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Abstract

The Internet in general, and the Web 2.0, together with the trend to-
wards mobile terminals in particular, have recently had an immense impact
on the society. As a result of these developments, users nowadays produce
data on an unprecedented scale. This new kind of data has attracted the
attention of researchers from a wide variety of disciplines. In this thesis we
contribute some small pieces to the huge interdisciplinary efforts to under-
stand this implicitly and explicitly generated data. More importantly, we put
these analytic efforts into a practical context by making the insights directly
accessible to the end-users by means of concrete applications.

In the first part of the thesis we investigate the interconnections between
people in (online) social networks. Based on some relevant properties of these
networks, we then propose two mobile applications, one to assist a user who
wants to address a group of people from within a resource restricted device,
and one that unobtrusively searches for potential friends while the user is
pursuing everyday activities.

The second part of the thesis studies the extraction of similarity measures
from user generated content. We thereby focus on two main domains: Sci-
entific conferences and music. We show that a large collection of publication
records implicitly contains information about different aspects of conference
similarities. Two of these aspects – quality and thematic scope – form the
fundamental building blocks of confsearch, a conference search engine we have
implemented. Our conference similarity measure is further used to draw a
map of conferences using a graph embedding algorithm and to discuss the
world of conferences in a playful manner.

Towards the end of the thesis we discuss different facets of music similar-
ity and its use in end-user applications. In particular, we take advantage of
the fact that the cumulated listening histories of a large user basis contain
valuable information about the similarity of songs. The resulting similarity
measure is known to better reflect the users’ perception than state-of-the-art
audio based methods. However, it lacks a compact representation as known
from audio based techniques, a fact that greatly complicates the design of
intuitive user interfaces. To overcome this problem, we pick up the idea
of a map, as already discussed in the context of scientific conferences. In
particular, we propose to compactly embed our usage data based music sim-
ilarity measures into a Euclidean space. For this purpose, we make use of
two different techniques, one that solely relies on the listening behavior, and
one that combines this data with the more explicit information contained in
social tags. We finally demonstrate the practical usefulness of the concept of



a music map in a comprehensive mobile music player for the Android plat-
form that gained a remarkable popularity. In a user study, we show that the
integrated similarity aware features are frequently used. From this study,
and from user comments, we conclude that our map in fact facilitates the
design of similarity based music retrieval interfaces, and that such interfaces
are also well accepted by the community.



Zusammenfassung

Das Internet im allgemeinen, und im speziellen das Web 2.0 zusammen
mit dem Trend Richtung mobiler Endgeräte haben in den letzten Jahren
unsere Gesellschaft entscheidend geprägt. Also Folge dieser Entwicklungen
werden heute Nutzerdaten in nie dagewesener Grössenordnung generiert und
gesammelt. Diese neue Art von Daten hat die Aufmerksamkeit einer Vielzahl
von Wissenschaftlern aus den verschiedensten Fachrichtungen auf sich gezo-
gen. Diese Arbeit leistet einen kleinen Beitrag zu den umfangreichen inter-
disziplinären Bemühungen, diese implizit und explizit generierten Daten zu
verstehen. Unsere analytischen Anstrengungen sind nicht rein theoretischer
Natur sondern haben auch einen praktischen Hintergrund. Insbesondere set-
zen wir jeweils die gewonnenen Erkenntnisse in konkrete Anwendungen um,
welche dem Endbenutzer direkt zur Verfügung stehen.

Im ersten Teil der Arbeit untersuchen wir die Verbindungen zwischen
Personen in (virtuellen) sozialen Netzwerken. Aufbauend auf verschiedenen
Eigenschaften dieser Netzwerke schlagen wir dann zwei mobile Applikatio-
nen vor. Die erste Applikation hilft dem Benutzer, eine ganze Gruppe von
Kontakten von einem kleinen Endgerät aus zu selektieren. Die andere Anwen-
dung sucht im Hintergrund nach potentiellen Freunden für seinen Besitzer,
während dieser seinen Alltagsbeschäftigungen nachgeht.

Der zweite Teil der Arbeit beschäftigt sich damit, verschiedene Ähnlich-
keitsmasse aus benutzergenerierten Daten zu extrahieren. Dabei konzentrie-
ren wir uns auf zwei Gebiete: Wissenschaftliche Konferenzen und Musik.
Wir zeigen, dass die Meta-Daten einer Vielzahl von Publikationen impli-
zite Informationen über verschiedene Aspekte von Konferenzähnlichkeiten
besitzen. Aufbauend auf diesen verschiedenen Ähnlichkeitsaspekten – insbe-
sondere bezüglich Qualität und thematischer Ausrichtung einer Konferenz
– haben wir die Konferenzsuchmaschine confsearch implementiert. Des wei-
tern haben wir unser Ähnlichkeitsmass verwendet, um mittels eines Graphen-
Einbettungs-Algorithmus’ eine Karte von wissenschaftlichen Konferenzen zu
zeichnen, und um in spielerischer Weise über die Informatik-Welt zu sinnie-
ren.

Gegen Ende der Arbeit gehen wir über zu Musikähnlichkeit und disku-
tieren insbesondere den Gebrauch solcher Information in Applikationen. Da-
bei nutzen wir aus, dass die kummulierten Aufzeichungen des Hörverhaltens
vieler Anwender wertvolle Informationen über die Ähnlichkeit von Liedern
beinhalten. Es ist bekannt, dass Ähnlichkeitsmasse, welche auf sochen Nut-
zerdaten basieren, die Empfindung der Anwender besser wiederspiegeln als
die aktuell besten audiobasierten Methoden. Allerdings verfügen solche sub-
jektiven Masse nicht über eine gleichermassen Kompakte Darstellung, wie



dies für audiobasierte Ansätze typischerweise der Fall ist – eine Tatsache wel-
che das Entwickeln von intuitiven Benutzerschnittstellen ungleich schwieriger
macht. Um diesem Problem Herr zu werden, greifen wir die Idee einer Karte,
wie schon im Bereich von Konferenzen behandelt, wieder auf. Insbesondere
schlagen wir vor, unser nutzerdatenbasiertes Ähnlichkeitsmass in kompakter
Form in einen Euklidischen Raum einzubetten. Zu diesem Zweck verwenden
wir zwei unterschiedliche Techniken, eine welche ausschliesslich das Hörver-
halten des Nutzer einbezieht, und eine zweite, welche diese Daten mit den
expliziteren Informationen von sozialen Tags kombiniert. Schliesslich demon-
strieren wir die praktische Anwendbarkeit des Konzeptes einer Musikkarte in
einem umfangreichen mobilen Musikplayer für die Android Plattform, wel-
che sich bereits einer beachtlichen Popularität erfreut. Eine Benutzer-Studie
zeigt, dass die eingebauten ähnlichkeitsbasierten Features rege benutzt wer-
den. Aus diesen Beobachtungen schliessen wir, dass unsere Musikkarte das
Entwerfen von ähnlichkeitsbasierten Benutzerschnittstellen tatsächlich ver-
einfacht, und dass die resultierenden Oberflächen von den Benutzern beachtet
und akzeptiert werden.
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Chapter 1

Introduction

In the very beginning of the human existence, the main function of social
groups presumably was the increased chance of survival. Over time, the driv-
ing forces for interactions in social groups, and thus also group-structures,
have changed. With the beginning of writing, the invention of the wheel,
and the domestication of the horse, the bonds of locality started to disrupt
and allowed longer distance relationships to appear. In the 15th century,
Gutenberg laid the foundation for mass media with the invention of print-
ing. The creation, transportation and processing of information entered new
dimensions in terms of quantity and time. Together with trains, cars and
airplanes, information technology in the shape of newspapers, telegraphs, ra-
dio, television and the Internet transformed huge geographical distances into
tiny fragments of time. In 1964, Marshall McLuhan coined the metaphor
“Global Village” and wrote [79]:

“As electrically contracted, the globe is no more than a village”

He argues that due to the almost instantaneous reaction times of new
(“electric”) technologies, each individual inevitably feels the consequences
of his/her actions and thus automatically deeply participates in the global
society.

McLuhan by then understood, what we now can directly observe – real
and virtual world are moving together. He realized that the transmission
medium, rather than the transmitted information is at the core of change,
as expressed by his famous phrase “the medium is the message”. Today the
most prevalent communication medium is the Internet. Its effects on society
are ubiquitous and clearer than ever confirm McLuhan’s words.

By means of e-mail, instant messengers, and social platforms, such as
Facebook, MySpace, or Twitter, the Internet has crucially altered the way
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people interact. In the beginning of the web era, content was static, and the
user was a pure consumer. Then, people increasingly started to get part of the
game and got involved not only as consumers, but also as producers of content
– the Web 2.0 was born. The rapidly growing availability of powerful mobile
devices further adds to this trend. In 2008, more users accessed the web
from mobile terminals than from traditional desktop computers.1 Moreover,
it is said that everybody earning more than 5 USD a day will eventually
possess his/her own mobile phone and thus populate the square that connects
cyberstreets with concrete roads. As a researcher and application developer,
it is of utmost importance to consider these developments to make sure we
do not miss the needs of the next generation.

As a result of these developments, people nowadays generate data on an
unprecedented scale. The nature of this data differs from the well structured
information we once used to store in databases, and poses many challenges
to the research community. There are various research efforts that try to
analyze, organize, and understand this new kind of data. People from several
fields, such as knowledge discovery, data mining, information retrieval, and
recommendation systems intensively work on novel techniques that match
the requirements of Web 2.0 data. This thesis on the one hand adds some
small pieces to these gigantic data analysis efforts, and on the other hand
makes use of these pieces and a variety of important third party results to
propose new user interfaces to browse and access different kinds of web data.
To account for the trend towards mobile devices, many of these interfaces
are proposed for, and integrated into mobile applications.

In the first part of the thesis, we discuss different aspects related to com-
plex graph structures with a particular focus on social networks and friend-
ship links. We start by comparing some recent models that describe the small
world phenomenon often observed in such network structures to real world
data, namely the Wikipedia2 article graph and the LiveJournal3 friendship
network. We then propose two applications that take advantage of some of
the properties of social networks, one to foster group interaction, and the
other for serendipitous friend finding. Both applications are designed for
mobile platforms and thus well account for the trend towards a mobile web.

The second part of the thesis focuses on extracting similarity measures
from user generated data. Our work in this area concentrates on two fields:
The relationship among scientific conferences and the relationships among
songs. We propose measures to denote similarity in the world of conferences
and in the music universe. Based on these measures, we introduce a con-
ference search engine and a map of music which can serve as the basis for

1Source: http://en.wikipedia.org/wiki/Mobile Web
2http://www.wikipedia.org
3http://www.livejournal.com



3

various music retrieval interfaces. To demonstrate the advantages of such a
map we have implemented a comprehensive mobile music application which
is presented in the end of the thesis.





Part I

Contacts and Ties





Chapter 2

Introduction

In 1967, Stanley Milgram, a well known American Psychologist, conducted an
experiment: He asked People from Omaha and Wichita to forward a letter to
a target person in Boston. However, people were not allowed to directly send
the letter to the target person. Rather, they had to pass it to somebody they
knew on first name basis and that they thought to have a higher probability
to know the target person. This process was repeated, until somebody knew
the target person, and could deliver the letter. The number of hops it took
for a letter to arrive was astonishingly small. The observation that the entire
population is connected by short acquaintance chains got later popularized
by the terms “six degrees of separation” and “small world”.

In an attempt to explain the discovered small world phenomenon, a va-
riety of models have been proposed. Early models were mainly based on
random graphs. While they were able to describe the short path lengths,
they failed to explain other properties. In particular, such short paths do
not only exist, but can also be found by people that have only local knowl-
edge about the network. Moreover, social networks have shown to exhibit
high local connectivity, that is, people who share a common friend are likely
to be friends themselves. This local clustering property is commonly quanti-
fied by the clustering coefficient, which measures the probability that nodes
that share a neighbor are neighbors themselves. Watts and Strogatz [125]
proposed a graph model that was able to describe both, the local clustering
as well as the short distances. However, their model still failed to explain
the navigability phenomenon, i.e. how short paths can be discovered when
having only local knowledge about the graph topology. This gap was later
closed by the augmented grid model of Kleinberg [56]. The model takes the
geographic properties of the real world into account and proposes a specific
edge length distribution for random edges inserted into a grid.
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Many of the observed properties, such as short paths or high clustering,
appear in a wide variety of networks not restricted to the social context.
Typically, such networks grow, in some sense, naturally, i.e. they are not
engineered, but emerge in a non, or only loosely controlled way. Examples
are the web graph, road and airline networks, neural networks, and protein
interaction networks. Such networks also often tend to build hubs, resulting
in a power-law degree distribution. This phenomenon has been addressed by
the preferential attachment model of Barabasi and Albert [10] that exhibits
the observed degree distribution as well as short path lengths. However, it
does neither address the navigability phenomenon nor adequately explain the
clustering characteristics.

Later models that build upon the pioneering ideas of Watts and Stro-
gatz [125] and Kleinberg [56] incorporate the concepts of hierarchies and
social dimensions [124, 57]. While hierarchies extend the geographic foun-
dation of Kleinberg’s grid model, the idea of social dimensions accounts for
findings concerning the reasons why a person was chosen as the next hop in
Milgram’s experiment. In the next chapter, we will focus on such models and
provide empirical evidence for the existence of both, hierarchic structures as
well as social dimensions. Our analysis is not restricted to social networks,
but, in case of hierarchies, also includes the Wikipedia article graph, which
suggests that these concepts can be observed in a variety of contexts.

The pure understanding of complex networks is surely fascinating. How-
ever, the driving force behind research is to benefit from the gained insights
in one or the other way. Such a benefit is clearly achieved when end users
can directly profit from the results in form of applications. The knowledge
about navigability has been used in different contexts. Examples are appli-
cations in peer-to-peer systems [129, 102] or in focused web crawling, such
as discussed in [80]. In the following we will present two applications that,
similarly as these examples, take advantage of insights gained from research
on social networks. As opposed to the discussed examples, we take advantage
of the local clustering, rather than navigability. Our systems are designed to
directly foster social interaction in the mobile domain and thus well account
for the trend towards mobile social networking.

The first application, Cluestr, exploits the social dimensions in conjunc-
tion with the high local clustering to provide efficient means for group interac-
tion on mobile devices. Cluestr exhibits a contact recommendation interface
that significantly speeds up group initialization and thus renders the tedious
manual grouping of contacts obsolete. The high clustering coefficients typi-
cally observed in social networks indicate that a person’s friend of a friend is
likely to become this person’s friend, too. The second application, VENETA,
makes use of this observation: It facilitates serendipitous friend-of-friend de-
tection in a decentralized and privacy preserving manner.



Chapter 3

How Things are Connected

The small world effect is best known from the social context. However, it has
been shown to occur in other contexts as well, typically in complex networks
that are in some sense growing naturally. Thus, the study of the small world
phenomenon has received a great deal of interest in different communities.
Social scientists analyze complex structures of social networks arising in the
context of organizations. Biologists study the interactions of cells in intri-
cate metabolic processes. Computer scientists face the emergence of gigantic
online systems, ranging from online social networks, such as LiveJournal, to
online collaborative data repositories, such as Wikipedia, and, of course, the
underlying technologies, such as the Internet and the world-wide-web.

After Milgram’s famous “six degrees of separation” experiment, many
models have been proposed in an attempt to capture the discovered small
world property. The first models were mainly based on random graphs.
Soon, however, people understood that random graphs can only explain the
short path lengths, but fail to reflect the high local clustering, and the fact
that short paths can be found even if only local knowledge of the graph is
available for routing. The work of Kleinberg [56] could fill this gap from
a theoretical point of view. A study of Liben et al. [69] on LiveJournal
data basically confirms the theoretical findings. However, the study shows
that, rather than considering pure geographic distances, the density of nodes
has to be taken into account, too. Another interesting result of Liben et
al. is that approximately a third of the links is independent of geography.
Comparable numbers are reported in a similar study [60] that states that 70%
of friendships can be “explained” by geographic location and interests of the
users. Moreover, Dodds et al. [23] found that geography and occupation were
the most important reasons to select the next hop in an e-mail based Milgram
like experiment. Other reasons include similar educational background, the
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sheer number of friends, and the travelling habits of a person.

More recent models are trying to account for the reported non-geographic
edges. In particular, such models introduce the notion of hierarchies and
social dimensions. The main idea is that individuals cluster the world hier-
archically into categories. The deeper a category is in such a hierarchy, the
more specific it is (in a profession hierarchy, for example, Java Programmer
is more specific than Computer Scientist). The models further state that the
social world can be clustered in more than one way (e.g. by geography, by
occupation, or by interests). Watts et al. [124] refer to these different classes
of categorization as social dimensions. They assume that each social dimen-
sion can be represented by an independent hierarchy. As a result, a node’s
identity can be defined as a multi-dimensional coordinate vector, in which
each coordinate represents its position in a certain social dimension. Watts et
al. then define a measure of similarity (the social distance) as the minimum
ultra-metric distance over all dimensions between two nodes. The intuition
is that closeness in only one dimension is enough to connote affiliation. An
interesting consequence of this measure is that social distance violates the
triangular inequality. That is, persons A and B might be considered socially
close because they are both working in the same specific field, and persons B
and C might be considered socially close because the are living in the same
building. However, this does not imply closeness between persons A and C.

In this chapter we provide evidence for the presence of hidden hierarchic
structures in complex networks, even in a non-social setting. Further, we
generalize the notion of social dimensions and introduce the concept of layers.
A layer basically is a subgraph that contains all the edges generated due to
one particular reason. We will provide evidence for such layers and see that it
is useful to understand the reasons behind object relations prior to applying
techniques like classification, or clustering. The more diffuse these reasons are
in a particular data set, the more difficult it becomes to develop techniques
to automatically analyze the structure of the data. We therefore propose to
separate the different layers of a graph and provide an approach to achieve
such a separation if some information about the layered structure is known.

The two model features (layers and hierarchies) are validated using two
different real world networks: the Simple English Wikipedia and the Live-
Journal online social network. For Wikipedia, we show that the average path
length between articles is related to the height of their least common ances-
tor in the category tree, which is taxonomy of the topics in the encyclopedia.
Moreover, we show that the category tree can be used to greedily find short
paths in the graph using only local information. That is, for efficient rout-
ing only the underlying taxonomy, the destination node, the current location
and the direct neighbors at this location need to be known. These findings
confirm the relationships between hierarchies and graph structure as conjec-
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Figure 3.1: LiveJournal : Edges belong to different layers (geography, inter-
ests).

tured by the models. For the LiveJournal social network, we show that the
average geographical distance between friends is related to their number of
common interests.1 Surprisingly, the higher the number of common inter-
ests, the higher is the average geographical distance between friends. This
observation can be seen as empirical evidence for the existence of social di-
mensions, or layers, in the graph. We take advantage of these findings to
improve the precision of the estimation of the location of nodes that lack
coordinate information. Moreover, in Chapter 8 we will see an example in
which the idea of layers is used in the context of automated conference rating.

3.1 Model

Throughout this chapter we will assume that a naturally grown network
exhibits two features:

� Layers: A layer is a subgraph containing all the edges that can be
explained by a certain reason (see Figure 3.1).

� Hierarchies: Each node in a graph belongs to one or more categories.
These categories are hierarchically organized and can be represented
by a tree.

1Members of LiveJournal are linked to other members through “friendship” links,
and also can declare in their profiles to participate in areas of interest (for details see
Section 3.3).
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Category Hierarchy Wiki Articles

Figure 3.2: Wikipedia: The articles are classified according to categories in
the category DAG.

Note that these concepts are not independent. Rather, the semantic layers
can often be hierarchically classified into groups of increasing granularity.
Two persons, both interested in glass painting, for example, are more likely
to get acquainted due to their hobby (or profession) than a person interested
in glass and another person interested in fresco painting.

3.2 Wikipedia

In this section we show that the Simple English Wikipedia2, which we refer to
just as Wikipedia, can be modeled using the aforementioned hierarchical ap-
proach. We then take advantage of this representation, showing that greedy
routing can be applied to efficiently find short paths in the graph.

The article graph of Wikipedia consists of articles (nodes) and the hyper-
links between articles (edges). In addition to the direct linkage of articles,
Wikipedia contains a structured organization of topics, the category tree. As
mentioned before, the category tree is a hierarchical representation of top-
ics that subdivides coarse grained general terms (such as History) into ever
finer grained terms (such as History of America or History of Oceania) and
finally reaches very specialized categories (such as Physicians in the Amer-
ican Revolution, or Political leaders of the American Revolution). In fact,
the category tree is rather a directed acyclic graph (DAG) than a tree in the
case of Wikipedia, as nodes can contain more than one parent. Figure 3.2

2http://simple.wikipedia.org
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Figure 3.3: The deeper in the category DAG is the LCA, the shorter is the
average path length between two articles.

schematically illustrates the relationship between such a category DAG and
the Wikipedia articles.

We define the similarity sim(Ci, Cj) between two categories Ci and Cj to
be the height of their Least Common Ancestor (LCA) in the category DAG
(we thereby assume that the root of the DAG has height zero):

sim(Ci, Cj) = height(LCADAG(Ci, Cj)). (3.1)

Further, we define C(Ak) to be the set of all categories which an article
Ak belongs to. Thereafter, we define the similarity sim(Ak, Al) between two
articles to be the maximum similarity among all pairs of categories to which
articles Ak and Al belong:

sim(Ak, Al) = max
Ci∈C(Ak),Cj∈C(Al)

(sim(Ci, Cj)) (3.2)

3.2.1 Evidence for the Hierarchy-Model

The category graph of Wikipedia closely resembles the hierarchical structures
Kleinberg [57] and Watts et al. [124] introduced in their small-world models.
We thus decided to verify whether the models well describe the relations
between the Wikipedia article graph and the category DAG, both naturally
grown structures taken from the real world.

If the models are indeed correct, then nodes that are “closer” in the tree
should exhibit a higher connectivity, and consequently the path length be-
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Require: Category DAG, destination article Ad, set of articles P visited
until this point;

1: dmin = maxCi∈Ad(height(Ci));
2: Choose neighbor Ak with maximum sim(Ak, Ad);
3: if (Ak = Ad) then
4: Halt ;
5: end if
6: if (Ak ∈ P ) then
7: Ak = random neighbor; (to avoid cycles)
8: end if
9: if (sim(Ak, Ad) < dmin) then

10: Forward message to Ak;
11: else
12: Start Flooding ; (sim(Ak, Ad) = dmin)⇒ arrived at the lowest category

subtree of Ad and greedy cannot make the distance shorter anymore.
13: end if

Algorithm 3.1: Greedy Algorithm for Wikipedia

tween such nodes should be shorter. We therefore constructed an experiment
that compares the average path length between articles to the height of their
least common ancestor (LCA) in the category DAG. The average path length
for each LCA-value was calculated upon a random sample of 20K pairs of
articles. Figure 3.3 summarizes the results. We can observe that the higher
the similarity between two articles, i.e., the deeper in the category DAG their
LCA, the shorter the average path between them becomes. This confirms the
expectations and shows that the model well reflects the real world structure.

3.2.2 Greedy Routing

We take advantage of the fact that the category tree influences path
lengths between articles, as demonstrated in the previous section, to imple-
ment greedy routing in Wikipedia. Figure 3.3 suggests that the distance in
the category DAG can be used for greedy routing, since short distances in
the category graph indicate short distances in the article link structure. Our
experiment consists in implementing a simple routing algorithm (see Algo-
rithm 3.1) that uses the category graph to find short paths in the article
graph. The only data that a node requires to forward a message is the sim-
ilarity measure sim(Ak, Ad), defined in Equation (3.2), between each of its
neighbors Ak and the destination article Ad. The greedy step consists in
forwarding the message to the neighbor with highest similarity to the desti-
nation. This process continues until an article in the closest category to the
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Figure 3.4: Greedy routing in Wikipedia.

destination is reached. Since the greedy step cannot go beyond the granu-
larity of the category graph, once the closest category is reached, a normal
flooding is applied to find the destination article among all articles that be-
long to that category.

We compare the performance of the greedy algorithm to a Dijkstra-based
alternative. Note that the algorithm of Dijkstra for finding shortest paths
is basically the same as flooding in the case of unweighted graphs. The
evaluation of the greedy routing implementation focuses on the following
three attributes:

� Path stretch: The factor by which the greedy-path gets longer than
the shortest path.

� Flooding stretch: The factor by which the flooding part of the path
becomes shorter.

� Number of nodes visited : The relation of the number of nodes visited
using flooding and the number of nodes visited using greedy routing
(including the final flooding part). Nodes that are visited multiple
times are thereby counted multiple times.

In Figure 3.4 it is shown that the average path length obtained by the
greedy routing was 7.15 hops, whereas the average shortest path was 3.16.
This low path stretch indicates that it is indeed possible to find short paths
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with such an approach. A further analysis of the results in Figure 3.4 shows
that, on average, greedy forwarding performed 4.98 steps, and the remain-
ing 2.17 hops result from flooding. Compared to the length of the average
shortest path, this gives a flooding stretch of 0.69, which results in 45% less
nodes that need to be explored in order to reach the destination.

These values show that greedy routing can be an interesting option in
graphs for which a hierarchical structure such as the Wikipedia’s category
DAG is known. The average path length increases only by a small constant.
The overhead of visiting a huge number of nodes in the graph using flooding
algorithms can, on the other hand, be drastically reduced.

For greedy routing to become applicable, it is important to be able to
quickly calculate the (category DAG-) distance between two nodes. For our
experiments we decided to precompute all the pairwise distances (i.e. LCAs)
between categories. However, if the number of categories becomes large this
approach becomes infeasible, since the corresponding table grows with O(n2).
For larger category hierarchies, graph labeling provides an elegant alterna-
tive. An intelligent label li is attached to each category ci. The labels are
chosen such that they are short and that a distance function d(li, lj) can
quickly be evaluated.

3.3 Live Journal

In this section we show that an online social network, such as LiveJournal,
can be modeled using the layered approach described in Section 3.1. Fur-
thermore, we show that if one of the layers is filtered out from the data as
a preprocessing step, a better location estimation can be obtained on the
remaining graph.

LiveJournal is a popular social networking site that currently counts
about 18 million users.3 As usual for social networking services, these users
are connected to each other by friendship relations and thereby form a so-
cial graph. Further, LiveJournal users can create and participate in interest
groups, and they can indicate their place of residence. As opposed to many
similar services, LiveJournal is freely crawlable, which allows to retrieve and
study the aforementioned friendship relations and interest memberships.

Clearly, a major catalyst for friendships is geographic proximity. However,
there must also exist other catalysts that create long-range contacts, which
are the reason for the small-world character of social graphs. As in real-world,
common interests are likely to cause friendship links also in the virtual world.
Therefore, it is natural to expect that besides the geography layer, a second
important layer in LiveJournal would be the interest layer (recall Figure 3.1).

3Source: http://en.wikipedia.org/wiki/List of social networking websites
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Crawled nodes 250K
US nodes w/ geo. info. 88K
US edges 202K
Interests 673K

Table 3.1: Input data sample.

The attributes of the input data sample that we were able to crawl and
use in our experiments are summarized in Table 3.1. Note that from 250K
crawled users, only about 190K have indicated their country of residence,
being 88K of them from the US. We will refer to the subset of US residents
with known country and city of residence (i.e. known coordinates) as US
subset. This data was crawled in 2007.

3.3.1 Evidence for the Layer-Model

Assuming the layer model holds in the case of LiveJournal, we can conjecture
that links in the geographic layer are typically shorter than links in the
interest layer. Links that purely belong to the interest layer should have
random length. Links in the geographic layer, on the other hand, should show
a trend toward short links, as the corresponding friendships are supposed to
be caused by geographic proximity.

Using the interest information in LiveJournal together with the geo-
graphic coordinates in the US subset, it is possible to verify the above con-
jecture. One distance unit in our experiment corresponds to one degree in
latitude. For simplicity we assumed that this space is a Euclidean plane for
the area of the United States.

