
Online Matching: Haste makes Waste!

(Full Version)∗

Yuval Emek† Shay Kutten‡ Roger Wattenhofer§

Abstract

This paper studies a new online problem, referred to as min-cost perfect matching with delays

(MPMD), defined over a finite metric space (i.e., a complete graph with positive edge weights

obeying the triangle inequality) M that is known to the algorithm in advance. Requests arrive

in a continuous time online fashion at the points ofM and should be served by matching them

to each other. The algorithm is allowed to delay its request matching commitments, but this

does not come for free: the total cost of the algorithm is the sum of metric distances between

matched requests plus the sum of times each request waited since it arrived until it was matched.

A randomized online MPMD algorithm is presented whose competitive ratio is O(log2 n+log ∆),

where n is the number of points in M and ∆ is its aspect ratio. The analysis is based on a

machinery developed in the context of a new stochastic process that can be viewed as two

interleaved Poisson processes; surprisingly, this new process captures precisely the behavior of

our algorithm. A related problem in which the algorithm is allowed to clear any unmatched

request at a fixed penalty is also addressed. It is suggested that the MPMD problem is merely

the tip of the iceberg for a general framework of online problems with delayed service that

captures many more natural problems.

∗An extended abstract will appear in Proceedings of ACM STOC 2016.
†Technion, Israel. Email: yemek@ie.technion.ac.il. Partially supported by the Technion-Microsoft Electronic

Commerce Research Center.
‡Technion, Israel. Email: kutten@ie.technion.ac.il. Partially supported by the Technion-Microsoft Electronic

Commerce Research Center and by the France Israel cooperation grant from the Israeli Ministry of Science.
§ETH Zurich, Switzerland. Email: wattenhofer@ethz.ch.

1 Introduction

Consider an online gaming platform supporting two-player games such as Chess, Scrabble, or Street

Fighter 4.11 The platform tries to find a suitable opponent for each player connecting to it; matching

two players initiates a new game between them. The platform should minimize two criteria: (i)

the difference between the matched players’ rating (a positive integer that represents the player’s

skill), so that the game is challenging for both players; and (ii) the waiting time until a player

is matched and can start playing since waiting is boring. (In reality, the 1-dimensional player

rating space is often generalized to a more complex metric space by taking into account additional

parameters such as the network distance between the matched players.) It turns out, though, that

these two minimization criteria are often conflicting: What if the pool of players waiting for a

suitable opponent does not contain anyone whose rating is close to that of a new player? Should

the system match the new player to an opponent whose rating differs significantly from hers?

The naive approach that matches players immediately does a terrible job: Murphy’s Law may

strike, and right after matching a player, a perfect opponent will emerge: Haste makes waste,

unbounded waste in fact. To cope with this challenge, we must allow the platform to delay its

service in a rent-or-buy manner.

Model. LetM = (V, δ) be a finite metric space. Consider a set R of requests, where each request

ρ ∈ R is characterized by its location `(ρ) ∈ V (also referred to as the point that hosts ρ) and

arrival time t(ρ) ∈ R≥0.22 Assume for the time being that |R| is even.33 Notice that R can have

multiple requests with the same location (in particular, |R| is unbounded with respect to |V |); for

simplicity, we assume that each request has a unique arrival time.44

The input to an online algorithm for the min-cost perfect matching with delays (MPMD) problem

is a finite metric spaceM, provided to the algorithm before the execution commences, and a request

set R over M such that each request ρ ∈ R is presented to the algorithm in an online fashion at

its arrival time t(ρ). The goal of the algorithm is to construct a (perfect) matching of the request

set — namely, a partition of R into |R|/2 unordered request pairs — in an online fashion with no

preemption.

The algorithm is allowed to delay the matching of any request in R at a cost. More formally,

the requests ρ1 and ρ2 can be matched at any time t ≥ max{t(ρ1), t(ρ2)}; if algorithm A matches

requests ρ1 and ρ2 at time t, then it incurs a time cost of costtA(ρi) = t − t(ρi) and a space cost

of costsA(ρi) = δ(`(ρ1), `(ρ2))/2 for serving ρi, i ∈ {1, 2}. The space cost and time cost of A
1Leading gaming platforms include XBOX Live and the Playstation Network for consoles, Steam for PCs, and

web-based platforms such as Geewa, Pogo and Yahoo Games.
2 For ease of reference, Tab. 11 provides an index for the notation used throughout this paper.
3The problem presented here is not well defined if |R| is odd however, later on we discuss a variant of this problem

that is well defined for any finite |R|.
4This assumption is without loss of generality as the arrival times can be slightly perturbed.

1

for the whole request set are costsA(R,M) =
∑

ρ∈R costsA(ρ) and costtA(R,M) =
∑

ρ∈R costtA(ρ),

respectively. The objective is to minimize costA(R,M) = costsA(R,M) + costtA(R,M). When A
is clear from the context, we may drop the subscript.

Following the common practice in online computation (cf. [1212]), the quality of an online MPMD

algorithm is measured in terms of its competitive ratio. Online MPMD algorithm A is said to be

α-competitive if for every finite metric space M, there exists some β = β(M) such that for every

(even size) request set R over M, it is guaranteed that E[costA(R,M)] ≤ α · costA∗(R,M) + β,

where the expectation is taken over the coin tosses of the algorithm (if any) and A∗ is an optimal

offline algorithm. It is assumed thatM and R are generated by an oblivious adversary that knows

A, but not the realization of its coin tosses.

Related work. The rent-or-buy feature is fundamental to many online applications and thus,

prominent in the theoretical study of online computation. Classic online problems in which the

rent-or-buy feature constitutes the sole source of difficulty include ski-rental [2727, 2626, 2525] and TCP

acknowledgment [1616, 1717, 2525]. In other problems, the rent-or-buy feature is combined with a complex

combinatorial structure, enhancing an already challenging online problem, e.g., the extension of

online job scheduling [55, 44] studied in [33, 22, 66].

The matching problem is a combinatorial optimization celebrity ever since the seminal work

of Edmonds [1919, 1818]. The realm of online algorithms also features an extensive literature on

matching and some generalizations thereof. Online problems that have been studied in this regard

include maximum cardinality matching [2828, 1111, 2222, 1515, 3333, 3434], maximum vertex-weighted matching

[11, 1515, 3434], maximum capacitated assignment (a.k.a. the AdWords problem) [3131, 1313, 2222, 11, 3434],

metric maximum weight matching [2323, 2929], metric minimum cost perfect matching [2323, 3232, 77], and

metric minimum capacitated assignment (a.k.a. the transportation problem) [2424]; see [3030] for a

comprehensive survey. All these online problems are bipartite matching versions, where the nodes

in one side of the graph are static and the nodes in the other side are revealed in an online fashion

together with their incident edges.

Discussion and results. To the best of our knowledge, the MPMD problem is the first online all-

pairs matching version. Moreover, in contrast to the previously studied online matching versions,

in MPMD the graph (or metric space) is known a-priori and the algorithmic challenge stems from

the unknown locations and arrival times of the requests (whose number is unbounded); this is more

in the spirit of online problems such as the classic k-server problem.

The main technical result of this paper is a randomized online MPMD algorithm whose com-

petitive ratio is O(log2 n+ log ∆), where n is the number of points in the metric spaceM and ∆ is

its aspect ratio. This algorithm, presented in Sec. 33, is based on exponential timers that determine

how long should we wait before committing to a certain match. The analysis, presented in Sec. 44,

2

relies heavily on machinery we develop in the context of a new stochastic process named alternating

Poisson process.

We also consider a variant of the online MPMD problem, referred to as MPMDfp, in which the

algorithm can clear any unmatched request at a fixed penalty. This problem variant is motivated

by noticing that clearing an unmatched request may correspond to matching a player with a com-

puter opponent in the context of the aforementioned gaming platforms. The MPMDfp problem is

discussed further in Sec. 55, where we show that our online algorithm can be adjusted to cope with

this variant as well.

It is not difficult to develop constant lower bounds on the competitive ratio of online MPMD

algorithms already for the special case of a 2-point metric space (note that this special case gen-

eralizes the ski rental problem). While a 2-point metric space admits an O(1)-competitive online

MPMD algorithm, we conjecture that in the general case, the competitive ratio must grow as a

function of n. In particular, we believe that this conjecture holds for the 1-dimensional metric

spaces constructed in Appendix C of [2020] (a variant of the construction in Fig. 1 of [3636]). We

also establish an algorithm-specific lower bound: To demonstrate the role of randomness in the

online algorithm presented in Sec. 33, we show in Sec. 66 that the competitive ratio of its natural

deterministic counterpart is Ω(n).

Online problems with delayed service. The online MPMD problem is obtained by augment-

ing the (offline) min-cost perfect matching problem with the time axis over which service can be

delayed in a rent-or-buy manner. This viewpoint seems to open a gate to a general framework of

online problems with delayed service since the approach of combining the rent-or-buy feature with

a combinatorial optimization offline problem can be applied to a class of minimization problems

much larger than just min-cost perfect matching.

To be more precise, consider a minimization problem P defined with respect to some underlying

combinatorial structure C with a ground set Ein of input entities and a ground set Eout of output

entities. The input and output instances of P are multisets over Ein and Eout, respectively. For

each input instance I, problem P determines a collection F(I) of feasible output instances; input

instance I is said to be admissible if |F(I)| 6= ∅. We restrict our attention to problems P satisfying

the property that for every two input instances I ⊆ J , if I and J are admissible, then so is J − I.55

Minimization problem Π can be transformed into an online problem with delayed service Πon

by applying to it the delayed service operator : Each request in Πon is characterized by its location

— an entity in Ein — and by its arrival time. The algorithm can serve a collection R of yet unserved

requests by buying a feasible (under F) output instance S for their location multiset at any time

5We follow the standard multiset convention that for two multisets M,N over a ground set S with multiplicity

functions µM : S → Z≥0 and µN : S → Z≥0, the relation M ⊆ N holds if µM (x) ≤ µN (x) for every x ∈ S; and

N −M is the multiset whose multiplicity function µN−M : S → Z≥0 satisfies µN−M (x) = max{µN (x) − µM (x), 0}
for every x ∈ S.

