performing a BFS from any node in C. At the
same time the algorithm can never claim to have found a smaller cycle that
does not exist. The overhead induced by this computation is only internal,
min-aggregating at node 1 the size of the smallest cycle that any node is
contained in takes time O(D). The total complexity of computing the girth
is O(n).

To be consistent with Definition 6, we could add in each corollary: Broad-
casting the computed information to the whole network would take addi-
tional time at most O(n).

5 Lower Bounds

In [22] we already gave lower bounds for computing/approximating the di-
ameter as well as lower bounds for approximating the girth. We make use
of their general technique of transferring lower bounds from communication
complexity into a distributed setting, but use different graph-constructions
and arguments than in [22]. In the following subsection we review the no-
tation used in the framework of [22].

13

5.1 Preliminaries

We need to introduce some notation: To obtain our lower bounds we need
knowledge on basics of communication complexity, introduced by Yao [47].
Here, two computationally unbounded parties Alice and Bob each receive
a k-bit string a ∈ {0, 1}k and b ∈ {0, 1}k respectively. Alice and Bob can
communicate with each other one bit at a time and want to evaluate a
function h : {0, 1}k ×{0, 1}k → {0, 1} on their input. We assume that Alice
and Bob have access to public randomness for their computation and we
are interested in the number of bits that Alice and Bob need to exchange in
order to compute h.

Definition 9. (communication complexity). Let Aε be the set of two-party
algorithms that use public randomness (denoted by pub) and when used by
Alice and Bob, compute h on any input a and b with an error probability
smaller than ε. Denote by Rcc−pubε (A(a, b)) the communication complexity
(denoted by cc) representing the number of 1-bit messages exchanged by Alice
and Bob while executing an algorithm A ∈ Aε to compute h(a, b). We define

Rcc−pubε (g) = min
A∈Aε

max
a,b∈{0,1}k

Rcc−pub(A(a, b))

to be the smallest amount of bits any algorithm would need to send in order
to compute h.

A well studied problem in communication complexity is that of set dis-
jointness, where we are given two subsets of [k − 1] and need to decide
whether they are disjoint. Here, the strings a and b indicate membership of
elements to each of these sets.

Definition 10. (disjointness problem). The set disjointness function disjk :
{0, 1}k × {0, 1}k → {0, 1} is defined as follows.

disjk(a, b) =

0 if there is an i ∈ [k − 1] such that

a(i) = b(i) = 1

1 otherwise

where a(i) and b(i) are the i-th bit of a and b respectively (indicating whether
an element is a member of the corresponding set.)

We use the following basic theorem that was proven in Example 3.22 in
[26].

Theorem 2. For any sufficiently small ε > 0 we can bound Rcc−pubε (disjk)
by Ω(k).

Now that we have reviewed a basic result from communication complex-
ity we use the notation of a cut:

14

Definition 11. (cut). Let G = (V,E) be a graph. A cut (Ga, Gb, C) is a
partition of G into two disjoint subgraphs Ga = (Va, Ea) and Gb = (Vb, Eb)
and a cut-set C ⊆ E s.t. V = Va∪̇Vb and E = Ea∪̇Eb∪̇C, where ∪̇ denotes
the disjoint union of sets. The cut-set C consists of c := |C| edges whose
endpoints are in different subsets of the partition.

Observe that given a function f and a graph G in a distributed setting,
as well as a cut with cut (Ga, Gb, C) of G, we can define a two-party commu-
nication problem f ′ according to the graph-problem f in a canonical way:
We define

f ′((Ga, C), (Gb, C)) := f(G)

Lemma 4.1. of [22] states that f ′ can be reduced to f . Where Alice gets
input (Ga, C) and Bob gets input (Gb, C).

Definition 12. Given a cut-set Ck (that depends on k, but not on inputs a
and b), a ck-reduction

R : {Alice,Bob} × {0, 1}k → {(H,Ck) : G is any graph

and H is any subgraph of

G such that (H,G \H,Ck) is

a cut of G with |Ck| = cK}

is a function that transforms any h-inputs a, b into inputs for f ′ such
that

g(a, b) = f ′(R(Alice, a),R(Bob, b)).

Observe that the size of Ck does not depend on a nor b.

Theorem 3. (Version of Theorem 4.1. of [22]). Let B ≥ 1. If a function
h can be reduced to f ′ using a ck-reduction. We can bound

Rcc−pubε (g)

2 · ck ·B
≤ Rdcε (f).

We finish this review by defining a map that is used during each of our
lower bounds.

Definition 13. Denote by m a map that maps f ′-inputs ((Ga, Ck), (Gb, Ck))
to the graph Ga,b that corresponds to the cut, that is Ga,b := (Va,b, Ea,b), s.t.
Va,b := Va ∪ Vb and Ea,b := Ea ∪ Eb ∪ Ck.

5.2 A (+, 1)-Approximation Lower Bound

Theorem 4. For any δ > 0, parameter d ≥ 4, where d is even, and n ≥
d + 6 and B ≥ 1 and sufficiently small ε, any distributed ε-error algorithm
A that computes a (+, 1)-approximation to the diameter requires at least
Ω
(

n
D·B +D

)
time for some n-node graph of diameter D ∈ {d, d+ 2}. This

can be extended to odd d.

15

Proof. In order to prove our lower bounds, we introduce the constant p that
later defines the length of a path and in this prove we set it to be p := d/2−1
(we assumed d to be even). During the reduction we construct graphs Ga,b of
diameter diam(Ga,b) ∈ {d, d+2} depending on inputs a and b such that any
(+, 1)-approximation algorithm for the diameter would estimate diam(Ga,b)
to be strictly less than 2p+ 4 = d+ 2 if a and b are disjoint. If a and b are
not disjoint, the diameter (and thus the estimate) would always be at least
d+2. We prove both statements later in a formal way. Since the reductionR
delivers the above promise-problem2 we can just use the function diamd+2

that decides whether diam(G) < d + 2 or not as the decision-version of
(+, 1)-approximating the diameter.

diamd+2(G) :=

{
1 : diam(G) < d+ 2
0 : else

We use the technique described in [22] in order to prove Theorem 4: We
derive a function diam′d+2 from diamd+2 as described in Section 5.1. To
prove lower bounds depending on n, we choose the length k of the inputs a
and b to the base-function h to be the function k(n)2 depending on n. We

set k(n) :=
⌊

n−4
2·(p+2)

⌋
(here we need n ≥ d+ 6) as provided in the statement

of Theorem 4). Later the graph will have a subgraph consisting of Θ(k(n))
nodes and O(k(n)2) edges that will encode 2k(n)2 bits of a and b. Using the
framework of [22] sketched in the previous section, we consider the disjk(n)2
problem to be the base-function h. Now we need to define a reductionR that
given inputs a and b to h, maps (Alice, a) and (Bob, b) to inputs (Ga, Ck(n)2)

and (Gb, Ck(n)2) for diam′d+2. During the reduction R, Alice defines L and

L′, Bob defines R and R′ to be the following sets of nodes (as displayed in
Figure 1):

L = {lν |ν ∈ [2k(n)− 1]} L′ = {l′ν |ν ∈ [k(n)− 1]}
R = {rν |ν ∈ [2k(n)− 1]} R′ = {r′ν |ν ∈ {k(n), . . . , 2k(n)− 1}}

Given inputs a ∈ {0, 1}k(n)2 and b ∈ {0, 1}k(n)2 Alice constructs Ga and
Bob Gb. For each ν ∈ [k(n)−1] Alice adds a path T aν of length p connecting
nodes lν to l′ν as depicted in Figure 1. Furthermore for each ν ∈ [k(n)− 1]
and µ ∈ {k(n), . . . , 2k(n) − 1} Alice adds an edge (lν , lµ) connecting lν to
lµ iff a (k(n) · (µ− k(n) + 1) + ν) = 0. In addition we add nodes {c0, c1}
and connect them by edges {(lν , c0) : ν ∈ [k(n) − 1]} and {(lν , c1) : ν ∈
{k(n), . . . , 2k(n)− 1}} as well as edge (c0, c1). The graph Gb is constructed
by Bob in almost the same way using paths T bν and edges that are added
depending on b. Bob also adds nodes c2 and c3 and corresponding edges. The
main difference is that paths T bν are added for each ν ∈ {k(n), . . . , 2k(n)−1}
instead of ν ∈ [k(n)−1] and edges (rν , rµ) if b (k(n) · (µ− k(n) + 1) + ν) = 0.

