
A Lower Bound for the Distributed Lovász Local Lemma

Sebastian Brandt
ETH Zurich,
Switzerland

Orr Fischer
School of Computer Science,

Tel Aviv University,
Israel

Juho Hirvonen
HIIT, Department of Computer

Science, Aalto University,
Finland

Barbara Keller
ETH Zurich,
Switzerland

Tuomo Lempiäinen
HIIT, Department of Computer

Science, Aalto University,
Finland

Joel Rybicki
HIIT, Department of Computer

Science, Aalto University,
Finland

Jukka Suomela
HIIT, Department of Computer

Science, Aalto University,
Finland

Jara Uitto
Bitsplitters GmbH,

Switzerland

ABSTRACT
We show that any randomised Monte Carlo distributed al-
gorithm for the Lovász local lemma requires Ω(log logn)
communication rounds, assuming that it finds a correct as-
signment with high probability. Our result holds even in the
special case of d ∈ O(1), where d is the maximum degree of
the dependency graph. By prior work, there are distributed
algorithms for the Lovász local lemma with a running time
of O(logn) rounds in bounded-degree graphs, and the best
lower bound before our work was Ω(log∗ n) rounds [Chung
et al. 2014].

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.3 [Mathe-
matics of Computing]: Probability and Statistics—proba-
bilistic algorithms (including Monte Carlo)

General Terms
Theory, Algorithms

Keywords
Lovász local lemma, distributed complexity, lower bounds,
locality, graph colouring, sinkless orientations

1. INTRODUCTION
In this work, we give a lower bound for the constructive

Lovász local lemma (LLL) in the context of distributed
algorithms. We study the running time as a function of
n (the number of events), and prove a lower bound that

holds even if d (the maximum degree of the dependency
graph) is bounded by a constant. By prior work, there
are distributed algorithms for LLL with a running time of
O(logn) communication rounds in this case and o(logn)
rounds for restricted variants [11], and it is known that any
distributed algorithm for LLL requires Ω(log∗ n) rounds [11,
28,35]. We prove a new lower bound of Ω(log logn) rounds.

1.1 Distributed Lovász Local Lemma
Recall the following symmetric version of LLL:

Theorem 1. Let E = {E1, . . . , En} be a finite set of
events such that each Ei is independent of all but d other
events. If Pr[Ei] ≤ p and ep(d + 1) ≤ 1, then there is a
positive probability that none of the events occur.

We consider distributed algorithmic variants of LLL. The
basic framework is as follows. Let X = {X1, . . . , Xm} be
a set of mutually independent random variables and as-
sume that each Ei depends only on variables in X ; denote
by vbl(Ei) ⊆ X the subset of variables that event Ei de-
pends on. Form the dependency graph GE = (E ,D), where
D = {{Ei, Ej} : vbl(Ei) ∩ vbl(Ej) 6= ∅}. Now consider a
distributed system in which the communication network is
identical to the graph GE : each node of the system is asso-
ciated with a bad event E ∈ E , and two nodes are adjacent
if and only if their associated events depend on at least one
common variable. The task is for each node to find an as-
signment to its variables vbl(E) such that adjacent nodes
agree on the values of their common variables and all the
events in E are avoided.

We use the standard LOCAL model of distributed comput-
ing [28,37]. Initially each node is only aware of its own part
of the input and the number of nodes, but the nodes can
exchange messages to learn more about the structure of the
problem instance. Eventually, each node has to stop and out-
put its own part of the variable assignment. Communication
takes place in synchronous communication rounds, and the
running time is defined to be equal to the number of com-
munication rounds. Following the common practice, we say
that an event occurs with high probability if it occurs with
probability at least 1− 1/nc, where c is an arbitrarily large
constant. We consider randomised Monte Carlo algorithms,

Table 1: Upper and lower bounds for the distributed LLL.

LLL criterion Running time References

ep(d+ 1) < 1 O(logn log d) [11,19]
epd2 < 1 O(logn) [11]
pf(d) < 1, where f(d) exponential O(logn/ log logn) [11]

pf(d) ≤ 1 for any f Ω(log∗ n) [11]
pf(d) ≤ 1 for f satisfying f(4) ≤ 16 Ω(log log n) this work

in which all bad events are avoided with high probability
and the running time is deterministic (more precisely, some
function of n).

1.2 Main Result and Key Techniques
We prove the following lower bound for LLL algorithms in

the LOCAL model: any randomised Monte Carlo algorithm
that produces a correct solution with high probability requires
Ω(log logn) communication rounds, even if we restrict our
input instances to d-regular graphs with d ∈ O(1). This is a
substantial improvement over the lower bound of Ω(log∗ n)
from prior work [11,28,35].

