
Hybrid Post-Quantum Signatures in Hardware
Security Keys

Diana Ghinea1,2, Fabian Kaczmarczyck2, Jennifer Pullman2, Julien Cretin2,
Stefan Kölbl2, Rafael Misoczki2, Jean-Michel Picod2, Luca Invernizzi2, Elie

Bursztein2

1 ETH ghinead@ethz.ch
2 Google {dianamin, kaczmarczyck, jpullman, cretin, kste,

jmichel, invernizzi, elieb}@google.com, rafa.misoczki@gmail.com

Abstract. Recent advances in quantum computing are increasingly jeop-
ardizing the security of cryptosystems currently in widespread use, such
as RSA or elliptic-curve signatures. To address this threat, researchers
and standardization institutes have accelerated the transition to quantum-
resistant cryptosystems, collectively known as Post-Quantum Crypto-
graphy (PQC). These PQC schemes present new challenges due to their
larger memory and computational footprints and their higher chance of
latent vulnerabilities.
In this work, we address these challenges by introducing a scheme to
upgrade the digital signatures used by security keys to PQC. We intro-
duce a hybrid digital signature scheme based on two building blocks: a
classically-secure scheme, ECDSA, and a post-quantum secure one, Dili-
thium. Our hybrid scheme maintains the guarantees of each underlying
building block even if the other one is broken, thus being resistant to
classical and quantum attacks. We experimentally show that our hybrid
signature scheme can successfully execute on current security keys, even
though secure PQC schemes are known to require substantial resources.
We publish an open-source implementation of our scheme at https:

//github.com/google/OpenSK/releases/tag/hybrid-pqc so that
other researchers can reproduce our results on a nRF52840 development
kit.

Keywords: PQC · FIDO · Dilithium · Embedded

1 Introduction

Recent advances in quantum computing are increasingly jeopardizing the secu-
rity of cryptosystems currently in widespread use, such as RSA [34] and DSA [21].
For example, even the comparatively-newer ECDSA, based on elliptic curve cryp-
tography [20], is vulnerable to quantum attacks (i.e., attacks that leverage quan-
tum computers).

To address this threat, researchers and standardization institutes have ac-
celerated the transition to quantum-attack-resistant cryptosystems, collectively

https://github.com/google/OpenSK/releases/tag/hybrid-pqc
https://github.com/google/OpenSK/releases/tag/hybrid-pqc


2 D. Ghinea et al.

known as Post-Quantum Cryptography (PQC). These PQC schemes rely on a
new set of underlying hard problems, that researchers believe to be impervi-
ous to quantum attacks. However, these schemes present new challenges due to
their substantial memory and computational footprints and their higher chance
of latent vulnerabilities due to the schemes’ novelty, such as the one recently
discovered by Castryck and Decru [9] against SIKE. To mitigate the potential
damage, researchers are pursuing hybrid signature schemes [6], which maintain
the classical scheme’s security against classical attackers.

One class of protocols that needs upgrading to PQC is security-key-based
authentication protocols, such as FIDO’s CTAP and WebAuthn [15,22]. Through
these protocols, a user can prove their identity with a hardware token (commonly
called a security key), either as a first-factor or second-factor authentication.

In this work, we address this challenge by introducing a PQC digital signature
scheme for hardware security keys, focusing on both the theoretical and practi-
cal aspects of this scheme. Specifically, we introduce a hybrid scheme based on
two building blocks: a classically-secure scheme, ECDSA, and a post-quantum
secure one, Dilithium. We picked Dilithium [13] as it is one of the schemes re-
cently selected by United States National Institute of Science and Technology
(NIST) [28] as the PQC standard for digital signature schemes and because of
the fast speed of its signing — the most frequent operation in our use case.

On the practical aspect, we show that our hybrid signature scheme can
be executed by current security keys, even though secure PQC schemes re-
quire substantial resources. Specifically, we implement our hybrid scheme in
OpenSK [31], an open-source firmware for security keys written in Rust. We
provide our implementation as open-source software with an Apache2 license at
https://github.com/google/OpenSK/releases/tag/hybrid-pqc.

Our contributions are as follows:

– We prove the strong unforgeability of a previously proposed hybrid signature
scheme [6] in the context of security key authentication. Our hybrid scheme
maintains the guarantees of each underlying scheme even if the other one is
broken, thus being resistant to classical and quantum attacks.

– We release an implementation of our hybrid scheme with ECDSA and Dili-
thium as underlying components. We have implemented this scheme in Rust
on top of the security-key firmware OpenSK. To allow deployment on diverse
hardware, we do not take advantage of any hardware-specific acceleration
and we ensure that the memory footprint of our hybrid scheme fits in 64 kB
of RAM. This requirement leads us to reduce Dilithium’s memory footprint.

1.1 Related Work

Hybrid Cryptosystems. For the transition period to prevalent quantum com-
puters, hybrid cryptosystems provide security against future quantum attackers,
while mitigating potential design or implementation bugs in the face of classi-
cal attackers. Hybrid solutions exist for e.g., authenticated key exchange [2,12],
public-key encryption [25], and digital signatures [6].

https://github.com/google/OpenSK/releases/tag/hybrid-pqc


Hybrid Post-Quantum Signatures in Hardware Security Keys 3

The hybrid scheme we are implementing in this work follows one of the de-
signs presented in [6]. The difference is that we investigate the feasibility of
achieving post-quantum security under the constraints of embedded hardware.
Furthermore, we show that this design actually achieves stronger security defi-
nitions than shown in [6] (i.e., strong existential unforgeability versus existential
unforgeability). In addition, we show a natural extension to a larger class of
hybrid signature schemes of the non-separability property introduced by Bindel
et al, and we show how it can be applied in the context of passwordless authen-
tication.

PQC for FIDO. In a concurrent work, Bindel et al. [5] have analyzed
whether FIDO can provide PQC guarantees from a theoretical point of view
and formally verify parts of the FIDO protocols. They argue how PQC can be
integrated to maintain theoretical guarantees. Our work complements theirs in
the following aspects:

– They focus on the PIN protocol, and mostly omit registration and authen-
tication. We propose a signing scheme for this use case.

– They formally prove parts of the FIDO protocols. We prove the security
guarantees of a hybrid signing primitive.

– They propose changes to the FIDO protocols, leaving the cryptographic
primitives as an open choice. We implement a PQC primitive that works on
embedded hardware, and open-source fully-working firmware.