2In a promise problem the input is promised to belong to a certain subset of all possible
inputs. In this case this subset is defined by the diameter.

16

wa1 wa0 wb0 wb1

pla

TA0

TA1

pla

TB2

TB3

c0 c2

c1 c3

Ga Ck2n Gb

l00 l0 r0

l01 l1 r1

l2 r2 r0
2

l3 r3 r0
3

UP

LP

Figure 1: Graph used to calculate disjk(n)2 when given a diameter estimator
algorithm. This graph has n = 20 and d = 4, thus k(n) = 2 and p = 1.
Displayed is Ga,b for strings a = (0, 0, 0, 1) and b = (0, 1, 1, 1). The red
dashed edge (l0, l2) represents a(0) = 0, edge (l0, l3) represents a(1) = 0,
edge (l1, l2) represents a(2) = 0, edge (r0, r2) represents b(0) = 0. The line
connecting l0 to l′0 as well as similar lines are partly dashed to indicate that
these are paths, not edges. Since the sets are not disjoint the diameter is
d+ 2 as d(l′1, r

′
3) = d+ 2.

Now we set the cut-set Ck(n)2 that connects Ga with Gb to be Ck(n)2 :=
∪i∈[2k(n)−1]{(li, ri)} ∪ {(c0, c2)}. Thus R is a (2k(n) + 1)-reduction. At this
stage, we cannot define Ga,b := m((Ga, Ck(n)2), (Gb, Ck(n)2)) (see definition
13), since the graph does not necessarily have n nodes as each of Va and Vb
might be smaller than n/2. E.g. for Va we know:

|Va| = |L|+ |L′|+ #nodes in paths {TAµ }
k(n)−1
µ=0 + |{c0, c1}|

= 2 · k(n) + k(n) + k(n) · (p− 1) + 2

≤ k(n) · (p+ 2) + 2

Using the definition of k(n) we can rewrite this to be
⌊

n−4
2·(p+2)

⌋
· (p+2)+2 ≤

n−4
2·(p+2) · (p + 2) + 2 = n/2. We can show |Vb| ≤ n/2 in a similar way.
However, we want our lower bound to be valid for all graph-sizes n and
thus need to fill up the graph with nodes until there are n nodes in total.
Therefore we add as many fill-up nodes {waν} to Ga (each connected by
edges to all the nodes in {l0, . . . , lk(n)−1, c0, c1}) such that |Va| = n/2 and as

many fill-up nodes {wbν} to Gb (each connected by edges to all the nodes in

17

{r0, . . . , rk(n)−1, c2, c3}) such that |Vb| = n/2. To be more precise, we add

n/2−
⌊

n−4
2·(p+2)

⌋
(p+2)−2 fill-up nodes to each of the two graphs. Finally we

set Ga,b := m((Ga, Ck(n)2), (Gb, Ck(n)2)) using Definition 13. Observe that
(Ga, Ck(n)2) can be computed from a without knowing b and (Gb, Ck(n)2)
can be computed from b without knowing a, thus the reduction R has the
desired properties.

On our way towards Theorem 4 we consider two parts of the constructed
graphs Ga,b:

• Upper part UP (with white background in Figure 1): these are the
nodes in {li : i ∈ [k(n)−1]}∪{l′i : i ∈ [k(n)−1]}∪{ri : i ∈ [k(n)−1]}∪
{c0, c2} as well as the nodes contained in the paths TAν for ν ∈ [k(n)−1]
and the fill-up nodes waµ and wbµ.

• Lower part LP (with gray background in Figure 1): these are the nodes
in {li : i ∈ {k(n), . . . , 2·k(n)−1}∪{ri : i ∈ {k(n), . . . , 2·k(n)−1}}∪{r′i :
i ∈ {k(n), . . . , 2 · k(n) − 1}} ∪ {c1, c3} as well as the nodes contained
in the paths TBν for ν ∈ {k(n), . . . , 2 · k(n)− 1}.

Lemma 8. If a and b are not disjoint, the diameter of the graph Ga,b is
d+ 2.

Proof. If a and b are not disjoint there exists at least one i such that
a(i) = b(i) = 1. Lets fix such an i. We show that the two nodes l′i mod k(n)

and r′
k(n)+

⌊
i

k(n)

⌋ have distance strictly greater than d + 1. First observe

that any path that connects them includes paths ΓAi mod k(n),Γ
B

k(n)+
⌊

i
k(n)

⌋
and nodes li mod k(n) and r

k(n)+
⌊

i
k(n)

⌋. Thus d(l′i mod k(n), r
′
k(n)+

⌊
i

k(n)

⌋) =

d(li mod k(n), rk(n)+
⌊

i
k(n)

⌋) + 2p. Now we argue that nodes li mod k(n) and

r
k(n)+

⌊
i

k(n)

⌋ must have distance of at least 4. The reason for this is that

a(i) = b(i) = 1 implies that there is neither a direct edge between li mod k(n)

and l
k(n)+

⌊
i

k(n)

⌋ nor between ri mod k(n) and r
k(n)+

⌊
i

k(n)

⌋. In each of the

two cases one needs to make a detour visiting two additional nodes in
L ∪ {c0, c1} (or R ∪ {c2, c3} respectively). Due to the construction of
Ga,b this takes 3 edges instead of one. To finally extend this to a path
from li mod k(n) to r

k(n)+
⌊

i
k(n)

⌋ one needs to cross the cut using either edge

(li mod k(n), ri mod k(n)) or (r
k(n)+

⌊
i

k(n)

⌋, l
k(n)+

⌊
i

k(n)

⌋) and thus obtains a path

of length four. Thus d(l′i mod k(n), r
′
k(n)+

⌊
i

k(n)

⌋) = 2 · p + 4 = d + 2. This

implies that the diameter is at least d+ 2. Now we prove, that the diameter
is at most d+ 2. For this we observe (case 1) that any two nodes u, v ∈ Ga
have distance of at most p+ 3 ≤ d+ 2 via c0 (since p ≥ 1). (Case 2) any two

18

nodes u, v ∈ Gb have distance of at most p+ 3 ≤ d+ 2 via c2. Furthermore
we notice that

Claim 2. If d ≥ 4, each of the nodes in {c0, c1, c2, c3, wa0 , wa1 , . . . , wb0, wb1, . . . }
has distance of at most d to any other node in Ga,b.