To derive the lower bound, we introduce two new graph
problems that are closely related to each other: sinkless
orientation and sinkless colouring (see Section 2). Then we
proceed as follows:

(1) We show that any Monte Carlo distributed algorithm for
LLL implies a Monte Carlo distributed algorithm for sin-
kless orientation in 3-regular graphs, with asymptotically
the same running time (see Section 3).

(2) We show that any Monte Carlo distributed algorithm
for sinkless orientation in 3-regular graphs has a running
time of Ω(log logn).

For the second step, we study the sinkless orientation problem
in high-girth graphs. The key ingredient is a mutual speedup
lemma (see Section 4) that holds in graphs of girth larger
than 2t+ 1:

(1) If we can find a sinkless colouring in t rounds, we can
find a sinkless orientation in t rounds.

(2) If we can find a sinkless orientation in t rounds, we can
find a sinkless colouring in t− 1 rounds.

By iterating the mutual speedup lemma, we can then obtain
an algorithm for finding a sinkless orientation in high-girth
graphs with a running time of 0 rounds, which is absurd.
The mutual speedup lemma amplifies the failure probability,
but not too much—if the original algorithm works with
high probability, we can still reach the contradiction after
o(log logn) iterations.

As a by-product, we also obtain a lower bound for d-
colouring d-regular high-girth graphs: any proper node colour-
ing with d colours is also a sinkless colouring (while the
converse is not true).

Our lower-bound proof does not make use of the full power
of LLL—it also holds if we replace the usual assumption
of ep(d + 1) ≤ 1 with, e.g., the classical formulation [17]
of Erdős and Lovász where the assumption is 4pd ≤ 1. In
addition, our bound holds for the symmetric version of LLL,
and therefore, it trivially applies to the asymmetric LLL [3]
as well.

1.3 Prior Work on LLL
The celebrated Lovász local lemma was first introduced in

1975 [17] and has since then found applications in proving
the existence of various combinatorial structures [3, 30,32].
However, the original proof was non-constructive, and thus,
did not yield an efficient (centralised) algorithm for finding
such a structure.

Beck [7] showed that constructive versions of the local
lemma do exist, albeit with weaker guarantees: there exists a
deterministic algorithm that finds a satisfying assignment to a
certain variant of LLL in polynomial time. This breakthrough
result stimulated a long line of research in devising new
algorithmic versions of the local lemma with more general
conditions and better performance [1,9,13,23,31,33,34,40].
The algorithmic LLL has found numerous applications e.g.
in the context of colouring, scheduling, and satisfiability
problems [11–13,16,26,32,33,39].

A key breakthrough was the result by Moser and Tar-
dos [34]: they showed that even a very general form of the
local lemma has a constructive counterpart; a natural re-
sampling algorithm finds a satisfying assignment efficiently.
Moser and Tardos also gave a parallel variant of this al-
gorithm which can easily be implemented in a distributed
setting as well. Indeed, already Alon [1] observed that LLL
admits parallelism by showing how to parallelise Beck’s orig-
inal approach [7]. Subsequently, many papers have also
considered how to attain efficient parallel and distributed
algorithms for LLL [9, 11, 22, 34]; Table 1 summarises known
upper and lower bounds for the distributed LLL.

The algorithmic framework of Moser and Tardos [34] is
based on an iterative random sampling method. The idea
is to start with a random assignment and while a violated
constraint exists, the algorithm then iteratively resamples
variables in some violated constraint. Resampling is contin-
ued until no more violated constraints exist. The algorithm
is easy to parallelise by noting that one can resample vari-
ables in independent constraints, that is, in constraints that
do not share variables. Now it suffices to pick a maximal
independent set in the subgraph of the dependency graph
induced by the violated constraints and resample variables
related to these constraints. Moser and Tardos use Luby’s
algorithm [29] to find a maximal independent set in O(log n)
rounds in each resampling iteration. In total, this algorithm
requires O(log n) resampling iterations thus leading to a total
running time of O(log2 n) rounds in the distributed setting.

One approach for speeding up this basic algorithm is to use
faster algorithms for computing the independent sets. For
example, in constant-degree graphs, a maximal independent
set can be found in Θ(log∗ n) rounds [28]. More generally in
low-degree graphs, maximal independent sets can be found
in O(d+ log∗ n) rounds [5] and O(log d ·

√
logn) rounds [6],

thus making it possible to solve LLL in o(log2 n) rounds
when the degrees are small. However, this approach has an
inherent barrier—the KMW lower bounds for the complexity
of finding maximal matchings [24,25].