We define a geo-edge to be a friendship link between two users that do
not share any interests. An interest-edge, on the other hand, is a friendship
link between users that share at least one common interest but that does not
“close” a triangle with two geo-edges, i.e., two users linked by an interest-edge
do not have any common friends in their (assumed) physical proximity. If
they have such a friend, the link is supposed to lie in the intersection between
the geography and the interest layer. In our analysis, we do not take such
“intersection” links into account. According to this definition, roughly 40%
of the edges in the US subset are interest edges.

For each edge in the friendship graph, we counted the number of common
interests of the two corresponding users. It can be seen in Figure 3.5 that
the average length of a friendship link increases as the number of common
interests increases until a threshold of approximately 5 and then stabilizes.
Given that interest-edges present an almost 20% increase in average geo-
graphic length, we can deduce that such links are less influenced by location
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Figure 3.5: LiveJournal : The average geographic length of a friendship link
drastically increases when there is a common interest.

of residence (i.e. geographic proximity) and can thus be considered part of
the interest layer of the friendship graph. This observation confirms our
expectation and thereby supports the layer model.

3.3.2 Location Estimation

In this section we propose an application for the properties exposed above.
We have implemented a simple location estimation application to prove the
concept. The experiment was performed on the US sample. We assume that
the location of a node can be estimated by looking at the locations of its
neighbors. We basically estimate the position of a node as the center of mass
of its neighbors. In our case, nodes are people, and locations are their cities
of residence. The rationale behind the estimation idea is that a person with
many friends in, say, New York (and close-by cities) is likely to live in New
York him/herself, too.

The location estimation was performed on the original friendship graph
and compared to a preprocessed graph, from which all interest-edges have
been removed. For evaluation, we measure the deviation of our estimated
locations to the true locations (see Figure 3.6). To ensure independence of
the single measurements, we have taken care that no node affects more than
one location estimation. To still get a sufficiently large number of samples,
the estimation is not based on all the neighbors of node, but only on a
random subset of 5 neighbors. Nodes with less than 5 neighbors have been
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Figure 3.6: LiveJournal : The estimated position of a node is the center of
mass of its friends.

ignored. Figure 3.7 plots the mean and median values for the deviations
on the original as well as the processed friendship graphs. In both cases a
random sample of 1000 nodes has been considered. Our results show that
the preprocessed graph results in an average 8.30-unit location deviation, as
opposed to a 9.04-unit deviation in the original “mixed layer” graph. The
corresponding medians are 4.99 (preprocessed graph) versus 6.57 (“mixed
layer” graph). We can conclude that the preprocessing step slightly improves
the location estimation. To measure the statistical significance, we have
conducted a Wilcoxon rank sum test.4 The test rejects the null-hypothesis of
equal medians at the α = 0.01 level, and thus indicates statistical significance
of the lower median observed in the preprocessed graph.

3.4 Conclusion

In this chapter we have investigated the structure of two complex networks
that result from the Web 2.0 context. In particular, we have given evidence
for hidden layers and hierarchies in such networks as conjectured by recently

4The Wilcoxon rank sum test is a non-parametric test that decides whether two data
series are likely to stem from the same distribution with the same median. The departures
from the null hypothesis (both data series originate from the same distribution) that the
Wilcoxon test tries to detect are location shifts.
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Figure 3.7: LiveJournal : Location estimation is more accurate if only geo-
edges are used.

proposed network models. Moreover, we have shown how the knowledge
about these properties can help to solve certain tasks more efficiently. While
we only presented two exemplary tasks, namely routing and location estima-
tion, we believe that the basic findings generalize to a variety of contexts.
In fact, in Chapter 8, we will show another example in which the separation
of layers as a preprocessing step improves the performance of a data mining
algorithm.



Chapter 4

Recommending Contacts by Social

Ties

Social services have experienced a tremendous success in the past years. Sites
such as MySpace, Facebook, or LinkedIn have steadily been growing and be-
came ubiquitous on the Internet. Nowadays, many people can no longer
imagine a life without such applications. Interestingly, similar services in
the mobile domain have only recently started to become successful. Dif-
ferent reasons are said to be responsible for the lag. Restricted input and
output capabilities of mobile devices have inhibited the spreading of a “Mo-
bile Web 2.0”. Moreover, inappropriate communication technologies that
offer low data rates at high prices are often seen as an important reason
for the low acceptance of the corresponding services. Recent developments,
however, mitigate these issues. The mobile infrastructure is migrating to a
packet switched all-IP network. Wireless broadband technology is constantly
improving, and 3G coverage is spreading rapidly. In addition, in many coun-
tries, a shift from time to data centric and even flat rate pricing models can
be observed, which allows for permanent connectivity at low cost. Finally,
state-of-the-art mobile phones, such as the iPhone and Android based de-
vices, have literally revolutionized the user interface side. Moreover, rich
APIs and transparent application distribution channels are major drivers for
innovation. Considering these technological advances, it seems that the po-
tential of mobile devices can finally be fully exploited. Thus, we expect that
more and more social services will expand their reach into the mobile domain.
In fact, specific mobile versions of well-known platforms such as MySpace1,

1m.myspace.com
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LinkedIn2, and Facebook3 are enjoying an enormous popularity. Following
this trend, the microblogging service Twitter4 has grown to one of the most
relevant communication platforms at the time of writing.

Twitter has always been designed for use in the mobile domain. It thus
well fits the mobile context, in contrast to most of the currently available
services that do not exploit the full potential of the underlying technology.
In particular, most services merely try to copy successful concepts from their
desktop counterparts. However, the usage patterns of mobile phones signifi-
cantly differ from those in a wired environment. It is thus crucial that mobile
services take the special characteristics of the environment – such as mobility,
ubiquity, and permanent reachability – into account.

The wired telephony network once lowered the communication delay and
made spatial distance between communicating parties negligible. Today’s
mobile infrastructure continues this trend: We can reach everyone everywhere
all the time – instantly. As a result, the differences between personal and
remote communication patterns are diminishing. Thus, the 1:1 conversation
scheme known from traditional remote communication will more and more be
complemented with group interaction, much as when socializing in the real
world. Future-oriented mobile social services thus have to adequately address
the related issues. In particular, they should facilitate group communication
and offer support for collaboration. As we will see in the next section, several
ongoing research activities are devoted to this field.

One important aspect falls short in these activities: The initial group
formation process. A major focus of our work thus lies on the fast and con-
venient initialization of group interaction on mobile devices. In a survey we
identify relevant requirements to enhance group communication on mobile
devices. Based on the findings, we then propose a contact recommendation
algorithm which allows to quickly group people in order to contact them at
once. Moreover, we outline mechanisms that simplify the interaction within
such a group after its initial formation. The most important components
have been implemented in Cluestr, a proof-of-concept application running on
Windows Mobile devices. Based on this application, we have conducted a
preliminary user experiment. The experiment makes use of real-world data
extracted from Facebook to demonstrate the suitability of the proposed meth-
ods. In particular, we demonstrate that relevant community information can
accurately be deduced from this data. Moreover, we show that, when using
our recommendation engine as opposed to traditional list-based approaches,
in realistic scenarios significant time savings can be achieved during group
establishment.

2m.linkedin.com
3m.facebook.com
4www.twitter.com
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4.1 Related Work

Traditional online social networking platforms provide only marginal func-
tionality for enhanced communication on mobile devices. By contrast, truly
mobile social services take people’s mobile behavior patterns into account and
offer functionality to enhance communication. Services like TXTMob [48],
Jaiku5, or Twitter implement a broadcasting system to which friends can sub-
scribe in order to receive message updates. FriendFeed6 enables friends to
comment on such messages and thereby extends this approach. ContextCon-
tact [90] and Swarm [30] are designed to enhance communication within a
large group including all of a user’s contacts.

Communication in the mobile space is often used to plan, schedule, and
reflect on group activities. As stated in [55], current mobile phones are not
designed to support such behavior in a group context. The authors present
the idea of creating privately shared group spaces on mobile devices where
each group is able to communicate and collaborate in order to overcome
this lack of functionality. Similar ideas have been followed by the Slam
system [18]. Here, the focus lies on communication within small groups, such
as class mates, co-workers, and family members. An ad hoc way to initialize
collaboration, mediated through personal mobile agents, is proposed by [33].

Most mobile social applications provide some degree of support for col-
lecting contextual information and possess functionality to publish or share
this information with other members of a group. There exist plenty of appli-
cations that offer such context sharing: Some systems disclose information
about their users’ presence [90, 112], others about location [89, 110], motion
[11] and proximity [96].

Besides group-based communication, some services provide functionality
to collaboratively solve tasks using mobile devices. An example is Doodle7,
which offers a polling service for multi-party negotiation.

All approaches have in common that the group formation has to be done
manually. The systems are not able to automatically deduce community
affiliation from user behavior.

We next present a survey which indicates that current group establish-
ment mechanisms do not well agree with the users needs and that more
efficient methods are demanded.

5www.jaiku.com
6www.friendfeed.com
7m.doodle.com
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4.2 Survey

The previously mentioned technological and economical developments ask for
new concepts and ideas regarding mobile communication. To shed light on
the usage patterns of today’s mobile phones, we set up an online survey. It
focuses on aspects related to group communication and collaboration in mo-
bile settings and investigates to what extent social networking services could
contribute in this context. A total of 342 people from Europe participated
in the survey. The outcome can be summarized as follows:

� Most participants agreed on the fact that their contacts stored in the
mobile phone’s address book can be grouped into communities such
as ’university colleagues’, ’coworkers’, ’family’, ’friends’ etc., and that
communication often occurs among the members of a certain commu-
nity simultaneously. However, although today’s mobile phones allow
to group contacts, this functionality is hardly used. Only 16% use the
built-in grouping function to assign contacts to groups.

� 68% of all participants use the feature to send text messages (SMS)
to multiple receivers. It is being used for different tasks including
holiday greetings, invitations, scheduling meetings, event organization
and polls.

� The conference call feature is barely used in daily life. 11% claim to use
it on a non-regular basis. Only one person claimed to use it regularly.
The main purpose for using this feature are business meetings.

In particular, we conclude that:

� The mobile phone is often used to organize and coordinate activities
among multiple people, such as to discuss how to spend the evening,
or to decide about a meeting point and time.

� Group communication is often performed with members of a commu-
nity existing in real life, such as members of a sport team, coworkers,
class mates or family.

� Existing features for group maintenance and group communication are
rarely used. Rather, most people manually (re-)establish groups, when
they, for example, want to send a message to multiple receivers.

Today’s mobile communication alternatives do not cope with this social
behavior. Text messages can be sent to multiple receivers simultaneously.
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However, the underlying system is limited with respect to group communica-
tion. In particular, text messaging only offers a 1:N way of communication.
For efficient group communication, however, an N :N solution is required.

The conference call feature included in the majority of state-of-the-art
mobile phones offers such functionality. However, it is restricted to voice
communication and only works in synchronous mode, i.e., all the partici-
pants have to concurrently be present (at the phone) in order to receive the
information. E-mail does not suffer from the outlined problems. However,
its popularity in the mobile context is still low in many regions. Reasons are,
presumably, a insufficient integration in current devices, together with the
limited input capabilities of these devices.

Finally, only a minority of users uses the built in feature to maintain
groups of contacts. A major reason for the low acceptance is presumably
the high dynamics involved. People join and leave communities (e.g. a
sport team), which implies tedious work to keep the group information up-
to-date. A main contribution of our work is an interface that simplifies group
formation without the need for permanent maintenance.

4.3 Cluestr

In the following, we outline a service which focuses on group communication
and collaboration, and addresses the major findings of the survey. The service
is named Cluestr, a combination of cluster and clue. Cluestr should be seen as
a proof-of-concept implementation and an evaluation environment. It is not
our goal to promote yet another mobile social application. The main ideas
and concepts addressed here can easily be integrated into existing systems.

4.3.1 Vision

Cluestr is designed to enhance communication among members of a group.
In particular it helps to lower the effort to organize, manage and coordinate
group activities, such as visiting a cinema, which requires a group of friends
to agree on a movie, meeting point and time. A further enhancement is the
incorporation of collaboration capabilities that can be used among members
of a group. The following illustrative example sketches a typical situation
where Cluestr is useful:

Every Saturday, a local football team has a game. Using Cluestr,
the team captain can initiate a group and invite all team mates
as participants. On a billboard, team mates can then inform
the others whether they will join the game or not and discuss
about the meeting point. Using a poll function, they can vote for



26 CHAPTER 4. RECOMMENDING CONTACTS BY SOCIAL TIES

the person who has to be the chauffeur and drive to the game.
Using a ToDo list, the team manages the logistics for the BBQ
afterwards. Everyone can tick what he will contribute to the
buffet.

The strength of the Cluestr service lies in its support for group communi-
cation and collaboration in general, and in a novel approach to initiate groups
in particular. The participants of such groups can profit from intra-group
communication and collaboration tools, such as a thread-like billboard, where
everyone can post and read messages. In addition, a poll through which par-
ticipants can vote, and a ToDo list that allows participants to add elements
or mark them as accomplished is available for each individual group. All this
functionality is well known from other contexts. However, the single features
only become useful when the underlying group is known. As mentioned be-
fore, there is little support for group initialization and/or maintenance in
current mobile devices. In the following we thus focus on the group initial-
ization process.

4.3.2 Need for an Efficient Group Initialization

As discussed, one of our main contributions is an efficient method to establish
a group. Groups are initiated by one person (initiator), who is then able to
invite a set of contacts to participate.

Due to interface constraints, inviting contacts should be kept as simple
and intuitive as possible. Selecting participants from a traditional, alpha-
betically ordered contact list is inefficient since the required contacts are
in general randomly distributed over the whole range. Cluestr offers a more
efficient method for finding the desired contacts. We present a contact recom-
mendation engine able to support the initiator by suggesting suited contacts
for invitation. For illustration, we give a simple use case:

If the initiator of a new group invites contact A, the engine pro-
poses that contacts B, D and E might also fit into this group but
not contact C. The initiator decides to invite E as well. With
this additional information, the engine understands that the ini-
tiator is, say, not interested in D and hence only recommends
B.

In addition to time-saving, contact recommendation helps to remind the
initiator of contacts that he/she otherwise might have forgotten, or that
he/she was even not aware of.
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4.3.3 Concept of the Contact Recommendation

Our recommendation algorithm is based on the existence of social dimensions
(recall Chapter 3), which is also reflected in the outcome of our survey:
The initiator belongs to different communities and often communicates with
several members of a community simultaneously. The basic idea is to take
advantage of existing community structures in the following way: Whenever
a user wants to initiate some form of group interaction, he/she initiates a new
group and starts by selecting a first contact. Next, the engine proposes a list
of people that share one or several communities with the selected contact.
This list is sorted by relevance, which is given by the number of shared
communities. The user can now select a next contact from this list, which in
turn gets repopulated with the entries best matching both selected contacts.
This process is repeated until the group is complete.

One could think of different approaches to extract the required community
affiliations of the initiator’s contacts:

� Tagging of contacts and manual grouping

� Semantic analysis of the communication content

� Communication pattern analysis

� Social graph topology

Tagging and manual grouping of contacts implies a large maintenance
effort by a user, which is undesired. Moreover, this feature is already imple-
mented in many mobile phones but hardly used according to our survey. We
want our recommendation engine to be able to recommend relevant contacts
with the least possible user effort.

Analyzing the content of the communication to then group contacts
around topics might be another approach. This idea is followed in [19, 31, 42].
However, a lot of mobile communication is voice based. Gaining relevant con-
tent information using voice recognition is hard to achieve on mobile devices.

One could also imagine that community affiliations are deducible by ob-
serving the stream of communication on the user’s device. First experiments
we have conducted in this direction, however, indicate that solely analyzing
communication patterns does not allow to estimate community structure with
sufficient accuracy. It remains open, though, whether the required accuracy
could be reached if further contextual cues were included.

The approach we pursued is based on social network analysis. In a social
networking service, users link to each other to indicate relationships. This
leads to a network in which related users are connected through ties. We
designed our recommendation engine to require only this network information
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Figure 4.1: Visualization of a sample ego-graph

to find community affiliations of contacts and use this information to generate
recommendations.

4.4 Contact Recommendation

The previously introduced concept of contact recommendation requires the
engine to know:

� The different communities the initiator belongs to.

� Which of the initiator’s contacts belongs to which communities.

As mentioned before, this information is extracted from the social network
stored on the Cluestr server.8 Before describing the extraction process in
detail, we introduce some notations.

4.4.1 Notations

Under a social network (or social graph) we understand a graph G = G(V,E),
where the set V of vertices represents users (or contacts), and the set E of
edges denotes links (or friendships) between these users. An ego-graph (or
ego-centric graph) is a special form of a social graph. It consists of a user of
interest (ego) and his/her direct neighbors (alters ai).

9 A sample ego-graph
is illustrated in Figure 4.1.

8Observe that all the presented concepts could also be based on an existing social
networking service (such as Facebook).

9The notation (ego, alter) is taken from [123].
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A cluster is a subset of vertices of a social graph that is highly connected.
In particular, we assume that the density of edges within a cluster (intra-
cluster edges) is larger than the density of edges connecting vertices from
inside the cluster to vertices outside of the cluster. A clustering algorithm
seeks to partition a graph into a set C of clusters ci. The resulting partition
is also called the clustering of a graph. If the resulting clusters do not need
to be disjoint, the clustering is said to consist of overlapping clusters (i.e. one
vertex can belong to several clusters).

As we will see, clusters are supposed to reflect real community structure.
Throughout this section, we will refer to a cluster c as a group of contacts,
as identified by our clustering algorithm. By contrast, a community o refers
to a group of contacts as identified by a user. Similarly as we denote the set
of all clusters by C, we refer to the set of all communities by O.

Modularity is a well known measure to estimate the quality of a clustering.
It was introduced by Newman [85]. Basically, the modularity is defined to be
the fraction of edges that fall within the given clusters minus the expected
fraction of such edges, if edges were distributed at random (in a graph with
a given number of edges and vertices). The original definition of modularity
is only valid for disjoint clusters. However, Nicosia et al. [88] have recently
proposed a variant which is also usable with overlapping clusters. We refer
to this second definition when using the term modularity.

4.4.2 Community Detection

Figure 4.2 shows the topology of a real ego-graph retrieved from Facebook.
The example graph exhibits a characteristic structure, which is common to
most real-world ego-graphs. There are groups of alters that are densely
connected, but only sparsely interlinked to the rest of the network. These
dense regions exist due to the social characteristics of communities. The
members of a community typically know each other, and thus form densely
connected subgraphs. On the other side, members of one community do often
not know members of other communities, resulting in a sparse interlinkage.

As mentioned before, densely connected regions can be extracted from
a graph using a clustering algorithm. Graph clustering is an active area of
research. A wide range of clustering algorithms have been proposed, includ-
ing [15, 39, 84, 85, 86]. Due to the outlined correlation between interlinkage
and communities, we expect that the clustering generated by a sophisticated
algorithm well reflects the actual community structure. A careful look at Fig-
ure 4.2 reveals that some of the alters belong to more than one community.
A clustering algorithm which is supposed to extract the actual communities
thus needs to be able to deal with overlapping clusters. An algorithm that
fulfills this property is the CONGA algorithm [40]. It extends the widely
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Figure 4.2: A real ego-graph: The characteristic community structure is
clearly visible. The central user (ego) as well as the ego-alter ties are not
displayed for simplicity.
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used Girvan and Newman algorithm [39, 86], which can only retrieve disjoint
clusters.

CONGA belongs to the class of divisive hierarchical clustering algorithms.
That is, it starts with a single cluster containing all vertices and, by subse-
quent partitioning, produces an ever finer grained hierarchy of clusters. The
partition process can be repeated until all nodes form single node clusters,
which are the leaves of the hierarchy. To explain the algorithm in more de-
tail, we use the notion of edge betweenness and split betweenness, according
to [40]:

� Edge betweenness: The betweenness of edge e is defined as the number
of shortest paths, between all pairs of vertices, that pass along e. A
high betweenness means that the edge acts as a bottleneck between a
large number of vertex pairs and suggests that it is connecting different
clusters.

� Split betweenness: A vertex v can be split by partitioning the set of its
neighbors into two disjoint sets s1 and s2. Then, v is replaced by two
virtual nodes v1 and v2 that are connected by an edge ev. Moreover,
each node in the set si is connected to vi. The split betweenness is
defined as the maximum edge betweenness of ev among all possible
partitions into s1 and s2. Since the number of possible partitions can be
high (roughly 2δ−1, where δ is the degree of node v), an approximation
algorithm to calculate split betweenness is used by [40].

The CONGA algorithm can then be described as follows:

1. Calculate edge betweenness of edges and split betweenness of nodes.

2. Remove the edge with maximum edge betweenness or split the node
with maximum split betweenness, if higher.

3. Recalculate the edge and split betweenness values.

4. Repeat from Step 2 until no edges remain.

In [40], the time complexity of the CONGA algorithm is shown to be
O(m3), where m is the number of edges in the graph. Gregory has later
proposed a modified version of the algorithm (named CONGO) to reduce
the time complexity [41]. However, we found that performance is not a key
issue, and, as it provides more accurate results, rely on the original CONGA
algorithm for ego-graph clustering.
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4.4.3 Recommendation

As discussed before, we assume that most group interaction takes place within
communities. Therefore, the chance that the initiator of a group wants to
invite several members of the same community is high. The automatic detec-
tion of dense structures (clusters) in the initiator’s ego-graph approximates
the real-life communities like class mates, work colleges, family members, and
so on.

The recommendation process for the initiation of a new group thus works
as follows:

1. Detect hidden community structures by clustering the initiator’s ego-
graph. Each contact is assigned to at least one cluster.

2. Present an alphabetically sorted list from which the initiator can
choose a first contact.

3. Rank contacts based on the cluster affiliations of the previously selected
contacts.

4. Recommend the best ranked contacts to the initiator.

5. Continue with Step 3 after the initiator has selected a next contact to
invite, or terminate if the group is complete.

The idea of the ranking function in Step 3 is to rank contacts high that
share many clusters with the already invited persons. In particular, each
cluster is weighted with the number of occurrences within the already se-
lected contacts. Each of the remaining contacts is then scored by the sum of
all the clusters it resides in (see Figure 4.3). If the list from Step 4 does not
contain any relevant contacts, the user can switch back to an alphabetical
list to continue the invitation process. Often, the recommendation algorithm
recovers in the next iteration, such that an alphabetical list has to be con-
sulted only rarely. Assume, for example, the user wants to invite both, team
mates as well as co-workers, to a birthday party. If these communities –
and the corresponding clusters – are entirely disjoint, the recommendation
process will work fine for the first cluster, then require the consultation of
the alphabetically ordered list, and afterwards work fine again for the second
cluster.

4.5 Evaluation

We have investigated different aspects of the proposed contact recommenda-
tion algorithm, namely:
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Figure 4.3: Contacts are rated according to their cluster affiliations. For
each occurrence of a cluster within the already invited group members (left),
a contact’s score increases by 1. For the top ranked user (that belongs to
clusters 1 and 2), for example, this amounts to a total score of 6.

� Clustering accuracy : How well do the clusters generated by the clus-
tering algorithm reflect the social communities identified by the user.

� Advantage of recommendation: How much time can be saved if a group
is created by using our recommendation algorithm rather than by se-
lecting contacts from an alphabetical list.

� Effect of sparsity : How well does the proposed concept work if data is
spare, e.g. due to a low number of registered users, or due to missing
friendship information in contact books.

Evaluating an algorithm on real social graphs is challenging. It is im-
possible to characterize the performance of the algorithm without knowledge
of the correct community structure, the ground truth. For proper analysis,
therefore, not only information about the social graph but also about existing
communities is required. Such information can best be retrieved by subject
questioning.

Extracting the ego-graph from real mobile phone contact books is infeasi-
ble.10 We thus decided to rely on Facebook data. Facebook is the presumably

10Extracting the entire ego-graph would require to read the contact books of all con-
tacts of ego.



34 CHAPTER 4. RECOMMENDING CONTACTS BY SOCIAL TIES

most complete and well established online social networking service. The un-
derlying social network is thus likely to exhibit similar characteristics as the
social network defined by the contact information in people’s mobile phone
address books.

Due to the lacking ground truth, available data sets as presented in [67]
cannot be used for evaluation. For our experiments, we thus extracted the
ego-graphs of four subjects (two male, two female) from Facebook. Moreover,
we asked these subjects to group their (Facebook) friends into an arbitrary
number of communities (such as coworkers, team mates, family members,
etc.). The resulting four datasets form the ground truth for our analysis.
Each of the datasets contains between 59 and 151 contacts, and was assigned
between 4 and 7 communities by the corresponding subject.

4.5.1 Evaluation Measures

In the context of classification tasks, precision and recall is a widely used
evaluation concept. The precision for a class denotes the number of items
correctly identified as belonging to the class (i.e. true positives) divided by
the total number of elements classified as belonging to the class (i.e. the sum
of true positives and false positives). Similarly, recall is given by dividing the
number of true positives by the total number of items that, according to the
ground truth, really belong to the class (i.e. the sum of true positives and
false negatives).

In our setting, we are interested in the accuracy of the extracted clusters
with respect to the communities identified by our subjects. Above measures
thus become to:

� Precision of cluster i with respect to community j:

Pi,j =
|{contacts in ci} ∩ {contacts in oj}|

|{contacts in ci}|

� Recall of cluster i with respect to community j:

Ri,j =
|{contacts in ci} ∩ {contacts in oj}|

|{contacts in oj}|

These two values are often combined to form a single evaluation measure,
called F-measure, which is the harmonic mean of recall and precision:

Fi,j = 2 · Pi,j ·Ri,j
Pi,j +Ri,j

Observe that the assignment of a cluster ci to a community oj is not known
beforehand. We thus chose the oj that maximizes the F-measure Fi,j as
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the representative community oj∗(i) of ci, i.e., j∗(i) = argmaxj Fi,j . The
corresponding measures for the entire classification task can then be defined
as follows:

� Precision:

P =
1

|C|

|C|∑
i=1

Pi,j∗(i)

� Recall:

R =
1

|C|

|C|∑
i=1

Ri,j∗(i)

� F-Measure:

F =
1

|C|

|C|∑
i=1

Fi,j∗(i)

4.5.2 Clustering Accuracy

The contact recommendation algorithm can only work if the ego-graph de-
composition of the clustering algorithm well agrees with the intuition of the
user. The CONGA algorithm has shown to perform well in various settings
[40, 41]. Nevertheless it remains to be shown that the graph structure and
the resulting clustering well enough represent the perception of a user about
how to naturally group his/her contacts.

We therefore investigate the accuracy and applicability of CONGA for
the partition of an ego-graph into communities. First, a suitable termination
criteria for the divisive clustering process is required, which leads to a well
defined number of – possibly overlapping – clusters. As pointed out by Gre-
gory [41], modularity can, but does not need to be an appropriate criteria
for this purpose. Our first experiment thus investigates whether modularity
maximization also maximizes the F-measure. We clustered each ego-graph
until singleton clusters remained. At each stage, i.e. for each number of clus-
ters, recall, precision and the resulting F-measure were calculated. A plot
of clustering stages 4 to 50 is given in Figure 4.4.11 The vertical line in-
dicates the clustering stage at which modularity is maximized. In all but
one case (Subject 4), the clustering stage that optimizes modularity agrees
with the stage that maximizes the F-measure. Moreover, for Subject 4, it
differs by only one cluster. This good alignment indicates that modularity is
a well-suited optimization criteria for clustering ego-graphs.

11The evaluation starts as stage 4, since the used algorithm implementation did not
allow to create clusterings with fewer than 4 clusters.
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Figure 4.4: Comparison of the accuracy of clustering the subject’s ego graph
at different stages. The vertical line indicates the stage with maximal mod-
ularity.

While we have seen that modularity is a good criteria to maximize the
F-measure, it is still not clear whether the resulting clusters well reflect the
user’s perception. In particular, the number of clusters detected by the al-
gorithm (at maximum modularity) might greatly differ from the amount of
communities identified by a subject. Table 4.1 compares the number of manu-
ally defined communities to the number of clusters that maximize modularity
and F-measure, respectively.