Proof. Notice that this is certainly true for c0, c1, c2, c3 since they have dis-
tance of at most p+ 3 = d/2 + 2 to any other node in Ga,b which is less than
d since we assume d ≥ 4 in the statement of this Claim (and Theorem 4).

Even more precisely: Notice that nodes c0 and c2 have distance of at
most max{2, p + 2} = p + 2 to any other node in UP. While nodes c1 and
c3 have distance of at most max{2, p+ 1} = p+ 1 to any other node in LP.
Nodes wa0 , w

a
1 , . . . have distance 1 to c0 as well as distance 1 to c1 and thus

are at most max{1 + d(c0, v), 1 + d(c1, v)} ≤ p+ 3 hops away from any node
v in Ga,b. Similarly, via c2 and c3 the nodes wa0 , w

a
1 , . . . can reach any node

in Ga,b using p + 3 hops. Since we assume d ≥ 4 in the statement of this
Claim we conclude that p+ 3 = d/2 + 2 ≤ d.

Using this claim we only need to treat the remaining case in the version
of u ∈ L∪L′ ∪{nodes on paths TAν } and v ∈ R∪R′ ∪{nodes on paths TBν }.
Now we observe that d(u, c0) ≤ max{2, p + 1} ≤ p + 1 (since p ≥ 1) and
d(v, c2) ≤ max{2, p+2} ≤ p+2. Thus in total d(u, v) ≤ d(u, c0)+d(c0, c2)+
d(c2, v) ≤ 2p+ 4 ≤ d+ 2.

Lemma 9. The sets a and b are disjoint, if and only if the diameter of Ga,b
is d.

Proof. Consider nodes u and v that define the diameter, that is u and v are
chosen such that d(u, v) is maximal with respect to Ga,b. Now we distinguish
three cases:

1. Assume u, v ∈ UP: Due to Claim 2 we already know in case that u
or v belong to the set {c0, c1, c2, c3, wa0 , wa1 , . . . , wb0, wb1, . . . } that the
distance d(u, v) is d. In the other case there is a node lν ∈ L such
that d(u, lν) ≤ max{1, p}. Similarly there is a node lµ ∈ L such that
d(v, lµ) ≤ max{1, p} = p. Since both lν and lµ are connected via c0,
we conclude that d(u, v) ≤ d(u, lν) + d(lν , lµ) + d(lµ, v) ≤ 2p + 2 ≤ d.
Observe that this is independent of the inputs a and b.

2. Assume u, v ∈ LP: The proof is similar to the one for “Assume u, v ∈
UP” and results in d(u, v) ≤ d as well. This is independent of inputs
a and b as well.

3. Assume u ∈ UP and v ∈ LP: Due to Claim 2 we only need
to care about the case in which u or v to not belong to the set
{c0, c1, c2, c3, wa0 , wa1 , . . . , wb0, wb1, . . . }. Using a similar argument as in

19

both previous cases we know that there are nodes u′ ∈ L ∩ UP and
v′ ∈ R ∩ LP such that d(u, u′) ≤ max{p, 1} = p and d(v, v′) ≤ p. Like
in the first case we again assume that u′ = lν for some i ∈ [k(n) − 1]
and v′ = rµ for some j ∈ {k(n), . . . , 2 · k(n) − 1}. Due to a and b
being disjoint, there is either the edge (lν , lµ) or (rν , rj) in graph Ga,b
for each ν and µ. Therefore d(lν , rµ) = 2 via lµ or rν . From this we
conclude that d(u, v) = d(u, lν) + d(lν , rµ) + d(rµ, v) ≤ 2 · p+ 2 ≤ d

Now we relate the problem of deciding whether a and b are disjoint to
the problem of (+, 1)-approximating the diameter of a graph.

Proof. (of Theorem 4). By Lemma 8 and 9 the estimate to the diameter
produced by any (+, 1)-approximation algorithm is at least d+2 if and only
if a and b are not disjoint else it is d or d + 1. These two lemmas also
guarantee that the exact diameter D is either d or d + 2 as stated in the
Theorem.

To solve the disjk(n)2 problem using any (+, 1)-approximation-algorithm
for diam we use the reductionR from disjk(n)2 to diam′d+2 and observed that
R delivered a promise-problem such that there is a reduction from disjk(n)2
to diamd+2 via diam′d+2. According to Theorem 3, we know that

Rcc−pubε (disjk(n)2)

2 · |Ck(n)2 | ·B
≤ Rdcε (diamd+2)

Due to Theorem 2 we know that Rcc−pubε (disjk(n)2) is at least Ω(k(n)2).
Together with the fact that |Ck(n)2 | = 2 · k(n) + 1 we conclude that for all

inputs to disjk(n)2 of size k(n)2 we obtain Rdcε (diamd+2) ∈ Ω(k(n)/B). We

derive the stated result since we chose k(n) :=
⌊

n−4
2(p+2)

⌋
=
⌊

n−4
2(d/2−1+2)

⌋
∈

Θ(n/D).

Remark 5. The graphs Ga,b in the above construction always have even
diameter D as we assume d to be even. To obtain odd diameter, just replace
the cut-edges by paths of length two.

In the remainder of this section we extend this lower bound to several
other problems. In the according statements, we implicitly assume similar
conditions as stated in those Theorems/Lemmas used in the reductions.

Lemma 10. The following problems: 1) computing APSP 2) computing
the eccentricity of each node of a graph 3) finding a peripheral vertex, take
Ω(n/B + D) time. Any (×, 3/2 − ε)-approximation to the above problems
takes Ω(

√
n/B + D) time. Any (+, 1)-approximation takes time Ω(n/(B ·

D) +D).

20

Proof. Solutions for APSP, eccentricity and peripheral-vertex can directly
be used to obtain (an estimate of) the diameter in additional time O(D):
In case of APSP and eccentricity we can do so by computing the maximum
of the known distances or eccentricities by max-aggregation. In case we are
given the (approximate) peripheral vertices, we just compute the eccentric-
ity of any of them. These reductions yield that, if any of these tasks could

be done faster than o
(
n
B

)
, o
(√

n
B

)
or o

(
n

D·B
)

respectively, this is in contra-

diction to the already established lower bounds of Theorem 4 of this paper
as well as Theorems 5.1. and 6.1. of [22].

Note that in Lemma 16 we provide a better lower bound for (×, 3/2−ε)-
approximating APSP.

Lemma 11. Computing the center of a graph takes Ω(n/B +D). Comput-
ing a (×, 3/2 − ε)-approximation to the center takes Ω(

√
n/B + D) time.

Computing a (+, 1)-approximation to the center takes Ω(n
D·B +D) time.

Proof. We need to have a look into the reductions in the proofs of the
diameter lower bounds. In the proof of Theorem 8TODO: das kennt man hier

noch nicht , the radius of the considered graphs is always 2 (as witnessed by
node cL), while the diameter can be 2 or 3. We notice that the diameter of a
graph is 2 if and only if each vertex is in the center of the graph, otherwise the
diameter is 3. Given all center vertices, we can decide by sum-aggregation
in O(D) whether these are all nodes and based on the result decide whether
the diameter is 2 or 3. Thus if we could solve these problems faster than
O(n/B), this part of the lower bound would be violated (observe that the
Ω(D)-part is the trivial lower bound).

For a similar reason we could distinguish between diameter d and d+ 2
in the worst case graph provided in proof of Theorem 4 when given a (+, 1)-
approximation for the center. According lower bounds follow as described
above.