3

t after the arrival of all requests in R. The payment for this service is the cost of S plus the total

waiting times of the requests in R up to time t. Notice that this act of buying S does not serve

requests other than those in R including any request arriving at the locations of R after time t.

The online MPMD problem is obtained by applying this delayed service operator to the metric

min-cost perfect matching problem, where C is a finite metric space, Cin is its points, and Cout is

the set of unordered point pairs (a point multiset is an admissible input instance if its cardinality

is even).66 This operator can also be applied to the vertex cover problem (C is a graph, Cin is the

edge set, and Cout is the vertex set), the dominating set problem (C is a graph and Cin and Cout are

the vertex set), and many more combinatorial optimization problems.

2 Preliminaries

Tree notation and terminology. Consider a tree T rooted at some vertex r with a leaf set L.

The notions parent, ancestor, child, and sibling are used in their usual sense. A binary tree is called

full if every internal vertex has exactly two children.

Let v be some vertex in T . The parent of v in T (assuming that v 6= r) is denoted by p(v). We

denote the subtree of T rooted at v by T (v) and the leaf set of T (v) by L(v). The set of ancestors of

v (excluding v itself) is denoted by anc(v). The depth of v in T — i.e., the distance (in hops) from

v to r — is denoted by depth(v) and the height of T is denoted by height(T) = maxx∈L depth(x).

A stilt in T is an oriented path connecting some vertex v ∈ T , referred to as the head of the

stilt, with a leaf in L(v), referred to as the foot of the stilt. Given two leaves x, y ∈ L, their least

common ancestor (LCA) in T is denoted by lca(x, y).

Probabilistic embedding in tree metric spaces. Let w : T → R≥0 be a weight function on

the vertices of T that satisfies (i) w(v) = 0 for every leaf v ∈ L; and (ii) w(v) < w(p(v)) for every

vertex v ∈ T − {r}. The pair (T,w) introduces a finite metric (in fact, an ultrametric) space over

the leaf set L with distance function δ defined by setting δ(x, y) = w(lca(x, y)) for every x, y ∈ L.

A metric space that can be realized by such a (T,w) pair is referred to as a tree metric space. We

subsequently identify a tree metric space with the pair (T,w) that realizes it.

Consider some real α > 1. A hierarchically well separated tree with parameter α (cf. [88]), or

α-HST in short, is a tree metric space (T,w) that, in addition to the aforementioned requirements,

satisfies w(p(v)) ≥ α · w(v) for every vertex v ∈ T − {r}. We refer to an α-HST realized by a full

binary tree T (cf. [1414]) as an α-HSBT.

6In the offline version of the metric min-cost perfect matching problem it suffices to consider only sets (rather

than multisets) for the input and output instances. The generalization to multisets is necessary for the transition to

the online version of the problem.

4

The following theorem is established by combining a celebrated construction of Fakcharoenphol

et al. [2121] (improving previous constructions of Bartal [88, 99]; see also [1010]) with a tree transformation

technique [3535] (details are deferred to Apx. AA).

Theorem 2.1. Consider some n-point metric space (V, δ) of aspect ratio ∆ =
maxx 6=y∈V δ(x,y)
minx 6=y∈V δ(x,y) and

let U be the set of all (1+Ω(1/ log n))-HSBTs (T,w) over V with height(T) = O(log ∆+log n) and

with distance functions δT that dominate δ in the sense that δT (x, y) ≥ δ(x, y) for every x, y ∈ V .

There exists a probability distribution P over U such that E(V,δT)∈P [δT (x, y)] ≤ O(log n) ·δ(x, y) for

every x, y ∈ V . Moreover, the probability distribution P can be sampled efficiently.

Matching algorithm notation and terminology. Consider the operation of an MPMD al-

gorithm on some HSBT (T,w). Recall that the input to the algorithm consists of a finite set

R of requests, where each request ρ ∈ R is characterized by its location `(ρ) ∈ L and arrival

time t(ρ) ∈ R≥0. Suppose that the algorithm matches requests ρ and ρ′ with `(ρ) = x ∈ L and

`(ρ′) = x′ ∈ L, x 6= x′. Let v be some vertex in the unique path connecting x and x′ in T . If

v = lca(x, x′), then we refer to this matching operation as matching across v; otherwise, we refer

to it as matching on top of v. Notice that matching across v corresponds to matching a request

located in L(u1) with a request located in L(u2), where u1 and u2 are the children of v in T , whereas

matching on top of v corresponds to matching a request located in L(v) with a request located in

L − L(v).

If the algorithm matches request ρ ∈ R at time t′, then ρ is said to be active at all times

t(ρ) ≤ t < t′. Given some vertex v ∈ T , we denote the set of active requests in L(v) at time t by

Cv(t) and write C (t) = Cr(t). Vertex v is said to be odd at time t if |Cv(t)| = 1 (mod 2); let D(t)

be the set of odd vertices at time t.

A key observation is that the forest induced on T by the vertex subset D(t) is a collection —

denoted hereafter by S(t) — of vertex disjoint stilts. Moreover, if v is the head of a stilt in S(t)

then either (1) v = r is the root of T (which implies that |C (t)| is odd); or (2) the sibling of v is

also the head of a stilt in S(t). Let H (t) ⊆ D(t) be the set of heads of stilts in S(t).

Internal vertex v ∈ T − L is said to be effective at time t if its two children are odd (which, in

particular, means that v is not odd); let F (t) be the set of effective vertices at time t. Notice that

v is effective if and only if its two children are in H (t) and let S1, S2 ∈ S(t) be their corresponding

stilts. We refer to the feet of S1 and S2 as the supporting leaves of v at time t.

We shall apply the aforementioned matching algorithm definitions to both our online MPMD

algorithm, denoted by A, and to the benchmark offline MPMD algorithm, denoted by A∗. To

distinguish between the two, we reserve the aforementioned notation system for the former and

add a superscript asterisk for the latter; in particular, the set of vertices odd under A∗ at time t is

denoted by D∗(t) (whereas the set of vertices odd under A at time t is denoted by D(t)).

5

3 An online MPMD algorithm

In this section, we present our online MPMD algorithm, referred to as the stilt-walker algorithm

and denoted hereafter by A; its competitive ratio is analyzed in Sec. 44. The algorithm works in

two stages: a preprocessing stage, in which we employ Thm. 2.12.1 to embed the input metric space

in a random (1 + Ω(1/ log n))-HSBT (T,w), and the actual online execution, in which A processes

the requests arriving at the leaves of T and constructs the desired matching. The remainder of this

section is dedicated to describing the latter.

The matching policy. Although A operates in continuous time, it will be convenient to describe

it as if it progresses in discrete time steps, taking the difference dt between two consecutive time

steps to be infinitesimally small so that at most one request arrives in each time step.

Fix some time step t. If request ρ arrives at this time step and `(ρ) already hosts another active

(under A) request ρ′, then the algorithm matches ρ and ρ′ immediately. Assume hereafter that

each leaf in L hosts at most one active request.

Consider some effective vertex v ∈ F (t) and let xv1, x
v
2 be its supporting leaves (the feet of the

corresponding stilts in S(t)). By definition, xvi hosts an odd number of active requests at time t

for i ∈ {1, 2} and since it cannot host more than one active request, it follows that there exists a

unique active request ρvi at time t with `(ρvi) = xvi ; we refer to ρv1 and ρv2 as the supporting requests

of v. The algorithm tosses an independent biased coin and matches its supporting requests (i.e.,

matching across v) with probability dt/w(v). In what follows, we attribute this coin toss to v so that

we can distinguish between coin tosses of different (internal) vertices. A pseudocode description of

the stilt-walker algorithm is provided in Pseudocode 11.

Pseudocode 1 The operation of A at time step t.

1: if ∃ρ, ρ′ ∈ C (t) with `(ρ) = `(ρ′) then . there can be at most one such request pair

2: match ρ and ρ′

3: end if

4: for all v ∈ F (t) do

5: xv1, x
v
2 ← supporting leaves of v

6: ρvi ← unique active request with `(ρvi) = xvi for i = 1, 2

7: z = z(v, t)← outcome of an independent Bernoulli trial with parameter dt/w(v)

8: if z = 1 then

9: match ρv1 and ρv2 . matching across v

10: end if

11: end for

An analogous “continuous” description of the stilt-walker algorithm’s policy regarding the ef-

fective vertices is as follows. Consider some internal vertex v ∈ T − L and suppose that the last

6

time A matched across v was at time t0 (take t0 = 0 if A still has not matched across v). Then,

the next time the algorithm matches across v is the minimum t1 that satisfies∫ t1

t0

1(v ∈ F (t)) dt = Z ,

where 1(·) denotes the indicator operator and Z = Z(v, t0) ∼ Exp(1/w(v)) is an (independent)

random variable that obeys an exponential distribution with rate 1/w(v).

Intuition spotlight: The reader may wonder about the role of the exponential timers main-

tained at the internal vertices. At first, we tried to analyze the deterministic version of the

algorithm, where the (1/w(v))-rate exponential timer maintained at vertex v ∈ T −L is replaced

by a deterministic Θ(w(v))-timer. This seemed to make sense because it allows the algorithm

to wait for Θ(w(v)) time before it pays w(v) in space cost (the usual approach to rent-or-buy

problems). However, as demonstrated in Sec. 66, this is hopeless. Switching to the randomized

version resolves this obstacle because the memoryless exponential timers allow us to analyze

each vertex independently and partition the time into periods so that each period can be ana-

lyzed independently — see Sec. 4.24.2.

Notice that our algorithm is guaranteed to eventually match all requests with probability 1.

Indeed, if there are at least two active requests at time t, then there is at least one effective vertex

v at time t and A matches across it (thus matching its supporting requests) at time t + dt with

probability dt/w(v).

4 Analyzing the stilt-walker algorithm

Our main goal in this section is to establish the following Theorem.

Theorem 4.1. Fix some 1 < α ≤ 2 and consider an α-HSBT T realized by a full binary tree of

height h. Let R be a request set over T and let A∗ be some benchmark offline MPMD algorithm

for T , R. The stilt-walker algorithm A guarantees that

E [costA (R, T)] ≤ O(1/(α− 1)) · costsA∗ (R, T) +O(h) · costtA∗ (R, T) + β ,

where β = β(T) depends only on T and is independent of R.