The fact that these numbers all lie in the same range indicates that the
modularity maximizing CONGA clustering well reflects the users’ intuition
concerning communities. However, we did not reach perfect correspondence.
To understand the reasons for the differences, we asked the subjects to name
their communities and also give names to clusters recognized by the algo-
rithm. A comparison of the outcome facilitates a qualitative interpretation.
Basically two effects caused the number of clusters to differ:
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#Communities #Clusters #Clusters
(max Mod) (max F-measure)

Subject 1 7 7 7
Subject 2 7 5 5
Subject 3 4 5 5
Subject 4 7 5 4

Table 4.1: Comparison of the number of clusters resulting from subject ques-
tioning and CONGA.

� Combining two independent groups of friends, which are barely inter-
linked, into one community. Such communities are detected as different
clusters by the algorithm. One subject, for example, put all friends she
got to know during her internship abroad into one community. How-
ever, this community was recognized as two clusters: One containing
flat mates she was living with, and one containing co-workers. There
were no ties connecting these two groups.

� Two communities were discovered as only one when the interlinkage
between friends was too high to separate them. This may happen
when one community is a subset of another one. One subject, for
example, put her friends from university into one group and defined a
second community with friends she knows from a student organization.
Members of this organization, however, go to the same university and
possess friendships with other students not in the organization. This
made it impossible to separate the two communities. As a consequence
only one cluster was detected.

To quantify the accuracy of the clustering, we have applied the aforemen-
tioned quality measures, namely precision, recall and F-measure. Table 4.2
summarizes the results. The high F-measure values (average: 82%) achieved
by automated clustering are promising especially when taking the two above
stated causes for non-congruency into account. We conclude that a user’s
ego-graph contains sufficient information to realize a contact recommenda-
tion system, and that this information can be efficiently extracted by the
CONGA algorithm.

4.5.3 Recommendation Engine

In the previous section, we have shown that clustering an ego-graph using
CONGA at maximized modularity results in an adequate estimation of com-
munities and their affiliated contacts. Next, we evaluate whether recommen-
dation based on graph clustering is able to improve the group initialization



38 CHAPTER 4. RECOMMENDING CONTACTS BY SOCIAL TIES

Subject Recall Precision F-measure
Subject 1 0.94 0.96 0.95
Subject 2 0.78 0.87 0.82
Subject 3 0.80 0.79 0.80
Subject 4 0.78 0.67 0.72
Average 0.83 0.82 0.82

Table 4.2: Clustering accuracy (recall, precision and F-measure) for each
subject.

process. In particular, we are interested in the time savings a user can achieve
in a realistic scenario when using our recommendation engine. For this, we
asked the subjects to establish groups and send invitations to friends from
their contact list using Cluestr. Three different groups had to be established
according to different scenarios:

1. “Invite all members of a community of your choice for a BBQ.”

2. “Invite some of your contacts from one community of your choice to
watch a movie at your home.”

3. “Invite a random selection of contacts for participation in a user study.”

The scenarios pose increasing challenges to the recommendation engine. In
the 1. Scenario, the group consists of all members of one community. In the
2. Scenario, only a part of a community’s members should be invited. The
3. Scenario, finally, deals with a random sample of contacts, regardless of
their community affiliation.

The experiment was performed on a mobile device (HTC Touch Cruiser)
using Cluestr. The subjects’ ego-graphs from Facebook were used as the
underlying data set for this experiment.

Each task had to be solved following the same procedure: In a first step,
the subjects were asked to write down all participants they wanted to invite.
Then, these participants had to be invited using Cluestr. Each subject had
to perform the invitation procedure on the device three times. First, the
subject was shown a traditional alphabetic list of his/her friends, second,
he/she had to establish the group using a cluster view, where friends are
grouped according to the detected clusters (see Figure 4.5(b)). Third, the
subject had to choose the participants using the recommendation view, in
which the subjects could select contacts from the top 5 recommendations
(see Figure 4.5(a)). During the experiment, the time required to initiate a
group was measured. Figure 4.6(a) shows the average time required to select
a participant in each scenario and each selection mode. Figure 4.6(b) plots
the mean values over all subjects.



4.5. EVALUATION 39

(a) Group initialization process: rec-
ommendation view

(b) Group initialization process: clus-
tering view

Figure 4.5: Screenshots of Cluestr running on a Windows Mobile device.

The results show that the recommendation algorithm performs stronger,
the more community-centric the group is. The more randomized the selected
contacts are (in terms of community affiliation), the more challenging it gets
for the recommendation engine to come up with adequate suggestions. In a
completely randomized situation, as evaluated in Scenario 3, recommenda-
tion performance thus decays.

During our experiment, whenever the recommendation was inappropriate,
the subject could switch to either the alphabetic or clustered list to select
a next participant. The less community focused the group was, the more
frequent a subject had to switch to these selection modes. However, our
survey indicates that most groups are established with contacts that form
a community in real life. Therefore, Scenario 1 and Scenario 2 are more
realistic.

These results show that both, listing contacts according to cluster affilia-
tion as well as recommendation based selection, results in time saving. Con-
tacts can be found faster and in a more convenient way. In our experiment,
the average selection time per user in Scenario 1 could be cut in half from
12.2s to 6s by using our recommendation engine. If only a partial, rather
than an entire community needs to be selected, a reduction of 23%, from
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11.5s to 8.9s, was achieved. The average size of the initated groups consisted
of 19 contacts, resulting (in average) in an overall timesaving of 120s and
50s, respectively. Besides the improvement in time, the subjects also men-
tioned that the recommendation helps to remember all relevant participants
and thus reduces the risk that somebody is unintentionally not invited.

4.5.4 Clustering Stability

As mentioned before, we assume that the ego-graphs retrieved from Facebook
are well established and therefore stable. Typically, people who are registered
on Facebook are already connected with most of the relevant users. Moreover,
for a single user, a significant amount of friends are likely to be registered
on Facebook. If a new social networking service is launched, the situation
is quite different. In the beginning only few people are registered and many
friendships links are missing. Our recommendation engine should also work
in such environments. That is, it should yield good results even in an early
phase of the service, and not require the social graph to be complete.

We thus also analyzed our recommendation algorithm’s performance on
degenerated networks, which are supposed to resemble the topological struc-
ture of a social services in an early stage. Two aspects have been investigated:

� Missing friendships: To reproduce the effect of missing friendships,
we randomly removed links from the subjects’ ego-graphs.

� Missing users: To investigate the effect of user sparsity, such as en-
countered shortly after launching a new services, we randomly removed
nodes from the ego-graphs.

In both scenarios, the percentage of removed items (links or nodes, re-
spectively), was increased from 0% to a total of 90% in 10% steps. After
each step, the resulting graph was clustered. Possibly resulting single node
clusters were ignored, as they are not relevant to the recommendation engine.
To mitigate random effects, the entire procedure was repeated 30 times. For
both scenarios we assessed the accuracy of the detected clusters. Moreover,
we investigated the development of the F-measure, i.e., whether it remains
stable or decays.

Figure 4.7(a) analyzes the effect of missing ties on the number of clus-
ters. It plots mean and variance of the number of detected clusters at each
step. The figure shows that the number of clusters increases with an increas-
ing number of missing links. The reason for this behavior is that formerly
densely connected nodes start to lose connectivity when links are removed.
As a consequence, clusters fall apart into smaller pieces. Nodes do not get
assigned to wrong clusters but remain together with other nodes of the same
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Figure 4.6: Time measurement of the group initialization experiment. For
each scenario, each of the 4 subjects had to create a group using the three
different selection modes: Choosing contacts from an alphabetic list, from
the cluster view and based on recommendation.



42 CHAPTER 4. RECOMMENDING CONTACTS BY SOCIAL TIES

community. As a consequence, the precision of the newly generated clus-
ters remains high. The recall, however, decreases rapidly when clusters split
up, which also pulls the F-measure down. These effects are illustrated in
Figure 4.7.

The second experiment addresses bootstrapping issues. Shortly after
launching a new social service, the number of subscribers is typically low.
Nevertheless, the service has to be usable in order to attract new users.
Therefore, we investigate the effect of user sparsity on the performance of
the clustering accuracy. The difference to the previous experiment is that
nodes rather than links are removed from the graph. Removed nodes reflect
an initiator’s real life contacts that are not (yet) subscribed to the service.

The same measurements as in the first experiment were applied and eval-
uated. Figure 4.8(a) shows that the more nodes are missing, the less clusters
are found. The reason for the decay of the number of estimated clusters is
that the clusters dissolve since their nodes are not present anymore.12 Fig-
ure 4.8(b) shows precision, recall and F-measure values. The F-measure is
high regardless of the amount of removed nodes. Although the number of
clusters decreases, the high precision value indicates an accurate clustering.
Apparently, missing nodes do not significantly compromise the algorithm’s
performance. Consequently, recommendations based on an incomplete graph
are still adequate.

We conclude that only a small subset of a user’s real life ego-graph is
required to estimate community affiliation among these contacts. Therefore,
even with a small user base, Cluestr is able to provide acceptable recom-
mendations. This helps to overcome the bootstrapping problem. However,
contacts that are not registered to the service will never be recommended.

4.6 Conclusion

Group interaction is likely to play an ever bigger role in the rapidly changing
world of mobile communication. Current mobile devices, however, were not
designed with this kind of application in mind. A particular shortcoming is
the lack of support for the initialization of group interaction, which is partic-
ularly cumbersome on small devices with limited input and output capabili-
ties. Thus we have proposed a contact recommendation mechanism which is
designed to ease the group initialization process. We have integrated the pro-
posed recommendation engine into a proof-of-concept application. Prelim-
inary experiments demonstrate the advantages of contact recommendation
for group initialization. In particular, we have shown that:

12Recall that single node clusters have been ignored.
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(b) Recall, precision and F-measure at each stage

Figure 4.7: Effect of clustering an ego-graph with missing friendship links.
Links were removed randomly. Each stage was evaluated 30 times.
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� A user’s ego-graph contains a significant amount of community infor-
mation.

� This information can accurately be extracted by means of a state-of-
the-art clustering algorithm.

� The extracted clusters can be used to recommend contacts that might
fit into an existing group.

� This recommendation process can save a considerable amount of time
when it comes to group contacts on a mobile device.

Moreover, we have demonstrated that the accuracy of the approach only
moderately decreases if data gets sparse. Thus, our approach is applicable
even in upcoming services that do not yet possess a large and stable user
basis.
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Figure 4.8: Effect of clustering a degenerated ego-graph with missing con-
tacts. Nodes were removed randomly. Each stage was evaluated 30 times.





Chapter 5

Finding Friends by Social Ties

While popular social networking systems differ in many aspects, they still
all build – as their name suggests – around one common component: The
possibility to explore a user’s social network. Apparently, people like to see
who their friends’ friends are, and they also like to get in contact with them,
as reflected by the high clustering coefficients of social networks. Friends of
friends play an important role in society. They are not only major actors
in gossip and stories, but also proof extremely important in many other
contexts. People are hired because their friends tell them about a friend who
has a particular job opening. Headhunters of large companies nowadays try
to take advantage of this fact. The friend of friend job recommendation idea
is also the major feature of the social networking platform LinkedIn. Friends
of friends are, however, not only important in the job market, but also in
other businesses, and during everyday life, such as when people socialize. In
fact, the high clustering coefficients of social networks indicate that friends of
friends are an important ingredient of our social and emotional surrounding
and that they are likely to become our (direct) friends.

5.1 Friend-of-Friend Detection

We believe that a common friend at least as well indicates a potential “match”
between two persons as typical profile information of matchmaking appli-
cations, such as common interests or character traits, does. Interestingly
enough, we all implicitly carry this extremely valuable information around,
but do not systematically take advantage of it: Whenever two strangers meet
in the street, all they have to do to figure out whether they are friends of
a (common) friend, is to compare their mobile phones’ contact books. We
have implemented a mobile application called VENETA that, amongst other
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features, realizes exactly this idea. Whenever two VENETA enabled mobile
phones come into Bluetooth1 connection range, they compare their contact
book entries. If none of the users appears in the other’s contact book (i.e.
the users are not yet friends) and they share at least one common contact,
then the two users are identified as friends of a friend. Observe that such
a comparison can easily be done, as the phone numbers (and similarly e-
mail addresses, etc.) act as globally unique identifiers. This basic idea is
illustrated in Figure 5.1. Surely, some contacts, such as the provider’s help
desk number, the doctor, or 911, do not reflect real friends and have to be
deselected prior to the comparison. Moreover, due to different prefix formats
(e.g. +1 vs. 0011-1 vs. 001), only the last 7 digits of the phone numbers
are compared.2 Observe that this kind of friend detection takes advantage
of implicit human computer interaction [105] and thus does not require any
tedious explicit actions of the user (other than installing the application).

Unfortunately, the basic idea has a relevant snag: Hardly anybody wants
to broadcast his/her contact book to everybody. One might think that this
problem can easily be solved by simple cryptographic hash-functions, i.e.,
by sending and comparing hash values instead of the actual phone numbers.
However, an adversary could simply construct a lookup table containing the
hashes to all the possible 107 phone numbers. Therefore, a more sophisticated
solution is required. The next section discusses how the decentralized friend
of friend finding idea can be realized in a privacy preserving way.

5.2 Preserving Privacy

How can two persons compare their address books without revealing the
contacts (except for those that match)? More formally, two parties each own
a set and they want to find the intersection of these sets without revealing
the own set to the other party. This problem is known as secure two party set
intersection, and belongs into the cryptographic area of secure multi-party
computation. The goal of secure multi-party computation is to evaluate a
function (or algorithm) that takes an input value of each participating party.
At the end of the protocol, each participant should know the result. However,
none of the participants should know more about the other participants’ input
values than what can be derived from the result and the own input value.
Throughout this section, we will make use of the following notations:

� Encryption: We will denote the encryption of a message m with key κ
as Eκ(m).

1Any other short distance wireless connectivity technology would work as well.
2Note that the probability that two persons meet and own a contact with (semanti-

cally) different prefixes, but coinciding “base number” (i.e. the last 7 digits) is negligible.
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Barbara Smith

Christa Doe

Brian Lewis

Vanessa Platt

Walter Boyd

...

Arthur V.

Christa D.

Debi B.

Vincent M.

William M.

...

1246098

6583404

4320438

...

7280422

8750557

4320438

7092139
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7764982

5833210

...

Alice Bob

ChristaAlice Bob
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Vanessa
Walter

Arthur

Debi

Vincent
William

Figure 5.1: Detecting friends of friends: Whenever the mobile phones of two
strangers come into connection range, they can compare their users’ contact
books. If a matching entry is found, the two strangers are informed to be
friends of friends. A possible social network that reflects the information
from the contact books is illustrated in the top.
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� Commutative Encryption: A commutative encryption scheme is in-
variant to the order in which encryption and decryption functions are
applied. In particular, the following holds: Eα(Eβ(m)) = Eβ(Eα(m)).

� Homomorphic Encryption: A homomorphic encryption scheme allows
to calculate Eκ(m1 +m2) given Eκ(m1) and Eκ(m2).

� Passive Adversary : Passive adversaries try to find out something about
the others’ input values, but strictly follow the protocol. They are also
called semi-honest, or honest but curious adversaries.

� Active Adversary : As opposed to passive adversaries, active (or mali-
cious) adversaries do not necessarily follow the protocol. They can do
whatever they want to compromise the other party’s privacy.

It is known that any 0−1 valued function can (theoretically) be evaluated
in the secure multi-party computation model under the assumption of passive
adversaries [128]. Unfortunately, the generic method this result is based on is
computationally too expensive for most real-world problems. Moreover, real
adversaries might deviate from the protocol, such that specialized solutions
are required.

There are two major approaches that reduce the computation and com-
munication complexity of two party set intersection protocols compared to
generic solutions: Either an algorithm is based on a commutative encryption
scheme or it exploits the power of homomorphic encryption in combination
with polynomials. Both alternatives exhibit linear communication complex-
ity. The basic construction of the second approach, as first proposed by
Freedman et al. [36], is vulnerable to a simple attack in the presence of
active (or malicious) adversaries. The problem has been recognized and ad-
dressed by the original paper as well as succeeding variants [36, 51, 54]. All
of these fixes, however, make the protocol rather complicated. Therefore, we
decided to rely on a construction based on commutative encryption. Huber-
man et al. [52] have proposed the following basic variant. Alice (A) owns a
set X = x1, ..., xN ⊂ V , and Bob (B) owns a set Y = y1, ..., yM ⊂ V (where
V is the universe of all possible elements). In our case, X and Y correspond
to the phone numbers in Alice’s and Bob’s contact books, respectively, and
V is the set of all 107 possible phone numbers. The following protocol allows
to find X ∩ Y :

1. A→ B: Eα(x1), ..., Eα(xN ) (α randomly chosen)

2. B → A: Eβ(y1), ..., Eβ(yM ) (β randomly chosen)

3. A→ B: Eα(Eβ(y1)), ..., Eα(Eβ(yM ))
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4. B → A: Eβ(Eα(x1)), ..., Eβ(Eα(xN ))

5. Both, A and B, can compare the lists from step 3 and 4. Due to the
commutativity assumption, if xi = yj then Eβ(Eα(xi)) = Eα(Eβ(yj)).
Moreover, both parties know the original elements (and their order)
in one of the lists, such that they can derive the matching elements
(phone numbers, in our case).

Observe that this protocol does not only reveal the set intersection, but
also the size of the input sets (which is not critical in our context). Agrawal et
al. [1] provide a detailed analysis of the protocol. They show that, given the
decisional Diffie-Hellman hypothesis (DDH) holds, the following encryption
function satisfies the requirements of the protocol:

� Eκ(m) = h(m)κ mod p.

� p is strong prime, i.e. p = 2q+ 1, with p, q prime. Clearly, p has to be
large enough, such that the discrete logarithm problem is hard.

� Dom E consists of all quadratic residues mod p.

� κ ∈ 1, 2, ..., q − 1.

Agrawal et al. further assume that there exists an ideal hash function
h : V → Dom E that maps each element v ∈ V to a perfectly random
element d ∈ Dom E . In our implementation, h(·) is a “normal” cryptographic
hash function. Figure 5.2 illustrates the complete protocol for our example.

The protocol has further been analyzed with respect to malicious adver-
saries. Zhang and Zhao [130] as well as Li et al. [68] state two major problems
of the protocol under this adversary model:

� Simply changing the input set, such as extending it by a few elements,
can compromise the other party’s privacy. We believe that this is not a
relevant issue in our case. If somebody can extend the input set, he/she
could clearly have had the corresponding contact in the contact book.
Since the input set sizes are revealed, simply sending all 107 possible
phone numbers is also not possible. In fact, for performance as well as
security reasons, we restrict the input sets to contain a maximum of
300 entries.

� The protocol is not symmetric. B could decide to skip step 4 of the
protocol, such that A does not know the matches, whereas B does.
Zhang and Zhao refer to a cryptographic primitive that allows to “si-
multaneously” exchange values. Due to the additional complexity and
the related performance issues, we have not implemented this idea.



52 CHAPTER 5. FINDING FRIENDS BY SOCIAL TIES

h(1246098)α mod p
h(5683404)α mod p
h(4320438)α mod p

...

h(7092139)β mod p
h(4320438)β mod p
h(4457622)β mod p

...
h(1246098)αβ mod p
h(5683404)αβ mod p
h(4320438)αβ mod p

...

h(7092139)βα mod p
h(4320438)βα mod p
h(4457622)βα mod p

...

Alice Bob

Figure 5.2: The complete protocol for our example phone numbers (recall
Figure 5.1). After the last step of the protocol, both, Alice and Bob, know
the shaded lists. After comparing the lists, they find that there is a matching
entry, namely Christa’s phone number (4320438).
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We assume that the attack cannot cause any serious damage. A vic-
tim only reveals a contact he was willing to share, without getting this
information in return. Moreover, observe that such an attack is very
unlikely to happen: If Alice wants to compromise Bob’s privacy, she
has to guess a contact she might3 have in common with Bob. To be
of any relevance, this contact would further require to be of delicate
nature. Most likely, however, Bob would not have made such a delicate
contact available to VENETA, such that Alice’s chance of success is
virtually zero.

Zhang and Zhao finally introduce an intent based adversary model and
a utility function that measures the trade-off between privacy disclosure and
correctness of the result. They show that the basic protocol is secure if
there is a mutual interest for the information sharing to succeed, and the
participants are rational (in a game theoretic sense), even if adversaries do
not follow the protocol.

5.3 VENETA

A system that solely implements the contact matching idea exhibits a major
bootstrap problem: If only few people use the system, the probability that
two people possessing an identical contact meet is extremely low. Conse-
quently, the contact matching functionality has to be embedded into a more
comprehensive system. We have therefore developed VENETA4 (available
at www.veneta-project.net), a mobile social networking platform that ad-
dresses the outlined bootstrapping problem from two sides.

On one hand, additional infrastructureless functionality has been inte-
grated, which decouples the system from any network provider and is thus
free of charge. On the other hand, we did not want to sacrifice the possi-
bilities of server bound features. Despite the incurred costs, we have thus
implemented a central server which is able to provide benefits even for users
that are not in each others immediate proximity. As this functionality is de-
pendent on the aforementioned provider dependent billing models, all server
bound features are optional, and care has been taken to keep data volumes
low. The resulting platform exhibits the following features:

� Contact matching: (see Section 5.1).

� Profile matching: Besides contact matching, a traditional user profile
based matching has been implemented. A search mode only consider-
ing age and gender (including a wild card) ensures a chance of success

3Only if she is not sure, she can gain information.
4The application name is derived from the latin word veneta (blue, sea blue), to

emphasize the decentralized character (Bluetooth).
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even for low user density. Such a trivial matching scheme is partic-
ularly important in the bootstrapping phase. We are convinced that
the Japanese system Lovegety [53] (see Section 5.4) only had success
due to this simplicity.

� Decentralized messaging: Often, SMS-messages are sent over short dis-
tances (e.g. at a sport event, to locate the office mate on the same floor,
in an auditorium, at school, etc.). We have implemented a simple Blue-
tooth based messaging service that delivers messages up to 3 hops using
epidemic routing. We believe that this feature is particularly appealing
to young users with limited budget.

� Server bound messaging: Decentralized messaging is smoothly ex-
tended by centralized messaging. To keep in touch with friends even if
they are not currently close-by, messages can also be delivered by the
server. For privacy reasons, all data traffic is encrypted. The server
acts as an intermediary to bind public keys to phone numbers (which
are verified using SMS) and to distribute these keys when required.

� User location tracking: For devices that implement the Java Location
API (JSR-179), the user location can be tracked and submitted to the
server. The server can (optionally) notify users, if potential matches
(according to the profile) are close-by. For privacy reasons, we do not
allow location queries on a user basis (i.e. “where is user xy”).

We again want to stress that the system can be used independently of
the server (at the expense of the server based features, of course). Figure 5.3
shows VENETA running on a Nokia E65 phone.

Finally, we would like to remark that VENETA could be extended by
taking information from existing social networking platforms into account.
Existing profile information could be imported for profile matching, and the
friend of friend detection algorithm could make use of other kinds of iden-
tifiers, such as ICQ numbers, e-mail addresses, and so on. Such extensions
might further reduce bootstrapping issues.

5.4 Related Work

Mobile social networking has been an active field of research over the past
years. As a consequence, a wide variety of systems have been proposed. Many
of these systems primarily rely on central infrastructure, and thus do not fall
into the main focus of this work. Examples are Plazes, Dodgeball, Jambo,
Jaiku or Bluepulse. All of them build around the location awareness concept,
which is typically combined with traditional social networking functionality,
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Figure 5.3: VENETA in action: The application can be configured to notify
its owner whenever other VENETA users are nearby, if contact matches are
found, and/or if profile matches are found.

such as the (centralized) exploration of friendship links. Some of them, such
as Jaiku also offer some Bluetooth based features. The power of such features
has been recognized by the developers of mainly decentralized applications.
Commercial examples are Nokia Sensor [96] and MobiLuck, which both offer
profile based matchmaking via Bluetooth. More remarkable is probably the
Lovegety device from Japan [53]. The dedicated device exists in a “male”
and “female” version, and in addition features a “mini-profile” (3 possible
choices, one of which is a wild card). The device alerts the user once a
potential match is nearby. Since its introduction in 1998, more than 600K
of these devices have been sold. Lovegety is probably the most successful
purely mobile social system so far – presumably due to its simplicity.

Another approach was followed by Sixsense, which relies on laptops rather
than mobile phones as primary platform. It is mainly thought for “quasi-
static” settings, such as in class or in a library. In addition to Bluetooth,
Sixsense makes use of Wi-Fi to explore the neighborhood.

A purely decentralized approach from the research community is Social
Net, a matchmaking application proposed by Terry et al. [113]. In this sys-
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tem, patterns of physical proximity are used as an indicator for a potential
match. Moreover, the authors stress the benefits of a mutual friend when
people are getting introduced to each other. Another remarkable contribu-
tion from the academic world is the Social Serendipity project [27]. As part
of the project, a mobile platform has been implemented. The system makes
use of Bluetooth traces to track user behavior, which enhances the – again
– server based profile matching techniques present in the system. The work,
however, goes beyond matchmaking. The authors emphasize the big poten-
tial of mobile social software in various settings and provide user studies that
indicate the high acceptance rate of such applications.

Interestingly, for most of the server focused approaches, browsing through
friendship links to find friends of friends is a central feature. Decentralized
systems, however, typically lack this features and build around other, mostly
location related, concepts. We believe that this is mainly due to the problems
of a server independent implementation of a friendship browsing scheme. In
our work, we have thus addressed these issues. By relying on real friends
(rather than only those people participating in the system), and having the
system searching (rather than the user browsing) for friends of friends, we
mitigate a major problem: The lack of user density in mobile applications.

5.5 Conclusion

We believe that a major target group of social mobile applications are young
people that dispose of a low budget. We have addressed this group by im-
plementing an application that provides a wide range of functionality free of
charge. In particular, we have presented a technique that seamlessly incorpo-
rates the friendship exploration functionality of traditional social networking
websites into purely decentralized environments. The arising privacy issues
have thereby adequately been addressed. Considering the high popularity of
such features in server based systems, we believe that friend of friend detec-
tion mechanisms might become an important ingredient in upcoming mobile
social applications.



Chapter 6

Concluding Remarks

Recent developments, such as the emergence of the “Web 2.0” and the mobile
Internet do not only have a significant impact on social interaction, but also
make a huge amount of data accessible and thereby facilitate the analysis
of the resulting interaction patterns. In this chapter, we have on the one
hand shed light on the structure of complex networks arising from Web 2.0
services, and on the other hand taken advantage of some relevant properties
of such networks to develop new mobile social applications.

The investigation of the LiveJournal friendship, and the Wikipedia article
graph has confirmed recent models that suggest the existence of hidden con-
cepts that influence the structure of naturally grown networks. In particular,
we have provided evidence that a set of hidden hierarchies affects the emer-
gence of links in such graphs. The result is a layered structure on the one
hand, and high local clustering on the other hand. We have then presented
two mobile applications that try to take advantage of these properties.

Cluestr facilitates a fast group initialization based on knowledge about
community affiliations. Such communities typically reflect the high local
clustering caused by one or the other reason for friendships to appear, such
as identical hobbies, geographic proximity, similar occupation, and so on.
Observe that these properties exactly correspond to the layers (the different
reasons) and hierarchies (each of the reasons can be represented as a hier-
archy) identified before. The decomposition of the network along the com-
munities facilitates the recommendation of contacts that well match a set of
previously selected people. Using such recommendations, Cluster helps to
significantly speed up the ad hoc selection of contacts that are addressed as
a group.

The second application, VENETA, tries to take advantage of the fact that
people that share a common friend are likely to have something in common,
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too. It facilitates serendipitous friend finding by automatically detecting such
friends of friends. Care has been taken to preserve the privacy of the users
throughout the detection process that unobtrusively runs in the background.

These examples show how the knowledge about structural properties of
social behavior, measured from online data sources, can be used to build
end-user applications. The next part of this thesis goes into a similar direc-
tion. However, rather than targeting at social interaction, we try to measure
similarity among items. For this purpose, we also study online data. The
extracted similarity information is then again used to build applications that
bring direct benefits to the end-users.