Similarly we can use Theorem 6.1 of [22], by using a center-
approximation to distinguish between diameter 6 · ps and 4 · ps, where ps is
defined in the proof of Theorem 6.1 in [22]. According lower bounds follow
as described above.

6 Approximation Algorithms

In the previous section we have seen lower bounds that demonstrated that
obtaining (+, 1)-approximations takes Ω(n/D + D) time for the diameter.
In order to approach this by an upper bound, we present an algorithm
running in time O(n/D + D) that computes a (×, 1 + ε)-approximation of
the diameter. Furthermore we present a (×, 1 + ε)-approximation to the

girth g running in time O
(
n/g +D · log D

g

)
. At the heart of these two

21

approximations is the S-shortest paths problem (S-SP). In this problem
we are given a graph and a subset S of its vertices. We are interested in
computing the distances between all pairs of nodes in S × V .

6.1 S - Shortest Paths

The idea of the algorithm is that we compute BFS trees Tv from each node
v ∈ S. Differently from Algorithm 1, the trees start growing at the same time
from each node v ∈ S. This causes that while growing Tv, the development
of Tv might be delayed once reaching a node that is already part of a BFS
tree Tu started in u if ID u is strictly smaller then ID v. We will prove that
the total delay of any BFS is O(|S|) and that the resulting trees are indeed
BFS trees. Clearly this is directly an alternative (more complicated, less
elegant) algorithm/proof for APSP running in time O(n).

Algorithm 2 is executed by each node v ∈ V , the pseudocode demon-
strates what a node v does. Each node v locally stores d(v) sets Li, one for
each of the d(v) neighbors v1, . . . , vd(v), and a set L. These locally stored
sets depend on v and therefore the content of these sets might be different
in different nodes during the execution of Algorithm 2.

At the beginning all these lists of a node v contain ID v if and only if
v ∈ S, else they are empty (lines 1–6). Furthermore v maintains an array δ
that will eventually store at position u (indicated by δ[u] the distance of v
to node u. Initially δ[u] is set to infinity for all u and will only get updated
at the time the distance is known (Line 21).

At time t, set L contains all node-IDs corresponding to the BFS tree
computations that reached v until time t. That is at the end of the algorithm
L contains all nodes of S.

At any time Li contains all IDs that are currently in L except those that
were forwarded successfully to neighbor vi in the past. We say an ID li is
forwarded successfully to neighbor ui, if ui is not sending a smaller ID ri to
v at the same time.

To compute the trees in Algorithm 2, the unique node with ID 1 com-
putes D′ := ecc(1) and thus a (×, 2)-approximation to the distance-diameter
D′. This value is subsequently broadcasted to the network (lines 7–9). Then
the computation of the |S| trees starts and runs for |S|+D′ time steps.

Lines 13–17 make sure that at any time the smallest ID, that was not
already successfully forwarded to neighbor ui is sent. If a node ID ri was
received successful for the first time (verified in lines 19 and 20), we up-
date δ[ri], add ri to the according lists (Line 22) and remember in variable
parent[ri] who v’s parent in Tri is (Line 23). In case a node-ID u is received
several times, the algorithm adds the edge to tree Tu through which ID u
was received at the earliest point in time. In case ID u was received at this
(first) time from several neighbors, the algorithm (as we stated it) chooses
the edge with lowest index i due to iterating in this way in Line 18. On

22

Algorithm 2 as executed by each node v ∈ G simultaneously. Input: S ⊆ V
Computes: S-SP on G

//** INITIALIZATION
1: L := ∅; δ := {∞,∞, . . . ,∞}
2: if v ∈ S then
3: L := {v}
4: δ[v] := 0
5: end if
6: L1, . . . , Ld(v) := L
7: if u = 1 then
8: compute D′ := 2 · ecc(u) //** upper bound on D
9: broadcast D′

10: else
11: wait until D′ was received
12: end if

//** COMPUTATION of S-SP
13: for |S|+D′ time steps do
14: for i = 1, . . . , d(v) do

15: li :=

{
∞ : if Li = ∅
min(Li) : else

16: end for
17: within one time slot:

—send (l1, δ[l1] + 1) to neighbor v1, receive (r1, δr1) from v1
—send (l2, δ[l2] + 1) to neighbor v2, receive (r2, δr2) from v2
—...

—send (ld(v), δ[ld(v)] + 1) to neighbor vd(v), receive

— (rd(v), δrd(v)
) from vd(v)

18: for i = 1, . . . , d(v) do
19: if ri < li then

//** Tli ’s message is delayed due to Tri
20: if ri /∈ L then

//** first time received “ri” successfully
21: δ[ri] = δri //** updates distances
22: L := L ∪ {ri} //** updates lists

L1 := L1 ∪ {ri}
. . .
Li−1 := Li−1 ∪ {ri}
Li+1 := Li+1 ∪ {ri}
. . .
Ld(v) := Ld(v) ∪ {ri}

23: parent[ri] := vi
24: end if
25: else
26: Li := Li \ {li} //** “li” was successfully
27: end if //** sent to neighbor i.
28: end for
29: end for

23

the other hand if we did not successfully receive a message from neighbor vi
but sent successfully a message to vi, the transmitted ID is removed from
Li (Line 26).

Theorem 5. Algorithm 2 computes S-SP, in time O(|S|+D).

Proof. First we prove the correctness of Algorithm 2: Let us choose a node
u ∈ S and consider the computation Tu (for now ignoring that we actually
want to compute S-SP.) In such a computation, at time t, nodes at distance
t from u receive a message ID u from all neighbors that are at distance t−1
to u. An edge incident to the neighbor with lowest index that sent such a
message is added to tree Tu.

Now consider Algorithm 2 and node v at distance t from u, as well as two
nodes w1, w2 ⊆ N1(v); we can ignore the case that v has only one neighbor.
A message containing ID u is sent over the edge (w1, v) earlier than over
edge (w2, v) if and only if d(u,w1) < d(v, w2). To see this, note that the
set of lower IDs which delay the messages of Tu is the same for both paths
(u,w1, v) and (u,w2, v). To see this assume that Ti is delaying the message
ID u sent over (u,w1, v) at some point. Then ID i will reach (or will have
reached in case ID i is coming from v’s direction) v earlier then ID u. Thus
it will also block the message ID u running through path (u,w2, v), if it did
not already block it earlier.

Now we prove that Algorithm 2 runs in time O(|S| + D): The BFS
executed by node 1 to compute D′ takes O(D). The for-loop in Lines 13–31
is executed for |S|+D′ times, each time taking 1 round of communication,
which is O(|S|+D).

Note that during traveling on any u − v-path of Tu, the message ID u
gets delayed at most once by the computation BFSi if ID i is strictly smaller
then ID u. This happens either by waiting in the set Li of some node or
by trying to cross an edge of the path at the same time as ID i (which will
not be successful during the according time slot). Thus the total delay of
computing Tu is |S| and the total runtime of Algorithm 2 is O(|S|+D).

Finally observe, that in Line 21, after δ[ri] is changed from ∞ to the
value received, δ[ri] stores the correct distance between v and node ri. This
can be shown by induction over the levels in the computed BFS tree rooted
in the node with id ri.

6.2 A (×, 1 + ε)-Approximation to Diameter and Girth

The presented algorithms are based on computing a k-dominating set
DOM ⊆ V and solving DOM-SP. There is plenty of literature on k-
dominating sets. We use the results provided in [27].