Dilithium vs other PQC. Dilithium [13] and Falcon [24] both won NIST’s
post-quantum signature algorithm standardization challenge. We compare the
two schemes in Figure 1. As will be discussed in Section 5, for security keys,
we are mainly interested in the signing speed and the private key size, whereas
verification is not performed on embedded hardware. The private key size affects
how many credentials can be stored on the security key.

Fig. 1. Relative performance of
Falcon 512 compared to the ref-
erence implementation of Dili-
thium3 as the baseline for the
security key use case, as re-
ported by Raavi et al. [33] in
Figure 6.



4 D. Ghinea et al.

We optimize Dilithium in Section 5 to get closer to Falcon in key sizes. Our
implementation maintains competitive signing speeds, while having favorable
properties overall. We use some of the optimization techniques in Bos et al. [7],
and implement them in Rust for added memory safety.

– Private key size: We store the 256-bit secret that we use to regenerate the
private key on the fly. Given the amount of entropy we need, this is near-
optimal in terms of required storage.

– Public key and signature size: Public keys and signatures have to be small
enough for transmission over USB and NFC. Falcon has 2x smaller public
keys and 3x smaller signatures than Dilithium for comparable security levels.
Dilithium is still compatible with the CTAP protocol’s constraints.

– Key generation speed: Dilithium is 100x faster for key generation [18] than
Falcon. That is why we can regenerate private keys on the fly from the stored
random seed.

– Memory: Falcon has smaller requirements, but Dilithium can be optimized
to fit embedded devices.

Outside of lattice-based signatures, there are stateless hash-based signature
schemes like SPHINCS+ [3] which has been selected as a standard by NIST.
However, their much larger signature size is infeasible for our use case, and the
performance cost of signing compared to lattice schemes is significantly worse.

Improvements to Dilithium’s performance. Multiple works have fo-
cused on improving Dilithium’s reference implementation [32] in terms of speed
and memory footprint. Another direction is vulnerability against side-channel
attacks, Migliore et al. [27] analyze Dilithium on an ARM Cortex-M3 micro-
controller, and remove unexpected leakages through masking. Greconici et al. [17]
obtain a constant-time Dilithium implementation on the Cortex-M3, which is
necessary for limiting potential side-channel attacks. In addition, they present
different strategies for the signing procedure that allow trading between the
stack and flash memory usage and speed, which can be applied for Cortex-M3
and Cortex-M4. Abdulrahman et al. [1] focused on further improvements of Di-
lithium’s speed on the ARM Cortex-M4.

Concurrently to our work, Bos et al. [7] have focused on reducing Dilithium’s
memory footprint to less than 9kB. While our implementation requires less than
22 kB, one can choose to compile different optimizations according to the use
case. Minimizing for binary size shrinks it to 9.3 kB compared to 9.8 kB for
Bos et al. Letting the compiler optimize for speed makes our code 6% to 18%
faster than them instead. Other advantages are: it ensures memory safety as it
is written in Rust, it is open-source and ready to use for security keys, even in
the hybrid setting.

2 Background

In this section, we introduce the relevant cryptography, describe our use case
of security keys and explain our hardware and firmware stack for embedded
development.



Hybrid Post-Quantum Signatures in Hardware Security Keys 5

2.1 Digital Signatures

We first recall the definition of a digital signature scheme. For our scope, we only
consider signature schemes deployed on classical computers.

Definition 1. (Digital signature scheme) A digital signature scheme Σ is a
triple of polynomial time algorithms (Σ.KeyGen, Σ.Sign, Σ.Verify) such that:

– Σ.KeyGen(1κ) is a probabilistic algorithm that takes the security parameter
1κ as input and outputs a public verification key pk and a secret signing key
sk.

– Σ.Sign(m, sk) is a probabilistic algorithm that takes a message m and a
secret key sk as inputs and outputs a signature σ.

– Σ.Verify(m,σ, pk) is a deterministic algorithm that takes a message m, a
signature σ and a public key pk as inputs. It outputs true or false, where true
means that σ is accepted as a signature for the message m and public key
pk, and false means that the signature is not accepted.

Digital signature schemes must achieve two properties: correctness and se-
curity. Correctness requires that for every key pair (sk, pk)←$Σ.KeyGen(1κ),
every possible message m, and any possible σ←$Σ.Sign(m, sk), it holds that
Σ.Verify(m,σ, pk) = true. In terms of security, there are multiple definitions,
and we present the ones relevant for our context below.

The security of digital signatures is often defined through a security game
where an adversary tries to forge a valid signature while interacting with a
challenger who holds the secret key. For the scope of our paper, we only consider
classical challengers (i.e., the signing oracle runs on a classical computer). We will
use the notation C-adversary to refer to a classical adversary, and Q-adversary
to refer to a quantum adversary with classical access to the signing oracle.

Security guarantees for digital signatures are often defined through the goals
and constraints of the adversary. We only work with two security definitions,
presented below: EUF-CMA (Existential Unforgeability under Chosen Message
Attacks) and SUF-CMA (Strong Unforgeability under Chosen Message Attacks).

Definition 2. (EUF-CMA security) We consider the EUF-CMA security game
for a signature scheme Σ, where the adversary A interacts with a challenger C
as follows:

1. The challenger C obtains a pair of keys from the key generation algorithm
(sk, pk)←$Σ.KeyGen(1κ) and sends pk to A.

2. A may adaptively send a polynomial (in κ, the security parameter) number
of queries mi to the challenger C. For each such query, C obtains σi =
Σ.Sign(m, sk) and sends σi to the adversary. Note that A may send query
mi+1 after receiving σi.

3. A may send a message-signature pair (m∗, σ∗). A wins the EUF-CMA secu-
rity game if m∗ /∈ {mi queried by the adversary} and Σ.Verify(m∗, σ∗, pk)
holds.



6 D. Ghinea et al.

We say that Σ is C-EUF-CMA secure if any classical A wins the EUF-CMA
security game with negligible probability (negl(κ)). Similarly, Σ is Q-EUF-CMA
secure if any (possibly quantum) A that interacts with the signing oracle classi-
cally wins the EUF-CMA security game with negligible probability (negl(κ)).

Definition 3. (SUF-CMA security) Similar to definition 2, but replace EUF
with SUF and step 3 with:

3. A may send a message-signature pair (m∗, σ∗). A wins the SUF-CMA se-
curity game if (m∗, σ∗) /∈ {(mi, σi) | mi queried} and Σ.Verify(m∗, σ∗, pk)
holds.