As pointed out by Moser and Tardos [34], it is not necessary
to find a maximal independent set, but a large independent
set suffices. Following this idea, Chung et al. [11] gave a
distributed algorithm where they instead compute so-called
weakly maximal independent sets, where the probability that
a node is not in the produced independent set S or neigh-
bouring a node in set S is bounded by 1/ poly(d). They
showed that this can be done in O(log2 d) rounds, thus the
dependency on n in the total running time of the LLL al-
gorithm is only O(logn). Recently, Ghaffari improved this
further by showing that weakly maximal independent sets
can be computed in O(log d) rounds [19].

If one is interested in weaker forms of LLL, Chung et al. [11]
also provide faster algorithms running in O(logn/ log logn)
rounds for the LLL criterion pf(d) < 1, where f(d) is an
exponential function.

While there are numerous positive results, only a few
lower bounds for LLL are known. Moser and Tardos point
out that in their resampling approach, Ω(log1/p n) expected
iterations of resampling are needed. Recently, Haeupler and
Harris [22] conjectured that parallel resampling algorithms
need Ω(log2 n) time.

In the distributed setting, Chung et al. [11] show an uncon-
ditional lower bound showing that essentially any distributed
LLL algorithm takes Ω(log∗ n) rounds. This bound follows
from the fact that LLL can be used to properly colour a ring
using only a constant number of colours, which is known to
take Ω(log∗ n) rounds [28,35].

1.4 Prior Work on Other Lower Bounds
Overall, not that many unconditional, nontrivial lower

bounds for the LOCAL model are known [4, 41]. Many of
the prior lower bound techniques fall in one of the following
classes: either they are limited to lower bounds of the form
Ω(log∗ n) [14,20,27,28,35,36], or they are relevant only in
graph families with non-constant degrees [18,21,24,25]. In
this work, we prove lower bounds of the form Ω(log log n) for
the case of a maximum degree ∆ ∈ O(1).

From the perspective of the results, perhaps closest to our
work is Linial’s [28] lower bound for colouring d-regular trees

with O(
√
d) colours. However, Linial’s technique is limited to

O(d/ log d)-colouring, while our work implies a lower bound
for d-colouring (Corollary 1).

From the perspective of the techniques, our mutual speedup
lemma bears some resemblance to another result by Linial,
the lower bound for 3-colouring cycles [28]. Linial’s proof
can be interpreted as a speedup result: if we can colour
a cycle in t rounds, we can also colour it in t − 1 rounds,
provided that we tolerate a larger number of colours. In
our proof, the number of colours remains constant (but the
failure probability is amplified).

2. PRELIMINARIES
Let G = (V,E) be a simple graph. An orientation σ of a

graph G assigns a direction

σ({u, v}) ∈ {u→ v, u← v}

for each edge {u, v} ∈ E. For convenience, we write (u, v) ∈
σ(E) to denote an edge {u, v} ∈ E oriented u→ v by σ. For

all v ∈ V we define indeg(v, σ) = |{u : (u, v) ∈ σ(E)}| as
the number of incoming edges, outdeg(v, σ) as the number
of outgoing edges, and deg(v) = indeg(v, σ) + outdeg(v, σ)
as the degree of v. Graph G is d-regular if for all v ∈ V we
have deg(v) = d.

A node v with indeg(v, σ) = deg(v) is called a sink. We
call an orientation σ sinkless if no node is a sink, that is,
every node v has outdeg(v, σ) > 0.

2.1 Colourings
In the following, for any integer k > 0 we write [k] =
{0, 1, . . . , k − 1}. A function ϕ : V → [χ] is a proper node
χ-colouring if for all {u, v} ∈ E we have ϕ(u) 6= ϕ(v). We
say that ψ : E → [χ] is a proper edge χ-colouring if we have
ψ(e) 6= ψ(e′) for all e, e′ ∈ E with e 6= e′ and e∩e′ 6= ∅. That
is, any two adjacent edges have a different colour.

Given a properly edge χ-coloured graph G = (V,E, ψ),
we call ϕ : V → [χ] a sinkless colouring of G if for all edges
e = {u, v} ∈ E it holds that

ϕ(u) = ψ(e) =⇒ ϕ(v) 6= ψ(e).

Put otherwise, ϕ is a sinkless colouring if it does not contain
a forbidden configuration, where ϕ(u) = ϕ(v) = ψ(e) for
some edge e = {u, v} ∈ E; see Figure 1 for an example. Note
that a sinkless colouring is not necessarily a proper node
colouring. The name “sinkless colouring” refers to its close
relation to sinkless orientations (see Section 2.4).