Definition 14. (composed from [27]) A k-dominating set for a graph G is a
subset DOM of vertices with the property that for every v ∈ V there is some

24

u ∈ DOM at distance of at most k from v. For every such k-dominating
set we define a partition P = {P1, . . . , P|DOM|} such that each node of V is
exactly in one Pi and of distance less than or equal k to the dominator in
DOM of Pi.

Lemma 12. (Version of Lemma 2.3 in [27]). Algorithm Diam DOM of [27]
computes a k-dominating set DOM of size |DOM| ≤ max{1, bn/(k + 1)c}
deterministically and its time complexity is 6 ·D + k. A partition P can be
computed in additional time O(k).

Theorem 6. We can compute a (×, 1+ε)-approximation of all eccentricities
in O(nD +D) time.

Proof. To do so, we use Fact 1 and determine a (×, 2)-estimate D′ := 2 ·
ecc(1) of the diameter by computing the eccentricity ecc(1) of the node
with ID 1. Next we set k := bε ·D′/4c and use Lemma 12 to compute
a k-dominating set DOM of size |DOM| ≤ max{1, bn/(k + 1)c} in time
O(D + k). Then we solve DOM-SP in time O(|DOM| + D). At the end
of this computation each node v ∈ V knows its distance to all vertices in
DOM. Let u ∈ DOM be a node in DOM of maximal distance to v. Then
d(u, v) is at most k hops shorter than v’s actual eccentricity due to the use
of k-dominating sets. Thus the computed estimate of the eccentricity of v
is less than k + maxu∈DOM d(u, v) ≤ k + ecc(v) = bε ·D′/4c + ecc(v) =
bε · ecc(1)/2c + ecc(v) ≤ (1 + ε) · ecc(v) where the last bound follows due
to Fact 1. The total time for this computation is O(|DOM| + D + k) =
O(n/D +D).

Corollary 4. We can compute a (×, 1 + ε)-approximation of the diameter,
radius, center and peripheral vertices in time O(n/D +D).

Theorem 7. We can compute a (×, 1 + ε)-approximation of the girth in
time

O
(

min

{(
n/g +D · log

D

g

)
, n

})
.

Proof. Since we cannot get a good estimate for g as easy as for the di-
ameter, we start with a loose upper bound on g and iteratively run Sub-
routine ImproveEstimate to improve this bound. We continue calling
ImproveEstimate until the updated estimate is a (×, 4)-approximation of
g. Calling ImproveEstimate a last time–using modified parameters–will
yield a (×, 1 + ε)-approximation.

In more detail, in Line 2 of Algorithm 3 we execute a BFS starting at
node 1 to figure out whether G is a tree. At the same time we compute
ecc(1). In case G is a tree (what we can check during the computation of
BFS1 using Claim 1), we set the girth-estimate to∞. Else we define g1 := 4·
ecc(1)+2. Due to Facts 2 and 1 it turns out that g1 is the upper bound on the

25

girth that was mentioned above (Line 2). In case G is not a tree, Algorithm
3 enters the while-loop in Line 3 and calls ImproveEstimate for estimate
g1 and obtains a better estimate g2. Then we run ImproveEstimate again,
this time on g2 to obtain an even better estimate g3 and so on (see details
below). Algorithm 3 stops doing this when gj >

3
4 · gj−1 and we denote this

value j by jmax

During the jth execution of ImproveEstimate:

we start by choosing kj=bgj/4c. Then it proceeds similar as in the idea
of Lemma 7, but restricted to the nodes in a kj-dominating set DOMj .
That is Algorithm 3 computes DOMj-SP instead of APSP and executes
the algorithm of Lemma 7 restricted to the breadth-first searches rooted in
nodes of DOMj . Now we use tree T1 to aggregate the minimum estimate
in its root in time O(D) and denote the obtained value by gj+1. The total
complexity of this computation is O(|DOMj | + D). Using Lemma 12 and
Fact 1 this turns out to be O((n/gj) +D).

Lemma 13. If gj ≥ 4 · g, Subroutine ImproveEstimate computes a new
estimate gj+1 such that gj+1 ≤ 3

4 · gj

Proof. Let C be a minimal cycle in G. Due to executing a BFS only from
the nodes in DOMj and not from all nodes in V , it is possible, that no BFS
is executed from any node in C. Still we know that a BFS is executed from
at least one node at distance at most kj from some node in C. This results
in an estimate gj+1 of the size of C that differs from its actual length by
at most 2 · kj (this is not the best bound, but this is sufficient). That is
gj+1 ≤ g+2 ·kj ≤ g+gj/2. This in turn is at most 3

4 ·gj since gj ≥ 4 ·g.

Lemma 14. If gj+1/gj > 3/4 we have found found jmax := j + 1 such that
gj+1 < 4 · g. Furthermore: jmax ∈ O(log(g1/g)).

Proof. The first statement immediately follows from Lemma 13. From
Lemma 13 we also conclude that gj ≥ 4 · g is only possible during the
first O(log(g1/g)) iterations. An improvement of this (×, 4)-approximation
of the girth by a factor of 3/4 is only possible during at most four further
iterations. Thus jmax ∈ O(log(g1/g)).

We let ImproveEstimate run a last time using an “estimate” g′ :=
gjmax · ε/2 for g. By following a similar reasoning as above, the resulting
output differs from g by at most gjmax · ε/4, which is at most ε · g due to
Lemma 14. This implies that the result is a (×, 1 + ε)-approximation of g.

26

Algorithm 3 as executed by each node v ∈ G.
Input: accuracy parameter ε Output: (×, 1 + ε)-approximation to

the girth of G

1: j := 1; g0 =∞
2: perform BFS1 to compute g1 :=

{
∞ : G is a tree
ecc(1) : else

//** upper bound on g
3: while gj ≤ 3

4 · gj−1 do
4: gj+1 := ImproveEstimate(gj)

//** get better estimate
5: j := j + 1
6: end while
7: jmax := j
8: output ImproveEstimate(gjmax · ε/2) //** final estimate

Subroutine ImproveEstimate on input gj :
9: kj := bgj/4c

10: DOMj := kj-dominating set of G
11: execute modified DOMj-SP to estimate small cycles
12: gj+1 := min-aggregate of the estimates any node in DOMj found
13: return gj+1

The time used to find this estimate of g is given by

jmax∑
j=1

O
(
n

gj
+D

)
=

ν=log g1∑
log g

O
(n

2ν
+D

)

⊆ (log g1 − log g) · O(D) +

ν=logD∑
log g

O
(n

2ν

)
= O

(
n/g +D · log

g1
g

)
.

The way we choose g1 allows us to bound g1 = O(D) and to conclude a

total runtime of O
(
n/g +D · log D

g

)
. In case D · log D

g > n, we could just

use the exact algorithm for g (described in Lemma 7) to obtain a linear
runtime.

7 Distinguishing Graphs of Small Diameter

7.1 Distinguishing Diameter 2 from 3 takes time Ω(n/B +D)

Theorem 8. Let G be the family of all graphs of diameter 2 or 3. For any
n ≥ 6 and B ≥ 1 and sufficiently small ε any distributed randomized ε-error

27

algorithm A that can decide whether a graph G ∈ G has diameter 2 or 3
needs Ω

(
n
B +D

)
time for some n-node graph.