Achieving SUF-CMA security implies achieving EUF-CMA security, and
achieving the quantum variant of a definition implies achieving the classical
variant.

We recall the security guarantees of the concrete digital signature schemes
that we use:

– ECDSA achieves C-EUF-CMA security in the random bijection model [14].

– Dilithium achieves Q-SUF-CMA security in the quantum random oracle
model [19] (which implies all the weaker security definitions introduced
above).

2.2 Post-Quantum Cryptography

Dilithium is a signature scheme without known weaknesses to quantum comput-
ers. Different parameter sets of Dilithium are called modes and correspond to
estimated security levels. The cryptographic strengths of Dilithium are shown in
Table 1. The hardness is quantified with respect to the underlying mathematical
problems Learning With Errors (LWE) and Short Integer Solution (SIS). The
LWE and SIS problems are conjunctured to be hard to solve. NIST made an
attempt to translate these hardness levels to classical cryptography [29]. While
classical and quantum security levels are hard to directly compare, we add these
estimates to the table as an approximation.

Table 1. Cryptographic
strength of Dilithium
modes, as of NIST
standardization round
3 (see [10], Table 1).
The classical equiva-
lent refers to NIST’s
estimation.

Mode LWE
SIS

(for SUF-CMA)
Classical equivalent

Dilithium2 112 112 (110) SHA256 collision
Dilithium3 165 169 (159) AES-192 key search
Dilithium5 229 241 (230) AES-256 key search



Hybrid Post-Quantum Signatures in Hardware Security Keys 7

2.3 Security Keys

Security keys allow user authentication through digital signatures. They are
often implemented on embedded hardware to protect secret key material from
extraction.

FIDO. Fast IDentity Online (FIDO, see [15]) is a set of standards to al-
low online authentication through asymmetric cryptography. This exchange of
messages involves two protocols: the Client to Authenticator Protocol (CTAP,
see [11]), which enables the communication between the user’s Authenticator and
their Client (such as their browser, or their computer), and WebAuthn, which
ensures the communication between the client and the server (Relying Party).
Security keys act as authenticators and therefore implement CTAP.

CTAP. As part of a CTAP registration, the user generates a key pair, and
sends the public key to the server. For a CTAP authentication, the user then
proves possession of the private key (Credential) being stored on an authentica-
tor. A credential can be stored in one of two ways: Either it is encrypted and
sent to the relying party for storage, or it is stored locally in flash. We call these
cases server-side key and resident key, respectively.

We describe the cryptographic commands in CTAP below (see Figure 2).
The CTAP protocol started with U2F [22], and since then evolved to its current
version 2.1. The most important commands are Make Credential for registra-
tion and Get Assertion for authentication. Depending on usage of server-side or
resident credentials, these commands use the following cryptographic operations:

R1) During registration, the security key generates a key pair.
R2) Registration returns the public key of the credential, and may return the

encrypted private key (server-side key).
R3) Registration returns the public key of the credential, and may store the

private key on flash (resident key).
A1) Authentication returns a signature over a response derived from the Relying

Party’s message.
A2) Authentication returns a signature, and may return an encrypted private

key (server-side vs resident key).

3 Attacker Model

Security keys’ main goal is to defend against remote attackers and phishing.
Defense against local attackers with physical possession of the device are an
explicit non-goal. Adversaries can attack the protocol on different levels: crypto-
graphically, on CTAP level, or against the hardware device. In our cryptography
analysis in Section 4, we consider different extended capabilities for attackers:

– Possession of a Cryptographically-Relevant Quantum Computer;
– Knowledge of a Dilithium weakness.



8 D. Ghinea et al.

(a)

Fig. 2. Cryptographic operations in the CTAP protocol.

We acknowledge that FIDO’s protocols mitigate downgrading the protocol
already. They transmit the used algorithm over a channel that is considered
secure in their attacker model.

Cryptographic strength. We want our implementation to support all
modes of Dilithium, to allow applications with strong security requirements.
In particular, security keys are an important line of defense against account
hijacking.

Non-goals. Local attacks against the hardware itself or faulty implementa-
tions are out of scope for this work. That includes local side-channel attacks.
Indeed, Dilithium has been successfully attacked locally on e.g., the power side-
channel [26]. We follow FIDO’s security assumptions, listed in their Security
Reference [16]. The two most important for our threat model are the following:

SA-3 Applications on the user device are able to establish secure channels
that provide trustworthy server authentication, and confidentiality
and integrity for messages (e.g., through TLS).

SA-4 The computing environment on the FIDO user device and the ap-
plications involved in a FIDO operation act as trustworthy agents of
the user.

4 Hybrid Signatures

A hybrid signature scheme combines a classical signature algorithm with a post-
quantum secure signature algorithm (in a construction commonly known as
a combiner). Before discussing the design of our hybrid scheme, we explain
why such an approach is relevant instead of simply replacing classically secure
schemes with post-quantum secure schemes. We present the assumptions below:



Hybrid Post-Quantum Signatures in Hardware Security Keys 9

1. Cryptographically-Relevant Quantum Computers (i.e., with enough qubits
to break ECDSA) are not available yet.

2. Classical signature algorithms withstand attacks from classical computers.
3. The post-quantum secure signature algorithm might be breakable by classical

computers due to design or implementation bugs.

The first two assumptions present today’s reality. As soon as one of these
two assumptions fails, post-quantum security becomes a requirement. On the
other hand, post-quantum cryptography is still young, and attacks are still being
discovered. One such example is a recent attack against Rainbow [4], one of the
NIST standardization finalists. Our third assumption reflects this, and motivates
the transition to post-quantum secure schemes through hybrid schemes.

We can now discuss the informal requirements a hybrid scheme H should
satisfy:

1. If a quantum computer becomes available, and hence H’s underlying classical
scheme is broken, H should maintain the security of its underlying post-
quantum scheme.

2. If a classical attack for H’s underlying post-quantum secure scheme is dis-
covered, H should maintain the security of its underlying classical scheme.

There are multiple natural options for designing a hybrid scheme that satisfies
such guarantees. An example is obtaining a hybrid signature by concatenating
a classical signature with a post-quantum secure signature. Although simple,
this approach indeed maintains the existential unforgeability of the underlying
schemes [6].

On the other hand, for our concrete instantiation, Dilithium is strongly un-
forgeable, while ECDSA is existentially but not strongly unforgeable [14]. Con-
catenation unfortunately would not maintain Dilithium’s strong unforgeability:
one could simply replace the ECDSA part of the hybrid signature with another
valid ECDSA signature.