Part II

Social and Semantic Similarity





Chapter 7

Introduction

With the emergence of the Internet and the world wide web, people faced
a new problem, the problem of information overload. Soon, the first web
search engines replaced early file archives and site directories to support peo-
ple in their information search. Web search quickly grew to an important
topic within the information retrieval research community, and big compa-
nies started to understand its market potential. A major breakthrough was
the PageRank algorithm [91] that marks the beginning of Google’s success
story. Due to the extreme size of the web, traditional web search engines are
nowadays extremely resource intensive and thus provided by only few large
companies. However, there is a huge niche market for specific search tasks
and techniques, both, commercially as well as in terms of research.

Early search engines merely looked up some keywords in some database
indices and reported back the matching records. A major problem with this
approach is that the users do often not precisely know what they want or
they do not know how to articulate what they want. Different strategies are
applied to overcome this problem. In particular, we can observe a shift from
pure search engines towards a mixture of personalized search and recommen-
dation systems. Rather than simply “retrieving what we are looking for”
these systems try to help us to “discover things we are interested in”. Think,
for example of Amazon’s online store that does not only find a requested
book, but also immediately recommends other books using the “customers
who bought this item also bought...” strategy (also known as item-to-item
collaborative filtering [71]). Another famous example that underlines the
market potential of recommender systems is the Netflix price for movie rec-
ommendation. A 1 million dollar price was offered by a DVD rental service
for the first team that achieved a 10% improvement over their own predicted
user ratings for movies. For almost 3 years, several thousand teams have
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competeted for the price until in autumn 2009 the required improvement
was finally reached.

An essential ingredient in future information retrieval systems is some
knowledge about the relationships among the items it helps to discover. A
wide variety of signals is taken into account to understand the relatedness of
objects and documents. Algorithms on the one hand examine the properties
of the items themselves (content-based approach), and on the other hand take
into account the behavior of the users (collaborative filtering approach), such
as in the Amazon and Netflix examples. Both approaches exhibit advantages
and disadvantages. While collaborative filtering is said to well correspond to
the users’ opinion, it is less versatile than content based approaches, and can
only be applied once a sufficient amount of usage data is available. In the
context of our work, context based approaches play a minor role. Rather,
we make extensive use of the item-to-item collaborative filtering idea. As
opposed to traditional collaborative filtering, which works on a user-item
rating matrix (see, e.g. [59]), item-to-item collaborative filtering works on co-
occurrence data, and is often used in conjunction with implicit information
(e.g. item co-occurrences in shopping cards).

In the following, we investigate data relationships and propose retrieval
approaches for two domains: Scientific conferences and music. For both do-
mains we derive similarity measures that take human behavior into account
and that are closely related to Amazon’s item-to-item collaborative filtering
idea. In the case of scientific conferences we come back to the layer idea
presented in Chapter 3. In particular, we show that our similarity measure,
derived from the authors’ publication behavior, can be subdivided into mul-
tiple components, and identify a thematic and a quality layer as the major
ingredients. We take advantage of this property to propose a novel confer-
ence rating algorithm. Moreover, we have implemented a conference search
engine, confsearch1, which fills a niche in the domain of search engines. We
conclude the analysis of publication data by drawing a map of scientific con-
ferences that gives some – not too seriously ment, and questionable – insights
into the world of computer science.

We pick up the idea of a map in the music part. Using techniques from
the fields of graph embedding and information retrieval, we construct two
music maps that represent the similarity among songs as derived from social
signals, such as the analysis of the users’ listening behavior, and social tags.
Essentially, songs are placed in Euclidean space such that similar songs are
close to each other, and distinct songs are far apart from each other in the
space. For the purpose of music retrieval, such map representation exhibits
several advantages over the pure similarity information. It facilitates novel
ways to create playlists, greatly simplifies the visualization of a collection,

1www.confsearch.org



63

and proves extremely powerful on resource restricted devices. In the end
of the chapter we present a comprehensive mobile music application that
bases on such a map of music. In an extensive usage study based on this
application we could show that the proposed music retrieval features are
highly appreciated by the community.





Chapter 8

Publication Data

Imagine your research has drifted into a field unfamiliar to you, and you do
not know where to publish. In such situations it is helpful to have a better
understanding of the world of computer science conferences. In the following
we will explore this world from different angles. Namely, we will present
a conference search application that is based on findings about conference
similarity, and we will – in a playful manner – draw a map of conferences.

The starting point of our research are recent findings in the context of
social networks, as outlined in Chapter 3. These findings indicate that nodes
in natural graphs are interconnected for different reasons, such as common
interests, close geographic distances, or family relations in case of friendship
networks. Based on the researchers’ social communities we will introduce a
similarity measure for conferences and set up a conference graph. Similar as
in friendship networks, edges in this graph are caused by different reasons
– we will refer to them as the layers of our graph. Such reasons surely are
area of research, but maybe also the quality, or the geographic location of the
conference. In the following, we demonstrate that and how it is possible to
isolate some of these layers in the case of the conference graph. In particular,
we will show that:

� The communities behind conferences provide a good measure to relate
conferences to each other.

� This measure consists of a thematic as well as a quality component –
the major layers of our graph.

� The thematic layer can be identified by the mere analysis of publication
titles.
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� The quality layer can be partly isolated by subtracting the thematic
component from the overall relationship.

As a result of the layer separation, it becomes possible to explore the
conference graph under different points of view. We introduce a novel idea
for conference rating based on the quality layer of the graph. Afterwards,
we present a collaborative conference search website that demonstrates the
advantages of having independent notions of the thematic scope and the
quality of a conference. It offers different ways to search for conferences and
can be fine-tuned to match the quality and deadline restrictions of a user.
Thereby, it greatly assists researchers that are looking for a suitable place
for submission.

We also use the proposed conference similarity measure to visualize the
world of conferences, and to look into some trends in computer science. In
particular, we try to draw a map of computer science. This map is thought
to be interesting to look at, but surely contains errors and distortions. It
does definitely not reflect the ultimate truth and should thus be used with
care. Finally, we show how the relationships between different conferences
have evolved over time. Again, this information is rather thought to be
entertaining than exact. Consequently, the findings should be taken with a
pinch of salt.

8.1 Related Work

The analysis of publication records has been an active field of research for a
long time. Clearly, one of the most attractive goals for publication database
mining is automated conference and journal rating. Garfield’s pioneering
work in 1972 [38], which describes the use of citation analysis for this purpose,
initiated a long – and still ongoing – controversy. On one hand, many authors
point out the wide variety of problems of the citation indexing approach
[70, 76, 104]. On the other hand, citation analysis is presumably still the
best method to automatically rate scientific conferences and journals. Other
measures that are used to indicate a venue’s relevance are the acceptance
rate as well as time delays, such as turnaround time, end-to-end time, or
reference age [111]. It seems that the community behind a conference has so
far not been taken into account for automated rating. We believe that this
criterion should not be neglected. In the following we thus provide an idea
to fill this gap.

The rating of venues is not the only motivation for research on biblio-
metric data. Other insights have been gained from publication databases.
One closely related aspect is the characterization of authors (rather than
venues). Various measures, such as closeness [29, 82, 87, 72, 109], be-
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tweenness [29, 87, 72], or AuthorRank [72] have been evaluated in this
context. Also, many studies analyze the evolution of different properties
[29, 82, 109, 10, 63]. For us, the publications of Lee et al. [63] and Smeaton
et al. [109] are of particular interest, as they study the topical changes within
a single conference over the years. Thereby they show that the analysis of
publication titles, keywords, and abstracts is sufficient to extract the the-
matic scope of a venue – a fact that we will take advantage of. Moreover,
towards the end of this chapter, we also look into changes over time, on the
one hand among different conferences, and on the other hand by predicting
– in a tongue in cheek way – the perfect paper title for certain conferences.

Another perspective to looking at the thematic scope of venues is pre-
sented in [29]. By considering a common author of two venues an indicator
for thematic similarity, a weighted graph is constructed that interrelates the
most important conferences in the field of database research. We improve on
this measure by incorporating some means of normalization and show that
the thematic proximity is only one aspect contained in this weight.

Similarly as when people connect to friends, there are different reasons
why Authors publish at a certain conference. In analogy to the layers (or
social dimensions) identified by Watts et al. [124] in friendship networks
(recall Chapter 3), these different reasons for choosing a place for publication
lead to different layers in the conference graph. In the following, we identify
quality and thematic scope as the two major layers of our conference graph,
and propose a technique to separate the two components.

8.2 The Conference Graph

This section describes how the publication records of DBLP1 can be used to
generate a graph that interconnects scientific conferences. The graph con-
struction bases on the social network behind these conferences. We basically
assume, that the more common authors two conferences have, the more re-
lated they are. To avoid overestimating the similarity of massive events –
they naturally have a large number of common authors – we improve on this
idea by incorporating a normalization method: Consider two conferences, C1

and C2, that contain a total of s1 and s2 publications, respectively. Further,
assume that there are k authors Ai (i = 1, ..., k) that have published in both
places and that author Ai has pi,1 publications in conference C1 and pi,2
publications in conference C2. We can now define the similarity S(C1, C2)
between C1 and C2 as follows:

1http://dblp.uni-trier.de
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KDD AAAI ECAI
ICDM 0.69 IJCAI 0.76 IJCAI 0.53
SDM 0.58 ATAL 0.37 KR 0.29
PKDD 0.45 ICML 0.33 ATAL 0.27
PAKDD 0.40 AGENTS 0.32 AAAI 0.26
ICML 0.37 AIPS 0.31 AI*IA 0.24
DMKD 0.37 ECAI 0.26 JELIA 0.22
CIKM 0.36 KR 0.25 ECSQARU 0.21
SIGMOD 0.36 UAI 0.25 CP 0.19
ICDE 0.35 CP 0.23 IEA/AIE 0.19
VLDB 0.33 FLAIRS 0.20 KI 0.19

Table 8.1: The 10 strongest links to the conferences KDD, AAAI and ECAI

S(C1, C2) =

k∑
i=1

min

(
pi,1
s1

,
pi,2
s2

)
The intuition behind this measure is as follows: pi/sj is the fraction of papers
author i has contributed to conference j, and thus indicates how strongly
the author is associated with the conference. The link weight between two
conferences is given by summing up the contributions of all the common
authors. Thereby, each author contributes the weight of the weaker of the
two associations (thus the min() function).

Applying this similarity measure to all pairs of conferences results in the
desired graph. The required information for this graph was extracted from
the DBLP bibliographic repository. Any publications that appeared in a
scientific conference between 1996 and 2006 have been taken into account.
To reduce the amount of data, edges of extremely low weight that do not
significantly contribute to the connectivity have been removed. To give a
more concrete idea of the structure of this graph, Table 8.1 lists the 10 top
edges for some sample conferences.

8.3 The Layers

Similarly as in the case of social networks, there exist different catalysts
for edges. As in Chapter 3, we will refer to edges corresponding to different
catalysts as the layers of our graph. We will have a closer look at two of these
layers, namely the thematic and the quality layer, throughout this section.

Proximity in the conference graph is not purely defined by the thematic
similarity of venues as a careful look at Table 8.1 reveals. ECAI is, for
example, typically said to be thematically closer to AAAI than ATAL, ICML,
or AGENTS, which appear earlier in the AAAI top-10 list. We conclude that
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Figure 8.1: The total graph can be seen as the sum of its layers.

authors choose conferences not only because of the topic it covers. Other
properties, such as quality, geographic location, or the community behind
a venue also influence the author’s decision. In fact, we believe that it is
a weighted combination of all these factors that leads to a submission at a
certain place. Exactly this combination is reflected by the conference graph
presented in the previous section. That is, the graph consists of different
layers, where each layer represents one of these factors. This idea is illustrated
in Figure 8.1.

8.3.1 The Thematic Layer

Clearly, the thematic scope of a conference has a significant impact on its
relationship to other venues. In the following, we present a technique that is
based on publication title analysis and measures the thematic similarity of
conferences. It thus allows to define the thematic layer, which is surely an
ingredient of the social similarity measure, as a majority of authors mostly
work in only one area and therefore submit papers to thematically similar
venues.

For each conference, we have extracted all the titles from DBLP and ap-
plied the well-known term frequency - inverse document frequency (TF-IDF)
method (see [100] for some theoretic background) to identify the most rele-
vant keywords. The TF-IDF score for a document increases proportionally
to the number of occurrences of the keyword in the document (TF). How-
ever, words that have a high overall frequency are penalized (IDF). In our
context, a document corresponds to a venue and the words stem from pub-
lication titles. Consequently, a document consists of all titles in a venue and
the complete corpus consists of all venues in DBLP.

Once a score has been applied to all the keywords that appear in the
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KDD AAAI ECAI
mining 0.051 learning 0.013 reasoning 0.011
data 0.013 planning 0.012 learning 0.010
discovery 0.013 robot 0.010 qualitative 0.009
clustering 0.013 reasoning 0.008 planning 0.008
association 0.010 knowledge 0.007 knowledge 0.008
sigkdd 0.010 search 0.007 logics 0.008
kdd 0.009 agent 0.006 logic 0.008
frequent 0.009 constraint 0.006 ecai 0.008
rules 0.009 ai 0.006 constraint 0.007
discovering 0.009 reinforcement 0.006 diagnosis 0.007

Table 8.2: The 10 best matching keywords to KDD, AAAI and ECAI together
with their TF-IDF score.

KDD AAAI ECAI
ICDM 26 IJCAI 37 IJCAI 29
PKDD 23 ECAI 27 AAAI 27
PAKDD 21 FLAIRS 22 ICTAI 22
SDM 20 ICTAI 21 KI 21
Dis. Science 20 AIPS 17 FLAIRS 20
DMKD 18 Can-AI 16 Can-AI 19
ADMA 17 IEA/AIE 16 IEA/AIE 18
ISMIS 17 PRICAI 15 PRICAI 18
IDA 15 Aus-AI 15 KR 16
IDEAL 15 KI 14 Aus-AI 16

Table 8.3: The 10 closest neighbors to KDD, AAAI and ECAI in the thematic
layer, together with their thematic score.

conference’s collection of titles, the scope of the conference can easily be
estimated by looking at the most relevant terms. Table 8.2 shows some
examples.

Using the keyword-lists seen before, we have implemented a simple algo-
rithm that estimates the thematic relationship between two venues. It takes
the top-50 keywords of each conference, and counts the number of keywords
appearing in both lists, resulting in a score from 0 to 50 for each pair of
conferences.2

Applying the thematic similarity function to each pair of venues results
in a weighted undirected graph – the thematic layer of our graph. The
corresponding neighborhood lists for our sample conferences are shown in
Table 8.3.

2Surprisingly, this simple comparison function achieved slightly better results than
the more commonly used cosine similarity approach.
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AAAI Total AAAI Thematic ECAI Total ECAI Thematic
IJCAI 1.10 IJCAI 1.10 IJCAI 1.10 IJCAI 1.10
ATAL 1.51 ECAI 0.69 KR 1.76 AAAI 1.49
ICML 2.12 FLAIRS N/A ATAL 1.51 ICTAI 0.25
AGENTS 1.00 ICTAI 0.25 AAAI 1.49 KI 0.41
AIPS 1.53 AIPS 1.53 AI*IA 0.26 FLAIRS N/A
ECAI 0.69 Can-AI 0.26 JELIA 0.72 Can-AI 0.26
KR 1.76 IEA/AIE 0.09 ECSQUARU 0.38 IEA/AIE 0.09
UAI N/A PRICAI 0.19 CP 1.04 PRICAI 0.19
CP 1.04 Aus-AI 0.16 IEA/AIE 0.09 KR 1.76
FLAIRS N/A KI 0.41 KI 0.41 Aus-AI 0.16

Table 8.4: The 10 closest neighbors to AAAI (left) and ECAI (right) in the
total graph and the thematic layer, together with the Citeseer impact value.
Note that for AAAI, conferences in the total graph neighborhood that are
not present in the thematic layer list (italic) all have relatively high impact
value. The impact value of such conferences in the neighborhood of ECAI is
considerably lower.

8.3.2 The Quality Layer: Filtering by Subtraction

We have already quickly sketched different approaches to conference rating
and stated some of the difficulties (recall Section 8.1). For computer sci-
ences, the Citeseer Impact List3 tries to estimate the impact of venues based
on citation analysis. Further, many researchers maintain hand-made lists
that distinguish between tier-1, tier-2, and tier-3 conferences. Even though
hand-made lists suffer from a subjective bias and citation analysis from other
weaknesses (recall Section 8.1), tier-1 conferences typically have a high im-
pact and, contrariwise, tier-3 conferences get low scores in the Citeseer list.
We will refer to similarly classified conferences as conferences of similar qual-
ity.

Comparing the neighborhood tables for the total graph (Table 8.1) and
the thematic layer (Table 8.3) shows that the total graph is not purely defined
by the thematic correlation of conferences. Looking at the total graph, an
interesting observation is that conferences often considered to be of high
quality (such as KDD and AAAI ) tend to have other high quality conferences
in their proximity. In contrast, the number of lower-tier conferences in the
proximity of ECAI, which is mostly classified as tier-2, is significantly higher.
This observation is illustrated in Table 8.4 that uses the impact value of the
Citeseer Impact List to classify the conferences.

We conclude that a single author tends to publish not only in venues of

3http://citeseer.ist.psu.edu/impact.html
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similar topic, but also in venues of similar quality. As a result, our graph
contains a second major layer – the quality layer.

The observation that thematically weaker related nodes in a conference’s
proximity tend to be closer in quality suggests that the quality layer can be
extracted using the information about the total graph and the thematic layer.
In the following we will introduce a layer subtraction approach to demonstrate
that such a layer separation can indeed be achieved. The approach bases on
the (simplifying) assumption that the total graph is a linear combination of
the single layers. As a result of the observations in the previous section we
assume that the major layers of the conference graph are the thematic layer
t and the quality layer q. This also matches our experience when selecting
a conference: We make sure the publication matches the call for papers
and we try to submit at a conference of reasonable quality. Other factors,
such as geographic location, play a minor role in the decision. These factors
(including noise) are thus subsumed into a remainder layer r. Consequently
the total edge weight S becomes to S = α1 · t+α2 ·q+α3 ·r, for some weights
αi, with α1, α2 � α3. Neglecting α3 and setting α2 = 1 (α2 can be chosen
arbitrarily as it only results in a scaling of q) allows to extract the quality
layer q as

q ≈ S − α1 · t,

Note that the validity of the linear combination assumption greatly de-
pends on the characteristics of the weight functions in the different layers.
Fernandez et al. [32] present the idea of score distribution normalization for
aggregation purposes. They suggest to shape the histograms of the inde-
pendent score functions to match the “ideal” distribution prior to merging
them by linear combination. For simplicity we assume a uniform weight
distribution for both, the total as well as the thematic scores.

Observe that the subtraction approach generally allows to extract one out
of L layers of a graph, if the remaining L− 1 layers are known. As discussed
in Chapter 3, it seems that such a layered structure can often be observed in
natural graphs. Moreover, recommendation systems (such as integrated in
the Amazon online store) often build on similar co-occurrence structures as
our graph and are thus likely to exhibit similar properties. Hence, we believe
that the layer-subtraction approach can prove valuable as a preprocessing
step in various settings.

8.3.3 Interpolation Based Conference Rating

The proximity of a conference in the quality layer is supposed to contain
mostly conferences of similar quality. This observation immediately leads to
the idea of conference rating by interpolation: Provided some initial ratings
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are known, the tier of a conference can be estimated by looking at its proxim-
ity in the quality layer. Initial ratings can be retrieved from manually created
lists (we use the one found at www.ntu.edu.sg/home/assourav/crank.htm and
refer to it as CS Rating List) as well as from Citeseer’s impact list. We have
further introduced the Citeseer Tier List, which assigns a tier (1, 2, or 3) to
each conference in the Citeseer Impact List. The borders between tiers have
been chosen such that the number of incorrectly rated conferences with re-
spect to the CS Rating List becomes minimal. The best that can be achieved
is an error rate of 38.8%, which indicates how difficult the task of conference
rating is.

We have then defined a heuristic to rate a conference C0 as follows:

1. For all conferences in the CS Rating List or the Citeseer Tier List, set
the initial rating to the value found in the lists. In case of conflicts,
the CS Rating List is treated with priority. For any conference not in
the lists, set the initial rating to unrated.

2. Overwrite the initial rating of C0 with unrated. This step avoids that
the rating function is biased towards the initial value.

3. Take the 30 shortest edges ei adjacent to C0 in the total graph, together
with their values Si and ti. For all these edges, calculate qi = Si−α1 ·ti
(for some value of α1) and sort by qi in ascending order. We will call
the resulting list the filtered neighborhood list of C0: Nf (C0).

4. For the first 5 entries Cj (j = 1..5) in Nf (C0), calculate Nf (Cj).

5. Return the median of all the rated conferences found within the first
5 entries in all the lists Nf (Cj) (j = 0..5) as the rating of C0.

Note that this conference rating method is in some sense natural. Many
people would judge a venue based on people participating in it (or leading
it). This information is implicitly contained in the total graph which forms
the basis of the rating heuristic.

The quality of the heuristic can be estimated by comparing the calculated
ratings to those found in the CS Rating List (which is presumably the most
accurate list we dispose of). The optimal value of α1 was scanned for by
exhaustive search over some reasonable interval. This is illustrated in Figure
8.2 which plots the error rate of the rating function with respect to the CS
Rating List for different values of α1. The figure clearly shows that the
subtraction approach reduces the number of incorrect ratings and suggests
that the optimal value of α1 is somewhere between 0.5 and 1.

Arguing with error rates beyond 40% might at the first glance seem suspi-
cious. However, the fact that approximately 75% of the input values (namely
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Figure 8.2: The fraction of incorrectly rated conferences using our rating
function versus the value of α1. The dotted lines indicate the error rates for
a random guess (0.667) and for the Citeseer Tier List (0.388), which is in
about the best we can expect to reach as most of the initial rating values
stem from this list.

those that originate from the Citeseer Tier List) exhibit an error rate of ap-
proximately 40% themselves relativizes the high error rate produced by our
algorithm.

Ignoring all the conferences rated as tier-2 either by the algorithm or the
CS Rating List shows that the errors are not random. Dividing the number
of conferences rated as tier-1 instead of tier-3 (and vice versa) by the number
of conferences the algorithm rates as tier-1 or tier-3 results in an error rate
of around 6.4% without thematic filtering and of 2.6% for the optimal value
of α1.

These low error percentage values show three things:

1. The total edge weight is clearly influenced by the quality of conferences.
This supports the assumption that the thematic and the quality layer
are the two main layers of the graph.

2. The success of extracting the quality layer by subtraction of the the-
matic layer is confirmed.

3. Most of the around 43% of errors are minor errors. That is, they are
wrong by only one tier. Severe errors are rare, they make up less than
3%.
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The rating heuristic was developed for two reasons: To provide a com-
plete rating list for the conference search application presented next, and to
demonstrate the effect of subtraction filtering. It is thought as a proof-of-
concept algorithm that neither has a strong mathematical foundation nor
provides any guarantees on the results.

8.4 Confsearch

In this section we will show that the previously discussed conference
graph and its separation into different layers can directly be applied
for conference search. For this purpose we have developed a website
(http://www.confsearch.org) that is able to suggest conferences together
with their most important attributes. The application offers four different
search types:

� Keyword Search: Search by keywords provided.

� Related Conference Search: Explore the proximity of a given conference
in the conference graph and return the closest neighbors.

� Author Search: Search for the places a given author publishes most
often.

� General Search: A weighted combination of the above search methods.

For all search types the application allows to sort the results by deadline,
a criterion that has a considerable impact when deciding for one or the other
venue. Motivated by the success of Wikipedia like services, we follow a
collaborative approach to gather conference deadlines as well as locations
and website URLs. The important dates (submission deadline, notification,
camera ready version, and conference dates) are presented in a Gantt chart
thereby providing a good overview over the conferences’ time schedules. Our
application can be seen as an improvement on the many lists with conference
deadlines found in the Internet today: We basically cover the whole area
of computer science and augment the typically static lists with sophisticated
search options. Moreover, the information is presented in a visually appealing
manner.

Two of the search modes require some additional explanations. The key-
word search bases on a score sij for each keyword-conference pair (where
only keywords appearing in the query are considered), which is a slightly
modified variant of the TF-IDF value presented in Section 8.3.1. Next, the
scores sij of the conference-keyword pairs are combined to a single value S∗i
per conference Ci using the p-norm method introduced by Salton et al. [101].
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βq = 0.0 βq = 0.5 βq = 1.0
PKDD KDD KDD
KDD ICDE ICDE
INFOVIS PKDD ICDM
ICDM ICDM VLDB
Web Intelligence Web Intelligence Web Intelligence
PAKDD INFOVIS PKDD
ICDE VLDB DMKD
ICDM DMKD SDM
JSAI Workshops SDM INFOVIS
DaWaK PAKDD DASFAA

Table 8.5: The results for the search query “social graphs data mining” for
different quality weights (controlled by the parameter βq).

The final score Si results from the quality adjustment of S∗i controlled by a
user-settable parameter βq: Si = S∗i ·f(Q)βq . The function f(Q) is defined on
a per query basis to account for the different score distributions for different
queries. The quality part Q is estimated using the heuristic presented in
Section 8.3.3. Table 8.5 presents a keyword search example and the effect of
quality filtering.

The related conference search operates directly on the conference graph.
We simply return the closest nodes around a conference in terms of path
length. Again, a user settable parameter allows to control whether the the-
matic or the quality aspect should be emphasized. A visualization of the
AAAI neighborhood in the thematic and the quality layer can be found in
Figure 8.3. The increased amount of high quality nodes (dark) in the AAAI ’s
“qualitative proximity” indicates that AAAI itself is also likely to be of high
quality. The search option on one hand allows to browse the conference graph
and on the other hand might prove extremely helpful if an author looks for
alternative places to submit, after a reject, for example, or because a deadline
does not fit.

In the following section, we will not only visualize the direct neighborhood
of a conference, but we will try to capture the global picture, by drawing a
map of the world of conferences.

8.5 Computer Science Cartography

Maps have always been an essential instrument in exploring space. It was, af-
ter all, the Ptolemy world map – and its mistakes – that triggered Columbus’
monumental voyage and the discovery of America. Reason enough to draw a
map of “our world”, the world of computer science. Being more risk-averse
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Figure 8.3: The minimum spanning tree around AAAI in the thematic layer
(left), and the quality layer (right). Darker nodes refer to higher tier venues.

than Galileo et al.4 we would like to stress that the following investigations
should be taken with a grain of salt.

In Section 8.2 we have seen how our conference similarity measure can
be used to construct a conference graph. In the following, we will use this
graph to draw a map of computer science, that visualizes the relationships
among the different fields in computer science.

Luckily, the “cartography of graphs”, better known as graph embedding,
is a well explored topic. Simply speaking, the goal of a graph embedding
algorithm is to assign Euclidean coordinates to all vertices of a graph, such
that the resulting positions well reconstruct the graph distances between all
pairs of nodes (also multi-hop).5 Similarly as it is impossible to undistortedly
draw the globe in 2 dimensions, it is in general also not possible to exactly
represent a graph metric in 2 dimensions.

Out of the rich choice of embedding algorithms we have opted to apply
the widely used multi-dimensional scaling method (MDS) to create our map.
More precisely, we apply classical MDS that tries to approximately preserve
all the pairwise distances. That is, we seek to assign coordinates to the
nodes (conferences, in our case) of a graph such that pairwise distances in
the original graph metric (i.e. shortest paths) and the resulting Euclidean
metric are approximately the same.

4Not to mention Giordano Bruno!
5More generally, graph embedding is the process of mapping a graph into any other

space (not necessarily Euclidean), thereby pursuing some (not necessarily distance re-
lated) design goals.
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Figure 8.4: Our map of computer science: The map was constructed by
embedding the conference graph into a 2-dimensional Euclidean space. Only
top-tier conferences (according to Libra) are shown. Note that the map only
represents pairwise distances, there is no notion of orientation, i.e. the axes
can be chosen arbitrarily.

It is important to note that there is no notion of orientation for such an
embedding. It only represents pairwise distances, and would be equally valid
after applying any congruence transformation.