Remark 6. This is an improvement of Theorem 5.1. of [22]: computing
the diameter of a graph takes time Ω(n/B + D) even if the diameter is 3
(compared to five as in [22]).

Proof. Deciding whether a graph G has diameter less than 3 or not is the
decision-version diam3 of the function diam, that is

diam3(G) :=

{
1 : diam(G) < 3
0 : else

Again we use the technique described in [22]: We define a two-party
communication problem diam′3 according to the graph-problem diam3 in
a canonical way as described in Section 5.1. To prove bounds for diam′3
depending on n, we choose the length k of the input to the base-function h
to depend on n and set k(n) :=

⌊
n−2
4

⌋
. As base-function h we consider the

disjk(n)2 problem. Now we need to define a reduction R that given inputs
a and b to h maps (Alice, a) and (Bob, b) to (Ga, Ck(n)2) and (Gb, Ck(n)2)
which in turn are inputs for diam′3.

During the reduction R, Alice defines L and Bob defines R in the same
way as in Section 5.2.

Alice adds a node cL to Ga that Alice connects to all nodes in L and Bob
adds a node cR to Gb that is connected to all nodes in R. Furthermore, for
each i ∈ [k(n)2 − 1], if and only if a(i) = 0, Alice connects node li mod k(n)

from the upper half to node l
k(n)+

⌊
i

k(n)

⌋ in the lower half by an edge. In

addition Alice adds clique-edges {(lµ, lν)|µ 6= ν ∈ [k(n) − 1]} in the upper
part as well as {(lµ, lν)|µ 6= ν ∈ {k(n), . . . , k(n) − 1} in the lower part.
An example of this can be found in Figure 2 with detailed explanations in
the caption. Note that this is the only part that depends on the input a
and we can represent all values of the k(n)2 bits of a by the k(n)2 possible
edges between the k(n) nodes {lν : ν ∈ [k(n) − 1]} and the k(n) nodes
{lν : ν ∈ {k(n), . . . , 2 ·k(n)−1}}. We call the resulting graph Ga = (Va, Ea)
(see formal definition below) and define Gb in a similar way depending on
b. That is e.g. for each i ∈ [k(n)2 − 1], if and only if b(i) = 0, Bob connects
node ri mod k(n) from the upper half to node r

k(n)+
⌊

i
k(n)

⌋ in the lower half by

an edge. Observe that |Va| = |Vb| = 2·k(n)+1 which is smaller than n/2 due
to the choice of k(n) and the fact that n ≥ 6 implies k(n) ≥ 1. Therefore we
add n−4·k(n)−2 fill up nodes wi toGb and connect them to each of the nodes
R∪{cR}. This ensures that the final graph m((Ga, Ck(n)2), (Gb, Ck(n)2)) has
exactly n nodes such that the lower bound holds for all n. Formally we have:

28

Ga Ck2n Gb

cL cR

l0 r0

l1 r1

l2 r2

l3 r3

w0

w1

Figure 2: The above graph Ga,b is for n = 12 (therefore we set k(n) = 2)
and results from inputs a = (0, 0, 0, 1), b = (0, 1, 1, 1) using the reduction R.
Accordingly the dashed red edges represent a and b. To be more specific,
edge (l0, l2) represents a(0) = 0, edge (l0, l3) represents a(1) = 0, edge (l1, l2)
represents a(2) = 0 and edge (r0, r2) represents b(0) = 0. This causes the
diameter to be larger than 2 witnessed by d(l1, r3) = 3. Using Theorem 9 we
conclude that a and b are not disjoint, which is indeed true in this example.

Va := L ∪ {cL}
Ea :=

⋃2·k(n)−1
ν=0 {(lν , cL)}
∪{(lν , lµ) : ν 6= µ ∧ ν, µ ∈ [k(n)− 1]}
∪{(lν , lµ) : ν 6= µ ∧ ν, µ ∈ {k(n), . . . , 2 · k(n)− 1}}
∪{(li mod k(n), lk(n)+

⌊
i

k(n)

⌋) :

i ∈ [k(n)2 − 1], a(i) = 0}

Vb := R ∪ {cR} ∪ {wi : i ∈ [n− 4 · k(n)− 2]}
Eb :=

⋃2·k(n)−1
ν=0 {(rν , cR)}
∪{(wi, v) : i ∈ [n− 4 · k(n) + 1], v ∈ R ∪ {cR}}
∪{(ri mod k(n), rk(n)+

⌊
i

k(n)

⌋) :

i ∈ [k(n)2 − 1], b(i) = 0}

Finally we define the cut-set Ck(n)2 := {(lν , rν) : ν ∈ [2·k(n)−1]}∪{(cL, cR)}
to consist of 2 ·k(n) + 1 edges. Thus R is a (2 ·k(n) + 1)-reduction. Observe
that (Ga, Ck(n)2) can be computed from a without knowing b and (Gb, Ck(n)2)
can be computed from b without knowing a, thus the reduction R has the
desired properties. Now we set Ga,b := m((Ga, Ck(n)2), (Gb, Ck(n)2)).

29

Lemma 15. The graph Ga,b is an n-node graph with diameter at most 3.

Proof. The graph Ga,b contains the 4 · k(n) nodes in L and R. Furthermore
it contains {cL, cR} and n − 4 · k(n) − 2 fill up nodes. Thus, in total there
are n nodes in the graph.

We prove that the diameter is at most 3 by showing that for any nodes
u and v in Ga,b the distance d(u, v) is at most 3. To do this we distinguish
three cases:

1. nodes u and v are both in Ga: Observe that every node in Ga is
connected to cL. This implies that the distance between any two
nodes u and v in Ga is at most 2.

2. nodes u and v are both in Gb: This case is completely analog to the
previous, thus d(u, v) ≤ 2.

3. node u is in Ga and node v is in Gb (or the other way round): There
is the following u-v-path of length 3: (u, cL, cR, v).

Now we relate the problem of deciding whether a and b are disjoint to the
problem of computing the diameter of a graph. To achieve this we extend
the analysis of the diameter of Ga,b.

Theorem 9. The diameter of Ga,b is 2 if the sets a and b are disjoint, else
it is 3.

Proof. If a and b are not disjoint, then there exists an i ∈ [n− 1] such that
a(i) = b(i) = 1. Let us fix such an i for now and let ν := i mod k(n) and

µ = k(n)+
⌊

i
k(n)

⌋
. We show that the two nodes lν and rµ have distance of at

least 3. The path must contain an edge from the cut-set Ck(n)2 since these
are the only edges that connect Ga to Gb. To obtain a path of length 2 we
were only allowed to add one more edge from either Ga or Gb. When looking
at the construction, the only two paths of length 2 that we could hope for
are (lν , lµ, rµ) and (lν , rν , rµ). However, due to a(i) = b(i) = 1 and the
implied choice of ν and µ causes that the construction of Ga,b does neither
include edge (lν , lµ) nor edge (rν , rµ). Thus none of these paths exists and
we conclude that d(lν , rµ) > 2. Combined with Lemma 15 this implies that
d(lν , rµ) = 3 if and only if a and b are not disjoint.