We will soon turn our attention to the proof of Thm. 4.14.1, but first, let us show that it yields

the desired upper bound on the competitive ratio of A. To that end, fix some n-point metric space

M = (V, δ) of aspect ratio ∆ and a request set R over M and let Ã∗ be an optimal (offline)

algorithm for R (over M). Let P be the probability distribution promised by Thm. 2.12.1 when

applied to M. Denoting the coin tosses of A by χ and taking T to be some HSBT in the support

of P, we can employ Thm. 4.14.1 to conclude that

Eχ [costA (R, T)] ≤ O(log n) · costsA∗ (R, T) +O(log ∆ + log n) · costtA∗ (R, T) + β(T) ,

7

where A∗ is the projection of Ã∗ on T (that is, same requests are matched at the same time,

incurring possibly different space costs). Therefore,

EP,χ [costA (R,M)] ≤ET ∈P [Eχ [costA (R, T)]]

≤ET ∈P
[
O(log n) · costsA∗ (R, T) +O(log ∆ + log n) · costtA∗ (R, T) + β(T)

]
=O(log n) · ET ∈P [costsA∗ (R, T)] +O(log ∆ + log n) · costtÃ∗ (R,M) + β(M)

≤O
(
log2 n

)
· costsÃ∗ (R,M) +O(log ∆ + log n) · costtÃ∗ (R,M) + β(M)

≤O
(
log ∆ + log2 n

)
· costÃ∗ (R,M) + β(M) ,

where β(M) = ET ∈P [β(T)], the first transition holds since the distance functions in the support

of P dominate δ, the third transition holds since the time costs of Ã∗ in M are the same as those

of A∗ in T , and the fourth transition holds by Thm. 2.12.1.

The remainder of this section is dedicated to the proof of Thm. 4.14.1 and is organized as follows:

First, in Sec. 4.14.1, we introduce a new stochastic process, called alternating Poisson process (APP),

together with some related machinery. APPs play a major role in Sec. 4.24.2 that forms the heart

of the analysis: we prove Thm. 4.14.1 assuming that online algorithm A receives a special end-of-

input signal upon receiving the last request in R and responds to it by immediately matching all

remaining active requests. Finally, in Sec. 4.34.3, we lift the assumption of receiving the end-of-input

signal, showing that it does not affect the (multiplicative) competitive ratio.

4.1 Alternating Poisson processes

A major component of the analysis presented in Sec. 4.24.2 is a stochastic process (more specifically, a

point process) that we refer to as an alternating Poisson process (APP). This process is parametrized

by its start time t0 ∈ R≥0, length γ ∈ R>0, rate λ ∈ R>0, and a right-continuous coloring function

c : [t0, t0 + γ)→ {1, 2,⊥} with finitely many discontinuity points.77 For simplicity, in the remainder

of this section, we assume that the APP starts at time t0 = 0; this assumption can be lifted by

translating any time t ∈ [0, γ] to t+ t0 ∈ [t0, t0 + γ].

Given some 0 ≤ t ≤ t′ ≤ γ, we define the 1-volume and 2-volume of the interval [t, t′) as

V1(t, t
′) =

∫ t′

t
1(c(x) = 1) dx

and

V2(t, t
′) =

∫ t′

t
1(c(x) = 2) dx ,

respectively. The APP is realized by independent and identically Exp(λ) distributed random vari-

ables Z1, Z2, . . . These determine the [0, γ]-valued random variables T1, T2, . . . , referred to as alter-

7The color ⊥ is redundant for the analysis of the APPs carried out in the present section. We introduce it because

it makes things simpler in Sec. 4.24.2 when we employ the APP framework in the analysis of our online algorithm.

8

Figure 1: A realization of an alternating Poisson process with time progressing from left to right.

The dark gray, light gray, and white intervals represent the colors 1, 2, and ⊥, respectively. The

vertical arrows represent the meaningful alternation times and the horizontal two-sided arrows

depict the time intervals that contribute to the digestion of the corresponding iterations.

nation times, defined inductively by fixing T0 = 0 and setting

Tj =

{
max {t ≤ γ : V1(Tj−1, t) ≤ Zj} , j is odd

max {t ≤ γ : V2(Tj−1, t) ≤ Zj} , j is even

for j = 1, 2, . . . Put differently, the alternation times divide the process into iterations so that

iteration j lasts from time Tj−1 to time Tj . In odd (resp., even) iterations, the process digests

the 1s (resp., 2s), ignoring the ⊥s and the 2s (resp., 1s). If the iteration did not end by time

Tj−1 < t < γ and c(t) = 1 (resp., c(t) = 2), then it ends at time t + dt with probability π = λdt;

the iteration ends at time λ if it did not end beforehand (an illustration is provided in Fig. 11).

The definition of the alternation times implies, in particular, that if Tj−1 = γ, then Tj = γ; we

say that the jth alternation time is meaningful if 0 < Tj < γ. Observe that if Tj is meaningful and

j ≥ 1 is odd (resp., even), then c(Tj) must be 1 (resp., 2). Let

N = max{j ∈ Z≥0 | Tj < γ}

be the random variable counting the number of meaningful alternation times.

Define the [0, γ]-valued random variables G1, G2, . . . by setting

Gj =

{
V1(Tj−1, Tj), j is odd

V2(Tj−1, Tj), j is even

and let G =
∑∞

j=1Gj . We refer to Gj as the digestion of the jth iteration and to G as the total

digestion.

Lemma 4.2. For every 0 ≤ t < γ, we have E[Gj | Tj−1 = t] = 1
λ

(
1− e−λ·Vi(t,γ)

)
, where i = 1 if j

is odd; and i = 2 if j is even.88

Proof. Assume without loss of generality that j is odd and i = 1 (the case that j is even and i = 2

is proved following the same line of arguments). The design of the APP implies that conditioned

on Tj−1 = t, the random variable Gj satisfies Gj ∼ min{Exp(λ), V1(t, γ)}, that is, it is distributed

8Recall that for every j > 1, an odd (resp., even) j implies that c(t) = c(Tj−1) = 2 (resp., c(t) = c(Tj−1) = 1).

9

identically to an exponential random variable with rate λ, truncated at V1(t, γ). Fixing ϑ = V1(t, γ),

the assertion follows by observing that

E [min {Exp(λ), ϑ}] =

∫ ϑ

0
λe−λxx dx + ϑe−λϑ

= −e−λxx− 1

λ
e−λx

∣∣∣∣ϑ
0

+ ϑe−λϑ

= − ϑe−λϑ − 1

λ
e−λϑ +

1

λ
+ ϑe−λϑ

=
1

λ

(
1− e−λϑ

)
,

where the second transition is derived using integration by parts with u(x) = x and v(x) = −e−λx.

Lemma 4.3. E[G] = E[N]/λ.

Proof. Let Ij , j = 1, 2, . . . , be an indicator random variable for the event Tj < γ and notice that

E[N] =
∞∑
j=1

P (N ≥ j) =
∞∑
j=1

E [Ij] .

Recalling that

E[G] =

∞∑
j=1

E [Gj] ,

it suffices to prove that E[Ij]/λ = E[Gj] for j = 1, 2, . . . To that end, we show that

E [E [Ij | Tj−1]] /λ = E [E [Gj | Tj−1]]

which establishes the assertion by the law of total expectation.

The random variable E[Ij | Tj−1] maps the event Tj−1 = t to

E[Ij |Tj−1 = t] = P(Exp(λ) < Vi(t, γ)) = 1− e−λ·Vi(t,γ) ,

where i = 1 if j is odd; and i = 2 if j is even. The proof is completed by Lem. 4.24.2 as the random

variable E[Gj | Tj−1] maps the event Tj−1 = t to E[Gj | Tj−1 = t].

Lemma 4.4. The random variable N is stochastically dominated by 1 + 2Z, where Z ∼ Pois(λ ·
min{V1(0, γ), V2(0, γ)}) is a Poisson random variable with parameter λ · min{V1(0, γ), V2(0, γ)}.
Moreover, if K denotes the number of discontinuity points of the coloring function c in [0, γ), then

N ≤ K + 1 (with probability 1).

Proof. Fix V1 = V1(0, γ) and V2 = V2(0, γ) and define the random variables

N1 = |{j ∈ Z≥0 | T2j+1 < γ}| and N2 = |{j ∈ Z≥1 | T2j < γ}| .

The definition of the APP ensures the following four properties:

10

(P1) N = N1 +N2;

(P2) N2 ≤ N1 ≤ N2 + 1;

(P3) Ni, i ∈ {1, 2}, is stochastically dominated by Pois(λ · Vi); and

(P4) Ni, i ∈ {1, 2}, is bounded from above by the number of (set-wise) maximal intervals I ⊆ [0, γ)

satisfying c(t) = i for all t ∈ I.

The second part of the assertion follows directly from properties (P1) and (P4). For the first part,

we employ (P1) and (P2) to conclude that N ≤ 1 + 2Ni for i ∈ {1, 2}. Then, by (P3), it follows

that N is stochastically dominated by 1 + 2 · Pois(λ · Vi) for i ∈ {1, 2}, thus it is stochastically

dominated by 1 + 2 · Pois(λ ·min{V1, V2}).

It will be convenient to also consider a generalization of the APP, referred to as a rate-varying

APP, in which the fixed rate parameter λ is replaced by a rate function λ′ : [0, γ) → R>0 that

may vary in time. This affects the aforementioned iteration termination probability π so that an

odd (resp., even) iteration j that did not end by time Tj−1 < t < γ, c(t) = 1 (resp., c(t) = 2),

will now end at time t+ dt with probability π = π(t) = λ′(t)dt. Given some (fixed) λ ∈ R>0, it is

straightforward to verify that if the rate function λ′(t) is bounded from above by λ, i.e., λ′(t) ≤ λ

for all 0 ≤ t < λ, then Lem. 4.24.2 and 4.44.4 hold also for rate-varying APPs, only that in the former,

we should replace the equality in E[Gj | Tj−1 = t] = 1
λ

(
1− e−λ·Vi(t,γ)

)
with a ≥ inequality.