Intuitively, this issue can be solved by first signing a given message m with
the X-EUF-CMA secure scheme, obtaining σ1, and afterwards obtaining σ2 by
signing (m,σ1) with the X-SUF-CMA secure scheme. The hybrid signature for
the message m is σ = (σ1, σ2). This approach is called Strong Nesting [6] and is
the basis of our hybrid scheme.

Replacing ECDSA with Ed25519 is another possible fix, as the latter is
strongly unforgeable [8]. However, as all security keys already implement ECDSA,
a hybrid protocol that uses ECDSA benefits from code reuse.

We make use of the suggestion of Bindel et al. [6] of prepending a constant
label to the message to be signed. As an alternative construction with the same
properties, one could choose a random label during key generation and store it
in both the secret and public key. We decided to use the constant label approach
because it leads to smaller key size. This label essentially encodes an algorithm
identifier bound to the scheme, and restricts an adversary from trivially deriv-
ing partial signatures for messages not having the chosen label as a prefix (if



10 D. Ghinea et al.

the underlying schemes are secure). We exclude this label from the theoretical
analysis and consider it part of the message for the rest of this chapter.

We now formally present our hybrid signature scheme. Given two signature
schemes Σ1 and Σ2, we define the secret and public keys as pairs of their coun-
terparts in the given underlying schemes. Below we present the pseudocode of
the KeyGen() function.

H(Σ1, Σ2).KeyGen(1κ)

sk1, pk1 ←$Σ1.KeyGen(1κ)

sk2, pk2 ←$Σ2.KeyGen(1κ)

return sk = (sk1, sk2), pk = (pk1, pk2)

When signing a message m, the signer obtains a Σ1-signature for m, followed
by a Σ2-signature for (m,σ1). The hybrid signature is then the pair (σ1, σ2). In
practice, these pairs can be implemented as a simple concatenation if σ1 has
predictable length, or a concatenation with a separator. The pseudocode of the
signing and verifying functions is presented below.

H(Σ1, Σ2).Sign(m, sk = (sk1, sk2))

σ1 ← Σ1.Sign(m, sk1)

σ2 ← Σ2.Sign((m,σ1), sk2)

return σ = (σ1, σ2)

H(Σ1, Σ2).Verify(m,σ, pk)

(σ1, σ2) = σ and (pk1, pk2) = pk

return (Σ1.Verify(m,σ1, pk1)∧
Σ2.Verify((m,σ1), σ2, pk2))

We include the result below, which can be proven immediately using the fact
that the underlying schemes are correct.

Lemma 1. If Σ1 and Σ2 are correct, then H(Σ1, Σ2) is also correct.

Security Analysis. We now show that our hybrid scheme H(Σ1, Σ2) main-
tains the security guarantees of its underlying components. In the statements,
we use X ∈ {C,Q} to specify whether we consider classical or post-quantum
security.

The following lemma 2 can be derived from the work of Bindel et al. [6]
(Theorem 7).

Lemma 2. If Σ1 is X-EUF-CMA secure, then H(Σ1, Σ2) is X-EUF-CMA se-
cure as well.

We add the result below, stating that H(Σ1, Σ2) does not only maintain
EUF-CMA security, but also maintains Σ2’s SUF-CMA security guarantees. We
include the proof in the appendix.

Lemma 3. If Σ2 is X-EUF-CMA secure (resp. X-SUF-CMA) secure, it follows
that H(Σ1, Σ2) is X-EUF-CMA secure (resp. X-SUF-CMA) as well.

We recall that ECDSA achieves C-EUF-CMA security in the random bi-
jection model, while Dilithium achieves Q-SUF-CMA security in the quantum



Hybrid Post-Quantum Signatures in Hardware Security Keys 11

random oracle model, and we note that our hybrid scheme and proofs use the
underlying components as black-boxes. Then, the above shows that our scheme
H(ECDSA,Dilithium) at least maintains the security guarantees of ECDSA and
Dilithium (in their corresponding models).

5 A SK-Friendly Implementation

Security keys often run on embedded hardware devices with tight performance
constraints. Our work is based on the open source security key OpenSK [31].
OpenSK is a firmware that implements CTAP 2.1. It works as an application
on top of the embedded operating system TockOS [23]. For this work, we run
OpenSK on a Nordic nRF52840 development kit [30] with a 64 MHz ARM
Cortex-M4F MCU. The nRF52840 comes with a TRNG for randomness, and we
run all CTAP communication over USB.

To support different hardware targets, we want our firmware including Dili-
thium, namely the key generation and signing algorithm, to fit 64 kB of RAM.
For embedded hardware, we discuss various trade-offs between speed, memory
usage and key sizes. We describe our changes to Dilithium compared to the ref-
erence implementation. We focus on obtaining a hardware security key-friendly
Dilithium implementation for all Dilithium modes.

5.1 CTAP Requirements

Time to login affects usability. In addition, there are some limits for FIDO op-
erations in the specification:

– User presence and user verification tokens usually timeout after 30 seconds
(i.e., see 5. in [11]), but are guaranteed to be valid for at least 10 seconds.
We therefore aim for commands to finish within 10 seconds.

– The size of a CTAP message over USB cannot exceed 7609 B (see 11.2.4.
Message and packet structure in [11]).

Following the command naming from Section 2.3, this yields the following
priorities:

R1 ⇒ Key generation must finish in less than 10 s.
R2 ⇒ Key pairs must be smaller than 7 kB.
R3 ⇒ The private key should be small to allow storing additional credentials.
A1 ⇒ The login operation is more frequent than registration. Signing should be

as fast as possible.
A2 ⇒ A private key and signature together must be smaller than 7 kB.

The Dilithium modes 3 and 5 achieve the desired security requirements. How-
ever, for the reference implementation, they fail some requirements due to the
large sizes of the key pair and signature. Namely, both miss requirements R3
and A2, and Dilithium5 misses requirement R2.



12 D. Ghinea et al.

In the following sections, we describe how we achieve these requirements
within the memory limits of embedded hardware. Our main focus consists of
reducing the private key size and the memory footprint significantly. The exper-
iments for speed benchmarks can be found in Section 6.

5.2 Dilithium Optimizations

Our implementation offers two modes: first, a high speed mode, which follows the
original implementation with the exception that we reduce the key size. Second,
a low memory footprint mode. To reduce Dilithium’s memory footprint, we used
known optimization tricks, similarly to [7]. We recompute some intermediate
values and effectively trade additional computations (performance) to reduce
memory usage.