Figure 8.4 shows the resulting map of computer science conferences. To
keep the map readable we have restricted the vertex set to only include
top-tier conferences. The required conference classification – with which we
disagree to a certain extent – was taken from Libra6.

Our map gives room for quips and questions. It can, first of all, be
observed that like-minded conferences tend to gather together, they build
families and tribes. It is thus possible to investigate the interconnections

6http://libra.msra.cn/; For each discipline the site used to list the major conferences
grouped by tier in 2008.
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between entire “scientific cultures” rather than single conferences. Software
engineers and design automation specialists, for example, live in the west
of this world.7 Their eastern neighbors are mainly into computer networks,
and further south hardware architecture and operating systems experts are
located.

In the very north, people mainly study natural languages and artificial
intelligence. Also, they retrieve information from and mine the data provided
by their direct southern neighbors (databases and the world wide web). The
south-eastern population, finally, lives quite independently, and is mostly
interested in user interfaces, graphics and visualization. It is interesting that
these disciplines almost “drop” from the disk, and that we experience these
large distances in the south-eastern part of our map. Are these gaps merely
an artifact of our sloppy model, making our drawing as inaccurate as the
disk-shaped Babylonian world map, or does this emptiness call for attention
by the computer science community?!

We observe that the center of the graph is dominated by theory, and –
slightly less significantly – also cryptography, distributed computing, net-
works, and databases. Interestingly, all these areas can be seen as service
suppliers for other disciplines: Data can hardly be mined without databases,
software design requires a great amount of (algorithmic) theory, and networks
as well as cryptography and distributed systems play a crucial role in many
real world systems. Hence, looking at our map, a theoretician could, with a
healthy dose of self-esteem, derive that he (or at least his field of research) is
in the center of computer science.8

Our theoretician would surely like to get a more detailed view on his
self-declared center of computer science. Even though we question the center
predicate, we do him – and hopefully also all the theory-focused readers – a
favor and zoom into this section. We have inserted the lower-tier conferences
(again, according to Libra, and again, we do not fully agree) into the drawing
by placing them into the weighted center of their closest top-tier neighbors
(while keeping the layout of these top-tier conferences fixed). Figure 8.5
illustrates the theory close-up of our map.

In an attempt to interpret the figure, one might notice a slight separation
of west and east. The west-side of the map seems to be mostly populated by
the species of “practical theoreticians”, while the east-side is rather inhabited
by “pure theory”. Interestingly, the cryptographers squeeze themselves into

7Again, note that there are no axes defined, we just orient ourselves as the picture is
aligned here.

8Clearly, the map leaves room for discussion. A closer look reveals many surprises, e.g.
the location of design automation conferences. Also, other (equally reasonable) centers,
such as databases or networking could doubtlessly be identified. More fundamentally one
might wonder whether there at all is a center of computer science; maybe we rather live
in a “centerless” world, much like modern physics sees the universe.
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Figure 8.5: Close-up of the map around the theory conferences. Tier-1 con-
ferences (according to Libra) are marked black, any other conferences gray.

the territory of distributed computing. Clearly the two share common roots,
but still the proximity is remarkable. Comparing the distances in the map
to the distances in the original graph reveals that there is quite some dis-
crepancy in this specific case. We speculate that distributed computing and
cryptography get intermixed because they both lie between (pure) theory
and systems/networking. Possibly, a 2-dimensional map can not accurately
represent the ultimate truth. As detailed views usually provide deeper in-
sights into a problem, the insight of this close-up is perhaps that our map
should be treated with care.

8.6 Migration in Computer Science

As the history of mankind, the world of computer science is not static. Com-
munities emerge, disappear, and migrate. In the following we want to have
an eye on the movements in the proximity of PODC, as well as some ma-
jor theory conferences, namely STOC, FOCS and SODA (which we in the
following will treat as one).

A conference is mainly defined by its participating authors. We thus
assume that looking at the changes in authorship is a handy method to
capture the changes of a conference over time. Consequently, we have applied
the idea of our “social similarity measure” from Section 8.2 on a per year
basis: For a particular year and conference we have examined where else the
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Figure 8.6: Related conference trends for PODC.

authors would typically publish (at all times). This gives, for this particular
conference, an insight in what other conferences have been particularly close
at a given point in time.

The described “time dependent conference similarity measure” allows
to plot the development of a conference’s proximity over time. Fig-
ures 8.6 and 8.7 show such plots for PODC and STOC/FOCS/SODA. An
interesting observation is, maybe, the temporal closeness of cryptography to
both, PODC and the theory conferences. Most likely, this does not mean
that cryptography is in danger of extinction, but rather protocols an emanci-
pation process; cryptographers have grown strong enough to form their own,
independent community and thus drift away from other conferences.

8.7 Predicting the Perfect Paper Title

After this brief excursion into the evolution of conference relationships, we
want to come back to a more global view. How did computer science evolve
over time? We believe that terminology is an meaningful witness for scientific
history. We thus analyze the change of central keywords in computer science.
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Figure 8.7: Related conference trends for STOC/FOCS/SODA.

Moreover, we will, in a tongue-in-cheek way, suggest the perfect titles for
upcoming editions of PODC as well as STOC/FOCS/SODA.

As usual when it comes to predicting future trends we rely on historic
data. For this purpose, history has been divided into 6 time-slots, from 1977
to 2006 in 5-years chunks. Moreover, for each conference in question we
have parsed all the titles appearing in its proceedings to extract the single
words. Counting the number of occurrences for each word and time-slot
allows to establish a “per-time-slot” ranking which can then be mined to
extract trends. We have restricted the search space to keywords that made
it into the top-50 in at least one time-slot. The actual trend analysis (i.e.
selection of the keywords that best characterize the movements) was then
mainly carried out manually. In the following, we propose paper titles from
these keywords. These titles are purely made up to contain the relevant
keywords and do not have any deeper meaning.

Our analysis shows that wireless mobile agents based on neural learning
that quickly adapt to image and video web services are fashionable.9 On the

9In other words, the keywords web, agent, wireless, neural, mobile, video, learning,
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other hand, we are no longer interested in computer experts specifying the
semantics of parallel relational databases for VLSI in the Prolog programming
language.10 Also, knowledge about object oriented simulation logic does not
seem to be required any longer, even though the topic was a hot in the
beginning of the 90ties.

If you do not want to risk being labeled antediluvian after submitting to
a major theory conference, better name your paper, say:

“Online Quantumn Algorithms to Approximate Directed Loca-
tion Codes” or “On the Hardness of Scheduling using Random
Sampling”

Moreover, avoid titles like

“Relational Logic to Separate Automata Isomorphism Classes”
and “Probabilistic Parallel Programs for VLSI Design”

as these will immediately out you as being stuck in the 80ties. Similarly, the
next year’s blockbuster of PODC is rather going to be called

“Failure Detectors and Scalable Dynamic Quorum: A Free Mo-
bile Ad-Hoc Game with Selfish Peers”

than, for example

“Recover from Committed Ring-Deadlocks using Message Pass-
ing Communication, Temporal Knowledge and Parallel Compu-
tation Processes”

8.8 Conclusion

What is computer science all about? A controversial question. Some might
claim that computer science is all about building computing machines – pos-
sibly only theoretically. Others think it is all about the art of programming
these machines, or about describing languages to talk to them. Yet other
people associate computer science with algorithms, and believe P versus NP
is at the heart of computer science. Finally, the tremendous impact of the
Internet, or the huge data collections in service today might speak in favor
of networking or database experts, respectively.

Throughout this chapter we have investigated the relationships among
different computer science disciplines by looking at the communities behind
conferences. In particular, we have defined a similarity measure to relate

image, adaptive, services are becoming increasingly popular.
10Again, we witness that the keywords computer, expert, etc. have seen their peak.
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conferences, and we have used this measure to construct a conference graph.
Using this graph we have provided evidence for the layered structure of real-
world networks as discussed in Chapter 3. We have seen that the conference
graph consists of two major layers – the thematic layer and the quality layer.
Moreover, we have proposed the subtraction approach for layer segregation,
which provides an attractive preprocessing step when mining graphs. In our
setting it was used to accentuate the different aspects of conference relations.
The separation approach has directly been applied in a novel rating method
for scientific conferences.

The conference graph also builds the basis of confsearch, a novel confer-
ence search application, designed to assist researchers in finding a suitable
place for submission. Moreover, we have used the proposed conference sim-
ilarity measure to draw a conference map that visualizes the relationships
among different scientific fields, and to look into changes in the relationships
among conferences over time. These last applications of the conference sim-
ilarity measure provide some interesting insights into the world of computer
science. However, we want to stress that they are not supposed to reflect the
ultimate truth. Rather, they might serve as a starting point for discussions
about our work and about computer science in general. We have looked into
the evolution of scientific disciplines and observed that the same evidence
can be interpreted as both, the birth as well as the funeral of a research area.
Without doubt the future will teach our evaluations a lesson, ultimately re-
vealing in which direction computer science evolves. After all, research is not
about how many papers we write, or at which conferences they are published,
but rather, what the best contributions are.



Chapter 9

Mapping Music Similarity

Over the past years we have observed a tremendous change in the way people
interact with music. This process has been ignited by several technological
advances, in particular, the availability of broadband Internet, the world wide
web, affordable mass storage, and compact media formats, such as mp3. All
this enabled the digital music revolution that started more than decade ago.

Many music lovers have now accumulated collections of music that have
reached sizes that make it hard to maintain an overview of the data by just
browsing hierarchies of folders and searching by song title or album. Search
methods based on song similarity offer an alternative that allows users to
abstract from manually assigned metadata, such as, frequently imprecise or
incorrect, genre information. In a context where music collections grow and
change rapidly, the similarity based organization has also the advantage of
providing easy navigation and retrieval of new items, even without knowing
the new songs by name. Moreover, it allows personal collections to be seen
not just as isolated lists, but positioned in the global context of the “world
of music”, i.e., to relate personal music collections to larger collections and
newly-released music. This opens possibilities, such as sophisticated recom-
mendations, context-aware retrieval, and discovery of new genres and ten-
dencies.

This chapter introduces the concept of a Euclidean map as a basic data
structure for music exploration and retrieval. In contrast to existing ap-
proaches that go into similar directions, our primary goal is not visualiza-
tion. Rather, we aim at adequately reflecting, and compactly representing
similarity between songs and genres.

In the following we propose two different methods to construct such a
map from the information contained in the music community site last.fm.
The first approach follows the ideas we have already seen to construct the
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conference map. In particular, we make use of the following 3-step process:
First, we estimate song-to-song similarities using collaborative filtering tech-
niques. Second, we construct a graph from these pairwise similarity values.
Third, we map the graph into Euclidean space while approximately pre-
serving distances. For the last step, we introduce a novel technique (called
iterative embedding), which improves on existing algorithms.

The second map construction approach does not solely rely on listening
behavior to derive music similarity, but in addition exploits information from
social tagging. In particular, we will describe a method that combines the two
signals before they are fed into a statistical framework called Probabilistic
Latent Semantic Analysis (PLSA). PLSA basically performs dimensionality
reduction on co-occurrence data by identifying a (small) set of hidden vari-
ables that well explains the observed co-occurrence values.

The resulting maps comprise of more than 400K and more than 1M songs,
respectively – an application foundation, which to the best of our knowledge
is more comprehensive than other existing approaches. For these maps, we
provide an analysis of how well they capture music similarity. Thereby we
show, amongst others, that neither two nor three, but rather ten or more
dimensions are required to appropriately map the world of music. In Chap-
ter 10 we will discuss several mobile user interfaces that demonstrate the
usefulness of our maps in realistic settings.

9.1 Related Work

Deriving a notion of music similarity is the subject of a variety of research
activities. In the following we will try to give a rough (but non-exhaustive)
overview of approaches that have been proposed.

These approaches can be classified along different criteria. Berenzweig et
al. [13] distinguish between acoustic and subjective approaches. Under acous-
tic approaches they understand all kind of similarity measures that are based
solely on audio-signal analysis. This kind of similarity information does not
involve any human judgment and can thus be seen as an objective measure.
Under subjective measures, on the other hand, they understand any kind
of techniques that involve human interaction, such as the analysis of expert
assigned metadata, collaborative filtering based techniques, questionnaires,
and so on.

A significant part of research has been devoted to objective measures
based on audio-analysis. Examples are the work of Logan and Salomon [74],
Aucouturier and Pachet [4], Foote [34], Pampalk et al. [93], Tzanetakis [119],
and Tsunoo et al. [116]. A good overview and discussion of such techniques
is given in [17].

Audio-signal based music similarity measures exhibit some appealing
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properties. Clearly, they are not influenced by any subjective bias. Moreover,
the extracted features often define some sort of a space, i.e. the extracted fea-
tures can typically be interpreted as a vector. The basic assumption is then
that similar feature vectors imply similar music, i.e. that similar songs cluster
in this space. The nature of these spaces provides a powerful basis to con-
struct novel interfaces to access music. Visualization of collections thereby
plays an important role (see e.g. [58] and [83]), but also other interfaces,
for example for intelligent playlist generation, have been proposed. A more
thorough discussion of relevant work in this area is given in Chapter 10.

Audio-feature based techniques do, however, also exhibit some major dis-
advantages. Although objectivity might be advantageous some scenarios, the
lack of subjective information proves to be a problem in most real-world set-
tings. After all, music is typically targeted at people, and the perception of
music is inherently subjective. To bridge the gap between abstract features
and the end user, many approaches try to find a mapping between audio
features and some widely used genre taxonomies (see e.g. [119] and [116]). A
comparison between different audio based measures and their performance
with respect to perceived similarity is given in [92]. Clearly, a certain success
can be achieved when using audio-features for genre classification. How-
ever, Aucouturier and Pachet [7] conjecture that the currently used tech-
niques and their variants have reached a plateau with respect to accuracy
that can not easily be overcome. Moreover, they show that errors produced
by state-of-the-art methods are often severe, i.e. misclassified songs can be
completely different from their neighbors in terms of perceived similarity.
The conclusions of Casey et al. [17] go into a similar direction. The authors
state other studies that confirm the mentioned performance ceiling. More-
over, they identify scalability issues for audio-feature based methods when
it comes to cover millions of tracks, as nowadays required in many appli-
cations. Slaney and White [108], finally, compare audio based methods to
collaborative filtering based similarity measures. In their experiments, the
investigated collaborative filtering based approach clearly outperforms the
content based alternative.

Subjective methods encompass a wide variety of techniques. Sources of
information range from expert assigned metadata, over (web-)text documents
describing music and questionnaires, to games and usage data, such as ap-
plied in collaborative filtering. We will discuss collaborative filtering based
techniques in more detail later. Questionnaires are mainly used as a ground
truth to compare other methods, such as in [13]. Examples for the other
fields are: [97] (metadata), [126] (web-text), and [28] (game). Sometimes,
different techniques can also be combined. There are, for example, games
that aim at collecting metadata (e.g. [62] and [77]) that can in turn be used
to define music similarity. An approach that makes use of metadata to define
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similarity is presented by Levy and Sandler [66]. Their approach uses social
tags, rather than expert assigned information, as metadata. Moreover, the
authors stress the advantages of social tags over web-mined information with
respect to noise and scalability. A thorough comparison of different sources
to collect tags is provided by [117]. The results show that social tags suffer
from a so called popularity bias, i.e. they offer good quality for famous songs,
but are of limited use to describe less known items.

In an attempt to define a notion of ground truth, Ellis et al. [28] as well as
Berenzweig et al. [13] compare different methods to derive music similarity.
The studies include acoustic methods, expert opinion (similar artist lists
from the Allmusic Guide1), co-occurrence information (from playlists and
user collections), web-text information, and web-based games. The results of
Berenzweig et al. indicate that co-occurrence information provides the best
results among the subjective techniques. The investigated method to derive
music similarity from co-occurrence information closely follows the concept
of item-to-item collaborative filtering [71]. It is thus also closely related to
the conference similarity measure discussed in Chapter 8. Another approach
that follows a similar principle is the analysis of playlists of professional DJs,
as presented in [99]. If two songs often appear next to each other in such
playlists, they are likely to be similar. These algorithms can be seen as a
subset of the more general collaborative filtering techniques that are widely
used in recommender systems. In fact, many of today’s commercial music
services, such as last.fm, iTunes, Amazon, and iLike rely on co-occurrence
information and collaborative filtering to provide music recommendations.

The discussed studies indicate that item-to-item collaborative filtering
provides a better measure for (perceived) music similarity, than objective
approaches. However, the resulting information cannot be used in an as ver-
satile fashion as the feature-spaces produced by audio-analysis. In particular,
item-to-item collaborative filtering only produces a weighted list of neighbors
that co-occur at least once with the item in question. Hence, the method
does not define a global space. Such a space, however, proves extremely
helpful when designing smart interfaces to access music. This is, presum-
ably, the reason, why most approaches that have recently been proposed in
this context are based on audio-feature spaces (see also Chapter 10).

With the work we present in this chapter, we try to bridge this gap. In
particular, we propose two methods to create music similarity spaces based
on techniques from usage-data analysis and collaborative filtering. The first
method closely follows the idea of item-to-item collaborative filtering, based
on the users’ listening behavior. A similar approach was followed by Gleich et
al. [20] that presents a visualization of artist similarities. However, the goal
of their work was an appealing drawing rather than the accurate positioning.

1http://www.allmusic.com
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Moreover, it covers a much smaller universe of music than our maps do (less
that 10K as opposed to more than 100K artists). That is, their work is not
designed to build novel music retrieval interfaces and thus not appropriate
for this purpose.

Our second map construction method makes use of two signals to define
similarity: The users’ listening behavior, and the social tags generated by a
large listening community. The approach thereby adds to the work presented
in [66], which only considers social tags. By incorporating the listening be-
havior we can reach a better accuracy and to a great extent overcome the
popularity bias problem reported by Turnbull et al. [117]. At the same time,
the resulting space keeps the advantages of the tags and their intuitively
understandable meanings.

In Chapter 10 we will show that the proposed spaces can in fact be used
in a similar way as audio-feature spaces. In particular, we propose interfaces
for smart playlist generation and the visualization of music collections.

9.2 Method 1: Map Creation using Graph Embedding

The basic idea of our first map construction method is as follows: We begin by
calculating pairwise similarities of (typically) relatively similar songs. These
similarities are then seen as weighted edges in a graph. As a result, we can
use the shortest-path metric on this graph to get a notion of similarity among
all pairs of nodes. In a final step, the shortest path distance information is
mapped into Euclidean space using a graph embedding algorithm, thereby
defining coordinates for each song, and thus a map of music. In the following,
this procedure is discussed in detail.

To obtain similarity values between songs we rely on collaborative filtering
techniques. Similarly to how Amazon uses the fact that two items are related
because they have been purchased by the same person, we assume that two
songs are related if they are frequently listened to by the same user. We
have gathered the required usage information from last.fm, which is a music-
community site that counts over 20 million users, and records each user’s
listening patterns. In particular, for each user, the 50 most frequently listened
songs over a half year period can be queried. We will refer to these lists as
top-50 lists. The following discussion is based on 290K of these lists that
contain a total of more than 1.5 million distinct songs. We assume that
songs that co-appear in such a list exhibit some degree of relatedness, in the
same way as items that are bought by the same person do. Observe that
exceptions to this rule are typically random. That is, it is about equally
likely that a person listens to Bach and U2, as it is that a person listens
to Bach and Eminem. In the co-occurrence analysis, such “errors” therefore
result in random noise, which does not significantly affect the outcome.
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Simply counting the number of co-occurrences of two songs to calculate
the pairwise similarities would overestimate the similarity of popular songs,
as they clearly have a higher probability of appearing in the same top-50 list
(due to their high number of individual occurrences). To overcome this prob-
lem, some sort of normalization is required. Several coefficients have been
proposed that address this issue [78]. We have compared the performance
of cosine, dice, jaccard and overlap coefficients, and found that the cosine
coefficient performs best in our setting. It is defined as

cosine coefficient : c =
ni,j√
ni ·
√
nj

,

where ni denotes the number of occurrences of song i, and ni,j is the number
of co-occurrences of songs i and j.

Applying the inverse of the cosine measure (1/c) to all pairs of songs
results in a weighted graph that contains an edge between any two songs
that appear together in at least one top-50 list. Thereby, similar songs are
connected by short edges. To get rid of random effects any edges originating
from a co-occurrence value of less than 2 have been removed. This step
also eliminates any songs that occurred only once. Even after this step, the
graph is extremely big, making it difficult to handle. Therefore, it has been
made sparse using an edge weight threshold, which was defined such that the
overall connectivity (i.e. the size of the largest connected component) was
only marginally affected. The result is a graph G which contains n = 430K
nodes and m = 6.3M edges. Using this graph, the similarity between songs
is approximately given by the shortest path between them.

Due to the large size of our graph even simple operations, such as shortest-
path calculations, are computationally expensive. In order to efficiently use
such a large graph in (possibly mobile or distributed) applications, we go one
step further and create the “map of music”, which is an embedding of the
graph into a Euclidean space. An embedding is the assignment of coordinates
to each node of the graph. In our case, the goal is to approximately preserve
all pairwise distances. That is, an assignment of coordinates is sought, such
that the ratio dG(i, j)/dE(i, j) between the graph distance dG and the em-
bedding distance dE is approximately one for all node pairs (i, j) ∈ G.

To compute the similarity between two songs based on a graph demands
for a costly shortest path calculation if the songs do not happen to be neigh-
bors.2 This shortest path evaluation does not only imply long calculation
times but also exhibits an extremely high memory footprint. Having an em-
bedding, the (Euclidean) distance between songs can directly be computed

2Observe that songs are typically not direct neighbors, as the graph needs to be sparse.
Non-sparse graphs, with, say Θ(n2) edges are too big to be stored.
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from their coordinates, i.e. in O(1) time and with O(1) memory consump-
tion. No information about any other songs or structures is required. Embed-
dings are thus particularly well suited for distributed and mobile applications.
Moreover, an embedding exhibits several functional advantages, such as no-
tion of direction, or the possibility to span volumes. A variety of interfaces
that take advantage of these properties is presented in the next chapter.

Most state-of-the-art graph embedding algorithms are not well suited for
large graphs. Already a complexity of O(n2) exceeds memory or computation
time limits. However, there exist methods that overcome these problems,
such as the MIS-filtration algorithm of Gajer et al. [37], the high-dimensional
embedding approach [43], or the landmark MDS algorithm (LMDS) [21].

We have decided to use LMDS, as it is not only fast3 but also exhibits
other appealing properties. LMDS works by first embedding a set of l –
typically randomly selected – landmarks using classical MDS, and by then
placing the remaining points according to their distances from the landmarks.
Thus, the result closely resembles the widely used MDS embedding. More-
over, adjusting the number of landmarks follows a time-quality trade-off that
allows to well adapt the resulting embedding to the application’s needs. Fi-
nally, LMDS behaves well in dynamic settings. New nodes can be added to
the embedding by placing them according to their distances to the landmark
nodes, without changing the existing coordinates.4

To create the final map, we have improved on the basic LMDS algorithm
by introducing the idea of iterative embedding, which will be discussed next.

9.2.1 Iterative Embedding

Iterative embedding is a major ingredient to the process of mapping our mu-
sic graph into a Euclidean space. The idea is to successively improve the
embedding by estimating the correctness of links using the coordinates cal-
culated in the previous round. The technique applies to any sort of embed-
ding algorithm. However, it assumes that the underlying data exhibits some
randomness in its link structure, i.e., that some links erroneously shortcut
certain paths. This property is generally attributed to small-world networks.
Both the model of Watts and Strogatz [125] and the model of Kleinberg [56]
for such graphs are based on this kind of edges. We expect the music graph
to exhibit such characteristics, too, much like other naturally grown graphs,
such as social networks, the WWW, or the graph of Wikipedia articles.

First the embedding algorithm is applied to the graph, resulting in a set
of coordinates. Based on these coordinates, the fraction f of edges with

3The time complexity of LMDS is O(nld + l3), where n is the number of vertices, l
the number of landmarks, and d the number of dimensions.

4This only works as long as the new nodes do not significantly affect existing graph
distances.
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maximum stress is removed. For our experiments we assumed that random
edges get particularly long, meaning the stress increases as the ratio dE/dG
increases (other stress functions might be defined for other settings). Identi-
fying (and removing) this fraction f of edges can be done efficiently. Next,
a new set of coordinates is calculated by embedding the graph after edge
removal. This process is repeated k times, where k should be chosen such
that f · k approximately matches the expected number of random edges.
Moreover, f should not be chosen too large, as this might result in wrong
edges being removed. The effect of iterative embedding (f = 0.3%) on a
20 × 20 Kleinberg graph (grid augmented with random edges) is illustrated
in Figure 9.1.

(a) The original embedding. (b) After 6 rounds.

(c) After 12 rounds. (d) After 30 rounds.

Figure 9.1: Iterative Embedding on the Kleinberg Graph: The original al-
gorithm (a) cannot reconstruct the underlying grid. After 30 iterations,
however, the grid structure can clearly be seen (f).
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Figure 9.2: Music Taxonomy: Example of a genre hierarchy. The distance
between two genres is the level of their LCA. E.g. two songs i and j belonging
to genres s1 and s2 have genre distance dS(i, j) = 2.

For the Kleinberg graph we used a spring embedding method (based on
ideas from [121]) that is supposed to be well suited for small-world networks.
However, the iterative approach is generic and works in conjunction with any
embedding method. The effect of iterative embedding (using LMDS) on the
music graph is illustrated in the following section.

9.2.2 Evaluation of the Resulting Map

To evaluate the quality of our embedding we used the genre information
available at the Allmusic Guide. The Allmusic Guide is one of the largest
music databases available on the web. As of 2007,5 it provided a 3-level hier-
archy of more than 700 music genres, as well as lists of “representative songs”
assigned to each genre, as illustrated in Figure 9.2. This genre information
is manually edited by community experts. We were able to match approxi-
mately 7000 songs between the All Music Guide dataset and our map. We
used this subset of songs with known genre information in our experiments.

We define the distance dS of two genres in this hierarchy as the level of
their least common ancestor (LCA). Moreover, let Hs denote the height of
the root in the corresponding tree. We can then use the hierarchy, together
with this distance definition to define two quality measures:

(1) Distance comparison QL: The more distant two songs are in the
genre hierarchy, the larger their distance should also be in the Euclidean
space. QL thus summarizes the average similarity increase as a function of
genre distance:

5I.e. at the time we conducted the experiments.
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Figure 9.3: Embedding smoothness QR

QL =
1

HS
·

∑
h∈{0...HS−1}

(
d̄h+1 − d̄h

d̄h

)
, (9.1)

where d̄h is the average similarity of pairs of items (i, j) that have genre
distance dS(i, j) = h. We thereby assume that the similarity of unrelated
songs is (typically) overestimated, such that higher values of QL indicate
better quality.

(2) Embedding smoothness QR: In a good embedding, songs of the same
genre should cluster. Moreover, for each genre there should exist only one
cluster, and we expect these clusters to have convex shape. Therefore, a
straight line between two random points (or songs) i and j in the embedding
should reflect a gradual and systematic genre transition from i to j, as illus-
trated in Figure 9.3. An ideal gradual transition means that, once the line
has crossed a cluster of a genre, it does not intersect the same or another
cluster of this genre. The measure counts the number of violations of this
rule, i.e. it counts how often an already visited genre re-occurs on a random
straight line:

QR = avg(#re-occurrences on a random line). (9.2)

To implement QR, the line between two random songs is sampled at 50
uniformly distributed points. To each of these points, the genre of the closest
song is assigned.

We have used these quality measures to decide on the dimensionality of
the output space, and to analyze the effect of iterative embedding.

The dimensionality of the target space significantly affects the quality of
an embedding and follows a trade-off: The more dimensions, the lower the
distortion of the embedding becomes. However, a larger number of dimen-
sions implies higher memory and computing time requirements for an appli-
cation that operates on the coordinates, and it also complicates the design
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Figure 9.4: Improvement of the embedding smoothness QR with increasing
number of dimensions.

of algorithms and interfaces. In an attempt to find the optimal number of
dimensions for our purposes, we have used the embedding smoothness qual-
ity measure QR (defined in Equation 9.2), as it well matches the objectives
of typical applications. Figure 9.4 reveals that increasing the dimensionality
significantly improves the quality up to approximately 10 dimensions. This
is in contrast to previous work that focuses on embedding in at most three
dimensions and aims exclusively at visualization.