2.2 Model of Computation
In this work, we consider the LOCAL model of distributed

computing [28, 37]. In this framework, we have a simple
connected undirected graph G = (V,E) that serves both as a
communication network and as the problem instance. Each
node v ∈ V is a computational unit, edges denote direct
communication links between nodes, and all nodes in the
system execute the same algorithm A.

Initially each node v knows the total number of nodes n,
the maximum degree of the graph ∆, and possibly a task-
specific local input. Computation proceeds in synchronous
rounds. In each round, every node performs the following
three steps:

(1) send a message to each neighbour,
(2) receive a message from each neighbour,
(3) perform local computation.

After the final round each node announces its own local
output, that is, its own part in the solution. We do not
bound the local computation performed by nodes each round
in any way or the size of the messages sent. In particular,
nodes can send infinitely long messages to their neighbours in
a single round. The running time of an algorithm is defined
to be the number of communication rounds needed for all
nodes to announce their local output.

In the case of randomised algorithms, we assume that each
node can toss a countably infinite number of random coins,
or equivalently, is provided with a real number x(v) taken
uniformly at random from the interval [0, 1]. Note that x(v)
provides a globally unique identifier with probability 1 and it
can be used to obtain a globally unique O(log n)-bit identifier
with high probability.

We emphasise that while some of our assumptions may not
be realistic, they only make the lower-bound result stronger.

(a) (b) (c)

Figure 1: (a) A 3-regular edge 3-coloured graph. (b) A sinkless orientation. (c) A sinkless colouring. Note
that the solutions (b) and (c) are closely related: if the colour of a node is c in Figure (c), then its incident
edge of colour c is one of its out-edges in Figure (b).

2.3 Local Neighbourhoods
We denote the radius-t neighbourhood of a node u by

N t(u) = {v ∈ V : dist(u, v) ≤ t}, where dist(u, v) is the
length of the shortest path between u and v. Note that in t
rounds, any node u can only gather information from t hops
away, and hence, has to decide its output based solely on
N t(u). Thus, any distributed t-time algorithm can be con-
sidered as a function that maps the radius-t neighbourhoods
to output values.

It is often convenient to consider the edges instead of
the nodes as active entities, that is, every edge outputs
e.g. its own orientation. Hence, we analogously define the
radius-t neighbourhood of an edge {u, v} as N t({u, v}) =
N t(u)∩N t(v). Now for any algorithm that runs in time t, the
output of an edge {u, v} ∈ E can only depend on N t({u, v}).

2.4 Distributed Sinkless Orientation and
Sinkless Colouring

In order to prove our lower bound, we consider the tasks
of finding a sinkless orientation and a sinkless colouring in
d-regular graphs with distributed algorithms. In particular,
we will show that solving these problems is hard even in the
case where we are given an edge d-colouring. In the following,
let G = (V,E, ψ) denote our input graph, where ψ is a proper
edge d-colouring; see Figure 1 for illustrations.

Problem 1. Sinkless colouring. Given an edge d-coloured d-
regular graph G = (V,E, ψ), find a sinkless colouring ϕ. That
is, compute a colouring ϕ such that for no edge e = {u, v} ∈ E
we have ϕ(u) = ϕ(v) = ψ(e).

In the sinkless colouring problem, each node v ∈ V only
outputs its own colour ϕ(v) in the computed colouring.

Problem 2. Sinkless orientation. Given an edge d-coloured
d-regular graph G = (V,E, ψ), find a sinkless orientation σ.
That is, compute an orientation σ such that outdeg(v, σ) > 0
for all v ∈ V .

Note that in the sinkless orientation problem, the output
relates to edges instead of nodes. Therefore, we require that
for an edge e = {u, v} both endpoints u and v agree on the
orientation (i.e., either u→ v or u← v) and output the same
value σ(e) with probability 1. Put otherwise, u and v have
to break symmetry in order not to have the nodes trying to
orient the edge in a conflicting manner, e.g. outwards from
themselves. In the case of randomised algorithms, the random
input value x(v) ∈ [0, 1] breaks symmetry with probability 1;
the event x(v) = x(u) occurs with probability 0, so we simply
ignore this case for the remainder of this paper.