Both the key generation and the signing algorithm of Dilithium require com-
putations on vectors and matrices of polynomials stored on the stack memory,
together with intermediate results. The signing algorithm of the reference imple-
mentation of Dilithium [32] keeps on stack 49 such polynomials for Dilithium2,
76 for Dilithium3, and 118 for Dilithium5. Each such polynomial requires 1 kB.
The secret key and the array of bytes used to compute the signature are stored
on the stack at the same time, which leads to a stack usage of at least 53 kB for
Dilithium2, 83 kB for Dilithium3, and 127 kB for Dilithium5. This makes the
reference implementation of Dilithium infeasible for our RAM target, especially
since we aim for the security levels of Dilithium3 and Dilithium5.

As a first measure, we take into account the life cycle of variables and we
arrange the code into multiple blocks, such that the polynomials are only stored
on the stack when needed, and afterwards the memory can be recycled. This is
still not enough to meet our requirements.

Fortunately, the computations on polynomials are done sequentially (polyno-
mial by polynomial), and OpenSK does not have parallel execution. This enables
us to only store a few polynomials at a time, instead of a significant number of
large structures. While using this approach reduces the stack usage, it requires
some of the intermediate results to be recomputed, and hence it increases the
runtime significantly.

Discarding information from the secret key. Dilithium’s secret key is
an array of bytes comprising the encoding of an array of polynomials, t0, and
the information necessary for computing the array t0. At a high level, from
the secret key, one can derive a matrix of polynomials, A, and two vectors of
polynomials, s1 and s2. The array t0 is obtained by reducing each coefficient of
t = A · s1 + s2 modulo 2d, where d is a parameter. Then, storing the encodings
of t0 is not necessary. To further decrease Dilithium’s memory footprint, we can
simply recompute these polynomials when signing instead.

Encoding a single polynomial of t0 into the secret key takes 416 B. In the case
of Dilithium2, the encoding of t0 requires 1664 B. For Dilithium3 and Dilithium5,
the encoding requires 2496 B and 3328 B respectively. Then, the size of the secret
key gets reduced significantly: from 2528 B to 864 B in the case of Dilithium2,



Hybrid Post-Quantum Signatures in Hardware Security Keys 13

from 4000 B to 1504 B in Dilithium3, and from 4864 B to 1536 B in the case of
Dilithium5.

Recomputing t0 every time we sign helps us decrease Dilithium’s memory
footprint even more, with a caveat in terms of runtime since this recomputation
needs to be done whenever we sign a message. Indeed, this change negatively
affects the performance of Dilithium, but it remains reasonable (see experiments
in Section 6).

Only storing a 32 B seed. Dilithium’s key generation uses a 32 B seed
as source of randomness, which is then expanded to compute the components of
the secret and public keys. We can store only this seed and recompute the secret
key deterministically based on the stored seed whenever we sign. This adds a
small runtime overhead, while saving a significant amount of storage space. For
Dilithium5, we reduce the private key size from 4864 kB to 32 kB. From our
benchmarks in Section 6.2, we can see that the speed overhead is 8.2%.

We want to note that discarding information from the secret key during
computation is still useful: recomputing the polynomials in the vector t0 when
needed requires less stack memory than storing its encoding.

5.3 CTAP Implementation

To indicate support for H(ECDSA,Dilithium), we added a new algorithm iden-
tifier Hybrid. When a relying party requests a Hybrid credential, we follow the
CTAP procedure as usual. For simplicity, the only change of the encoding of
public keys compared to that in ECDSA is the addition of an extra field with
the bytes of the Dilithium public key. For registration of server-side credentials,
we only add a 32 B seed of the Dilithium private key that is part of the Hybrid
credential. All data is encoded as a CBOR map.

During authentication, the signature is computed withH(ECDSA,Dilithium).
The partial ECDSA signature is ASN.1 DER encoded like standard ECDSA sig-
natures in CTAP.

5.4 Side-Channel Resilience

As per our attacker model, local attackers are out of scope, and we consider time-
based remote side-channels only. Our Dilithium implementation should not leak
information about its secret key through the computation time as measurable
from outside the device.

The paper introducing Dilithium (Section 5.4 in [13]) explains that their
implementation does not leak information about the secret key. Indeed, as Di-
lithium’s signing algorithm may attempt to generate multiple signatures until
one that satisfies a set of conditions is found, an adversary can gain information
about the number of attempts, or about the conditions previous attempts did
not meet. The reasons why a signature attempt is rejected do not depend on the
secret key, instead they are based on pseudorandom information. Hence deter-
mining which conditions where the reason why a signature attempt was rejected
does not help the adversary derive information about the secret key.



14 D. Ghinea et al.

Our modifications to Dilithium indeed change the computation compared to
the reference implementation. However, our implementation still does not branch
depending on the secret data, and hence we maintain the same guarantees.

6 Experiments

We benchmark Dilithium on different target architectures, compare the 3 modes,
and evaluate the speed difference of the stack optimized version.

6.1 Dilithium Reference Implementation

Achieving higher security levels demands a higher run time and space usage.
Table 2 states the average speed of the Dilithium key generation and signing
algorithms over 1000 executions on an x86-64 architecture3, and the size of the
keys and the signature.

Table 2. Average run times on an
x86-64 architecture and the key
and signature sizes of the reference
implementation of Dilithium.

Scheme Runtime (ms) of Key size (bytes) of

KeyGen Sign Private Public Sign.

Dilithium2 0.08 0.31 2528 1312 2420
Dilithium3 0.15 0.53 4000 1952 3293
Dilithium5 0.22 0.61 4864 2592 4595

6.2 Dilithium Embedded

The changes from Section 5.2 enabled us to execute Dilithium in all modes on
the Nordic nRF52840 development kit [30]. The performance was measured on
the device and the elapsed time printed out via the debugging interface. Table 3
shows the performance we have obtained. In what we call speed mode, we selec-
tively apply some stack optimizations to be able to sign messages with Dilithium2
on embedded hardware. This allows evaluating the impact of the recomputations
only applied to stack mode. To measure the computational cost of our hybrid
scheme, we ran the equivalent experiment to the Dilithium benchmarks, but we
use the full hybrid scheme.