We have applied iterative embedding to the music graph in conjunc-
tion with LMDS and estimated the improvement over pure LMDS using
the distance-comparison quality measure QL, defined in (9.1). The result
for an 10-dimensional embedding on 430K nodes, with parameter f = 0.5%,
is illustrated in Figure 9.5. The figure shows a continuous quality improve-
ment up to approximately iteration 30. We expect that at this point most of
the random edges have been removed. Further iterations thus result in the
removal of relevant edges and hence in a reduced embedding quality.

Figure 9.6 visualizes the main genre clusters of the embedding before and
after 30 iterations. To be able to visualize the clusters, the embedding was
projected into a 3-dimensional space (by taking the first three dimensions
of each coordinate). The center of each cluster (ellipse) was placed at the
center of mass of songs belonging to the corresponding genre. The ellipses’
axes (“diameters”) were set to half the value of standard deviation in each
of the three dimensions. It can be seen that after the iterative embedding
is applied, different clusters are better separated (even in three dimensions).
In 9.6(a) one can see that the “Blues” and “Rock”, as well as the “Jazz” and
“World” clusters (and “R&B” and “Rap”) are merged, whereas in 9.6(b)
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Figure 9.5: Quality improvement using iterative embedding.

these pairs of clusters are clearly separated. Although this visualization is
limited due to dimensionality reduction, it serves as an additional indicator of
the improvement achieved with iterative embedding. Moreover, it illustrates
the good overall quality of the embedding.

Note that the axes of the resulting Euclidean space are not assigned any
semantical meaning, in contrast to the conventional notion of an axis being
associated to some property, such as force or time. Table 9.1 illustrates the
10-neighborhood of two songs. The fact that the closest neighbors of each
song belong to the same artist or to very similar artists shows that (1) the
co-occurrence measure is in fact able to find similar items, and (2) that the
step from usage based similarity information to a music map was successful,
i.e. that the Euclidean map groups similar items together.

9.3 Method 2: Map Creation using PLSA

In the previous section we have shown how a map of music can be con-
structed from usage information using graph embedding techniques. In the
following, we introduce another approach to derive a map of music from so-
cial data. This second approach is based on Probabilistic Latent Semantic
Analysis (PLSA), which is a statistical framework to analyze co-occurrence
data. The method was proposed by Hofmann [49, 50], and originally designed
for automated document indexing. Similarly as in the widely known Latent
Semantic Indexing (LSI) approach [22], the idea is to discover relationships
between words and documents in a document collection. While LSI relies on
techniques from linear algebra for this purpose, PLSA makes use of a proba-
bilistic model. In particular, it introduces latent variables (also called latent
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(a) Output of the original LMDS algorithm.
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Figure 9.6: Non-iterative LMDS (a) is unable to separate the genre clusters,
whereas after 30 rounds of iterative embedding, the clusters become clearly
disjoint.

classes) that interrelate words and documents. In a comparative study, Levy
and Sandler [66] have found that PLSA provides better results than LSI in
a context very similar to ours.

The goal of PLSA is to find probabilistic assignments between documents
and latent classes, and between latent classes and words such that the ob-
served occurrences of words in documents is best possible approximated by
the probabilistic model. Hofmann shows that the corresponding assignments
of documents to latent classes can be interpreted as a vector space. Thus,
every document can be seen as a point in this space, and, as a result of
the analysis, similar documents reside at similar locations in this space. To
measure distances in the resulting space, the L2-norm can be used.

PLSA has successfully been applied in fields other than document index-
ing, e.g. in the context of image databases, to construct a image similarity
space. Analogously, a latent semantic music space can be constructed by
considering songs as documents, and the social tags assigned to these songs
as the words within the “documents” [66]. The result is a space of music in
which similar songs are supposed to cluster.

9.3.1 PLSA

To describe the PLSA method we will make use of the notation used for
document indexing, i.e. we will talk about documents d, words w, and latent
classes z. We will thereby assume that there are N documents, M words,
and K latent classes.



98 CHAPTER 9. MAPPING MUSIC SIMILARITY

Pink Floyd (Time) Miles Davis (So What)
Pink Floyd (On the Run) Horace Silver (Song For My...)
Pink Floyd (Any Colour...) Bill Evans (All of You)
Pink Floyd (The Great G...) Miles Davis (Freddie Fre...)
Pink Floyd (Eclipse) Nat King Cole (The More I...)
Pink Floyd (Us and Them) Miles Davis (So Near)
Pink Floyd (Brain Damage) Miles Davis (Flamenco Sk...)
Pink Floyd (Speak to Me) Charles Mingus (Eat That Ch...)
Pink Floyd (Money) Jimmy Smith (On the Sunny...)
Pink Floyd (Breathe) Julie London (Daddy)
Pink Floyd (One of These...) Bill Evans (My Man’s Gone...)

Table 9.1: Closest neighbors of Time (Pink Floyd) and So What (Miles
Davis)

In PLSA, documents are related to words via latent classes. Thereby, a
generative model is assumed, in which a document is created by producing
its words as follows: Each word is generated by first choosing a latent class,
and then, dependent on the latent class, choosing a word. More precisely, for
each word, first, a latent class is chosen with a certain probability P (zk|di).
Dependent on this latent class, then, a word is chosen according to the prob-
ability P (wj |zk). In this model, the probability that a document di creates
a certain word wj is given by:

P (wj |di) =

K∑
k=1

P (wj |zk) · P (zk|di)

PLSA tries to find the assignment of the corresponding probabilities that
best approximates the effectively observed document-word co-occurrences.
The optimization of the model parameters (i.e. the probabilities) is done
using the well known Expectation Maximization (EM) technique that works
by alternately applying an expectation (E) and a maximization (M) step. The
iterations are aborted as soon as some convergence criterion is met (between
20 and 50 iterations have shown to sufficient in practice).

In the context of PLSA, the goal is to maximize the likelihood L′ of the
observed data:

L′ =
∏
i,j

P (di, wj)
n(di,wj) =

∏
i,j

(∑
k

P (wj |zk) · P (zk|di)

)n(di,wj)

In practice, it is more convenient to work with the logarithm of the likelihood,
which has its maximum at the same position. The log-likelihood L follows
from the above equation:
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L =
∑
i

∑
j

n(di, wj) · logP (di, wj) (9.3)

The corresponding expectation and maximization steps are given below:

� Expectation step:

P (zk|di, wj) =
P (wj |zk) · P (zk|di)
K∑
l=1

P (wj |zl) · P (zl|di)
(9.4)

� Maximization step:

P (wj |zk) =

N∑
i=1

n(di, wj) · P (zk|di, wj)

M∑
m=1

N∑
i=1

n(di, wj) · P (zk|di, wm)

(9.5)

P (zk|di) =

N∑
j=1

n(di, wj) · P (zk|di, wj)

n(di)
(9.6)

9.3.2 Applying PLSA to Music

To create our social audio features, we have applied the PLSA method to data
gathered from last.fm. Thereby, we consider two sources of information: (1)
Social tags, such as they were assigned by users to songs and (2) the listening
behavior of the users, as given by the top-50 lists that were already used to
create the graph embedding based map. The following discussion is based on
crawled data from about 2.4M users, containing approximately 10M songs,
1.4M artists, and 1M tags.

Observe that this information could be used in different ways in conjunc-
tion with PLSA, which basically only requires some sort of co-occurrence
data:

� Using user-song co-occurrences, similarly as this was done in the graph
embedding based map.

� Using the co-occurrence of songs and social tags (as described in [66]).

Using the song-tag co-occurrences is an intuitive approach and has proven
to work well. We improve upon this basic approach by smartly re-assigning
tags prior to applying PLSA. Thereby, we implicitly take advantage of the
user-song co-occurrences, and thus effectively combine the two information
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Figure 9.7: Principle of the Probabilistic Latent Semantic Analysis applied
to songs and tags.

sources. In the evaluation part, we will show that this combination leads to
a significant performance gain as compared to approaches that only consider
a single information source.

In the following, songs are considered as documents and (re-assigned) tags
are considered as words in the context of PLSA. Thus, for the remainder of
this section, we will change our notation as follows:

� document → song: d→ s

� word → tag: w → t

This shift is also illustrated in Figure 9.7.

The tags assigned by last.fm users exhibit some peculiarities. In par-
ticular, there are lots of personal tags that relate to the user who assigned
them rather than to the music. Examples are “heard on pandora”, “favorite
artist”, and “awesome”. Moreover, several spellings are used to denote the
same thing, such as “hip hop”, “hip-hop”, and “hiphop”. To reduce noise,
we only considered the approximately 1K most occurring tags and manu-
ally cleaned them by removing personal tags and by normalizing synonyms.
The reduction to the most occurring tags on the one hand allows for man-
ual cleaning, and on the other hand considerably reduces the computational
complexity without significantly affecting the accuracy.
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Song 1: rock, hard rock, guitar, metal

Song 2: guitar

Song 3: soft rock

Song 4: singer-songwriter, male vocals

Song 5: guitar, singer-songwriter

User 1 Top-List

Song 6: rock, female vocalist

Song 2: guitar

Song 7: rock, metal, heavy metal

Song 8: singer-songwriter, british

Song 9: guitar, reggae

User 2 Top-List

5 guitar

3 rock

3 singer-songwriter

2 metal

1 hard rock

1 male vocals

1 female vocalist

1 soft rock

1 heavy metal

1 reggae

1 british

0.45 guitar

0.27 rock

0.27 singer-songwriter

Song 2: Assigned Tags

count tags

for song 2

select top 

T tags

Figure 9.8: Assigning weighted tags to a song (simplified example with only
2 top-lists).

Another issue with social tags is that they suffer from a popularity bias as
shown by Turnbull et al. [117]. That is, typically only the most famous songs
are accurately tagged, whereas unpopular songs often contain no, or inappro-
priate tags. In fact only about 20% of the songs in our last.fm subset were
tagged by the users. Directly applying PLSA to the song-tag co-occurrence
data, such as done in [66], would thus exclude the remaining 80% of the
songs, which is not acceptable for the use in real-world applications.

To overcome this problem, we make use of the information contained in
the users’ top-50 lists. Similarly as in item-to-item collaborative filtering [71]
we assume that songs that often occur together in such top-lists are related to
each other to a certain degree. This assumption facilitates the extrapolation
of the tagging information to previously untagged songs. In Section 9.3.3 we
will show that this does not only solve the data sparsity problem, but also
improves the accuracy of the resulting space.

In particular, we automatically assign tags to a given song s using the
following procedure: For each top-list s appears in, iterate through all the
neighbors (i.e. through all the other songs in the corresponding top-list). For
each neighbor, iterate through all its tags (i.e. all the tags that last.fm users
have assigned to this particular song). For each of these tags, increase the
song-tag co-occurrence value of song s. Finally, assign the T tags with highest
co-occurrence to song s for the use in the PLSA optimization (for some
threshold T , 50 in our case). Moreover, these tags are weighted proportionally
to their occurrence numbers (and such that the weights sum up to 1). This
automated tag assignment process is illustrated in Figure 9.8 for a simplified
example with only two top-lists (and T = 3).

We have tagged the (approximately) 1.1M most occurring songs using
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the described technique. The obtained song-tag co-occurrence data has then
been fed into the PLSA framework. After applying PLSA, the conditional
probabilities P (zk|si) are well defined for all classes zk and all songs si. These
probabilities can be seen as coordinates, assigning each document a point in
the so called probabilistic latent semantic space [50]. Since the probabilities
corresponding to a song si sum up to 1 (i.e.

∑
k P (zk|si) = 1), the songs

in fact lie on a K − 1 dimensional hyperplane. The corresponding latent
semantic space forms a map of music – the PLSA map.

The resulting space covers roughly 1.1M songs corresponding to more
than 120K artists. However, our last.fm database contains information to
more than 1.4M artists. To make this information available we have calcu-
lated artist coordinates for (most of) these artists as follows:

� For all the artists that are available in the latent space, we define
the artist coordinate as the center of mass of their songs with known
coordinates.

� For the remaining artists we have queried their closest neighbors from
last.fm. We then place the artist at the center of mass of all the neigh-
bors with known coordinates (as calculated before). This procedure
was successful for about 1M artists.

As a result we could define coordinates for more than 1.1M artists, which
is enough to facilitate the use in end-user applications.

An advantage of the PLSA-map over the LMDS-map is the direct rela-
tionship to the tags that were used in its construction process. In particular,
the PLSA-model inherently defines the probability of a song generating a
given tag as:

P (tj |si) =
∑
k

P (zk|si) · P (tj |zk) (9.7)

We will make use of this relationship in the mobile application presented
in the very end of this thesis.

9.3.3 Evaluation

In this section we describe different tests that allow to compare the qualities
of different music similarity spaces. In particular, we will compare the spaces
resulting from the following approaches:

� Song-tag approach: PLSA is applied to plain song-tag co-occurrences
(as given from last.fm), i.e. the same information as used in [66].
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� Song-user approach: PLSA is applied to song-user co-occurrences, i.e.
the same information as used for the LMDS map.

� Combined approach: PLSA is applied to the co-occurrences of songs
and re-assigned tags, as described before.

Since the song-tag approach suffers from the mentioned popularity bias
problem, the comparison is done on a reduced dataset. Similarly as in [66]
we only consider songs that contain at least 30 tags. To ensure fairness with
respect to the song-user approach, we have also eliminated songs that appear
in less than 30 top-50 lists. The resulting reduced dataset contains roughly
80K songs. To construct the space with the combined approach we have
applied PLSA to both, the reduced as well as the full dataset. To keep the
numbers comparable, the same 80K songs were used for both datasets during
evaluation.

Our tests are based on three different criteria to assess the quality of a
given music space:

� Consistency of social tags: In a space that well reflects perceived music
similarity, the social tags of songs in a close neighborhood should be
similar.

� Comparison to collaborative filtering : Collecting a sufficient amount of
human judgments to get a ground truth with respect to perceived sim-
ilarity is an extremely expensive task. Moreover, there do not seem to
be any publicly available datasets that can be used for this purpose.6

Thus, we rely on item-to-item collaborative filtering as a “ground
truth” to which we can compare our results. Recall that Berenzweig
et al. [13] have compared a variety of music similarity measures and
found that item-to-item collaborative filtering performs best among
the investigated approaches.

� Artist clustering : Songs of the same artist are often similar. Thus,
songs of the same artists are supposed to (somewhat) cluster in a space
that well reflects music similarity.

In Section 9.4 we will use the same measures to compare the PLSA map
(combined approach) to the LMDS map.

6Unfortunately, the datasets developed in the context of the MIREX project [25] do
only seem to be available when participating in one of MIREX tasks.



104 CHAPTER 9. MAPPING MUSIC SIMILARITY

70%70%70%70%

60%

70%

60%

70%

60%

70%

60%

70%

50%

60%

70%

50%

60%

70%

50%

60%

70%

40%

50%

60%

70%

40%

50%

60%

70%

40%

50%

60%

70%

40%

50%

60%

70%

30%

40%

50%

60%

70%

30%

40%

50%

60%

70%

0 10 20 30

30%

40%

50%

60%

70%

0 10 20 30

30%

40%

50%

60%

70%

0 10 20 30

30%

40%

50%

60%

70%

0 10 20 30

30%

40%

50%

60%

70%

0 10 20 30

30%

40%

50%

60%

70%

0 10 20 30

30%

40%

50%

60%

70%

0 10 20 30

30%

40%

50%

60%

70%

0 10 20 30

Figure 9.9: The number of latent classes versus the percentage of correct tag
estimations. The plot shows that increasing the number of latent classes to
more than about 30 does not lead to a relevant quality improvement.8

Tag Consistency

To evaluate tag consistency, we try to estimate the (uncleaned) tags of a given
song by considering the (uncleaned) tags of songs residing in its neighbor-
hood. For this purpose, we closely follow the concept of a k-nearest-neighbor
(KNN) classifier. To estimate the tags of a song s, we consider the tags
assigned to the k closest songs in the music space (for k = 20). For each
tag we count the total number of occurrences. The 10 most occurring tags
are then compared to the 10 tags that were most often assigned to s by
last.fm users. The percentage of correctly estimated tags is a good measure
to compare different music spaces to each other. We have not only used it to
compare the combined approach to the other two PLSA variants, but also to
decide on an appropriate number of latent classes (i.e. the dimensionality of
the resulting latent semantic space). Figure 9.9 plots the number of latent
classes versus the percentage of correctly estimated tags. As expected, the
number of latent classes significantly influences the accuracy of the resulting
music space. An important observation is that the curve levels off. That
is, increasing the number of dimensions beyond about 30 does not lead so
a significant increase in the precision of the estimated tags. Thus, we have
fixed the number of dimensions to 32.

We have measured the tag consistency on the three PLSA variants (song-
tag, song-user, and combined) on the reduced dataset, and, in addition, on
the combined variant on the full dataset. The results are summarized in
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Figure 9.10: Tag consistency: Combining the two information sources (social
tags and listening behavior) improves the KNN tag estimation.

Figure 9.10. On the one hand, we can see that the combined variant signif-
icantly improves the tag estimations as compared to the simple approaches.
On the other hand, the figure shows that on the full dataset the performance
even increases. Over half of the most relevant user-assigned tags could be
correctly estimated by looking at the neighborhood of a song – a remarkable
number when considering the synonym issues and the many personal tags
present in the last.fm dataset.

Comparison to Collaborative Filtering

The top-50 lists available from our last.fm dataset can be used to calculate
a ranked neighborhood of a song using item-to-item collaborative filtering
(our “ground truth”). Collaborative filtering is designed to identify the most
similar items and is known to perform well in this respect. However, for the
majority of distant items, it does not provide any information due to the
lack of co-occurrence information. In our experiments, we thus compare the
k closest neighbors in our map with the k most similar items identified by
item-to-item collaborative filtering, applied to our top-50 lists.

The results of applying this measure to the different space construction
variants are shown in Figure 9.11. Again, we can see how the combination
of the two signals significantly improves the quality. The approximately
25% matches in the 10 closest neighbors should be contrasted to the 80K
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Figure 9.11: Comparision to collaborative filtering: The combined approach
clearly outperforms the alternative approaches. More than 25% agreement
is a remarkable number, considering that only 10 songs were compared from
a universe of 80K songs.

songs these neighbors could be chosen from. The task is comparable to the
search for a needle in a haystack – thus, more than 25% identical output is
a remarkable result.

Artist Clustering

We measure the level of artist clustering using the mean average precision
(mAP) on artist labels. Average precision (AP) is a standard performance
metric known from information retrieval. It is used to measure the quality
of a ranked sequence of items, such as given when ordering songs according
to their distance from a given query song s. Thereby, relevant items (songs
featuring the same artist as the query song, in our case) that appear early
in the list are rewarded more than those that appear towards the end. More
formally, AP is defined as

AP =

∑N
r=1 P (r) · rel(r)

R
,

where P (r) denotes the precision at rank r, rel(r) is 1 if the item at rank r

8The absolute numbers cannot directly be compared to the other experiments, as this
plot is based on a different dataset and different parameter settings.
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Figure 9.12: Artist clustering: Combining the two information sources sig-
nificantly improves the mean average artist precision. Observe that this test
is based on a total of 11K artist labels, which inherently leads to relatively
low numbers.

is relevant (and 0 otherwise), R is the total number of relevant items, and N
is the total number of retrieved items (i.e. all the songs, in our case).

Higher AP (and thus also mAP) values refer to better artist clustering.
However, a better artist clustering does not necessarily imply a better qual-
ity of the underlying space, as there is no reason, why songs of other artists
cannot be similar to the query song. John Lennon and Beatles might serve
as an example. In the same way, a single artist can have songs of extremely
different style (e.g. Nothing else Matters and Master of Puppets from Metal-
lica). Thus the mAP performance metric is questionable in our context, in
particular when comparing relatively high mAP values. As it has been used
before to quantify the accuracy of music similarity (see, e.g. [66]), we will
apply it as well, despite its questionable nature.

The corresponding results are summarized in Figure 9.12. In line with the
previous results, the figure shows that the two information sources (listening
behavior and tags) can profit from each other. And again, the result of
the combined approach even improves for the full dataset. When comparing
these numbers to other approaches, it is important to consider the number of
artists in the dataset. In [66], for example, the dataset contained 212 artists,
as opposed to roughly 11K in our experiments (which inherently leads to
lower mAP values).
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9.3.4 Computational Complexity

The EM equations (Equations 9.4-9.6) suggest that the computational com-
plexity of a single PLSA iteration (consisting of one estimation and one max-
imization step) is O(KMN). However, the matrices are typically sparse,
which results in a reduced complexity if an appropriate implementation is
used. Most documents contain only a small subset of the possible vocabu-
lary, resulting in a sparse document-word co-occurrence matrix (such as in
our case, where each song is automatically tagged with 50 tags). Thus, most
values for n(di, wj) in Equations 9.5 and 9.6 are zero. Using appropriate
data structures, the zero-elements of this matrix do never have to be consid-
ered, such that the computational complexity reduces to O(KC), where C is
the number of entries in the co-occurrence matrix. Moreover, Hofmann [50]
states that typically around 20 − 50 iterations (i.e. a constant number) are
sufficient, such that the overall complexity does not significantly increase.

In fact, we have analyzed the required number of iterations in our sce-
nario. Hofmann proposes to measure the log-likelihood on held-out data for
this purpose, and to stop iterating as soon as the log-likelihood starts to
decrease, which should prevent overfitting [50]. Later studies, however, have
shown that overfitting is not a big issue with PLSA [16], which renders the use
of held-out data unnecessary. We have thus decided to simply measure the
log-likelihood within the entire dataset. Figure 9.13 plots the log-likelihood
versus the number of iterations. We can see that after a significant increase
after roughly 10 iterations, the log-likelihood starts to level off. It is interest-
ing to compare these results to Figure 9.14, which plots the tag consistency
measure versus the number of iterations. We can see a similar behavior,
which shows that the PLSA model and the corresponding log-likelihood well
describes the semantics of music. Moreover, this result confirms that PLSA
(at least in our setting) is robust with respect to overfitting. For performance
reasons (and simplicity), we in practice stop the expectation maximization
after 50 iterations. This number lies well within the observed convergence
region and agrees with Hofmann’s statement.

9.4 Comparison of the two Maps

To compare the two maps, we rely on the criteria introduced in Section 9.3.3.
The corresponding numbers are listed in Table 9.2.

The results show that the two maps score almost equally with respect to
tag consistency. In the comparison to collaborative filtering, and with respect
to the mean average artist precision, the LMDS map (Method 1) outperforms
the PLSA map (Method 2). The high correspondence between a song’s closest
neighbors in the LMDS map and in the item-to-item collaborative filtering
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Figure 9.13: The number of iterations versus the log-likelihood given by the
PLSA model.
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Figure 9.14: The number of iterations versus the tag consistency measure.9

Measure LMDS PLSA

Tag Consistency 53% 51%
Comparison to CF 57% 27%
Artist Clustering 59% 32%

Table 9.2: Quality comparison of the two maps according to different criteria.
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neighborhood shows that the relevant information could be retained in the
graph embedding step. (Recall that the LMDS approach makes use of graph
embedding to map the collaborative filtering based similarity measure into
Euclidean space.) Interestingly, the PLSA-based map does not score better
with respect to tag consistency, even though it uses the tag information as a
direct input. Overall, the numbers indicate that the LMDS map is preferable
in typical application scenarios. However, at the time of writing, the PLSA
map exhibits two advantageous properties: It covers a bigger number of songs
(and artists), and it compactly defines the probability of a certain tag being
created by a given song (or point in space). For these reasons, we used
the PLSA map for the Android application presented in the next chapter,
despite its slightly lower quality compared to the LMDS map.10

To conclude this chapter, we want to quickly review some major proper-
ties of the generated music similarity maps:

� Similarity measure: For both maps, the underlying similarity mea-
sure is based on an analysis of last.fm data. In the embedding based
map (Method 1) the actual similarity calculation solely relies on the
users’ listening behavior and closely resembles Amazon’s item-to-item
collaborative filtering idea [71]. In the PLSA based map (Method 2),
the similarity measure combines information from social tags and the
user’s listening behavior.

� Dimensionality : The dimensionality analysis of both construction
methods has shown that an intuitively navigable 2 or 3-dimensional
space is not able to adequately reflect music similarity. Moreover, for
both methods we could identify a point at which further increasing
dimensionality does no longer significantly affect the accuracy. The re-
sulting dimensionality of the two spaces was chosen accordingly: 10 di-
mensions for Method 1, and 32 dimensions for Method 2.

� Orientation: The first space merely represents relative similarity of
songs. Axes in this space are not assigned a special meaning, which
makes it hard to guide the user through the space. In the second
space, based on PLSA, the axes are defined by latent classes which
are directly related to the underlying tags. This information can be
helpful to guide the user through the space.

9Again, the numbers are not directly comparable to the other experiments, as they
are based on a slightly different dataset and different parameters.

10It seems that both issues could be overcome when recreating an LMDS map with our
latest last.fm dataset, however, memory optimized code would be required to create such
a map of comparable size, and additional tests would be required to show the quality
gains.
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� Coverage: The LMDS based space comprises approximately 430K
tracks, which covers about 50%-60% of a typical music collection –
enough to conduct meaningful experiments, but not enough to build
an end-user application. The PLSA based space contains more that 1M
tracks corresponding to more than 120K artists. To further increase
the coverage, we have calculated the coordinates of an additional 1.3M
artists. With that, the coverage gets high enough to be usable in pro-
ductive applications, such as the one shown in the end of the thesis.
The major reason for the better coverage of the PLSA space is that
it was constructed later, when we possessed a larger subset of last.fm
data.

9.5 The Maps’ Properties

Working on a Euclidean space rather than on pairwise distances exhibits
several advantages. On the one hand, applications can benefit from the
geometric properties of such a space. On the other hand, the compact rep-
resentation using coordinates saves memory resources and computing time,
and it allows for use in distributed applications. To conclude the chapter, we
briefly discuss these different aspects.

Geometry The geometric properties of Euclidean spaces facilitates the
realization of new functionality. In particular, applications can profit from
properties such as trajectories, volumes and the notion of direction. These
elements constitute the building blocks of an application. Our music maps
are designed such that similar songs are grouped together. Therefore, regions
in space can typically be associated with certain music properties, such as
genre, mood, rhythm, and so on. When mapping a user’s favorite songs to one
of our music maps, the region(s) they occupy can be compactly represented
as a volume (or a union of several volumes). Hence, we can, for example, use
a volume to compactly define the region of interest of a user. Trajectories,
on the other hand, allow to smoothly interpolate between songs or regions.
In Chapter 10 we will see an example that takes advantage of this property
to create smart playlists by defining a start and an end song. Finally, using
sense of direction allows to extrapolate such trajectories. Given a sequence
of songs, we can define how this list could be extended.

Memory and Computation Time Representing music similarity in a
space, rather than by means of a graph resulting from pairwise distances,
exhibits several advantages in terms of resources. In a Euclidean space
the similarity of two songs can efficiently be evaluated by comparing their
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coordinates. In a graph, the same operation requires the computation of
the shortest path between the songs. One might argue that (approximate)
shortest paths can sometimes be calculated quickly, by means of the A*-
algorithm [44], or approximate distance oracles (see, e.g. [114]), for example.
However, on large graphs these operations are still considerably slower than
the computation of the Euclidean distance from two points of comparably
low dimensionality (≤ 32 in our case). Moreover, there is an inherent prob-
lem about memory consumption, when working on the raw graphs. Observe
that storing the similarity information of the entire music universe can be
done in O(n) space in the case of a Euclidean representation, as opposed
to O(m) space for a graph representation (where n denotes the number of
songs, and m the number of edges in a graph). Again, one might argue that
using constant bounded degree graphs, m = O(n), such that there is not
relevant difference. However, in practice such a degree bounding constant
would need to be large in order to guarantee a good similarity representation
as well as the connectivity of the graph. Moreover, many applications do
not need to know about the similarity relationships among all the songs in
the music universe. Rather, applications often operate on a small subset of
this universe, such as on a particular user’s music collection. Using our map
representation, we only need to store the coordinates of the relevant songs on
the target device, in order to make the corresponding similarity information
available. Using pairwise similarities, by contrast, we also need to store all
the intermediate songs such that distances can be defined transitively (i.e. by
means of shortest paths in graphs). The obtained savings in terms of memory
consumption are typically immense, considering that collection sizes are typi-
cally in the order of thousands of songs, as opposed to hundreds of thousands
of songs contained in our music maps. The outlined advantages in terms of
computing time and memory requirements make a map representation the
perfect candidate for use on personal collections in the mobile domain.