Conversely if a and b are disjoint, the diameter of Ga,b is at most 2. We
prove this by showing that for any nodes u and v in Ga,b the distance d(u, v)
is at most 2. To do this we distinguishing three cases:

1. Nodes u and v are both in Ga: same as case 1 in proof of Lemma 15,
thus d(u, v) ≤ 2.

30

2. Nodes u and v are both in Gb: same as case 2 in proof of Lemma 15,
thus d(u, v) ≤ 2.

3. Node u is in Ga and node v is in Gb (or the other way round): When
considering the nodes {cL, cR, w0, w1, w2, . . . }, we notice that from
each of these nodes each other node in the graph can be reached within
2 hops. Now we can assume without loss of generality that u = lν ∈ L
and v = rµ ∈ R for some µ, ν ∈ [2 · k(n)− 1]. Since we assumed that a
and b are disjoint there must be either at least one of the edges (lν , lµ)
or (rν , rµ) in case that one of the nodes is in UP and the other node is
in LP. Thus there is at least one of the paths (lν , lµ, rµ) or (lν , rν , rµ)
witnessing that d(lν , rµ) ≤ 2. In the remaining case u, v are both in
UP or both in LP, w make use of the clique-edges and conclude that
u and v are connected by path (lν , rν , rµ) of length 2.

Proof. (of Theorem 8) To solve disjk(n)2 using any algorithm for diam we use
the reduction from diam′3 to diam3 (diam, respectively) and the reduction
R from disjk(n)2 to diam′3 presented above. We can apply Theorem 3 and
know that

Rcc−pubε (disjk(n)2)

2 · |Ck(n)2 | ·B
≤ Rdcε (diam3)

Due to Theorem 2 we know that Rcc−pubε (disjk(n)2) is at least Ω(k(n)2).
Together with the fact that |Ck(n)2 | = 2 · k(n) + 1 we conclude that

Rdcε (diam3) ∈ Ω(k(n)). We obtain the stated result since we chose k(n) :=⌈
n−2
4

⌉
.

Lemma 16. Computing a (×, 3/2−ε)-approximation for APSP takes Ω(nB+
D) time.

Proof. From Theorem 8 we know that Ω(nB + D) is needed to distinguish
diameter 3 from 2. Any (×, 3/2 − ε)-approximation algorithm for APSP
can distinguishing graphs of diameter 2 from graphs of diameter 2 with only
O(D) = O(1) communication rounds overhead. This can be extended to the
case of larger diameters: Construct a graph by adding a path of the desired
length to one node in the graph. In this setting we are interested in deciding
whether the diameter of a certain subgraph is 2 or 3. This subgraph is just
the previously described graph to which we later added the path.

31

7.2 Distinguishing Diameter 2 from 4 in time O(
√
n · log n)

We now demonstrate how to distinguish graphs of diameter 2 from graphs
of diameter 4 in time O(

√
n). This algorithm is inspired by an algorithm

called 2-vs-4 presented in [2]. The authors of [2] considered the idea leading
to this algorithm to be an important step towards obtaining their (×, 3/2)-
approximation algorithm. In the light of Theorem 8 (and Theorem 4), where
we showed that distinguishing diameter 2 graphs from diameter 3 graphs
(and diameter k graphs from diameter k+ 2 graphs for k ≥ 4, respectively)
takes long time, it is intriguing that distinguishing diameter 2 graphs from
4 graphs can be done rather fast. Before we state Algorithm 4 (a.k.a. Al-
gorithm 2-vs-4), we introduce some notation and review some results of [2]
depending on a parameter s. Later in the paper they choose the parameter
s to be s :=

√
n · log n and we do the same in our distributed setting.

Definition 15. We define L(V) := {u ∈ V : |N1(u)| < s} and H(V) :=
V \ L(V) = {u ∈ V : |N1(u)| ≥ s}.

Remark 7. (Version of Remark 2.1. in [2]). Choosing a set of Θ(s−1 · n ·
log n) vertices uniformly at random results in an 1-dominating set for H(V)
with high probability.

Theorem 10. Algorithm 4 distinguishes diameter 2 from 4 and can be im-
plemented in a distributed way (using randomness) terminating whp within
O(
√
n · log n) rounds of communication.

Algorithm 4 – same as Algorithm 2-vs-4 from [2].
Input: G with diameter 2 or 4 Output: diameter of G

1: if L(V) 6= ∅ then
2: choose v ∈ L(V)
3: compute a BFS tree from each vertex in N1(v)
4: else
5: compute a dominating set DOM for H(V)
6: compute a BFS tree from each vertex in DOM
7: end if
8: if all BFS trees have depth 2 then
9: return 2

10: else
11: return 4
12: end if

Proof. Correctness is shown in Theorem 3.1. in [2] and we only need to take
care of analyzing the distributed runtime. Each node can decide internally
without communication whether it belongs to set L(V) or H(V). Choosing

32

the node v in Line 2 takes O(D). Computing the BFS trees from each vertex
in N1(v) can be done in time O(|N1(v)| · D) = O(s · D) = O(

√
n · log n),

due to the choice of v and s as well as the fact that D ≤ 4 = O(1). (Note:
This is already fast enough and we do not need to use N1(v)-SP here.)
Computing a dominating set DOM for H(V) can be done locally without
communication: each node in H(V) independently joins DOM with prob-

ability
√

logn
n . With high probability this results in a set DOM of size

Θ(
√
n · log n) which in turn is a dominating set with high probability ac-

cording to Remark 7. Computing BFS trees from each of the vertices in
DOM takes O(|DOM| · D) = O(

√
n · log n). Deciding whether all com-

puted BFS trees have depth at most 2 can be done by max-aggregation in
an arbitrary node in time O(D) = O(1). Thus the total time complexity is
O(
√
n · log n).

8 Counting the Number of Nodes in the Greater
Neighborhood

In this section we argue that computing all depth k-BFS trees can be a
hard task by giving a worst case example for k = 2. Towards this end we
construct a family of graphs where computing all depth 2-BFS trees takes
Ω(n/B +D) time. At the same time these graphs have girth 3.

Theorem 11. Let G be the family of all graphs of diameter 2 or 3. For
any n ≥ 6 and B ≥ 1 and sufficiently small ε any distributed randomized
ε-error algorithm A that can compute a 2-BFS trees for each nodes needs
Ω(n/B +D) time for some n-node graph.

Proof. Consider the following problem: “Is there a node v, such that the
number of nodes in the 2-neighborhood N2(v) (including v) is strictly less
than n?” The problem of computing all 2-BFS trees can be reduced to this
problem in time O(D) = O(1): Simply check whether there is a node that
is not included in some 2-BFS tree. This problem in turn can be reduced
to distinguishing whether the graph used in the proof of Theorem 8 has
diameter 2 or 3. If for all nodes the number of nodes in the k-neighborhood
is n−1, this means that the diameter is 2. Else the diameter is 3. Applying
Theorem 8 immediately yields the lower bound.

Acknowledgments: We thank an anonymous reviewer for helpful com-
ments on the presentation.

33

References

[1] J. Abram and I. Rhodes. A decentralized shortest path algorithm. In
Proceedings of the 16th Allerton Conference on Communication, Con-
trol and Computing (Allerton), pages 271–277, 1978.

[2] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation
of diameter and shortest paths (without matrix multiplication). SIAM
Journal on Computing (SICOMP), 28(4):1167–1181, 1999.

[3] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs
shortest path problem. In Proceedings of the 32nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 569–575,
1991.

[4] N. Alon, O. Margalit, Z. Galilt, and M. Naor. Witnesses for boolean
matrix multiplication and for shortest paths. In Proceedings of the
33rd Annual Symposium on Foundations of Computer Science (FOCS),
pages 417–426, 1992.