Intuition spotlight: APPs are utilized in the analysis conducted in Sec. 4.24.2 as they capture the

behavior of the stilt-walker algorithm in what can be informally described as “toggling situations”.

Such situations turn out to appear in multiple parts of the analysis (see Lem. 4.84.8, 4.104.10, and

4.124.12).

4.2 Analysis under the end-of-input signal assumption

Let T be an n-point α-HSBT of aspect ratio ∆ and let T and w : T → R≥0 be the full binary tree

and weight function that realize T . Assume without loss of generality that the minimum positive

distance in T is scaled to 1 so that ∆ is the diameter of T .

Our goal in this section is to establish Thm. 4.14.1 under the end-of-input signal assumption.99

More formally, assume that the online algorithm is signaled at time tend = max{t(ρ) | ρ ∈ R} (the

arrival time of the last request in R); upon receiving this signal, the algorithm clears the remaining

active requests by immediately matching across v for every effective vertex v ∈ F (tend) (this is

guaranteed as the number of active requests at time tend must be even). Let csend be the space cost

of these matching operations and observe that csend ≤ (n/2) ·∆. (Although it does not affect our

analysis, it is interesting to point out that csend is, in fact, the cost of an optimal matching of the

remaining requests.) We start the analysis with the following “warmup” observation regarding the

operation of the stilt-walker algorithm.

9For the convenience of the reader, Fig. 66 provides a schematic overview of the analysis presented in this section.

11

Observation. Consider an internal vertex v ∈ T −L with children u1, u2. The design of A ensures

that:

1. the random variable 1(v ∈ D(t)) is independent of the coin tosses of all vertices u ∈ T (v)

(including v);

2. A can match on top of v only when v is odd; and

3. if A matched across or on top of v at time t, then v, u1, and u2 are not odd immediately following

time t, i.e., v, u1, u2 /∈ D(t+ dt) for infinitesimally small dt > 0.

Proof. To establish property 11, notice that the coin tosses of vertex u determine the decisions of A
to match across u. Matching across u decreases |Cv(t)| by 2, hence it does not affect its parity.

Property 22 is proved by recalling that matching on top of v at time t is realized by matching

a request located in some leaf x ∈ L(v) to a request located in some leaf x′ ∈ L − L(v). Since

v 6= lca(x, x′), it must belong to the stilt in S(t) whose foot is x which establishes the assertion by

the definition of S(t).

Finally, observe that property 33 holds trivially if A matched across v at time t because this

means that u1, u2 ∈ D(t) and thus, v, u1, u2 /∈ D(t + dt). Otherwise, if A matched on top of v at

time t, then v ∈ D(t) which means that ui ∈ D(t) and u3−i /∈ D(t) for some i ∈ {1, 2}. This also

means that A matched on top of ui at time t, therefore v, ui, u3−i /∈ D(t+ dt).

Intuition spotlight: A key ingredient in the analysis of A’s competitive ratio is an alternative

method for measuring its time and space cost on a per-vertex basis. This is facilitated by the

definitions of time and space potentials for each internal vertex v.

Time and space potentials. Consider some internal vertex v ∈ T −L with children u1, u2 and

some 0 ≤ t0 < t1 ≤ tend. The time potentials of v, denoted τv and τ∗v , capture the contributions

of v to costtA(R, T) and costtA∗(R, T), respectively, in a certain time interval. They are defined by

setting

τv([t0, t1)) =

∫ t1

t0

1(v ∈ F (t)) dt and τ∗v ([t0, t1)) =

∫ t1

t0

1(u1 ∈ D∗(t)) + 1(u2 ∈ D∗(t)) dt ;

in other words, a dt amount is deposited into τv whenever v ∈ F (t) and into τ∗v whenever ui ∈ D∗(t)

for i ∈ {1, 2}.

The space potentials of v, denoted σv and σ∗v , capture the contributions of v to costsA(R, T)

and costsA∗(R, T), respectively, in a certain time interval. An amount of w(v) is deposited into σv

whenever A matches across v; an amount of w(v) is deposited into σ∗v whenever A∗ matches across

or on top of v. In other words, given two requests ρ, ρ′ with x = `(ρ) and x′ = `(ρ′), if A matches

requests ρ and ρ′, then we deposit an amount of w(u) into σu for u = lca(x, x′); if A∗ matches

requests ρ and ρ′, then we deposit an amount of w(u) into σ∗u for every internal vertex u along the

12

unique path connecting x and x′ in T . Let σv([t0, t1)) and σ∗v([t0, t1)) be the total amount deposited

into σv and σ∗v , respectively, during the time interval [t0, t1).

For clarity of the exposition, we often write τv(t0, t1), τ
∗
v (t0, t1), σv(t0, t1), and σ∗v(t0, t1) instead

of the aforementioned notations. We also extend the definition of these four notations from intervals

to collections of disjoint intervals in the natural manner. Thm. 4.14.1 is established by proving the

following three lemmas.

Intuition spotlight: Lem. 4.54.5 allows us to express the time and space costs by means of the

per-vertex potentials. Lem. 4.64.6 then means that we can bound the time potential of v under A
by the time and space potentials of v under A∗, charging the extra w(v) on the additive term of

the competitive ratio, whereas Lem. 4.74.7 means that we can bound the space potential of v under

A by its time potential.

Lemma 4.5. There exists some ζ = ζ(R) such that the time potentials satisfy

costtA(R, T) ≤ ζ +
∑

v∈T−L
O(τv(0, tend)) and costtA∗(R, T) ≥ ζ/h+

∑
v∈T−L

Ω(τ∗v (0, tend)/h)

(recall that h denotes the height of T). The space potentials satisfy

costsA(R, T) ≤ csend +
∑

v∈T−L
O(σv(0, tend)) and costsA∗(R, T) ≥

∑
v∈T−L

Ω((α− 1) · σ∗v(0, tend))

(recall that the parameter α is set in Thm. 4.14.1).

Lemma 4.6. For every v ∈ T −L, it holds that E[τv(0, tend)] ≤ O(τ∗v (0, tend) + σ∗v(0, tend) +w(v)).

Lemma 4.7. For every v ∈ T − L, it holds that E[σv(0, tend)] ≤ E[τv(0, tend)].

Proof of Lem. 4.54.5. We first note that

costtA(R, T) =
∑
v∈T

∫ tend

0
1(v ∈ H (t)) dt .

Indeed, as each leaf contains at most one active request, an active request ρ ∈ C (t) is accounted

for in exactly one term of the sum in the RHS of the equation, that is, the term corresponding to

the head of the stilt whose foot is `(ρ). Since an internal vertex is effective at time t if and only if

its two children are in H (t), the last equation can be rewritten as

costtA(R, T) =

∫ tend

0
1(r ∈ D(t)) dt+ 2 ·

∑
v∈T−L

τv(0, tend) .

On the other hand, the inequality

costtA∗(R, T) ≥ 1

h
·
∑
v∈T

∫ tend

0
1(v ∈ D∗(t)) dt

13

holds since each active request under A∗ is accounted for in at most h terms of the sum in the RHS

of the inequality, therefore

costtA∗(R, T) ≥ 1

h

(∫ tend

0
1(r ∈ D∗(t)) dt+

∑
v∈T−L

τ∗v (0, tend)

)
.

The first part of the assertion is established by observing that r ∈ D(t) if and only if r ∈ D∗(t),

hence we can fix

ζ =

∫ tend

0
1(r ∈ D(t)) dt =

∫ tend

0
1(r ∈ D∗(t)) dt .

The contribution to costsA(R, T) of matching requests ρ and ρ′ by A is w(lca(x, x′)); this is also

its contribution to the space potentials σ, hence

costsA(R, T) = csend +
∑

v∈T−L
σv(0, tend) .

The contribution to costsA∗(R, T) of matching requests ρ and ρ′ by A∗ is w(lca(x, x′)), whereas

since T = (T,w) is an α-HSBT (recall that 1 < α ≤ 2), its contribution to the space potentials σ∗

is bounded from above by
∑h

i=0w(lca(x, x′)) · (1/α)i < w(lca(x, x′)) · α/(α− 1), hence,

costsA∗(R, T) ≥ Ω(α− 1) ·
∑

v∈T−L
σ∗v(0, tend)

which completes the proof.

Convenient notation. The remainder of this section is dedicated to the proofs of Lem. 4.64.6 and

4.74.7. To this end, we fix some internal vertex v ∈ T − L with children u1 and u2 which facilitates

switching to a shorter and simpler notation: Denote τ = τv, τ
∗ = τ∗v , σ = σv, and σ∗ = σ∗v . Given

some time t ∈ [0, tend), we write for short

Xi(t) = 1(ui ∈ D(t)) X∗i (t) = 1(ui ∈ D∗(t))

for i ∈ {1, 2} and

X(t) = X1(t)⊕X2(t) X∗(t) = X∗1 (t)⊕X∗2 (t) .

Notice that 1(v ∈ F (t)) = X1(t)·X2(t) and 1(u1 ∈ D∗(t))+1(u2 ∈ D∗(t)) = X∗(t)+2·X∗1 (t)·X∗2 (t),

thus

τ(t0, t1) =

∫ t1

t0

X1(t) ·X2(t) dt and τ∗(t0, t1) =

∫ t1

t0

X∗(t) + 2 ·X∗1 (t) ·X∗2 (t) dt .

It will be convenient to also define

Yi(t) = |{ρ ∈ R | `(ρ) ∈ L(ui) ∧ t(ρ) ≤ t}| (mod 2)

for i ∈ {1, 2} and

Y (t) = Y1(t)⊕ Y2(t) ,
observing that the parity of the number of times A matched on top of ui (resp., v) up to time t

equals Xi(t)⊕ Yi(t) (resp., X(t)⊕ Y (t)).

14

Phases and subphases. We partition the time line [0, tend) into phases (defined with respect

to v), where each phase is a time interval that starts when the previous phase ends (or at time 0

if this is the first phase) and ends when A matches on top of v (or at time tend if this is the last

phase). A crucial observation is that this partition is fully determined by the coin tosses of anc(v)

(namely, the ancestors of v) independently of the coin tosses of v.