Distributed Systems As discussed, a set of songs (such as a personal
music collection) can compactly be represented by the coordinates of the cor-
responding songs. Moreover, two sets of songs (or collections) can easily be
compared by looking at these coordinates. Observe that for such a compar-
ison, no global database is required. As a consequence, the information can
be well used in distributed settings. Consider, for example, a smart decen-
tralized file-sharing system: Assume that a user’s mobile phone (containing
a music collection) detects another mobile device in its vicinity (by means
of Bluetooth, for example). The two devices could exchange the coordinate
information of their collections, possibly in a compact representation as a
volume. Then, they could identify regions of common interest (i.e. volume
intersections) and start exchanging songs that fall into these regions and are
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not yet present on both devices. Using such a system, a user’s device could
smartly collect songs of interest while its owner, say, takes a walk through
the city.11 In a similar way, mobile devices could help to find like-minded
people (in terms of music taste) in a mobile match-making application, such
as the previously presented VENETA system. These examples should just
demonstrate one of the many advantages of a the representation of music
similarity in a Euclidean space. We did not realize such a distributed ap-
plication. Rather, we focused on the implementation of smart interfaces for
music access on mobile devices, as we will see in the next chapter.

11Clearly, several issues concerning intellectual property rights need to be resolved
before releasing such a system. Thus we did not implement it. Here we just wanted to
sketch the technical possibility.





Chapter 10

The Map of Music in the Mobile

Domain

Over the past years, mobile phones have turned into multi-purpose entertain-
ing devices with increasing storage capacity and ever better audio codecs for
high-quality music reproduction. Ever larger collections of music are stored
on mobile devices, making the process of managing these repositories more
challenging.

Unfortunately, the interfaces offered by mobile media players lag behind
this trend of ever growing collections. Today, the organization of digital
music libraries is mostly handled with meta data included in the audio files.
Traditional list based search and browsing options render it hard to keep an
overview over a large amount of tracks. As a result, users experience problems
selecting the appropriate music for a given mood or situation. Research
about the users’ needs in music information retrieval has shown that people
are searching for music not only by means of bibliographic data (i.e. artist
and title), but also in more descriptive ways, such as by specifying genre
or mood information, or by naming artists that are similar to the desired
music [9, 26, 64]. However, current implementations of digital music players
do typically not support unspecific search queries like: “I want to listen to
music similar to the current track, but not of the same artist”, or “I would
like to listen to something happy”. Rather, the organization of the collection
is handled with meta data included in the audio files. As we have discussed
in Chapter 9, methods based on music similarity offer an alternative to
traditional keyword based searches.

The demand for novel music management tools has been captured by
many commercial projects. Online music communities, such as last.fm, and
iLike have been offering novel ways to discover and experience music. By
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managing millions of user profiles, they apply collaborative filtering tech-
niques to search for music, generate playlists, and recommend similar music.
Most of these technologies are based on large centralized databases and thus
not suited for mobile environments.

The concept of a music map as presented in Chapter 9 facilitates the use
of such community based similarity measures in the mobile domain. It is
a perfect tool for the organization of large collections on resource restricted
devices. On the one hand, it serves as a basis for intuitive navigation, and on
the other hand it enables an efficient computation various aspects related to
music similarity. In order to compute the similarity between two songs, for
example, it is enough to calculate the distance between the coordinates as-
signed to them. No memory-expensive data structures need to be maintained
on the mobile device and no access to a centralized server is required.

However, we have also seen that the underlying similarity measure is
intrinsically high-dimensional.1 In the following we investigate several ap-
proaches to deal with such a high-dimensional space of music on a mobile
device. We address the problem from different perspectives. First, we look
at simple textual interfaces that consider similarity information to guide the
user through a music collection. We then show a visualization technique
that maps the high-dimensional data into the (2-dimensional) display space
dependent on the area of interest. For this purpose we introduce a lens
metaphor that allows to focus on one part of the collection but at the same
time retains a global overview. Next, we present an “acoustic” interface that
we call smart shuffling. The idea of this method is to keep track of the user’s
behavior, thereby allowing to avoid undesired regions of music. The algo-
rithm tries to stay as broad as possible to make sure no areas that match the
user’s taste are missed. Finally, we present a visualization scheme that com-
bines the advantages of the well known Cover Flow interface with those of
similarity maps. The scheme comes in a 2D and a 3D flavor. For dimension-
ality reduction we take advantage of the fact that a user’s collection typically
does not contain all the similarity dependencies relevant to music. Thus, a
reasonable low dimensional representation can be calculated on a collection
basis using the high-dimensional coordinates as a starting point. This visu-
alization scheme has been incorporated into a comprehensive mobile music
application (museek2). The application also takes advantage of the tag infor-
mation obtained from the PLSA based map of music. In combination with
the map, these tags enable a fine-grained selection of music corresponding to
a certain mood or style.

All interfaces are designed such that users can quickly find music that

1Under high-dimensional we understand everything that exceeds the intuitively visu-
alizable number of 2 or 3 dimensions.

2http://www.museek.ethz.ch
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matches their taste, even within collections they are partly or entirely unfa-
miliar with. Moreover, the methods attempt to give an overview of the entire
collection, such that tracks from various music areas can serendipitously be
discovered.

The usability of our methods has been evaluated in different user studies.
We compare the lens-metaphor based visualization scheme and the smart
shuffling algorithm to related interfaces in an experiment comprising 9 par-
ticipants. In these experiments our visual interface outperforms the recently
introduced SensMe feature of Sony Ericsson, which, to the best of our knowl-
edge, is the only currently available commercial system that heads into a sim-
ilar direction. Due to the lack of commercial mobile solutions in the area, we
compare the smart shuffling approach to the widely used concept of random
shuffling as well as to an algorithm proposed by Pampalk et al. [95] that aims
at playlist generation based on an audio-feature space. In the conducted ex-
periments, our algorithm scores better than the two alternative approaches
(random shuffling and Pampalk’s algorithm).

Finally, we present an analysis of the usage of the interfaces available
in museek. The analysis is based on more than 100 log files that report the
natural use of the application. The study stresses the need for advanced music
retrieval interfaces. In line with studies about the user behavior in music web
forums, we find that, while traditional search facilities remain important, less
specific and more explorative ways to access music are frequently used and
highly accepted by the users.

10.1 Related Work

The exploration of music collections by means of sophisticated interfaces is an
active area of research. When designing such interfaces, or even entire music
retrieval systems, it is essential to know about the needs of the end users: How
do people search for music? What tools could assist them to find what they
are looking for? To get a better understanding of the users’ needs, Bainbridge
et al. [9] have analyzed music queries in the Google Answers service. Not
surprisingly, artist and song title are most often used to search or ask for
music. However, the study also shows that roughly a third of the queries
included a description of the genre or style, and that sometimes references
to known similar musicians were given. Similar results were reported by
Downie and Cunningham [26] in an study on newsgroup messages. Lee et
al. [64] used questionnaires to investigate how people are searching for music.
Their study emphasizes the importance of non-specific queries. Roughly 60%
of the participants replied that they would make use of style information
or similar artists to search for music, and also criteria such as popularity,
mood, language, or vocal range and gender were shown to be relevant. Genre
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information is doubtlessly important in the context of music information
retrieval. However, there is only little agreement on genre assignments and
taxonomies [6, 61], which limits the usefulness of genres. An alternative
to genres is given by social tags that provide several advantages [61]: They
overcome synonymy issues (e.g. E-Jazz vs. Electronic Jazz), allow for a fuzzy
assignment (a song might, e.g., be tagged with Nu-Jazz and E-Jazz), and can
also grasp mood and other non-genre related information. Bentley et al. [12],
finally, conclude that music retrieval systems could profit from support for
serendipitous browsing capabilities. In the following sections we propose a
variety of music retrieval interfaces that try to address the above findings.
In particular, our interfaces provide the users with the possibility to search
for music based on similarity information, and to browse music collections in
a serendipitous fashion, such that they can (re-)discover music that matches
their taste. We thereby cover a wide spectrum of techniques, ranging from
simple textual interfaces to collection visualization and implicit interaction.
Before we present our methods, we will briefly review some existing literature
in the field.

The biggest class of existing interfaces tries to visualize collections based
on previously extracted audio features. A popular approach is the use of
self-organizing maps (SOMs) to create pleasant drawings of the underlying
space. Mörchen et al. [81] proposed to apply emergent SOMs (ESOMs) to
a complex audio-feature space to retain as much information as possible in
the 2-dimensional output space. A 3-dimensional visualization of relatively
small collections (50 songs), also by means of SOMs, is described in [58]. A
spherical SOM has been used by Leitich and Topf [65] to create the globe
of music. The PocketSOMPlayer [83, 35] applies SOMs for visualizations on
small devices. All these approaches map the audio space into some low (2
or 3) dimensional representation, which can then be explored by traditional
navigation schemes.

Besides self-organizing maps, various other techniques have been used to
present the complex structures behind music similarity on a 2-dimensional
display. Donaldson and Knopke, for example, apply a special node repulsion
technique to overcome occlusion effects. The commercial SensMe interface
of Sony Ericsson, displays songs along two axes (mood and tempo). How
this information is extracted remains the company’s secret. A more detailed
discussion of SensMe is given in Section 10.3.

Moreover, several more abstract visual interfaces have been proposed to
overcome the inherent problems of the low dimensional output space. The
artist map proposed by van Gulik et al. [122] uses a spring embedder to vi-
sualize a collection along a user definable set of properties, which are partly
extracted from the audio content and partly consist of meta-data. The ap-
proach is directed at small devices and restricted to artist similarity. A
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circular layout has been chosen by MusicRainbow [94] as well as AudioRadar
[46], which both operate on an audio-feature space (in case of MusicRainbow
augmented by keywords retrieved from the web). The interface proposed by
Torrens et al. [115] does not rely on any music similarity measure. Rather, it
directly visualizes meta data, such as genre or year of release, in a circular, a
rectangular, and a tree-based fashion. Finally, we want to mention Apple’s
Cover Flow interface that merely replaces the traditional textual album list
by nicely presented album covers. The enormous popularity indicates that
album covers are a useful visual hint to retrieve music.

The visualization of high-dimensional structures has also been studied
outside of the context of music. A comprehensive overview is given by [107].
Not all the described techniques can be applied to our setting, though, such
as the rank-by-feature approach [106], which depends on known meanings
of the axes. Two major ingredients often seen in high-dimensional data
visualization are hierarchical decompositions (e.g. used in [127]) as well as
icon based techniques (e.g. applied in [47]). One of the visual interfaces
we propose combines these two techniques with a generalization of the fish-
eye [103] view for higher dimensions.

Often, visual interfaces are combined with intelligent playlist generation.
Examples are the commercial SensMe interface, the approach of van Gulik et
al. [120], and the PoketSOMPlayer [83, 35] that allows to create playlists by
drawing trajectories through a SOM-based map. We propose a purely tex-
tual interface, which lets the user pick a start and an end song and thereby
also realizes the idea of trajectory based playlists. A quite different concept
to access music is proposed by the MusicCube device [2] and the work of
Bergman et al. [14] that both assign certain songs to a (virtual) 3D-location
in the device and consider the device orientation to retrieve songs. More-
over, there are interfaces that augment the visual space with an acoustic
environment, such as in [75] and [118]. Both of these interfaces try to take
advantage of the cocktail party effect. That is, they play different pieces of
music simultaneously. At the same time, they guide the user through the
music space by means of visual aids.

A purely acoustic exploration method has been proposed by Pampalk et
al. [95]. The goal is to find music that matches the user’s taste by considering
feedback such as skipping behavior. Even though their algorithm has been
described for audio-feature spaces, it can also be used in combination with
our map. We will later present an algorithm that follows a similar idea and,
at least in the context of our map, performs better than Pampalk’s algorithm.
Other approaches that go into a similar direction, but are geared at the large
listening community of a web radio, are presented in [45] and [8]. External
context, rather than skipping behavior, is considered in the music selection
process of the XPOD device [24].



120 CHAPTER 10. THE MAP OF MUSIC IN THE MOBILE DOMAIN

A purely textual interface to generate intelligent playlists is Apple’s
iTunes Genius feature. It basically selects songs similar to the preceding
songs and thus follows a similar principle as approaches presented in [73],
[98], [5], and [99]. In museek we have implemented a play mode that realizes
this idea.

In the following, we present a set of user interfaces that build upon our
music maps. While all of the interfaces have been implemented for the An-
droid mobile platform, most of them have not been included in museek. The
interfaces and experiments presented in Sections 10.2 to 10.4 are based on
the LMDS map. However, all of them could also be realized in conjunction
with the PLSA map.

10.2 Textual Interfaces

We begin our discussion with simple textual interfaces designed for playlist
generation and collection browsing.

10.2.1 Playlist Generation using End Points

As discussed before, a map of music allows the creation of smooth playlists
by following a trajectory. The simplest case of such a trajectory is a straight
line, which can easily be defined by selecting the two end points. We have
implemented this idea using a textual interface that allows to select a start
and an end song. The device then automatically produces a playlist of desired
size or duration that contains only songs in between the two end points and
thus exhibits a gradual transition in style.

Further constraints (such as no artist repetitions) can be defined.
Playlists are generated by a simple greedy algorithm. The line segment is
divided uniformly according to the requested number of songs. Then to each
of the resulting points the closest song not contradicting any constraints is
selected. If the length of a playlist is defined by duration rather than the
number of songs, the requested number of songs is derived from the aver-
age song length in the collection. Moreover, on each insertion of a song,
the subdivision of the remaining line segment is recalculated (based on the
remaining time), such that the final playlist typically well approximates the
desired duration. An example playlist is shown in Figure 10.1(a). It can
be seen that the playlist describes a gradual genre transition between the
start point (The Beatles’ “Drive my car”) and the end point (Sonic Youth’s
“Screaming Skull”).
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(a) A playlist, created by the trajec-
tory based method.

(b) Clicking on a group in a cluster-
based interface.

Figure 10.1: Screenshots of the textual interfaces.

10.2.2 Textual Navigation through Music Collections

The Euclidean representation offers the advantages of similarity-based search.
As opposed to keyword-based search, it allows to retrieve items, whose titles
the user might not know, based on their similarity to known items, from
which the user starts to navigate. Such a “proximity based” search is par-
ticularly important in a context where music collections are becoming large
and dynamic.

In the following, we describe an interface that is based on simple textual
lists, and that facilitates an intuitive similarity aware navigation. We thereby
assume that the user owns a big music collection that contains many items.
In particular, this number of items is much larger than the number of items
that can be displayed in form of a list on the device’s screen. An interface
that facilitates an efficient navigation of the entire collection, needs to meet
two basic requirements:
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d > r

r

Figure 10.2: Getting stuck in a cluster.

� Reachability : The entire collection should be reachable from any given
starting point.

� Searchability : Users should be able to quickly find what they are look-
ing for. In particular, short paths should exist between any two songs.
Moreover, the users should be able to detect these short paths, i.e.
at any stage they should be able to select an item that brings them
considerably closer to the goal.

An intuitive approach to explore a collection is to select a starting point
(or root) and to present the proximity of this point in the list. Clicking on
an item in the list allows to change the root and display this new root’s
proximity.

A naive solution might always put the k closest neighbors of the root song
in the displayed-list. Unfortunately, this approach has several drawbacks.
First, it might take a considerable number of clicks to move from one end of
the map to the other. Second, if the tracks are not uniformly distributed in
space, but form clusters, there is a risk of getting stuck in a cluster, and thus
to violate the reachability requirement. This problem arises, if the distance
to the next cluster is larger than the radius required to cover k tracks within
the given cluster. This problem is illustrated in Figure 10.2.

We will next discuss two solutions to the problem of list-based navigation:
small-world navigation and neighborhood clustering.

Small-World Navigation

Stanley Milgram’s “Six-Degree-of-Separation” experiment did not only reveal
that people are interlinked by astonishingly short acquaintance chains, but
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Figure 10.3: Small-world links: Nodes close to the root are more probable to
be included in the list than nodes far away.

also that these short paths can efficiently be discovered by humans disposing
of local knowledge only. Jon Kleinberg has later recognized that a specific
edge length distribution (1/rd, where d is the dimensionality of the underlying
space) is required to achieve this navigability property [56]. He has shown
that augmenting a grid (or the higher dimensional equivalent) by a single
random outgoing link per node is enough to ensure polylogarithmic path
lengths between any pair of nodes. Moreover, he has shown that these short
paths can be detected using local knowledge only.

We take advantage of these insights by artificially overlaying our data
with such an edge length distribution. Whenever a user selects a track, k
random tracks are selected according to Kleinberg’s distance distribution.
These tracks are then sorted according to their distance from the root song,
and the resulting list is presented to the user. Due to the specific distance
distribution, the first items in the list are close to the root track, whereas
the last items build the entry points to discover new areas farther away.
Figure 10.3 illustrates the distribution of the listed tracks in a 2D sample
space. The list is re-populated every time the user selects a root song. As a
consequence, every track has a certain probability to appear, which ensures
that any song can eventually be reached. Moreover, if a user is not happy
with the “neighbors” offered in the list, he can simply re-select the same root
and hope for a better list.

While this method might fail to quickly discover a particular song (as it
might get missed by the random process several times), it provides an elegant
light-weight solution to quickly get an overview of a music collection.
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Neighborhood Clustering

Another approach to represent a collection in a navigable list is to make the
list’s items entire groups of songs, rather than single songs. In particular,
the space can be recursively clustered according to the root song’s proximity.
Thereby, areas close to the root song are subdivided in a fine grained manner,
resulting in small clusters. Distant areas, on the other hand, form large
clusters. Each of the resulting clusters is then displayed as a single list-item
in the interface, as illustrated in Figure 10.1(b).

An algorithm that creates such a recursive clustering will be presented in
the context of visual browsing in Section 10.3.1.

10.3 Visual Browsing

The taste of a single user is typically restricted to a few styles of music. Thus,
a smart visual interface should group similar tracks and provide a facility
to quickly guide the users to their favorite regions within the underlying
space. Similarly to the reachability and searchability requirements for list-
based navigation, we identify the following requirements for a visual music
exploration scheme:

� Locality : When browsing in a specific region of music, the local prox-
imity is interesting and should thus be in the user’s focus.

� Globality : Simultaneously to the local information, more distant tracks
should be visualized, making it simple to cross over different regions
in the collection.

� Orientation: Moving from one region to another should be transparent
and predictable to the user.

For typical 2-dimensional settings there exist several well known concepts
to satisfy these criteria, such as fish-eye views, or a combination of zoom-
ing with satellite views. As indicated earlier, however, the space of music
cannot directly be mapped into a low-dimensional representation. Thus, the
mapping into the display space has to be dependent on the current area of
focus. We will next introduce the lens metaphor that fulfills the outlined
requirements and is applicable to the small screen of mobile devices.

10.3.1 The Lens View

The lens metaphor is directly derived from the (2-dimensional) fish-eye con-
cept. The idea is to show the most detailed view in the center of the screen
and to blur out more and more details with increasing distance from the
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(a) Lens metaphor (b) Recursive partitioning of a 2D space

Figure 10.4: Lens view

area of focus. The distance from the center is schematically illustrated by
means of rings, which indicate the lens (see Figure 10.4(a)). A user can de-
fine the area of focus by selecting a center song. In the innermost circle, few,
highly related songs are then displayed. The outer circles contain clusters
of songs, rather than single songs. With increasing distance from the center
these clusters grow bigger and represent more distant regions of the space.
This idea is illustrated in Figure 10.6(a). The uniformly colored points in
the innermost circle denote songs similar to the center song (star), whereas
the colorful symbols in the outer circles represent clusters of songs.

To realize this lens view, i.e. increasing cluster sizes with increasing dis-
tance from the center, we apply a technique which we refer to as recursive k-
means. The algorithm, as the name indicates, clusters the space in a recursive
manner, as schematically depicted in Figure 10.4(b) for a two dimensional
space.

First, the entire (10-dimensional) space is clustered into a fixed number
(k, 5 in our case) of clusters. For clustering, a modified version of the k-means
algorithm is used, which fixes the centroid of one cluster to the center song.
This results in k − 1 outer and one center cluster. In the consecutive steps,
the same procedure is applied to the songs residing in the center cluster. This
process is repeated until either the center cluster contains less than q points,
or until a maximum number of recursion levels is reached. The last condition
prevents the generation of too many levels, which could not be visualized on
small screens.

The initial cluster centroids are chosen at random. Hence, the space
partition is not deterministic, and the result presented to the user varies each
time the algorithm is run. This is not a flaw, but rather a desired behavior,
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as it allows to view the same area of focus in slightly different variations.3

Recursive k-means defines the content of the clusters to be used in the
lens view. For visualization, the obtained positions (i.e. cluster centroids)
in the high dimensional space have to be embedded into the 2-dimensional
visualization plane. This mapping is done by a special spring embedder
tailored to the needs of the lens view.

Similar to the hierarchical clustering, the visualization is also done in mul-
tiple steps. First, the songs belonging to the center cluster are embedded.
Thereby the algorithm is restricted to only choose positions within the inner-
most circle. The remaining clusters are then successively embedded within
the outer rings. Thereby each ring corresponds to one k-means recursion
level. That is, the position of clusters stemming from a given recursion level
are restricted to lie within one particular ring. The embedding process is
directed from the center towards the border. Already embedded points of
the inner rings are kept fixed but contribute to the force that acts on the
points that are being embedded.

To guarantee a consistent view, the initial positions of the points are
set corresponding to the first two dimensions of the high-dimensional space.
Thus the outermost clusters are always placed at similar positions (e.g. the
area containing mostly electronic music is always placed in, say, the upper
right corner). Observe that this strategy also reduces the number of iterations
(as compared to random positions), as the initial positions are likely to be
close to the final positions.

10.3.2 The Cake Metaphor

In Section 9.2.2 we have seen that the LMDS space exhibits a fairly good
clustering in terms of genres. We have thus augmented the obtained cluster
centroids with genre information, to make browsing more intuitive. The
center of mass of positions of songs with known genre information (acquired
from the Allmusic Guide) defines a centroid for each genre. Measuring the
distances to these genre centroids allows to define a genre relationship to
each point in the 10-dimensional space.

This information is visualized using the cake metaphor, which consists of
an inner circle and an outer ring. The outer ring is subdivided into segments –
or cake slices – that represent the inverse squared distances from the different
genre centroids. The inner circle represents the nearest cluster. The hue (i.e.
color) of the inner circle corresponds to the hue of the nearest cluster, whereas
its saturation indicates, how clear the given position could be assigned to the
corresponding genre. A cluster centroid which has almost the same distance

3Observe that a deterministic behavior could easily be achieved by the use of random
seeds.



10.3. VISUAL BROWSING 127

segment
width corresponds
to the distance

saturation is inversely
proportional to the
ambiguity of the
genre decision

hue (color) of the
segment corresponds
to the genre

Figure 10.5: Cake metaphor

to all genre centroids, for example, is represented by a very pale color. An
example of a cake diagram is depicted in Figure 10.5.

Observe that both, the lens as well as the cake metaphor are not restricted
for use in music collections in conjunction with genres. Rather the lens
metaphor can be used in conjunction with any high-dimensional space and,
similarly, the cake metaphor applies to any meaningful anchor points, be it
for music collections (where, e.g., moods could be used), or any other high-
dimensional data spaces.

10.3.3 The Final Interface

The final interface combines the cake with the lens metaphor. The cake
metaphor is used to visualize the clusters in the outer rings. Each song
in the center area is represented by a simple circle, colored analogously to
the inner circle of a cake diagram. The resulting interface is illustrated in
Figure 10.6.

The different elements (songs and clusters) in this interface react to touch
events. Selecting a single song in the inner circle allows to either play it, or
to make it the new center song. Selecting a cluster opens a dialog (see
Figure 10.6(b)) that presents the cluster’s detailed content. Moreover, the
dialog contains a button to play the contained songs, as well as a button
that allows to move to the cluster’s centroid (meaning the song closest to the
cluster’s centroid becomes the new center song).

The primary goal of exploring a music collection is to later listen to it. We
have thus incorporated a playlist creation mechanism. To create a playlist a
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(a) The lens metaphor with visualized
clusters

(b) Detail information for a selected clus-
ter

Figure 10.6: Our graphical user interface for visual browsing.

user can add each center song to a set of seed songs. Once enough seed songs
are selected, a playlist consisting of the chosen seed songs as well as of songs
randomly sampled from each seed song’s neighborhood can be generated. A
user settable parameter allows to control the size of these neighborhoods and
thus the diversity of the resulting playlist.

10.3.4 Evaluation

For evaluation we have conducted a preliminary user study with 9 partici-
pants. The study mainly compares our interface with SensMe, as shipped
with Sony Ericsson phones. To the best of our knowledge SensMe is currently
the only commercial visual interface for music exploration on mobile devices.

SensMe is based on audio-analysis and classifies the songs according to the
two properties tempo (slow vs. fast) and mood (sad vs. happy). The songs
are arranged on the screen along these two axes, as illustrated in Figure 10.7.
To create playlists, circular areas of adjustable size can be selected. The final
playlist then contains the union of all the songs within the selected areas.
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(a) Browsing (b) Adding areas to a playlist

Figure 10.7: SensMe: A commercial visual browsing interface shipped with
Sony Ericsson devices.

The main part of the user experiment consisted in the creation of a playlist
(20 songs) with both interfaces. In addition, the participants had to fill in
a questionnaire. For both, SensMe as well as our interface, the participants
were given the same collection, which they were not familiar with. The
collection contained approximately 1400 files (7.5GB) and covered a broad
range of music. For each interface, the participants were given 5 minutes to
create a playlist that matched their taste and mood as closely as possible.
Afterward they had to listen through the playlists and rate each song on a
scale from 0 (worst) to 10 (best). The resulting average ratings were 6.3 (our
interface) and 5.5 (SensMe).

In addition, we prepared a small questionnaire the participants had to fill
in. If not indicated otherwise, the answers were measured on a scale ranging
from 1 (worst) to 5 (best). The major findings can be summarized as follows:

� Playlist (overall): We were not only interested in the rating of in-
dividual songs, but also asked the participants to judge the overall
impression of the obtained playlist. The result is in line with the song
ratings (3.33 (our interface) vs. 2.44 (SensMe)) and suggests that the
presented interface is in fact better suited for playlist generation.
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� Diversity : People were asked to judge the playlist diversity on a scale
from 1 (too diverse) to 5 (not diverse enough), with 3 as a neutral
value (just right). While our algorithm is not quite diverse enough
(3.44), the playlists generated by SensMe are too diverse (2.44). The
result suggests that both algorithms perform similar in this respect
with slight advantages for our algorithm.4

� Usability : We wanted to know whether the interface is intuitive to
use. As expected, the simple 2-dimensional interface of SensMe out-
performed our exploration scheme for a high dimensional space. The
ratings were 4.67 (SensMe) versus 3.67 (our interface).

� Underlying space: We asked our participants whether, in their opin-
ion, similar songs well group together in the respective system. In this
question our approach (4.00) clearly outperforms SensMe (2.44). A
possible reason for this result is that the two dimensional representa-
tion of SensMe is not capable to adequately reproduce the underlying
similarity. It might thus indicate that it is worth to operate in higher
dimensional spaces at the expense of a less intuitive interface. An-
other explanation is that the user-behavior driven similarity measure
underlying our interface provides better results than the audio-analysis
based methods of SensMe.

� Overall : We wanted to know whether our users would use the system
again. Thereby, only the answers yes and no were allowed. Again, the
result favors the interface presented here (67% yes) over SensMe (44%
yes), which is in line with the playlist ratings discussed earlier.