Finally, note that the problems of sinkless colouring and
sinkless orientation are closely related (see Figure 1). Given
a sinkless colouring ϕ, node u can orient the edge {u, v}

with colour ϕ(u) towards v and inform v of this in one
communication round; edges that are still unoriented can
be oriented arbitrarily. This produces a sinkless orientation.
On the other hand, given a sinkless orientation σ we can
compute a sinkless colouring ϕ as follows: node u outputs
the smallest colour ψ(e), where e = {u, v} is an outgoing
edge, that is, σ(e) = u → v. Any edge e = {u, v} can be
an outgoing edge for at most one of the nodes u and v, and
thus at most one of them outputs the colour ψ(e). Hence we
have the following trivial observations:

(1) If we can find a sinkless orientation in t rounds, we can
find a sinkless colouring in t rounds.

(2) If we can find a sinkless colouring in t rounds, we can
find a sinkless orientation in t+ 1 rounds.

The mutual speedup lemma (see Section 4) shows that we
can save 1 communication round in both steps (1) and (2),
at least in high-girth graphs.

2.5 Distributed Lovász Local Lemma
Let X be the set of random variables and E = {E1, . . . , En}

be the set of events as in Theorem 1 in Section 1.1. Denote
by vbl(Ek) ⊆ X the subset of variables that event Ek ∈ E
depends on and the dependency graph by GE = (E ,D), where
D = {{Ei, Ej} : vbl(Ei) ∩ vbl(Ej) 6= ∅}.

Problem 3. Distributed Lovász local lemma. Let the de-
pendency graph GE = (E ,D) be the communication graph,
where each node v corresponds to an event Ev ∈ E and knows
the set vbl(Ev). The task is to have each node output an
assignment av of the variables vbl(Ev) such that

(1) for any {Eu, Ev} ∈ D and X ∈ vbl(Eu) ∩ vbl(Ev) it
holds that au(X) = av(X), and

(2) the event Ev does not occur under assignment av.

To make the lower-bound results as widely applicable as
possible, we consider the explicit, finite version of the LLL
problem: the random variables are discrete variables with
a finite range, and for each event Ev, node v has access to
an explicit specification of all combinations of the variables
vbl(Ev) for which Ev occurs. In particular, we do not need
to assume that the events are black boxes.

3. FROM LLL TO SINKLESS
ORIENTATION

In this section, we reduce the sinkless orientation problem
to the distributed Lovász local lemma. More specifically, we
show the following:

(a) (b)

(d)(c)

Figure 2: (a) Part of a high-girth 3-regular edge 3-coloured graph. (b) A 4-regular graph obtained by
contracting all blue edges—note that the graph is not properly edge coloured. (c) With distributed LLL we
can find a sinkless orientation in the 4-regular graph. (d) We can now orient each blue edge greedily to obtain
a sinkless orientation of the original graph.

Theorem 2. Let f : N→ R be such that f(4) ≤ 16. Let
A be a Monte Carlo distributed algorithm for LLL such that
A finds an assignment avoiding all the bad events under the
LLL criterion pf(d) ≤ 1 in time T for some T : N → N.
Then there is a Monte Carlo distributed algorithm B that
finds a sinkless orientation in 3-regular graphs of girth at
least 5 in time O(T).

The case for 4-regular graphs would be almost immediate.
The interesting case will be 3-regular graphs, for which we
will show a reduction to the 4-regular case. Note that if we
used the LLL criterion of Shearer [38], we could use LLL to
find sinkless orientations directly in 3-regular graphs, but
this would yield a weaker lower bound.

Proof of Theorem 2. The approach that we take is
illustrated in Figure 2. Let G be a 3-regular edge 3-coloured
graph of girth at least 5. We first contract all edges of
colour 2 (blue edges in the illustration) to obtain a 4-regular
graph G′. As G had a sufficiently high girth, graph G′ will
be simple.

Note that the contraction only changes the distances by
a constant factor. Hence we can easily simulate any dis-
tributed algorithm on the 4-regular graph G′ with a constant
multiplicative overhead: each communication round in G′

corresponds to at most 3 communication rounds in G.
In particular, we can apply the LLL algorithm A to find a

sinkless orientation of graph G′. From the LLL perspective,
each edge e = {u, v} corresponds to a variable Xe that
ranges over {u → v, u ← v}, and each node v corresponds
to the bad event Ev that all incident edges are oriented
towards v. Conveniently, the dependency graph GE = (E ,D)
is isomorphic to graph G′. If the mutually independent
random variables Xe are sampled uniformly at random, we
have Pr[Ev] = 1/16 for each v ∈ V , and hence we can apply
algorithm A to find a sinkless orientation in G′.

Recall that each node of G′ corresponds to an edge of
colour 2 in G. Hence from the perspective of graph G, we
have now oriented all edges of colours 0 and 1 such that for
each edge e = {u, v} of colour 2, at least one endpoint of e
has a positive outdegree; let this endpoint be v. Now if we
orient e from u to v, both endpoints of e will have a positive
outdegree.