If not stated otherwise, all binaries are compiler-optimized for size. To com-
pare our runtime to other benchmarks, we also show results compiled for speed
in table 4. Note that the code runs as an application on top of an operating
system. Therefore, performance benchmarks don’t directly compare to other im-
plementations, as some time is spent inside i.e., syscalls. For an estimate of our
relative performance when compiled for speed, we convert the measured time

3 We have used a MacBook Pro (13-inch, 2020), with processor 2.3 GHz Quad-Core
Intel Core i7, and memory 16 GB 3733 MHz LPDDR4X.



Hybrid Post-Quantum Signatures in Hardware Security Keys 15

Key Stack Runtime (ms)

generation (in kB) Pure Hybrid

ECDSA 0.3 115.7
Dilithium2

(speed mode)
41.6 70.3 192.0

Dilithium2 14.4 82.3 207.5
Dilithium3 19.4 142.4 258.5
Dilithium5 21.4 271.4 393.1

Signing Stack Runtime (ms)

(in kB) Pure Hybrid

ECDSA 3.0 188.0
Dilithium2

(speed mode)
77.1 420.4 687.8

Dilithium2 17.0 1053.1 1417.5
Dilithium3 17.9 2077.3 2420.7
Dilithium5 19.2 3305.1 3378.5

Table 3. We show the performance obtained by our Optimized Stack mode imple-
mentation of Dilithium on the Nordic nRF52840 development kit [30]. The runtime in
milliseconds is averaged over 1000 executions, and the stack usage is measured with
stack painting. We added runtime speed for ECDSA as a baseline, and to explain the
difference between pure Dilithium and Hybrid measurements. Signing with Dilithium2
speed mode exceeds our target memory usage.

Key Runtime Relative to

generation -O3 (ms) -Oz Bos

ECDSA 51.9 45%
Dilithium2

(speed mode)
63.2 90% 71%

Dilithium2 72.3 88% 81%
Dilithium3 129.5 91% 83%
Dilithium5 223.6 82% 85%

Signing Runtime Relative to

-O3 (ms) -Oz Bos

ECDSA 73.3 39%
Dilithium2

(speed mode)
363.0 86% 64%

Dilithium2 956.1 91% 170%
Dilithium3 1955.0 94% 176%
Dilithium5 2723.8 82% 201%

Table 4. We repeated the Dilithium benchmarks from Table 3 with the compiler
optimizing for speed rather than binary size (-O3 instead of -Oz) to compare them. We
also compare the speed to Bos et al. [7]. Since they report clock cycles, we estimate
ours by multiplying our runtimes with our clock frequency.

to clock cycles by multiplying with the processor speed of 32768 kHz. Those
numbers are reported with their relative performance compared to Bos et al. [7].

The binary size of an application running Dilithium on TockOS is 9.3 kB
with compiler optimization level -Oz. This size increases to 26.8 kB using -O3.

We highlight that our Dilithium implementation runs solely on the stack; no
heap is required. This benefits embedded devices that don’t support heap alloca-
tion. The memory footprint was measured with stack painting: Before entering
the function that we want to measure, we write a fixed byte pattern into the
unused stack. After the function returns, we read back the stack to see where
the byte pattern was overwritten.

With this method, we can measure the actual stack usage of each function.
Therefore, our reported numbers represent our implementation and depend e.g.,
on the compiler version used. This explains why our numbers are higher than



16 D. Ghinea et al.

reported theoretical optima (see [7]). The stack usage is deterministic and does
not depend on the inputs’ concrete values. Our measurement method also implies
that input messages for signing and the RNG are not counted for its memory
usage, but outputs are.

Fig. 3. Comparison of sizes and
speeds of Dilithium modes on
embedded hardware. The ref-
erence in white is Dilithium2
without recomputating parts of
the key to save memory. To set
the computation speed into per-
spective, we compare the scal-
ing with the key and signatures
sizes. Note that the shown key
sizes are after restoring from the
32 byte seed.

Figure 3 summarizes how Dilithium modes scale, and how our stack opti-
mizations impact the speed of operations.

Since Dilithium’s signing has a retry loop, its signing speed has a long tail.
The distribution of measurements for our Dilithium5 signing benchmark is shown
in Figure 4. To not cause timeouts, CTAP operations should be faster than 10
seconds. Signing with Dilithium5 achieves that in 97% of the operations. Key
generation is faster and more predictable, taking 271 ms on average, with 1 ms
standard deviation.

6.3 Register and Authenticate Speed

Different from pure cryptography measurements above, the performance mea-
surements for the CTAP commands MakeCredential and GetAssertion were mea-
sured on the USB host, and include a full message exchange. All measurements
use server-side keys (see Section 5.1). MakeCredential takes 792 ms with 2ms
standard deviation. GetAssertion has the same long-tail timing distribution as
signing (see Figure 4).

We simulated 2000 calls to the security key to register and login. MakeCre-
dential calls took between 786 and 797 milliseconds, whereas GetAssertion has
much more variance, due to its signing retry logic described above (see Fig-
ure 4). The time distribution shows that 20% of all calls finish within 2 seconds.
On average, a command takes 3.9 seconds to complete. 97% of all authentica-
tion attempts finished within the CTAP timeout of 10 seconds, as stated in our
requirements in Section 5.1.



Hybrid Post-Quantum Signatures in Hardware Security Keys 17

(a) The sign operation has a retry loop
that discards insecure parameters. The
signing speed is therefore highly non-
deterministic.

(b) GetAssertion commands have a
similar long tail, depending on the
number of retries when signing with Di-
lithium.

Fig. 4. Timing distributions of signing and the CTAP command GetAssertion, using
the Dilithium5 mode.

7 Conclusion

In this paper, we proposed a practical way to upgrade security-key authentication
via FIDO’s CTAP to PQC. To do so, we have designed and evaluated a hybrid
digital-signature scheme that combines a classical scheme, ECDSA, with a PQC
one, Dilithium. This hybrid scheme ensures that the security guarantees of each
underlying scheme are maintained even when one of the scheme becomes insecure

To demonstrate the practicality of this scheme, we have implemented it in the
open-source security-key firmware OpenSK, benchmarked its performance, and
released our contribution as open-source software with an Apache2 license. This
way, we encourage other researchers to reproduce our results on a nRF52840
chip.

Our implementation is designed to overcome the intrinsic resource limitations
of current security key hardware platforms while maintaining reasonable run-
times. Our evaluation of this implementation has demonstrated its feasibility
even when using Dilithium’s highest security mode, which comes with the highest
resource requirements.