We further partition every phase φ = [t0, t1) of v into subphases, where each subphase is a time

interval that starts when the previous subphase ends (or at time t0 if this is the first subphase of

φ) and ends when A∗ matches across or on top of v (or at time t1 if this is the last subphase of φ).

Notice that matching operations across v performed by A (fully determined by the coin tosses of

v) can occur at the midst of a subphase.

Lemma 4.8. For every phase φ = [t0, t1) of v, it holds that Ev[σ(φ)] = Ev[τ(φ)].

Proof. We investigate the dynamics of (X1(t), X2(t))t∈φ and (Y1(t), Y2(t))t∈φ that take values in

{0, 1}2 (an illustration is provided in Fig. 22). Observe that a new request arriving in L(ui), i ∈
{1, 2}, flipsXi and Yi without affectingX3−i and Y3−i. While (Y1, Y2) is affected only by new request

arrivals, the dynamic of (X1, X2) is tied to the actions of A too. Specifically, A can match across v

(recall that A does not match on top of v in the midst of phase φ) only when (X1, X2) = (1, 1) and

if (X1, X2) = (1, 1) throughout the infinitesimally small time interval [t − dt, t), then A matches

across v at time t with probability dt/w(v) (depending solely on the coin tosses of v), in which case

(X1, X2) flips to (X1(t), X2(t)) = (0, 0). Moreover, we know that (X1(t0), X2(t0)) = (0, 0).

Let (y1, y2) = (Y1(t0), Y2(t0)). We color the times in φ using the coloring function c : φ →
{1, 2,⊥} by setting

c(t) =


1, (Y1(t), Y2(t)) = (¬y1,¬y2)
2, (Y1(t), Y2(t)) = (y1, y2)

⊥, o.w.

The key observation now is that the times at which A matches across v can be viewed as the

meaningful alternation times of an APP Πφ defined over the time interval φ with coloring function

c(·) and rate 1/w(v). (Notice that the role of (y1, y2) in the validity of this observation is simply

to adjust the dynamic of (X1, X2), starting with (X1(t0), X2(t0)) = (0, 0), to the APP framework

in which the first digested color is defined to be 1.) Taking N to be the random variable counting

the number of meaningful alternation times in Πφ and G to be its total digestion, we conclude that

σ(φ) = w(v) ·N and τ(φ) = G. The assertion follows by Lem. 4.34.3.

Fixing the coin tosses in anc(v) and thus, fixing the partition of [0, tend) into phases, we can

apply Lem. 4.84.8 to each individual phase, thus establishing Lem. 4.74.7 by the linearity of expectation.

The remainder of this section is dedicated to proving Lem. 4.64.6. The first step towards achieving this

goal is to bound the time potential of A per subphase based on the following subphase classification.

15

Y1(t)
Y2(t)

c(t)

Figure 2: Phase φ with time progressing from left to right, assuming that (y1, y2) = (0, 0). Bottom

rows: the dark gray and light gray intervals represent the times t at which Yi(t) = 1 and Yi(t) = 0,

respectively. Top row: the dark gray, light gray, and white intervals represent the times t at which

c(t) = 1, c(t) = 2, and c(t) = ⊥, respectively. The vertical arrows represent the times at which A
matches across v and the horizontal two-sided arrows depict the time intervals that contribute to

τ(φ), i.e., when (X1, X2) = (1, 1). Notice that towards φ’s end, we must have X = X1 ⊕X2 = 1

unless φ is the last phase.

0- and 1-subphases. Fix some subphase ϕ of v. Notice that matching across v (by A) does not

affect X∗i , i ∈ {1, 2}, nor does it change X1 ⊕X2. Thus, there exists some b = b(ϕ) ∈ {0, 1} such

that X1(t)⊕X2(t)⊕X∗1 (t)⊕X∗2 (t) = b for all t ∈ ϕ; in what follows, we distinguish between two

types of subphases: 0-subphases, for which b = 0, and 1-subphases, for which b = 1.

Observation 4.9. If ϕ is a 1-subphase, then τ(ϕ) ≤ τ∗(ϕ).

Proof. Recall that τ(ϕ) =
∫
ϕX1(t) ·X2(t)dt and τ∗(ϕ) ≥

∫
ϕX

∗
1 (t)⊕X∗2 (t)dt. The assertion follows

by the definition of a 1-subphase ensuring that for every t ∈ ϕ, if (X1(t), X2(t)) = (1, 1), then

(X∗1 (t), X∗2 (t)) ∈ {(0, 1), (1, 0)}.

Lemma 4.10. If ϕ is a 0-subphase, then Ev[τ(ϕ)] ≤ τ∗(ϕ) + w(v).

Proof. We investigate the dynamics of (X1(t), X2(t))t∈ϕ and (X∗1 (t), X∗2 (t))t∈ϕ that take values in

{0, 1}2 (an illustration is provided in Fig. 33). By the definition of a 0-subphase, at any time t ∈ ϕ,

either (X1(t), X2(t)) = (X∗1 (t), X∗2 (t)) or (X1(t), X2(t)) = (¬X∗1 (t),¬X∗2 (t)); we refer to the former

(resp., latter) as an agreement (resp., disagreement) state of A and A∗.

Observe that a new request arriving in L(ui), i ∈ {1, 2}, flips Xi and X∗i without affecting X3−i

and X∗3−i. While (X∗1 , X
∗
2) is affected only by new request arrivals (recall that A∗ does not match

across or on top of v in the midst of subphase ϕ), the dynamic of (X1, X2) is tied to the actions of

A too. Specifically, A can match across v (recall that A does not match on top of v in the midst

of subphase ϕ) only when (X1, X2) = (1, 1) and if (X1, X2) = (1, 1) throughout the infinitesimally

small time interval [t−dt, t), then A matches across v at time t with probability dt/w(v) (depending

solely on the coin tosses of v), in which case (X1, X2) flips to (X1(t), X2(t)) = (0, 0), thus toggling

the agreement/disagreement state.

16

c(t)

X∗
1 (t)

X∗
2 (t)

Figure 3: Subphase ϕ with time progressing from left to right, assuming that the subphase starts

in an agreement state. Bottom rows: the dark gray and light gray intervals represent the times t

at which X∗i (t) = 1 and X∗i (t) = 0, respectively. Top row: the dark gray, light gray, and white

intervals represent the times t at which c(t) = 1, c(t) = 2, and c(t) = ⊥, respectively. The vertical

arrows represent the times at which A matches across v and the horizontal two-sided arrows depict

the time intervals that contribute to τ(φ), i.e., when (X1, X2) = (1, 1). Notice that by the definition

of τ∗, times t at which X∗1 (t)⊕X∗2 (t) = 1 (marked as white intervals in the top row) also contribute

to τ∗(φ), but this contribution is ignored by our analysis.

Define the functions cagree : ϕ→ {1, 2,⊥} and cdisagree : ϕ→ {1, 2,⊥} as follows:

cagree(t) =


1, (X∗1 (t), X∗2 (t)) = (1, 1)

2, (X∗1 (t), X∗2 (t)) = (0, 0)

⊥, o.w.

cdisagree(t) =


1, (X∗1 (t), X∗2 (t)) = (0, 0)

2, (X∗1 (t), X∗2 (t)) = (1, 1)

⊥, o.w.

.

We color the times in ϕ using the coloring function c : ϕ → {1, 2,⊥} by setting c = cagree if the

subphase starts in an agreement state; and c = cdisagree if the subphase starts in a disagreement

state. The key observation now is that the times at which A matches across v can be viewed as the

meaningful alternation times of an APP Πϕ defined over the time interval ϕ with coloring function

c(·) and rate 1/w(v). (Notice that the role of the cagree vs. cdisagree distinction in the validity of this

observation is simply to adjust the dynamic of (X1, X2), starting in an agreement/disagreement

state, to the APP framework in which the first digested color is defined to be 1.)

Taking G to be the total digestion of Πϕ, we notice that τ(ϕ) = G. Moreover, the construction

of the coloring function c(·) ensures that τ∗(ϕ) ≥ 2
∫
ϕX

∗
1 (t) · X∗2 (t)dt ≥ 2 min{V1, V2}, where V1

and V2 are the total 1- and 2-volumes of Πϕ, respectively. The assertion follows by Lem. 4.34.3 and

4.44.4.

0- and 1-phases. Phase φ of v is said to be a 0-phase (resp., a 1-phase) if it starts with a 0-

subphase (resp., a 1-subphase). Let P 0 (resp., P 1) be the set of 0-phases (resp., 1-phases) of v.

Using Obs. 4.94.9 and Lem. 4.104.10, we establish Lem. 4.64.6 (our goal in the remainder of this section) by

proving the following inequalities:

Ev,anc(v)
[
τ(P 0)

]
≤ O (τ∗(0, tend) + σ∗(0, tend) + w(v)) (1)

Ev,anc(v)
[
τ(P 1)

]
≤ O (τ∗(0, tend) + σ∗(0, tend)) . (2)

17

Lem. 4.114.11 (a combination of Obs. 4.94.9 and Lem. 4.104.10 essentially) plays an important role in the

desired proofs.

Lemma 4.11. If φ is a 0-phase, then

Ev [τ(φ)] ≤ τ∗(φ) + 2σ∗(φ) + w(v) ;

if φ is a 1-phase, then

Ev [τ(φ)] ≤ τ∗(φ) + 2σ∗(φ) .

Proof. Let U b(φ) be the set of b-subphases of φ for b ∈ {0, 1}. If U0(φ) = ∅ and U1(φ) = {ϕ}, then

we can employ Obs. 4.94.9 to conclude that Ev[τ(φ)] ≤ τ∗(ϕ) = τ∗(φ). If U0(φ) = {ϕ} and U1(φ) = ∅,
then we can employ Lem. 4.104.10 to conclude that Ev[τ(φ)] ≤ w(v) + τ∗(ϕ) = w(v) + τ∗(φ).