4. THE MUTUAL SPEEDUP LEMMA
In this section we show that if we can find a sinkless

colouring in t rounds with failure probability p, then it is

possible to find a sinkless orientation in t rounds with failure
probability roughly p1/3 assuming the graph has a high girth.
Furthermore, if we can find a sinkless orientation in t rounds
with failure probability q, then it is possible to find a sinkless
colouring in t − 1 rounds with failure probability roughly
q1/4.

To be precise, we define a sinkless colouring algorithm with
failure probability p as follows: the algorithm will always
output some colouring, but the colouring is not necessarily
sinkless; for any edge e, the probability that e has a forbidden
configuration is bounded by p. Similarly, we define a sinkless
orientation algorithm with failure probability q as follows:
the algorithm will always output some orientation, but the
orientation is not necessarily sinkless; for any node u, the
probability that u is a sink is bounded by q.

We will assume throughout this section that the input
graph is a 3-regular edge 3-coloured graph with a girth
larger than 2t+ 1. Thus, for each edge e, its radius-(t+ 1)
neighbourhood is a tree. In addition, we say that the radius-
t neighbourhood N t(u) of node u is fixed when we fix the
random input values (i.e., coin flips) for the nodes in N t(u).
Similarly, the radius-t neighbourhood N t(e) = N t(u)∩N t(v)
of an edge e = {u, v} is fixed if all the random values in N t(e)
are fixed. We denote the probability of an event E conditioned
on a fixed radius-t neighbourhood of u by Pr[E | N t(u)], and
respectively, for an edge e by Pr[E | N t(e)].

4.1 From Sinkless Colouring to Sinkless
Orientation

In this section, we assume we are given a randomised
sinkless colouring algorithm B (with some failure probability)
that runs in t rounds. We use this algorithm to construct a
randomised sinkless orientation algorithm B′ that also runs
in t rounds. For brevity, we write B(u) for the colour that
u outputs according to B and B′(e) for the orientation B′

outputs for edge e.
The intuition behind the construction is as follows. In B′,

an edge e = {u, v} of colour ψ(e) is oriented u→ v if, based
on the local neighbourhood of e, both of the following hold:

• we have B(u) = ψ(e) with a “large” probability,
• we have B(v) = ψ(e) with a “small” probability.

The distinction between “large” and “small” is based on a
threshold value. For each node u, the output B(u) is equal
to the colour of at least one incident edge e = {u, v} with
a “large” probability; therefore node u will have an incident
edge oriented towards v and therefore u will not be a sink—

u v

Nt(u)

e

Nt(v)

Nt(e)

u v
(a) (b)

C(u) C(v)

Figure 3: From sinkless colouring to sinkless orientation. Here we are given a sinkless colouring algorithm B
with a running time of t = 2, and our goal is to construct a sinkless orientation algorithm B′ with the
same running time. (a) In algorithm B, the colour of node u is determined by the random bits in N t(u).
However, when algorithm B′ chooses the orientation of the black edge e it will only look at the random bits
in N t(e) (N t(u). We say that black is a candidate colour of u if, based on the information in N t(e) alone,
the probability of node u outputting black in algorithm B is at least K. (b) If black is one of the candidate
colours of u, and it is not one of the candidate colours of v, algorithm B′ will orient the edge u→ v.

unless v also has a large probability of having the same colour
as e. But the probability of the latter happening is bounded
via the failure probability of B since u, v and e having the
same colour is a forbidden configuration.

Consider any node u ∈ V . Algorithm B′ consists of three
steps. First, node u gathers its radius-t neighbourhood N t(u)
in t communication rounds. Note that N t(u) contains both
the topology (which is locally a tree) and the random input
values x(v) for all v ∈ N t(u). Second, node u computes the
set C(u) of candidate colours defined as

C(u) =
{
ψ(e) : Pr[B(u) = ψ(e) | N t(e)] ≥ K

and e = {u, v}
}
,

where K is a parameter we will fix later (see Figure 3 for an
illustration). Then, for all of its incident edges e = {u, v},
node u calculates the probability of node v outputting the
colour ψ(e) when executing algorithm B given the radius-t
neighbourhood N t(e) = N t(u) ∩N t(v) of edge e. Thereby,
u can determine whether ψ(e) ∈ C(v).