References

1. Abdulrahman, A., Hwang, V., Kannwischer, M.J., Sprenkels, D.: Faster Kyber and
Dilithium on the Cortex-M4. In: ACNS. Lecture Notes in Computer Science, vol.
13269, pp. 853–871. Springer (2022)

2. Azarderakhsh, R., Elkhatib, R., Koziel, B., Langenberg, B.: Hardware Deployment
of Hybrid PQC: SIKE+ECDH. In: International Conference on Security and Pri-
vacy in Communication Systems. pp. 475–491. Springer (2021)



18 D. Ghinea et al.

3. Bernstein, D.J., Hülsing, A., Kölbl, S., Niederhagen, R., Rijneveld, J., Schwabe,
P.: Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits.
In: Proceedings of the 2019 ACM SIGSAC conference on computer and communi-
cations security. pp. 2129–2146 (2019)

4. Beullens, W.: Improved Cryptanalysis of UOV and Rainbow. In: Advances in Cryp-
tology – EUROCRYPT 2021: 40th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17–21,
2021, Proceedings, Part I. p. 348–373. Springer-Verlag, Berlin, Heidelberg (2021).
https://doi.org/10.1007/978-3-030-77870-5 13

5. Bindel, N., Cremers, C., M., Z.: FIDO2, CTAP 2.1, and WebAuthn 2: Provable
Security and Post-Quantum Instantiation. In: 2023 IEEE Symposium on Security
and Privacy (SP). pp. 674–693. IEEE Computer Society, Los Alamitos, CA, USA
(may 2023). https://doi.org/10.1109/SP46215.2023.00039

6. Bindel, N., Herath, U., McKague, M., Stebila, D.: Transitioning to a Quantum-
Resistant Public Key Infrastructure. In: Post-Quantum Cryptography. pp. 384–
405. Springer International Publishing, Cham (2017)

7. Bos, J.W., Renes, J., Sprenkels, A.: Dilithium for memory constrained devices. In:
International Conference on Cryptology in Africa. pp. 217–235. Springer (2022)

8. Brendel, J., Cremers, C., Jackson, D., Zhao, M.: The Provable Security of Ed25519:
Theory and Practice. Cryptology ePrint Archive, Paper 2020/823 (2020), https:
//eprint.iacr.org/2020/823

9. Castryck, W., Decru, T.: An Efficient Key Recovery Attack on SIDH. In: Advances
in Cryptology – EUROCRYPT 2023. pp. 423–447. Springer Nature Switzerland,
Cham (2023)

10. CRYSTALS-Dilithium Algorithm Specifications and Supporting Documentation.
https://pq-crystals.org/dilithium/data/dilithium-specification-round

3-20210208.pdf, : 2023-02-08
11. Client to Authenticator Protocol (CTAP). https://fidoalliance.org/specs/f

ido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-e

rrata-20220621.html, accessed: 2023-02-05
12. Dowling, B., Brandt Hansen, T., Paterson, K. G.: Many a Mickle Makes a Muckle:

A Framework for Provably Quantum-Secure Hybrid Key Exchange. PQCrypto
2020 pp. 483–502 (2020)

13. Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G.,
Stehlé, D.: CRYSTALS-Dilithium: A Lattice-Based Digital Signature Scheme.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2018(1),
238–268 (Feb 2018). https://doi.org/10.13154/tches.v2018.i1.238-268,
https://tches.iacr.org/index.php/TCHES/article/view/839

14. Fersch, M., Kiltz, E., Poettering, B.: On the Provable Security of (EC)DSA Sig-
natures. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. p. 1651–1662. CCS ’16, Association for Computing Ma-
chinery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978
413

15. FIDO Alliance. https://fidoalliance.org/, accessed: 2023-02-05
16. FIDO Alliance security reference. https://fidoalliance.org/specs/fido-v2.0

-id-20180227/fido-security-ref-v2.0-id-20180227.html, accessed: 2023-02-
05

17. Greconici, D.O.C., Kannwischer, M.J., Sprenkels, D.: Compact Dilithium Im-
plementations on Cortex-M3 and Cortex-M4. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems 2021(1), 1—-24 (Dec 2020). https:
//doi.org/10.46586/tches.v2021.i1.1-24

https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1007/978-3-030-77870-5_13
https://doi.org/10.1109/SP46215.2023.00039
https://doi.org/10.1109/SP46215.2023.00039
https://eprint.iacr.org/2020/823
https://eprint.iacr.org/2020/823
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html
https://doi.org/10.13154/tches.v2018.i1.238-268
https://doi.org/10.13154/tches.v2018.i1.238-268
https://tches.iacr.org/index.php/TCHES/article/view/839
https://doi.org/10.1145/2976749.2978413
https://doi.org/10.1145/2976749.2978413
https://doi.org/10.1145/2976749.2978413
https://doi.org/10.1145/2976749.2978413
https://fidoalliance.org/
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-security-ref-v2.0-id-20180227.html
https://doi.org/10.46586/tches.v2021.i1.1-24
https://doi.org/10.46586/tches.v2021.i1.1-24
https://doi.org/10.46586/tches.v2021.i1.1-24
https://doi.org/10.46586/tches.v2021.i1.1-24


Hybrid Post-Quantum Signatures in Hardware Security Keys 19

18. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: pqm4: Testing and
benchmarking nist pqc on arm cortex-m4. Cryptology ePrint Archive, Paper
2019/844 (2019), https://eprint.iacr.org/2019/844

19. Kiltz, E., Lyubashevsky, V., Schaffner, C.: A Concrete Treatment of Fiat-Shamir
Signatures in the Quantum Random-Oracle Model. In: Advances in Cryptology –
EUROCRYPT 2018, pp. 552–586. Springer International Publishing (2018). http
s://doi.org/10.1007/978-3-319-78372-7 18

20. Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–
209 (1987)

21. Laboratory, I.T.: Digital Signature Standard (DSS). Tech. rep., National Institute
of Standards and Technology (Jul 2013). https://doi.org/10.6028/nist.fips.
186-4

22. Lang, J., Czeskis, A., Balfanz, D., Schilder, M.: Security Keys: Practical Crypto-
graphic Second Factors for the Modern Web. In: Financial Cryptography (2016)

23. Levy, A., Campbell, D., Ghena, B., Giffin, D.B., Pannuto, P., Dutta, P., Levis, P.:
Multiprogramming a 64kB Computer Safely and Efficiently. In: Proceedings of the
26th Symposium on Operating Systems Principles. pp. 234–251. SOSP’17, ACM,
New York, NY, USA (10 2017). https://doi.org/10.1145/3132747.3132786