Since all but the last subphases of φ end when A∗ matches across or on top of v, it follows by

the definition of σ∗ that |U0(φ)∪U1(φ)| = 1 +σ∗(φ)/w(v). Therefore, if |U0(φ)∪U1(φ)| > 1, then

we can employ Obs. 4.94.9 and Lem. 4.104.10 to conclude that

Ev [τ(φ)] ≤
∑

ϕ∈U0(φ)

(w(v) + τ∗(ϕ)) +
∑

ϕ∈U1(φ)

τ∗(ϕ)

= τ∗(φ) + |U0(φ)| · w(v)

≤ τ∗(φ) + |U0(φ) ∪ U1(φ)| · w(v)

= τ∗(φ) + (1 + σ∗(φ)/w(v)) · w(v)

= τ∗(φ) + w(v) + σ∗(φ) ≤ τ∗(φ) + 2 · σ∗(φ) ,

where the last transition holds since |U0(φ)∪U1(φ)| > 1 implies that σ∗(φ) ≥ w(v). The assertion

follows.

Fixing the coin tosses in anc(v) (and thus, fixing the partition of [0, tend) into phases), we can

apply Lem. 4.114.11 to each individual 1-phase, hence obtaining (22) by the linearity of expectation.

Intuition spotlight: It remains to establish (11) which turns out to be more demanding: for

0-phases φ, the upper bound on Ev[τ(φ)] promised by Lem. 4.114.11 includes an additive w(v) term

and we have to make sure that it does not dominate the τ∗(φ) and σ∗(φ) terms too often. This

is done via a classification of the phases with respect to their starting time.

Early and late phases. Recall the definition of Y (t) = Y1(t)⊕Y2(t) and let tlate be the smallest

t ∈ [0, tend) such that min{
∫ tend
t Y (s)ds,

∫ tend
t ¬Y (s)ds} ≤ w(v). Phase φ with starting time t is said

to be an early phase if t < tlate and a late phase if t ≥ tlate. (Intuitively, this means that when an

early phase starts, we still have more than w(v) time units of Y (t) = 0 and more than w(v) time

units of Y (t) = 1.) Let Pearly and Plate be the sets of early and late phases, respectively. Let K be

the number of discontinuity points of Y (t) in the interval [0, tlate).

18

We would like to take a closer look at the partition of [0, tend) into phases. To that end, consider

some phase φ with starting time T− and end time T+. Fixing T− = t for some t ∈ [0, tend), the

end time T+ is a random variable fully determined by the coin tosses in anc(v) after time t. An

important property of this random variable is cast in the following lemma (together with two other

important properties of the partition of [0, tend) into phases).

Lemma 4.12. The partition of [0, tend) into phases satisfies the following three properties:

(P1) if t < tlate, then Eanc(v)

[∫ T+

T− X(s)ds | T− = t
]
≥ w(v)(1− 1/e);

(P2) |Pearly| ≤ K + 1; and

(P3) Eanc(v)[|Plate|] = O(1) with an exponentially vanishing upper tail.

Proof. We investigate the dynamics of (X(t))t∈[0,tend) and (Y (t))t∈[0,tend) (an illustration is provided

in Fig. 44). A new request arriving in L(v) flips X and Y . While Y is affected only by new request

arrivals, the dynamic of X is tied to the actions of A too. Specifically, the design of the stilt-

walker algorithm ensures that A can match on top of v only when X = 1 (recall that matching

across v does not affect the partition of [0, tend) to phases). Suppose that X = 1 throughout the

infinitesimally small time interval I = [t − dt, t); let S be the stilt in S(t′) to which v belongs for

all t′ ∈ I and let v′ ∈ anc(v) be the head of S. Then A matches across v′ and on top of v at time t

with probability π(t) = dt/w(v′) (depending solely on the coin tosses of v′), in which case X flips

to X(t) = 0. Since v′ is an ancestor of v, we know that π(t) < dt/w(v).

We color the time line using the coloring function c : [0, tend)→ {1, 2,⊥} by setting

c(t) =

{
1, Y (t) = 1

2, Y (t) = 0

(note that ⊥, whose preimage under c is empty, is included in the range of c for the sake of

compatibility with the APP framework). The key observation now is that the times at which

A matches on top of v can be viewed as the meaningful alternation times of a rate-varying APP

Π[0,tend) defined over the time interval [0, tend) with coloring function c(·) and rate function bounded

from above by 1/w(v) (recall that a rate-varying APP is a generalization of an APP defined in the

end of Sec. 4.14.1 of the full version).

Taking Gφ to be the digestion of the iteration in Π[0,tend) that starts at time T− =

t, we notice that
∫ T+

T− X(s)ds = Gφ; recalling that the definition of tlate guarantees that

min
{∫ tend

t 1(c(t) = 1)dt,
∫ tend
t 1(c(t) = 2)dt

}
> w(v) for every t < tlate, we obtain property (P1)

by applying (the rate-varying version of) Lem. 4.24.2 to Π[0,tend). Property (P2) holds simply by

applying Lem. 4.44.4 to the [0, tlate)-restriction of Π[0,tend). To obtain property (P3), we consider the

[tlate, tend)-restriction of Π[0,tend), denote its number of meaningful alternation times by N , and ob-

serve that |Plate| is stochastically dominated by N + 1; the property then follows by Lem. 4.44.4 since

min
{∫ tend

tlate
1(c(t) = 1)dt,

∫ tend
tlate

1(c(t) = 2)dt
}
≤ w(v).

19

Y(t)

Figure 4: Interval [0, tend) with time progressing from left to right. The dark gray and light gray

intervals represent the times t at which Y (t) = 1 and Y (t) = 0, respectively. The solid vertical

arrows represent the times at which A matches on top of v. The dashed vertical arrow represent

time tlate.

Corollary 4.13. If φ is a 0-phase that starts at time T− = t < tlate, then Eanc(v)[τ
∗(φ) + σ∗(φ) |

T− = t] ≥ Ω(w(v)).

Proof. As T+ is a random variable fully determined by the coin tosses in anc(v) after time t, τ∗(φ)

and σ∗(φ) are also random variables fully determined by the coin tosses in anc(v) after time t. Since

τ∗(φ) ≥
∫ T+

t X∗(s)ds and since φ starts with a 0-subphase ϕ during which X = 1 implies X∗ = 1,

the assertion follows from Lem. 4.124.12(P1), recalling that if φ contains any subphase other than ϕ

(in particular, a 1-subphase during which X = 1 does not imply X∗ = 1), then σ∗(φ) ≥ w(v).

We are now ready to establish (11). This is done by defining P 0
early = P 0 ∩ Pearly and P 0

late =

P 0 ∩ Plate to be the sets of early and late 0-phases, respectively, and proving the following two

lemmas.

Lemma 4.14. Ev,anc(v)
[
τ(P 0

early)
]

= O (τ∗(0, tend) + σ∗(0, tend)).

Proof. Lem. 4.124.12(P2) ensures that |P 0
early| ≤ K + 1. Let φ1, . . . , φK+1 be the sequence of early

0-phases, where, for the sake of the analysis, we introduce a suffix of empty dummy phases so that

each dummy phase φj , |P 0
early| + 1 ≤ j ≤ K + 1, starts and ends at some arbitrary dummy time

t̂ > tend, thus ensuring that τ(φj) = τ∗(φj) = σ∗(φj) = 0.

Fix some 1 ≤ j ≤ K + 1 and let T− and T+ be the random variables that capture the starting

time and end time of φj . We argue that

Ev,anc(v)
[
τ(φj)|T− = t

]
≤ O

(
Eanc(v)

[
τ∗(φj) + σ∗(φj) | T− = t

])
(3)

for any t in the support of T−. This clearly holds if φj is an empty dummy phase (which means

that t = t̂), so assume that t < tlate. Consider the random variable Ev[τ(φj)|T− = t, T+] that

maps the event T+ = s (defined over the coin tosses in anc(v)) to Ev[τ(φj)|T− = t, T+ = s]. By

Lem. 4.114.11, the latter satisfies Ev[τ(φj)|T− = t, T+ = s] ≤ τ∗(t, s) + 2σ∗(t, s) + w(v). Therefore,

Eanc(v)

[
Ev
[
τ(φj)|T− = t, T+

]]
≤Eanc(v)

[
τ∗(φj) + 2σ∗(φj) | T− = t

]
+ w(v)

≤O
(
Eanc(v)

[
τ∗(φj) + σ∗(φj) | T− = t

])
,

where the last transition follows from Cor. 4.134.13, thus establishing (33) by the law of total expectation.

20

Consider the random variable Ev,anc(v)[τ(φj)|T−] that maps the event T− = t (defined over the

coin tosses in anc(v)) to Ev,anc(v)[τ(φj)|T− = t]. Using the bound provided for the latter by (33)

and applying the law of total expectation, we conclude that

Ev,anc(v) [τ(φj)] = Eanc(v)

[
Ev,anc(v)

[
τ(φj)|T−

]]
≤ O

(
Eanc(v) [τ∗(φj) + σ∗(φj)]

)
.

Therefore, by the linearity of expectation, we derive

Ev,anc(v)
[
τ(P 0

early)
]

=

K+1∑
j=1

Ev,anc(v) [τ(φj)]

≤
K+1∑
j=1

O
(
Eanc(v) [τ∗(φj) + σ∗(φj)]

)
= O

(
Eanc(v)

[
τ∗(P 0

early) + σ∗(P 0
early)

])
which establishes the assertion.

Lemma 4.15. Ev,anc(v)
[
τ(P 0

late)
]
≤ O (τ∗(0, tend) + σ∗(0, tend) + w(v)).

Proof. Conditioned on |P 0
late| = m, Lem. 4.114.11 guarantees that

Ev
[
τ(P 0

late)
]
≤ τ∗(P 0

late) + 2σ∗(P 0
late) +m · w(v) ≤ τ∗(Plate) + 2σ∗(Plate) +m · w(v) .

By Lem. 4.124.12(P3),

Eanc(v)[|P 0
late|] ≤ Eanc(v)[|Plate|] ≤ O(1)

with an exponentially vanishing upper tail, thus

Ev,anc(v)
[
τ(P 0

late)
]
≤ O (τ∗(Plate) + σ∗(Plate) + w(v))

which establishes the assertion.