Finally, we decide the orientation of each edge e = {u, v} as
follows. In the case ψ(e) ∈ C(u)∩C(v) or ψ(e) /∈ C(u)∪C(v),
choose the orientation B′(e) of edge e arbitrarily and break
any ties using the random coin flips of u and v. Otherwise,
edge e is oriented according to the following rule:

B′(e) =

{
u→ v if ψ(e) ∈ C(u) and ψ(e) /∈ C(v),

u← v if ψ(e) /∈ C(u) and ψ(e) ∈ C(v).

We will now analyse algorithm B′. For each colour c, let
e = {u, v} be an edge incident to u such that ψ(e) = c and
define

Ac(u) = N t−1(v) \N t−1(u).

Definition 1. Lucky random bits. Given a fixed radius-
(t− 1) neighbourhood N t−1(u) of u, we say that the random
coin flips in Ac(u) are lucky if

Pr[B(u) = c | N t−1(u) ∪Ac(u)] ≥ K

holds, and otherwise that the coin flips are unlucky.

Observe that c ∈ C(u) if and only if the random coin flips in
Ac(u) are lucky, since N t−1(u) ∪Ac(u) = N t(e). Let Ec be
the event that the random coin flips in Ac(u) are unlucky,

that is, the event that Pr[B(u) = c | N t−1(u) ∪Ac(u)] < K
holds.

Lemma 1. Given any fixed neighbourhood N t−1(u) of node
u, the set C(u) is empty with probability at most 3K.

Proof. Let E =
⋂
Ec be the event that the random values

in each Ac(u) are unlucky given N t−1(u). This is the case if
and only if C(u) = ∅, which implies that

Pr[C(u) = ∅ | N t−1(u)] = Pr[E],

where the right-hand side can be written as

Pr[E] =
∑
c

Pr[E and B(u) = c].

Observe that since E ⊆ Ec for any colour c, we have that

Pr[E and B(u) = c] = Pr[E and B(u) = c | Ec] · Pr[Ec]
≤ Pr[B(u) = c | Ec] · Pr[Ec]
≤ Pr[B(u) = c | Ec].

Since by definition the coin flips in Ac(u) are unlucky in the
event Ec, we get that Pr[B(u) = c | Ec] < K. Thus combining
the above, we have that

Pr[C(u) = ∅ | N t−1(u)] =
∑
c

Pr[E and B(u) = c] <
∑
c

K.

Since we have three colours, the claim follows.

Definition 2. Nice edge neighbourhoods. For an edge e =
{u, v}, we call its fixed neighbourhood N t(e) nice if

Pr[B(u) = ψ(e) = B(v) | N t(e)] < K2.

That is, after fixing the random coin flips in N t(e), the
algorithm outputs ψ(e) at both u and v with probability less
than K2. Otherwise, we call N t(e) a bad neighbourhood.

Lemma 2. Let e = {u, v} be an edge with no cycles in its
radius-(t+1) neighbourhood. If the fixed neighbourhood N t(e)
is nice, then ψ(e) /∈ C(u) ∩ C(v).

Proof. Let N t(e) be fixed and nice. Assume for con-
tradiction that ψ(e) ∈ C(u) ∩ C(v). By definition of the
candidate colour set, for both w ∈ e we have ψ(e) ∈ C(w) if

Pr[B(w) = ψ(e) | N t(e)] ≥ K.

As the output B(u) of node u is determined by the coin
flips in N t(u) and the coin flips in N t(e) = N t(u) ∩N t(v)
are fixed, we now have that B(u) only depends on the coin
flips in N t(u) \N t(v). Similarly, the output B(v) of v only
depends on the coin flips in N t(v) \N t(u). Therefore, the
events B(u) = ψ(e) and B(v) = ψ(e) are independent, as
N t+1(e) contains no cycles, and we get

Pr[B(u) = ψ(e) = B(v) | N t(e)] ≥ K2,

which contradicts the assumption that N t(e) was nice.

Now it is easy to check that if a node u has at least
one candidate colour and all its incident edges have nice
neighbourhoods, then u will not be a sink according to B′.

Lemma 3. Suppose N t(u) is fixed and the neighbourhoods
N t(e) are nice for all edges e = {u,w} incident to u. If
C(u) 6= ∅, then B′(e′) = u→ v for some e′ = {u, v}.

Proof. Since C(u) 6= ∅, there is some ψ(e) ∈ C(u).
Moreover as N t(e) is nice, Lemma 2 implies that ψ(e) /∈
C(u) ∩ C(v), and thus, ψ(e) /∈ C(v). By definition of B′, we
have B′(e) = u→ v.

Now we have all the pieces to show the first part of the
mutual speedup lemma.