24. Li, S., Xue, K., Ding, C., Gao, X., Wei, D.S.L., Wan, T., Wu, F.: FALCON: A
Fourier Transform Based Approach for Fast and Secure Convolutional Neural
Network Predictions. CoRR abs/1811.08257 (2018), http://arxiv.org/abs/18
11.08257

25. Lipp, B.: An Analysis of Hybrid Public Key Encryption. Cryptology ePrint
Archive, Paper 2020/243 (2020), https://eprint.iacr.org/2020/243

26. Marzougui, S., Ulitzsch, V., Tibouchi, M., Seifert, J.P.: Profiling Side-Channel
Attacks on Dilithium: A Small Bit-Fiddling Leak Breaks It All. Cryptology ePrint
Archive, Paper 2022/106 (2022), https://eprint.iacr.org/2022/106

27. Migliore, V., Gérard, B., Tibouchi, M., Fouque, P.A.: Masking Dilithium. In: Ap-
plied Cryptography and Network Security. pp. 344–362. Springer International
Publishing, Cham (2019)

28. NIST Announces First Four Quantum-Resistant Cryptographic Algorithms. http
s://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-

quantum-resistant-cryptographic-algorithms, accessed: 2023-02-07
29. NIST Post-Quantum Cryptography FAQs. https://csrc.nist.gov/Projects/p

ost-quantum-cryptography/faqs, : 2023-02-13
30. Nordic nrf52840. https://www.nordicsemi.com/Products/Development-hardwa

re/nrf52840-dk, accessed: 2023-02-05
31. OpenSK. https://github.com/google/OpenSK, accessed: 2023-02-05
32. PQCrystals: Dilithium. https://github.com/pq-crystals/dilithium, accessed:

2023-02-10
33. Raavi, M., Wuthier, S., Chandramouli, P., Balytskyi, Y., Zhou, X., Chang, S.Y.:

Security Comparisons and Performance Analyses of Post-quantum Signature Al-
gorithms. In: International Conference on Applied Cryptography and Network Se-
curity. pp. 424–447. Springer (2021)

34. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signa-
tures and Public Key Cryptosystems. Communications of the ACM 21(2), 120–126
(feb 1978). https://doi.org/10.1145/359340.359342

8 Appendix

We include the formal proof that was omitted in the main body of the paper.

https://eprint.iacr.org/2019/844
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.1007/978-3-319-78372-7_18
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.6028/nist.fips.186-4
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132786
http://arxiv.org/abs/1811.08257
http://arxiv.org/abs/1811.08257
https://eprint.iacr.org/2020/243
https://eprint.iacr.org/2022/106
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dk
https://github.com/google/OpenSK
https://github.com/pq-crystals/dilithium
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342


20 D. Ghinea et al.

Lemma 3. If Σ2 is X-EUF-CMA secure (resp. X-SUF-CMA) secure, it follows
that H(Σ1, Σ2) is X-EUF-CMA secure (resp. X-SUF-CMA) as well.

Proof. We show that, for every X-adversary A that wins the X-EUF-CMA
(resp. X-SUF-CMA) security game for H(Σ1, Σ2) with probability pA, there is
an adversary B that wins Σ2’s X-EUF-CMA (resp. X-SUF-CMA) security game
with probability pB ≥ pA.

The adversary B can be constructed as follows:

– B receives the Σ2 public key pk2 from the challenger CΣ2
.

Since A expects a hybrid public key, B generates its own pair of Σ1 keys
(sk1, pk1)←$Σ1.KeyGen(1κ), and then sends pk = (pk1, pk2) to A.
Note that the keys received by A are generated from the same probability
distribution as in H(Σ1, Σ2)’s security game.

– When receiving a message query mi from A, B uses its own secret key sk1
to compute the first part of the hybrid signature: σ1,i←$Σ1.Sign(mi, sk1).
Afterwards, to obtain the Σ2-component of the hybrid signature, B sends
m′i := (mi, σ1) as a signing query to the challenger CΣ2 and obtains σ2,i =
Σ2.Sign(m′i, sk2).
When receiving σ2,i from CΣ2

, B computes σi := (σ1,i, σ2,i) and sends it to
A. Note that σi is a valid hybrid signature:
H(Σ1, Σ2).Verify(mi, σi, pk) = true

– When receiving the forgery
(
m∗, σ∗ = (σ∗1 , σ

∗
2)
)

from the adversary A, B
obtains its own forgery

(
(m∗, σ∗1), σ∗2

)
and sends it to CΣ2 .

Since B simulates the X-EUF-CMA (resp. X-SUF-CMA) security game for
H perfectly towards A, A maintains its success probability pA.

We show that, whenever A wins the simulated game, B wins the X-EUF-
CMA (resp. X-SUF-CMA) security game for Σ2.

If A wins the simulated X-EUF-CMA security game, m∗ /∈ {queries mi}. It
immediately follows that (m∗, σ?1) /∈ {queries m′i}.

If A wins the simulated X-SUF-CMA security game, (m∗, σ∗) /∈ {(mi, σi) |
mi query, σi response}. If this is the case, we need to show that B has never
received σ∗2 as a response from C2 to the signing query (m∗, σ∗1). Assuming that(
(m∗, σ∗1), σ∗2

)
= (m′i, σ2,i) for some query-response pair (m′i, σ2,i) in B’s inter-

action with C2, we obtain that (m∗, σ∗) = (mi, σi), which contradicts that A’s
forgery was successful.

Both in the X-EUF-CMA case and in the X-SUF-CMA case, if A has sent
a successful forgery, then H(Σ1, Σ2).Verify(m∗, σ∗, pk) = true holds, and hence
Σ2.Verify((m∗, σ∗1), σ∗2 , pk2) holds as well.

It follows that that B wins the X-EUF-CMA (resp. X-SUF-CMA) security
game for Σ2 with probability pB ≥ pA.

Finally, as Σ2 is X-EUF-CMA (resp. X-SUF-CMA) secure, pB ∈ negl(κ),
and therefore pA ∈ negl(κ).

Since A was chosen arbitrarily, we obtain that every X-adversary has neg-
ligible probability in winning H(Σ1, Σ2)’s X-EUF-CMA (resp. X-SUF-CMA)
security game.


	Hybrid Post-Quantum Signatures in Hardware Security Keys