4.3 Lifting the end-of-input signal assumption

We now turn to lift the end-of-input signal assumption, showing that Thm. 4.14.1 holds also without

it. Recall that tend = max{t(ρ) | ρ ∈ R} denotes the arrival time of the last request in R and let

C = C (tend) and F = F (tend) be the set of remaining active requests and the set of effective vertices

at time tend, respectively. The analysis presented in Sec. 4.24.2 relies on the assumption that upon

receiving the end-of-input signal at time tend, the algorithm immediately clears all the requests in

C by matching across every vertex in F which contributes csend =
∑

v∈F w(v) to the space cost of

A (this contribution to the space cost of A is taken into account in Sec. 4.24.2).

An examination of the matching policy of the stilt-walker algorithm reveals that in reality, the

requests in C are indeed cleared by matching across the vertices in F , only that these matching

operations are not performed immediately at time tend, but rather at slightly later (random) times,

21

thus introducing an additional contribution to the time cost of A. Specifically, taking ρ, ρ′ ∈ C to

be the supporting requests of some effective vertex v ∈ F , notice that on expectation, A matches

across v at time tend + w(v) which accounts for an additional contribution of a 2w(v) term to the

algorithm’s expected time cost. Summing over all vertices in F , we conclude that by adding

2
∑
v∈F

w(v) < 2
∑
v∈T

w(v)

to the β term in Thm. 4.14.1, we can lift the end-of-input assumption as promised.

5 A fixed penalty for clearing requests

In this section, we consider the online MPMDfp problem: a variant of MPMD in which the algorithm

is allowed to clear any request ρ ∈ R at time t ≥ t(ρ) without matching it to another request,

incurring a fixed penalty p > 0 (a parameter of the problem), on top of the time cost t− t(ρ) of ρ,

that adds to its total cost. Notice that in contrast to MPMD, the MPMDfp problem is well defined

also for odd values of |R|.
Theorem 5.1. There exists a randomized online MPMDfp algorithm for M whose competitive

ratio is O
(
log2 n+ log ∆

)
, where n is the number of points in the underlying metric space and ∆

is its aspect ratio.

Proof. Consider the underlying n-point metric space M = (V, δ) and let d = minx 6=y∈V δ(x, y) and

D = maxx 6=y∈V δ(x, y) be the minimum and maximum distances between any two distinct points

inM, respectively, so that the aspect ratio ofM is ∆ = D/d. Assume for the time being that the

penalty p satisfies d/2 < p < 2D.

Let M̂ = (V × {1, 2}, δ̂) be the metric space defined by setting

δ̂((x, ix), (y, iy)) = δ(x, y) + p · |ix − iy|

for every x, y ∈ V and ix, iy ∈ {1, 2}. The assumption that d/2 < p < 2D implies that the aspect

ratio of M̂ is proportional to ∆. Let R̂ = {ρ1, ρ2 | ρ ∈ R}, where ρi, i ∈ {1, 2}, is defined by setting

t(ρi) = t(ρ) and `(ρi) = (`(ρ), i).

We construct an online MPMDfp algorithm Afp with the desired competitive ratio from the

stilt-walker algorithm A as follows. Algorithm Afp simulates A on M̂, R̂ and handles the requests

in R according to the actions of A on the requests in R̂. Specifically, for every ρ ∈ R, if A matches

ρ1 to some request ρ′1, located in V × {1}, at time t, then Afp matches ρ to ρ′ at time t; if A
matches ρ1 to some request ρ′2, located in V × {2}, at time t, then Afp clears ρ without matching

it (paying the fixed p-penalty) at time t.

The design of Afp and the fact that δ̂((x, 1), (y, 2)) ≥ p for every x, y ∈ V guarantee that

costAfp
(R,M) ≤ costA(R̂,M̂) . (4)

22

Moreover, the construction of M̂ and R̂ ensures that if A∗ is an optimal offline MPMD algorithm

and A∗fp is an optimal offline MPMDfp algorithm, then

costA∗(R̂,M̂) ≤ 2 · costA∗fp(R,M) (5)

since A∗ can project the actions of A∗fp on each side of M̂, matching ρ1 to ρ2 whenever A∗fp clears ρ

without matching it. The assertion follows since the stilt-walker algorithm A is O(log2 n+ log ∆)-

competitive for the MPMD problem.

Now, if p < d/2, then an MPMDfp (online or offline) algorithm is always better off clearing the

requests by paying the fixed penalty than by matching them. Therefore, in this case, the MPMDfp

problem over M can be decomposed into n independent instances of the MPMDfp over a 1-point

metric space. Each such instance (essentially a repeated version of the ski rental problem) admits

an O(1)-competitive online algorithm, thus so does the whole problem.

It remains to consider the case where p > 2D. In this case, we construct the metric space M̂
slightly differently: first employ Thm. 2.12.1 to probabilistically embedM in a (1+Ω(1/ log n))-HSBT

(T,w); then, take two copies of T , call them T1 and T2, and connect them so that their roots become

the children of a new root r̂, extending the weight function w by setting w(r̂) = p. Notice that the

resulting metric space is also a (1 + Ω(1/ log n))-HSBT whose point set can be renamed V ×{1, 2}
so that (x, i) is a leaf of Ti for every x ∈ V and i ∈ {1, 2}. The rest of the construction of Afp is

unchanged.

Although the aspect ratio of the metric space M̂ in this case may be large (as large as p/d),

notice that the height of the underlying (1 + Ω(1/ log n))-HSBT is still O(log ∆ + log n), where ∆

is the aspect ratio of M. This establishes the assertion by recalling that the log ∆ term in the

competitive ratio of the stilt-walker algorithm comes from an upper bound on the height of its

HSBT.

6 The deterministic version of the stilt-walker algorithm

In this section, we consider the deterministic version of the stilt-walker algorithm, denoted Ad,
obtained by replacing the (1/w(v))-rate exponential timer maintained at each internal vertex v ∈
T −L with a deterministic w(v)-timer. In other words, the matching policy of Ad is similar to that

of A with one difference: If the last time Ad matched across v was at time t0 (take t0 = 0 if Ad still

has not matched across v), then the next time it matches across v is the minimum t1 that satisfies∫ t1

t0

1(v ∈ F (t)) dt = w(v) .

Theorem 6.1. The competitive ratio of Ad on n-point (1 + Ω(1/ log n))-HSBTs is Ω(n).

23

Proof. Let n be some large power of 2 and let T be an n-leaf perfect binary tree (with all leaves

at depth lg n). Let w : T → R≥0 be the weight function defined by setting w(x) = 0 for every

leaf x; and w(v) = (1 + 1/ lg n)lg(n)−1−i for every internal vertex v of depth i. Consider the HSBT

T = (T,w) and notice that the distance between any two distinct points in T is Θ(1). We name

some of the internal vertices and subtrees of T according to the labels in Fig. 55.

Let A∗d denote the benchmark offline algorithm and take ε to be a small positive real. For every

subtree Tj , j = 1, . . . , 6, fix some arbitrary leaf xj and consider the following scenario Γ (refer to

Fig. 55 for an illustration):

• 2 requests arrive at time 0 at leaves x1 and x6 (one each). A∗d immediately matches these

requests. Following that, the sole effective vertex of Ad is v1 with supporting leaves x1 and x6.

• 4 requests arrive at time w(v1) − ε at leaves x2, x3, x4, and x5 (one each). Following that, the

effective vertices of Ad are:

v1 with supporting leaves x3 and x4;

v3 with supporting leaves x1 and x2; and

v5 with supporting leaves x5 and x6.

• The timer of v1 expires at time w(v1) and Ad matches (across v1) the active requests hosted at

leaves x3 and x4.

• 4 requests arrive at time w(v1) + ε at leaves x2, x3, x4, and x5 (one each). Both Ad and A∗d
immediately match the request pairs hosted at x2 and x5; A∗d also immediately matches the

request pairs hosted at x3 and x4. Following that, the effective vertices of Ad are:

v2 with supporting leaves x1 and x3; and

v4 with supporting leaves x4 and x6.

Consider the subscenario Γ′ induced on Γ by the time interval (0, w(v1)+ε]. The key observation

is that at the beginning of Γ′, Ad had 2 active requests located at leaves whose LCA is the the

root of T (v1), whereas at its end, Ad has 4 active requests located at leaves whose LCAs are the

two depth 1 vertices (v2 and v4). On the other hand, A∗d started and ended subscenario Γ′ with no

active requests, paying a total cost of O(ε) during that time period.

Subscenarios analogous to Γ′ are now applied in a recursive manner to the subtrees rooted at

the depth i vertices of T , for i = 1, . . . , lg(n) − 3. This results in Ad having active requests at

exactly n/2 distinct leaves of T ; to clear all of them, Ad will have to pay Ω(n) in space cost. On

the other hand, the total cost payed by A∗d during all these applications is O(εn) which can be

made arbitrarily small. Adding the O(1) space cost payed by A∗d at time 0 for matching the first

two requests (across v1), we conclude that the competitive ratio of Ad is Ω(n), as promised.

24

0

T1 T2 T3 T4 T5 T6

v1

v2

v3

v4

v5

w(v1)− ε

w(v1)

w(v1) + ε

t

Figure 5: The perfect binary tree T and scenario Γ at times of interest featured on the left. For

every j = 1, . . . , 6 and for every time t, a diamond shape depicts a request arriving at leaf xj at

time t; a vertical segment depicts an active request under Ad at leaf xj at time t; and a horizontal

segment depicts an active request under A∗d at leaf xj at time t.

25

References

[1] G. Aggarwal, G. Goel, C. Karande, and A. Mehta. Online vertex-weighted bipartite matching

and single-bid budgeted allocations. In Proceedings of the Twenty-Second Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA, pages 1253–1264, 2011.

[2] I. Averbakh and M. Baysan. Approximation algorithm for the on-line multi-customer two-level

supply chain scheduling problem. Operations Research Letters, 41(6):710 – 714, 2013.

[3] I. Averbakh and Z. Xue. On-line supply chain scheduling problems with preemption. European

Journal of Operational Research, 181(1):500 – 504, 2007.

[4] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without migration.

SIAM J. Comput., 31(5):1370–1382, 2002.

[5] B. Awerbuch, S. Kutten, and D. Peleg. Competitive distributed job scheduling (extended

abstract). In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,

pages 571–580, 1992.