Finally, we wanted to know how useful the cake metaphor is. The results
show that the most valuable part is the center circle color (3.22). Cake slices
(2.67) and the center circle saturation (2.55), however, have also been used
for navigation.

10.4 Acoustic Exploration

As music is primarily perceived by the sense of hearing, acoustic navigation
through the space of music also seems to be a natural approach. Similar as
in the presented visual exploration scheme, the goal of our acoustic interface
is to quickly guide users to music of their taste.

4Observe that our algorithm provides a parameter to control diversity. We can thus
expect that people that regularly use the system are able to produce better playlists, as
they get a better feeling for the right parameter setting.
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Figure 10.8: Acoustic exploration interface: Note the rating bar at the top.

As opposed to the visual situation, it is impossible to acoustically provide
an instant global impression of the space, as we are not able to listen to
many tunes in parallel. As pointed out by Tzanetakis and Cook [118], 8
simultaneous tunes form an upper limit. An acoustic exploration scheme
thus has to rely mainly on local information. Moreover, people’s notion
of orientation or direction in acoustic space is much more fuzzy than in
geometric space. As a consequence, the control of the exploration process
should shift from the user towards the device.

The goal of our interface is to dynamically generate a sequence of songs (a
playlist) that fits the user’s taste. This is achieved by constantly appending
new items to the sequence dependent on the user’s (implicit or explicit)
feedback about the preceding songs. Thereby, the algorithm learns the user’s
taste and, ideally, selects ever better items.

Our primary interface uses explicit user feedback defined on a continuous
rating scale ranging from 0 to 1 (see Figure 10.8). For scenarios that do
not allow for explicit feedback, we offer the possibility to switch to a binary
scheme that assumes a song was disliked if it was skipped, and liked otherwise
(analogously as proposed in [95]). A continuous rating scale, however, allows
to more precisely estimate and react to the user’s needs. If only skipping
behavior is considered, this interface looks much like an ordinary shuffling
mode, such as available in most music players. However, by reacting to the
user feedback, it is able to smartly select songs matching the user’s taste. In
the context of museek we thus refer to this kind of interface (or play mode)
as smart shuffling.

Before we come to our exploration algorithm in more detail, let us briefly
review its major requirements:

� Taste: Clearly, the exploration algorithm should visit areas and songs
the user likes.
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� Diversity : People tend to get bored when listening to several very
similar (e.g., same artist) songs in a row. The exploration scheme
should thus also provide sufficient diversity.

� Adaptability : The algorithm should be able to adapt to the changing
mood of a person. That is, if, after some time of listening to rock
music, the listener starts feeling more like jazz, the algorithm should
be able to quickly adapt to this changed condition.

� Exploration: As the name suggests, the exploration scheme should be
able to explore a collection. That is, it should not just stick to songs
the user listens to frequently, but should be able to find songs the user
might even not have been aware of.

10.4.1 Acoustic Exploration Algorithm

The basic idea of our exploration scheme is that on completion of a song, the
algorithm looks at the ratings acquired so far and then selects the next song
in an intelligent manner. A naive algorithm might simply select the song
most similar to the currently best rated song, thereby only considering songs
that have not yet been played. This method, however, would most likely
violate the diversity requirement. We thus follow another strategy, which is
based on the Voronoi tessellation.

We start by outlining a simplified version of the algorithm, which works
as follows: The previously rated songs are used as the input of a Voronoi
tessellation, which is applied to the entire collection. As a result, each pre-
viously rated song becomes the generating point of one Voronoi cell. We
assume that ratings above 0.5 (on a scale from 0 to 1) indicate that the user
likes a song, whereas lower ratings are seen as a sign of dissatisfaction. As a
consequence, each Voronoi cell (and thus also all the contained songs) can be
seen as either good or bad, dependent on the rating of its generating point.
The Voronoi tessellation is re-executed on each song completion. After tes-
sellation the exploration algorithm selects a not yet played song from within
a good Voronoi cell. This strategy is schematically illustrated in Figure 10.9.
The lighter areas, which indicate good cells, roughly approximate the user’s
region of interest (shaded).

The entire process is started by selecting a song uniformly at random
from the entire collection. If this song is rated good, everything continues as
outlined before. A rating below 0.5, however, would lead to a single Voronoi
cell that is considered bad and covers the entire collection (resulting in no
playable songs). Whenever no positively rated song is available, we therefore
add a floating centroid to the system, the position of which is determined
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Figure 10.9: Acoustic browsing (simplified): The entire collection is decom-
posed by means of Voronoi tessellation. The generating points for the Voronoi
cells are given by the rated songs. Dependent on the rating each cell is either
considered good (light gray) or bad (dark gray). The shaded areas indicate
the user’s region of interest. Note that in the application a 10 dimensional,
rather than a 2 dimensional space, as illustrated here, is used.

by the modified version of the k-means algorithm described in the visual ex-
ploration part (keeping all previously rated positions fixed). This procedure
is repeated until the first positively rated song is found. Afterwards, the
floating centroid is removed.

Observe that this simple algorithm exhibits various weaknesses. First,
it does not take advantage of a continuous rating scale. Moreover, it is not
able to satisfy the adaptability requirement, since regions once marked bad
will never be visited again. Finally, the good Voronoi cells only provide a
rough approximation of the region of interest. In particular the border areas
of these cells are likely to disagree with the user’s taste. To overcome these
shortcomings we improve the outlined scheme in several points:

� Weighting : Dependent on the rating of the corresponding generat-
ing point, a weight is assigned to each Voronoi cell. The more this
rating deviates from 0.5 (in either positive or negative direction), the
higher the weight. When selecting the next song to play, the algorithm
considers these weights by selecting a (good) song with a probability
proportional to the weight of its enclosing Voronoi cell.
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� Aging : Weights are not static. Rather, on each song completion, all
weights are reduced by some constant value. If the weight of a gener-
ating point falls below a certain threshold t, the corresponding point
is removed. Due to the aging technique, old ratings eventually become
obsolete. Thus, the algorithm can well react to changes in the user’s
mood.

� Centering : Songs close to a positively rated generating point lie within
the user’s region of interest with higher probability than songs at the
border of the corresponding Voronoi cell. Thus, such songs are selected
with higher probability by the algorithm. For simplicity, we currently
use a fixed probability distribution. However, making this distribution
adjustable by means of a parameter might allow the user to control
the sequence’s diversity.

� Escaping : At some point, the algorithm might start playing songs from
within a certain narrow area only, as preliminary experiments have
shown. The missing diversity is then likely to become manifest in form
of repeated low ratings. We thus allow the algorithm to break out of
such gridlocked situations by selecting a completely random song with
a certain probability. This probability is adaptive within a given upper
and lower bound. It decreases with each positive, and increases with
each negative rating.

These tweaks have shown to improve the quality of the resulting se-
quences. However, our first experiments have also revealed some performance
issues. After all, a user is not willing to wait for several seconds until the
next song is being played. As we only want to select a single song in the end,
it is obviously an unnecessary overhead to classify each song as either good
or bad in each round (i.e. after each song completion). Instead, we move part
of the random selection process to the beginning of a round by first selecting
a random sample of the not yet played songs.

10.4.2 Evaluation

For evaluation we have compared the algorithm to two alternative ap-
proaches:

� Shuffling : Most music players offer the possibility to listen to a collec-
tion in a purely random fashion. Moreover, 7 of our 9 participants said
that they at least sometimes do listen to music completely randomly.

� Pampalk : Pampalk et al. [95] have proposed an algorithm that dynami-
cally creates playlists based on the user’s skipping behavior. Although
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Figure 10.10: Comparison of the three different acoustic exploration methods.
The light bars indicate the average rating over all songs. To demonstrate the
learning effect, the dark bars ignore the ratings of the first 3 songs in each
sequence.

the method was originally proposed for use in conjunction with an
audio-feature space, it can be applied to our space, too. The algo-
rithm works as follows: Each song for which the nearest good song is
closer than the nearest bad song is added to a set S. If S is non-empty,
its element with smallest distance to the nearest good song is selected.
Otherwise, the song with the lowest dg/db ratio is played, where dg
denotes the distance to the nearest good, and db the distance to the
nearest bad song. The algorithm does not make use of rated feedback,
but uses a binary scheme solely based on skipping behavior.

For comparison, all participants had to create a sequence of 20 songs
with each of the three methods. In all cases, the start song was chosen
randomly. Moreover, we let the users uninformed about the internals of the
different algorithms to avoid biased results. They were, however, told that
the algorithms were supposed to find their taste (which is not exactly true
for random shuffling). We used the interface with explicit song ratings (recall
Figure 10.8) for all experiments. The acquired ratings were not only used
to feed the algorithms, but also to later assess the qualities of the different
playlists.

The results are summarized in Figure 10.10. The figure depicts the overall
average song rating for each algorithm (light bars), as well as the average
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Figure 10.11: Diversity: Average values for the diversity ratings of the par-
ticipants (1: too diverse, 3: just right, 5: not diverse enough).

rating after ignoring the first three songs of each sequence (dark bars). For
both algorithms that are supposed to adapt to the users taste, the dark bars
are higher, indicating that the algorithm in fact improved over time. In the
random case, by contrast, the rating got worse, which might be explained by
the unsatisfied user expectation. The figure further reveals that the adaptive
algorithms by far outperform random shuffling. Moreover, we can see that
only the algorithm presented here reaches a positive average rating (i.e.,
above 0.5).

As stated earlier, we were not only interested in the overall rating of the
resulting sequences, but also in the algorithm’s capability to explore a col-
lection. We have assessed this property by means of participant questioning.

Using a questionnaire, we had the participants judging their satisfaction
concerning the sequences’ diversity on a scale from 1 to 5 (1: too diverse,
3: just right, 5: not diverse enough). The results are summarized in Fig-
ure 10.11. As expected, the diversity of the random shuffling algorithm was
considered too high (average: 2.56, min: 1, max: 4). The diversity of the
algorithm of Pampalk et al., on the other hand, was considered to low by all
participants (average: 4.44, min: 4, max: 5). The best score (i.e. closest to 3)
was reached by our algorithm (average: 2.67, min: 1, max: 5), which scores
slightly better than random shuffling, and clearly outperforms the approach
of Pampalk et al.. The fact that for one single algorithm the entire rating
scale has been used suggests that diversity is a very subjective measure.

It is important to note that Pampalk’s algorithm possibly provides more
diversity if applied to audio-feature spaces, for which the algorithm was orig-
inally designed. Due to the strong dependence of diversity on the user, and,
possibly, the underlying space, we believe that an algorithm should be adap-
tive in this respect (either by means of a user settable parameter, or by
means of self-regulation). As mentioned before, we could realize this idea by
incorporating a parameter that controls the centering effect.
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10.4.3 Community-Aware Interactive DJ

Music does not only coin the lives of individuals, but also plays an important
role when people socialize. In the following we will describe how the acoustic
exploration scheme can seamlessly be applied in such situations. We assume
a scenario, such as, say, a private party.5 Clearly, the guests should be enter-
tained with music of their taste throughout the evening. Hiring a professional
DJ most likely exceeds the host’s budget. The probability that one of the
guests is able to grasp the desires of the audience, and willing to act as a DJ
is rather low. The alternatives are to connect somebody’s iPod in random
shuffling mode, to select an entire album from time to time, or to compel
somebody to act as DJ. All of these options are likely to result in a (possibly
undesired) controversy about the selected songs.

In the following we want to briefly sketch an idea that could overcome
these issues. The only input required by the acoustic exploration algorithm
is feedback about the played songs. It is indifferent, however, to whether
the ratings stem from an individual, or from a group of guests. Hence, if we
are able to acquire some sort of rating from the audience, the exploration
scheme is able to create a sequence of songs that matches the majority’s
taste. Clearly, asking for explicit feedback from each guest is not appro-
priate. However, state-of-the-art mobile phones are more and more getting
equipped with motion sensors, which can provide our algorithm with valuable
information. Surely, people tend to dance more to music they like. By means
of motion sensors we can estimate the fraction of people dancing. This data
can then be converted into a rating which serves as the input for acoustic
exploration.

We have conducted preliminary experiments that show that dancers can
quite well be distinguished from non-dancers by comparing the audio signal’s
beat to the motion patterns. Further research, however, is required to in-
vestigate how well such a system is able to adapt to the crowd’s taste in a
real-world setting.

The guests could profit from such a system in two ways. First, the played
music better matches their taste. Second, each client device could maintain a
list of the owner’s favorite songs (i.e. the songs with highest dancing activity).
Consulting this list after the party allows to learn about new music previously
unknown to the user.

10.5 The Interfaces Revisited

The interfaces presented so far demonstrate the practical usability of our
(LMDS) music map. However, they only act as a proof of concept. In par-

5The same idea also works in other settings, such as in public places, pubs, etc.
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ticular, they have only been used in small scale user studies and were never
made available to a large listening community. Both, the conducted exper-
iments, as well as informal discussions with various people have uncovered
relevant issues that should be improved before targeting a large user base.
The most important lessons learned were:

� Users tend to stick to concepts they are already familiar with.

� The interfaces should be as simple and intuitive as possible, even if
this comes at the cost of accuracy.

� Users are not interested in what goes on behind the scenes. They only
judge the result.

� The traditional interfaces (such as hierarchies of artist, album and
track lists) are indispensable in an application that should be accepted
by the user.

Based on these findings, we have implemented museek, a music player
designed for the Android platform. In particular, we have taken care that
the visualization interface becomes more intuitive, and we have improved
upon the acoustic exploration algorithm. For this purpose we introduce a
collection dependent 2-dimensional representation that facilitates the nav-
igation as in a traditional map interface. Moreover, we have found that
smart shuffling becomes more reactive when operating in 2 rather than 10
(or more) dimensions, as the relevant regions can be narrowed down with
fewer decisions.

In the next section we will describe the application in more detail, and we
will present a study based on usage logs that shows that the novel interfaces
are appreciated by the community.

10.6 A Comprehensive Music Player

In an attempt to address the users’ needs (as outlined in Section 10.1) and
to demonstrate the usefulness of a music map, we have developed museek, a
music player for Android smart phones that provides similarity based func-
tionality. Our player incorporates the following features to access and dis-
cover music: (1) Traditional alphabetic lists (song, album, artist, and genre)
to browse for music, (2) a full text search option to search in the title and
artist fields, (3) a tag-cloud to select music by social tags, (4) a music map to
visualize a collection, (5) a play mode that plays songs similar to the previous
one, and (6) a play mode that avoids inappropriate regions by considering
skipping behavior.



10.6. A COMPREHENSIVE MUSIC PLAYER 139

Features (3) to (6) rely on the PLSA map described in Chapter 9. The co-
ordinate information is made available to museek in an initial import process.
Thereby, the coordinates are fetched for each song in the user’s collection ac-
cording to the artist and title tags. In case a song is not available in our
database, the corresponding artist coordinates are returned (recall that we
have calculated artist coordinates for more than 1M artists). Once this im-
port step is completed, similarity queries can be performed without the need
for an Internet connection. Measuring similarity between two songs reduces
to calculating the distance between the corresponding coordinates.

For visualization, our high dimensional space is transformed into a col-
lection dependent 2D map on the user’s device using Principal Component
Analysis (PCA). The PCA was not applied to all songs, but only to the center
of mass of the most relevant tags in the collection. Although, in Chapter 9,
we have stated that a 2 dimensional embedding can not accurately represent
general music similarity this might be possible for the collection of a user, as
it is likely to contain only a small subset of the overall music diversity.

The traditional search options, i.e. features (1) and (2), do not need any
further explanations. Rather, we quickly want to sketch the most important
properties of the other interfaces. Our music map combines the strengths of
Apple’s Cover Flow and Sony Ericsson’s SensMe interfaces. The popularity
of Cover Flow shows that album art is a good visual hint to recognize music
and also stresses the user’s desire for visually attractive ways to browse a
music library. SensMe, on the other hand, provides a neat way to explore a
collection and to quickly create appealing playlists by selecting regions from
a map. We have thus implemented an intuitively navigable map that uses
album covers as visual aids.

At low zoom levels (see Figure 10.12(a)) the map resembles the point
cloud of SensMe. Tags help the user to keep an overview. When zooming in,
the points become recognizable as album images (see Figure 10.12(b)). From
this view the user can either select an album to be played or discover other,
similar albums by browsing through the covers. The map can be navigated
by moving the finger on the touchscreen, much like this is done in traditional
map interfaces. On Android devices that lack multi-touch support, a zoom
bar on the right allows to zoom in and out smoothly by wiping the finger
over the bar. Moreover, a touch gesture allows to select a region from the
map to create a playlist similarly as in SensMe.

Besides the described 2D mode, the map also comes in a 3D flavor that
focuses on offering an appealing browsing experience. The 3D view uses
the same underlying 2D space but arranges the album covers in 3D (see
Figure 10.13(a)). Wiping the finger up and down allows to move backward
and forward respectively.

We have also used the music similarity map to offer two novel play modes,
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(a) The map from far away (b) A close look at the similarity map.

Figure 10.12: The 2D music similarity map

a similar song mode and a smart shuffling mode. The idea of the similar song
mode is to extend an existing playlist with similar songs. This means a user
can select a start song he/she likes and the application will automatically add
songs that are similar to the playlist. This allows the generation of smooth
playlists by choosing a single seed song. To avoid that the similar song mode
plays songs from just one artist, the user can specify that an artist may not
re-occur for a certain number of subsequent songs.

The smart shuffle mode selects songs from the entire collection and
thereby intelligently avoids music styles of songs the user has previously
skipped. The implementation basically corresponds to the acoustic browsing
method introduced in Section 10.4. That is, the idea is to subdivide the
map into good and bad regions. However, we operate on a 2 rather than
a 10-dimensional space. Moreover, we have decided to fully adhere to the
implicit interaction metaphor [105]. That is, we have omitted the rating bar,
and solely rely on skipping behavior to make the interface more user friendly,
and controllable from the headphones’ media buttons. A region is marked
good if the corresponding songs were listened to the end, and bad, if the
songs were skipped. Observe that more precise rating information could be
acquired when taking additional cues into account, much as this has been
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(a) The music similarity map in 3D (b) An auto-generated tag-cloud for a
user’s collection.

Figure 10.13: Screenshots of the 3D map and the tag-cloud.

proposed for web usage [3]. Such cues might for example be the time af-
ter which a song is skipped, or changes in the volume control. However,
for transparency and simplicity reasons, we do currently not consider such
additional cues.

Finally, we have seen that users often describe their needs in terms of
genres or other descriptive information, such as mood. Thus we offer the pos-
sibility to choose songs by selecting a tag in a tag cloud (see Figure 10.13(b)).
This tag cloud is individually generated for a user, displaying only tags that
are relevant to the music collection on the device. As the tags in this cloud
are freely generated by last.fm users, they do not only specify genres and sub
genres but also moods and feelings. This facilitates a fine grained selection
of the desired music. That is, if a user selects a tag, the song that exhibits
the highest probability to generate this tag (recall Equation 9.7) is identified.
Afterwards, songs in the corresponding neighborhood are played by museek.

The outlined functionality is integrated into our player in 5 tabs. The
Player Tab contains the player controls, the playlist, as well as buttons to
control the play mode (repeat, shuffling over playlist, shuffling over collection,
similar songs, and smart shuffling). The Lists Tab allows to access traditional
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alphabetic lists (namely song, album, artist, and genre list), as well as a tag-
cloud (recall Figure 10.13(b)) to select music. A full text search mode is
provided by the Search Tab, and, finally, there are two screens for the 2D
and the 3D map, respectively (recall Figures 10.12 and 10.13(a)).

10.6.1 Evaluation

We have published our application on the Android Market (the App Store
for Android) where it was downloaded more than 40,000 times at the time of
writing. At the first startup, we ask the user for permission to log (anony-
mous) usage data. We removed overly short log files, as we were interested
in the usage of regular users (as opposed to those that only had a quick look
at the application). The following statistics are based on the remaining 128
data logs, each of which documents the application usage for a period of 5
days.6

To get a rough impression about how the application is used, we measured
the times the users spent in the different tabs. Not surprisingly, the Player
Tab, mainly used to listen to music, is the most popular view – users spend
about two thirds of the time in it. The remaining time can be seen as the
time spent to search or browse for music and is distributed as follows: Lists
Tab (including tag-cloud) 53%, Map Tabs 40%, and Search Tab 7%. The
fact that when searching for music the users spent 40% of the time in the
Map Tabs confirms the need for serendipitous browsing options and shows
that this interface is well accepted.

Studies about user needs suggest that people would often select music
based on descriptive information, such as genre or mood. We have found
that 51% of our users have at least once selected music from our tag-cloud,
and that 19% used this feature regularly (3 or more times). Interestingly,
only about 40% of the selected tags correspond to some genre, the remaining
60% reflect some mood (e.g. “happy”,“catchy”) or subjective opinion (e.g.
“beautiful”, “amazing”). These numbers underline that genres alone are not
descriptive enough to satisfy the users’ needs.

The music player offers five different play modes: Repeat all songs of
a playlist, shuffle over a playlist, shuffle over the whole collection, smart
shuffling, and the similar song mode. The first two play modes define only
the order in which a given set of songs is played. By contrast, the three
other modes generate playlists by themselves, i.e. upon completion of a song
they automatically select a new song to be played. Thus, we can distinguish
between explicit selection of tracks (from the traditional lists, the tag-cloud,

6The big discrepancy between the number of downloads, and the number of usage
logs is due to the fact that we have conducted the usage study in the early days of the
application, when the user base was much smaller.
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Explicit plays Implicit plays

Meta data lists 16% -
Similarity map 8% -
Tag cloud 10% -
Shuffle - 2%
Smart shuffle - 51%
Similar mode - 13%

Sum 34% 66%

Table 10.1: A comparison between the origins of the played songs. The new
player features are used often to generate playlists and select music.

the search module, or the maps) and implicitly generated suggestions (from
one of the latter three play modes). Table 10.1 shows how the listened songs
are distributed among these different song selection methods.

Interestingly, only about a third of the music was explicitly selected by the
user. The other two thirds were selected implicitly by the player, using one of
the mentioned play modes. Moreover, we can see that the traditional search
options account for less than half of the explicit selections, the remaining
selections either occurred from the tag-cloud or the map. Considering the
implicitly selected songs, we see that the similarity aware modes enjoy a
great user acceptance. Surprisingly, the collection shuffling mode, which is
prevalent in state-of-the-art players, is barely used.7

Comparing these results to the studies shown in Section 10.1, it is no
surprise that the traditional lists are the most popular means to explicitly
select music. The usage numbers of the descriptive and visual browsing
methods, however, are even higher than predicted. This might reflect the
fact that people only become aware of certain retrieval techniques, once they
are provided with them, but then understand the advantages. Moreover, the
number might be slightly biased from the user selection process. That is,
users that downloaded our application might be disproportionally open to
explore new features.

The plain numbers might let room for speculations. However, most of
the results are clear enough to conclude that the novel features were well
accepted by the users. Moreover, public feedback in the Android Market
underlines the usefulness of similarity aware play modes. Considering smart
shuffling, for example, people wrote:

“[...] Does a good job learning my tastes. [...]”

7As smart shuffling is the default mode in our player, the result is likely to be biased.
However, the large differences clearly underline the advantages of similarity aware play
modes and show that there is little incentive to use collection shuffling if a smart shuffling
mode is present.



144 CHAPTER 10. THE MAP OF MUSIC IN THE MOBILE DOMAIN

“Great app, learns what I like.”

Other comments confirm the acceptance of the similar song mode:

“[...] easy browse and make playlists. Auto play related music is very
good. [...]”

“[...] Love the ability to automatically play similar music. [...]”

10.6.2 Conclusion

museek is a music player for Android mobile phones that facilitates novel
ways to browse and find music. Our usage data based evaluation shows that
these new features are well accepted and add to the user’s music listening
and browsing experience. All the incorporated features, namely the similarity
aware play modes, the music map, as well as a personalized tag cloud were
highly appreciated. This shows that explorative browsing and descriptive
music selection methods are indeed important to satisfy the users’ needs.
Traditional methods, however, have also shown to be relevant. Thus, we
conclude that future mobile music players should, in addition to standard
bibliographic selection and browsing functionality offer sophisticated retrieval
interfaces.



Chapter 11

Concluding Remarks

Looking at books in the bookstore, buying tools in the supermarket, selecting
articles to read in the newspaper, and renting videos from the rental service,
all these actions do not only fulfill their primary purpose, but also carry a
huge amount of implicit information – about ourselves, but also about the
items in question. A long time ago, large supermarket chains started to
exploit this information. According to a legend, Wal-Mart once put beer
and diapers next to each other in the shelf, as they were often sold together.
Before the Internet age, it was a privilege of large companies to possess
such information. With the emergence of the Internet, and the Web 2.0
in particular, user actions are recorded on a tremendous scale. Moreover,
a considerable amount of this information is (possibly in an anonymized
fashion) publicly available, and thus accessible to research.

The second part of this thesis was devoted to the analysis of such user
generated data, with a special focus on similarity. We were thereby interested
in the similarity among items rather than users, and thus investigated the
mass behavior, rather than the behavior of individuals. More precisely, we
have studied the publication records of individual authors to derive a sim-
ilarity measure between scientific conferences, and we have looked into the
listening history of last.fm users to construct a music similarity space.

Our analysis of publication data has shown that the knowledge about who
has published which paper at which conference facilitates the extraction of
different relationships among publication venues. In particular, we have seen
that the paper titles can be used to thematically relate conferences. More-
over, the knowledge about the publishing authors defines another measure
that can be seen as a mixture between similarity with respect to quality and
thematic scope. We have shown that by combining the purely thematic, and
the mixture measure we can emphasize the quality aspect. This result con-
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firms the advantages of looking at different layers of networks, as suggested
in the first part of the thesis. To demonstrate the practical usefulness of the
derived similarity information, we have proposed a novel conference rating
method, and we have implemented confsearch, a search engine for scientific
conferences, designed to support researchers looking for an appropriate place
for publication.

Similarly to how the co-occurrence of two conferences in the publication
list of an author indicates that these conferences are somehow related, the
co-occurrence of two songs in the listening history of a user indicates that the
two songs are somehow related. We have made use of this observation to de-
rive a music similarity measure from last.fm data. In contrast to audio-based
approaches, such usage data derived measures are known to better reflect per-
ceived music similarity. However, co-occurrence based measures only define
pairwise similarity which restricts the possibilities of user-interface designers.
To overcome these issues, we have introduced the concept of a music map,
which is basically a Euclidean space that reflects socially derived music sim-
ilarity information. We have shown two methods to construct such a music
map, one that solely relies on the co-occurrences of songs in the users’ listen-
ing histories, and one that takes user generated social tags as an additional
input. The first method is based on graph embedding, whereas the second
approach builds upon on a probabilistic framework originally developed for
textual information retrieval.

Based on our music similarity maps, we have implemented a variety of
interfaces that have not previously been accessible to social music similarity
measures. Examples include a trajectory based playlist generator, a smart-
shuffling algorithm that avoids unwanted regions based on skipping behavior,
and interfaces to visualize a collection on small screens. Some of these inter-
faces have been integrated into museek, a publicly available Android music
player. The high user acceptance of the player in general, and the similarity
aware features in particular, underlines that the described music similarity
spaces are well suited for the use in real-world settings.

These examples show how the end-users can profit from data they have
implicitly created while following completely different goals. Clearly, we
could only demonstrate this phenomenon exemplarily, on a very small sam-
ple consisting of scientific conferences and music. However similar techniques
can doubtlessly be applied in other domains, too.

The ever growing archives of collected usage data are often criticized for
privacy reasons. These privacy concerns should definitely be taken serious.
In particular, care should be taken that no data that compromises the in-
tegrity of the individual is being stored (let alone being made accessible to
the public). However, our examples also show that even the mining of data
at the aggregated level of user masses is able to reveal valuable information
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from which the individual can benefit. We thus believe that the collection
of usage data should not per se be demonized. Rather, we should carefully
weight pros and cons before storing any piece of information in order to find
the best trade-off between privacy considerations and the benefits of the end
users.
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