[5] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length
cycles. Algorithmica, 17(3):209–223, 1997.

[6] U. Black. IP routing protocols: RIP, OSPF, BGP, PNNI and Cisco
routing protocols. Prentice Hall PTR, 2000.

[7] G. Blelloch, V. Vassilevska, and R. Williams. A new combinatorial
approach for sparse graph problems. In Proceedings of the 35th inter-
national colloquium on Automata, Languages and Programming, Part
I (ICALP), pages 108–120, 2008.

[8] P. Carrington, J. Scott, and S. Wasserman. Models and methods in
social network analysis. Cambridge University Press, 2005.

[9] T. Chan. All-pairs shortest paths for unweighted undirected graphs in
o (mn) time. In Proceedings of the 17th annual ACM-SIAM symposium
on Discrete algorithm (SODA), pages 514–523. ACM, 2006.

[10] T. M. Chan. More algorithms for all-pairs shortest paths in weighted
graphs. In Proceedings of the 39th annual ACM symposium on Theory
of computing, (STOC), pages 590–598, New York, NY, USA, 2007.
ACM.

[11] K. Chandy and J. Misra. Distributed computation on graphs: Shortest
path algorithms. Communications of the ACM (CACM), 25(11):833–
837, 1982.

34

[12] C. Chen. A distributed algorithm for shortest paths. IEEE Transactions
on Computers (TC), 100(9):898–899, 1982.

[13] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. Journal of symbolic computation (JSC), 9(3):251–280,
1990.

[14] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pan-
durangan, D. Peleg, and R. Wattenhofer. Distributed verification and
hardness of distributed approximation. Proceedings of the 43rd annual
ACM Symposium on Theory of Computing (STOC), 2011.

[15] W. Dobosiewicz. A more efficient algorithm for the min-plus multipli-
cation. International journal of computer mathematics, 32(1-2):49–60,
1990.

[16] D. Dolev, C. Lenzen, and S. Peled. ”tri, tri again”: Finding
triangles and small subgraphs in a distributed setting. CoRR,
http://arxiv.org/abs/1201.6652, 2012.

[17] D. Dor, S. Halperin, and U. Zwick. All-pairs almost shortest paths.
SIAM Journal on Computing (SICOMP), 29:1740, 2000.

[18] M. Elkin. Computing almost shortest paths. In Proceedings of the
20th annual ACM symposium on Principles of distributed computing
(PODC), pages 53–62, 2001.

[19] T. Feder and R. Motwani. Clique partitions, graph compression and
speeding-up algorithms. In Proceedings of the 23rd annual ACM sym-
posium on Theory of computing (STOC), pages 123–133, 1991.

[20] G. Flake, S. Lawrence, and C. Giles. Efficient identification of web
communities. In Proceedings of the 6th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD), pages 150–
160. ACM, 2000.

[21] M. Fredman. New bounds on the complexity of the shortest path prob-
lem. SIAM Journal on Computing (SICOMP), 5:83, 1976.

[22] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks Cannot Com-
pute Their Diameter in Sublinear Time. In Proceedings of the 23rd an-
nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1150–1162.

[23] Y. Han. Improved algorithm for all pairs shortest paths. Information
Processing Letters (IPL), 91(5):245–250, 2004.

[24] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM
Journal on Computing (SICOMP), 7:413, 1978.

35

[25] M. Khan, F. Kuhn, D. Malkhi, G. Pandurangan, and K. Talwar. Ef-
ficient distributed approximation algorithms via probabilistic tree em-
beddings. In Proceedings of the 27th Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing (PODC), pages
263–272, 2008.

[26] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge
University Press, 1997.

[27] S. Kutten and D. Peleg. Fast distributed construction of small k-
dominating sets and applications. Journal of Algorithms, 28(1):40–66,
1998.

[28] N. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[29] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm for
the arpanet. IEEE Transactions on Communications (TC), 28(5):711–
719, 1980.

[30] P. Merlin and A. Segall. A failsafe distributed routing protocol. IEEE
Transactions on Communications (TC), 27(9):1280–1287, 1979.

[31] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, 1999.

[32] D. Peleg. Distributed computing: a locality-sensitive approach. 2000.

[33] D. Peleg, L. Roditty, and E. Tal. Distributed algorithms for network
diameter and girth. In Proceedings of the 39th International Colloquium
on Automata, Languages and Programming (ICALP), to appear, 2012.

[34] L. Roditty and R. Tov. Approximating the girth. In Proceedings of the
22nd annual ACM-SIAM symposium on Discrete algorithm (SODA),
pages 1446–1454, 2011.

[35] L. Roditty and V. Williams. Minimum weight cycles and triangles:
Equivalences and algorithms. In Proceedings of the 52nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 180–
189, 2011.

[36] L. Roditty and V. Williams. Subquadratic time approximation algo-
rithms for the girth. In Proceedings of the 23rd annual ACM-SIAM
symposium on Discrete algorithm (SODA), pages 833–845, 2012.

[37] A. Sarma, M. Dinitz, and G. Pandurangan. Efficient computation of
distance sketches in distributed networks. 24th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), to appear, 2012.

36

[38] M. Schwartz and T. Stern. Routing techniques used in computer com-
munication networks. IEEE Transactions on Communications (TC),
28(4):539–552, 1980.

[39] R. Seidel. On the all-pairs-shortest-path problem in unweighted undi-
rected graphs. Journal of Computer and System Sciences (JCSS),
51(3):400–403, 1995.

[40] A. Shoshan and U. Zwick. All pairs shortest paths in undirected graphs
with integer weights. In Proceedings of the 40th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 605–614,
1999.

[41] W. Tajibnapis. A correctness proof of a topology information mainte-
nance protocol for a distributed computer network. Communications
of the ACM (CACM), 20(7):477–485, 1977.

[42] T. Takaoka. A new upper bound on the complexity of the all pairs short-
est path problem. Information Processing Letters (IPL), 43(4):195–199,
1992.

[43] T. Takaoka. A faster algorithm for the all-pairs shortest path prob-
lem and its application. Proceedings of the 10th Annual International
Computing and Combinatorics Conference (COCOON), pages 278–289,
2004.

[44] M. Thorup and U. Zwick. Approximate distance oracles. Journal of
the ACM (JACM), 52(1):1–24, 2005.

[45] S. Toueg. An all-pairs shortest-paths distributed algorithm. Tech. Rep.
RC 8327, IBM TJ Watson Research Center, Yorktown Heights, NY
10598, USA, 1980.

[46] V. Williams. Multiplying matrices faster than coppersmith-winograd.
Proceedings of the 44th annual ACM Symposium on Theory of Com-
puting (STOC), 2012.

[47] A. Yao. Some complexity questions related to distributive computing.
In Proceedings of the 11th annual ACM symposium on Theory of com-
puting (STOC), pages 209–213, 1979.

[48] S. Yardi, D. Romero, G. Schoenebeck, and D. Boyd. Detecting spam
in a twitter network. First Monday, 15(1), 2009.

[49] R. Yuster and U. Zwick. Finding even cycles even faster. SIAM Journal
on Discrete Mathematics (SIDMA), 10:209, 1997.

37

[50] U. Zwick. A slightly improved sub-cubic algorithm for the all pairs
shortest paths problem with real edge lengths. Algorithms and Com-
putation, pages 841–843, 2005.

38