[6] Y. Azar, A. Epstein, L. Jez, and A. Vardi. Make-to-order integrated scheduling and distri-

bution. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA, pages 140–154, 2016.

[7] N. Bansal, N. Buchbinder, A. Gupta, and J. Naor. A randomized o(log2 k)-competitive algo-

rithm for metric bipartite matching. Algorithmica, 68(2):390–403, 2014.

[8] Y. Bartal. Probabilistic approximations of metric spaces and its algorithmic applications.

In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington,

Vermont, USA, 14-16 October, 1996, pages 184–193, 1996.

[9] Y. Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of the Thirtieth

Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998,

pages 161–168, 1998.

[10] Y. Bartal. Graph decomposition lemmas and their role in metric embedding methods. In

Proceedings of ESA, 12th Annual European Symposium on Algorithms, pages 89–97, 2004.

[11] B. E. Birnbaum and C. Mathieu. On-line bipartite matching made simple. SIGACT News,

39(1):80–87, 2008.

[12] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge

University Press, New York, NY, USA, 1998.

[13] N. Buchbinder, K. Jain, and J. Naor. Online primal-dual algorithms for maximizing ad-

auctions revenue. In Proceedings of ESA, 15th Annual European Symposium on Algorithms,

pages 253–264, 2007.

[14] A. Cote, A. Meyerson, and L. J. Poplawski. Randomized k-server on hierarchical binary trees.

In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 227–234,

2008.

[15] N. R. Devanur, K. Jain, and R. D. Kleinberg. Randomized primal-dual analysis of RANK-

ING for online bipartite matching. In Proceedings of the Twenty-Fourth Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA, pages 101–107, 2013.

[16] D. R. Dooly, S. A. Goldman, and S. D. Scott. TCP dynamic acknowledgment delay: Theory

and practice (extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on

the Theory of Computing, pages 389–398, 1998.

[17] D. R. Dooly, S. A. Goldman, and S. D. Scott. On-line analysis of the TCP acknowledgment

delay problem. J. ACM, 48(2):243–273, 2001.

[18] J. Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of

the National Bureau of Standards B, 69:125–130, 1965.

[19] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.

[20] Y. Emek, T. Langner, and R. Wattenhofer. The price of matching with metric preferences.

http://ie.technion.ac.il/~yemek/Publications/pmmp.pdfhttp://ie.technion.ac.il/~yemek/Publications/pmmp.pdf. Extended abstract appeard

in Proceedings of ESA 2015.

[21] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics

by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

[22] G. Goel and A. Mehta. Online budgeted matching in random input models with applications

to adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA, pages 982–991, 2008.

[23] B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms, 14(3):478–488,

1993.

[24] B. Kalyanasundaram and K. Pruhs. The online transportation problem. SIAM J. Discrete

Math., 13(3):370–383, 2000.

[25] A. R. Karlin, C. Kenyon, and D. Randall. Dynamic TCP acknowledgement and other stories

about e/(e-1). In Proceedings on 33rd Annual ACM Symposium on Theory of Computing,

pages 502–509, 2001.

http://ie.technion.ac.il/~yemek/Publications/pmmp.pdf

[26] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki. Competitive randomized algo-

rithms for non-uniform problems. In Proceedings of the First Annual ACM-SIAM Symposium

on Discrete Algorithms, pages 301–309, 1990.

[27] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching. In

27th Annual Symposium on Foundations of Computer Science, pages 244–254, 1986.

[28] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipartite

matching. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages

352–358, 1990.

[29] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite

matching and stable marriages. Theor. Comput. Sci., 127(2):255–267, 1994.

[30] A. Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical Com-

puter Science, 8(4):265–368, 2013.

[31] A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani. Adwords and generalized on-line

matching. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS),

pages 264–273, 2005.

[32] A. Meyerson, A. Nanavati, and L. J. Poplawski. Randomized online algorithms for minimum

metric bipartite matching. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium

on Discrete Algorithms, SODA, 2006.

[33] S. Miyazaki. On the advice complexity of online bipartite matching and online stable marriage.

Inf. Process. Lett., 114(12):714–717, 2014.

[34] J. Naor and D. Wajc. Near-optimum online ad allocation for targeted advertising. In Proceed-

ings of the Sixteenth ACM Conference on Economics and Computation, EC, pages 131–148,

2015.

[35] B. Patt-Shamir. Private communication, 2015.

[36] E. M. Reingold and R. E. Tarjan. On a greedy heuristic for complete matching. SIAM J.

Comput., 10(4):676–681, 1981.

APPENDIX

A Probabilistic embedding of arbitrary metric spaces in HSBTs

Our goal in this section is to prove Thm. 2.12.1. The main ingredient in this proof is the following

celebrated theorem of Fakcharoenphol et al. [2121].

Theorem A.1 ([2121]). Consider some n-point metric space (V, δ) and let U be the set of all 2-

HSTs over V with distance functions δT that dominate δ in the sense that δT (x, y) ≥ δ(x, y) for

every x, y ∈ V . There exists a probability distribution P over U such that E(V,δT)∈P [δT (x, y)] ≤
O(log n) · δ(x, y) for every x, y ∈ V . Moreover, the probability distribution P can be sampled

efficiently.

Observe that by the definition of HSTs, the rooted trees realizing the 2-HSTs promised by

Thm. A.1A.1 are of height O(log ∆), where ∆ =
maxx,y∈V δ(x,y)
minx,y∈V δ(x,y) is the aspect ratio of the metric space

(V, δ). These rooted trees have arbitrary degrees, whereas Thm. 2.12.1 requires rooted trees with

degrees at most 2. We resolve this obstacle with the help of the following lemma, proved by

Patt-Shamir [3535].

Lemma A.2 ([3535]). Consider some n-leaf rooted tree T . There exist a (rooted) full binary tree T ′

and an injection f : T → T ′ such that

(1) f(v) is an ancestor of f(u) in T ′ if and only if v is an ancestor of u in T ;

(2) depthT ′(f(v)) ≤ depthT ′(f(pT (v))) +O(log n), where depthT ′(·) denotes the depth operator in

tree T ′; and

(3) height(T ′) = O(height(T) + log n).

Consider some n-point tree metric space (T,w) in the support of the probability distribution

promised by Thm. A.1A.1 and let T ′ and f : T → T ′ be the full binary tree and injection obtained by

applying Lem. A.2A.2 to T . We construct a weight function w′ : T ′ → R≥0 on the vertices of T ′ by first

setting w′(v) = 2·w(f−1(v)) for every v ∈ f(T), and then fixing w′(v) = w′(pT
′
(v))/(1+Ω(1/ log n))

for every v /∈ f(T). Lem. A.2A.2 guarantees that (T ′, w′) is a (1 + Ω(1/ log n))-HSBT. Taking δ and δ′

to be the distance functions of (T,w) and (T ′, w′), respectively, we observe that

δ(x, y) ≤ δ′(x, y) ≤ 2δ(x, y)

for every two points x, y in the metric space(s), thus establishing Thm. 2.12.1.

i

Thm. 4.14.1Lem. 4.54.5

Lem. 4.64.6

Lem. 4.74.7

Lem. 4.84.8

Eq. 11 Eq. 22

Lem. 4.154.15Lem. 4.144.14

Lem. 4.124.12Cor. 4.134.13 Lem. 4.114.11

Lem. 4.104.10Obs. 4.94.9

Figure 6: A schematic overview of the analysis carried out in Sec. 4.24.2, depicting the interdependen-

cies between its components. An arrow pointing from A to B indicates that the proof corresponding

to B depends on the statement corresponding to A. The proofs of Lem. 4.84.8, 4.104.10, and 4.124.12 are based

on the APP machinery developed in Sec. 4.14.1.

Notation Definition Defined on page

`(ρ) location of ρ 11

t(ρ) arrival time of ρ 11

costs(ρ) space cost of ρ 11

costt(ρ) time cost of ρ 11

costs(R) space cost of R 22

costt(R) time cost of R 22

cost(R,M) total cost 22

p(v) parent of v 44

T (v) subtree rooted at v 44

L(v) leaves of T (v) 44

anc(v) ancestors of v 44

depth(v) depth of v 44

height(T) height of T 44

lca(x, y) least common ancestor of x and y 44

Cv(t) set of requests with locations in L(v) active at time t 55

C (t) Cv(t) for v = r 55

D(t) set of odd vertices at time t 55

D∗(t) set of vertices odd under A∗ at time t 55

S(t) set of stilts induced by the odd vertices at time t 55

H (t) set of heads of the stilts in S(t) 55

F (t) set of effective vertices at time t 55

tend arrival time of the last request 1111

cs
end space cost of matching the active requests at time tend 1111

τv(t0, t1) time potential v accumulates during [t0, t1) under A 1212

τ∗v (t0, t1) time potential v accumulates during [t0, t1) under A∗ 1212

σv(t0, t1) space potential v accumulates during [t0, t1) under A 1212

σ∗
v(t0, t1) space potential v accumulates during [t0, t1) under A∗ 1212

Xi(t) 1(ui ∈ D(t)) 1414

X∗
i (t) 1(ui ∈ D∗(t)) 1414

X(t) X1(t)⊕X2(t) 1414

X∗(t) X∗
1 (t)⊕X∗

2 (t) 1414

Yi(t) |{ρ ∈ R | `(ρ) ∈ L(ui) ∧ t(ρ) ≤ t}| (mod 2) 1414

Y (t) Y1(t)⊕ Y2(t) 1414

P 0 set of 0-phases 1717

P 1 set of 1-phases 1717

tlate smallest t s.t. min
{∫ tend

t
Y (t)dt,

∫ tend
t
¬Y (t)dt

}
≤ w(v) 1818

Pearly set of early phases 1818

Plate set of late phases 1818

K number of discontinuity points of Y (t) in [0, tlate) 1818

Table 1: A table of notations.

	Introduction
	Preliminaries
	An online MPMD algorithm
	Analyzing the stilt-walker algorithm
	Alternating Poisson processes
	Analysis under the end-of-input signal assumption
	Lifting the end-of-input signal assumption

	A fixed penalty for clearing requests
	The deterministic version of the stilt-walker algorithm
	Probabilistic embedding of arbitrary metric spaces in HSBTs