Lemma 4. Suppose B is a sinkless colouring algorithm
that runs in t rounds such that for any edge e = {u, v} the
probability of outputting a forbidden configuration B(u) =
ψ(e) = B(v) is at most p. Then there exists a sinkless
orientation algorithm B′ that runs in t rounds such that for
any node u the probability of being a sink is at most 6p1/3.

Proof. Let B′ be as given earlier and consider a node u.
By Lemma 3, algorithm B′ can produce a sink at node u
only if C(u) = ∅ or one of the edges incident to u has a bad
(i.e., not nice) neighbourhood. Let

S = max
e3u

Pr[N t(e) is bad]

be the maximum probability that a particular edge has a bad
neighbourhood; the probability of having a bad neighbour-
hood need not be the same for edges of different colours. By
the union bound, the probability that N t(e) is bad for some
edge e = {u, v} is at most 3S. By Lemma 1, the probability
that C(u) = ∅ is at most 3K. Thus, applying the union
bound once again, we get that

Pr[node u is a sink]

≤
∑

e={u,v}

Pr[N t(e) is bad] + Pr[C(u) = ∅]

≤ 3S + 3K.

Now let us consider the probability that an edge e = {u, v}
has a forbidden configuration, where e is an edge that attains
Pr[N t(e) is bad] = S. Recall that the probability of B(u) =
ψ(e) = B(v) is at most p, and thus,

p ≥ Pr[B(u) = ψ(e) = B(v)]

≥ Pr[N t(e) is bad]·Pr[B(u) = ψ(e) = B(v) | N t(e) is bad]

≥ SK2

by Definition 2. By setting K = p1/3 we get that

p ≥ SK2 = Sp2/3 ⇐⇒ p1/3 ≥ S

and we have 3S + 3K ≤ 6p1/3, which proves our claim.

4.2 From Sinkless Orientation Back to
Sinkless Colouring

We now show how to construct a randomised sinkless
colouring algorithm B′′ that runs in time t − 1 given a
sinkless orientation algorithm B′ that runs in time t. The
approach is analogous to the one in the previous section. The
high level idea is that any node u first checks which of its
incident edges are likely to be pointed outwards by B′, and
then it can choose the colour of one of these edges to output
a sinkless colouring with a large probability.

Unlike before, each node will gather only its radius-(t− 1)
neighbourhood in t− 1 rounds. Again, let L be a threshold
we fix later. Define the candidate colour set C′(u) as

C′(u) = {ψ(e) : Pr[B′(e) = u← v | N t−1(u)] ≤ L},

that is, the set of colours which are pointed towards u with
probability at most L. The node u will then output the
smallest candidate colour or an arbitrarily chosen colour if
there are no candidates, or formally,

B′′(u) =

{
minC′(u) if C′(u) 6= ∅,
0 otherwise.

Our goal now is to show that this produces a sinkless colour-
ing with a large probability. To do this, we show that the
probabilities of the following two events are large: (1) the
candidate set being non-empty and (2) ψ(e) /∈ C(u) ∩ C(v)
for any edge e = {u, v}.

Analogously to Section 4.1, we define the notions of lucky
and unlucky bits as well as nice and bad neighbourhoods.

Definition 3. Lucky random bits. For any e = {u, v}, let
Au(e) = N t−1(u) \N t−1(v). We say that the random coin
flips in Au(e) are lucky if

Pr[B′(e) = u← v | N t−1(e) ∪Au(e)] ≤ L.

Otherwise, the coin flips in Au(e) are unlucky.

Lemma 5. Given any fixed neighbourhood N t−1(e) of edge
e, we have Pr[ψ(e) ∈ C′(u) ∩ C′(v) | N t−1(e)] ≤ 2L.

Proof. Fix the random coin flips in N t−1(e). Let Eu
be the event that the coin flips in Au(e) are lucky and let
E = Eu ∩ Ev be the event that coin flips in both Au(e) and
Av(e) are lucky. Observe that ψ(e) ∈ C′(u) if and only if
the coin flips in Au(e) are lucky. Therefore,

Pr[E] = Pr[ψ(e) ∈ C′(u) ∩ C′(v) | N t−1(e)]

= Pr[E and B′(e) = u→ v]

+ Pr[E and B′(e) = u← v].

Since E ⊆ Eu, it follows that

Pr[E and B′(e) = u← v]

= Pr[E and B′(e) = u← v | Eu] · Pr[Eu]

≤ Pr[B′(e) = u← v | Eu] ≤ L

by Definition 3 as the coin flips in Au(e) are lucky in the
event Eu. Symmetrically, we also get the bound

Pr[E and B′(e) = u→ v] ≤ L.

Combining the above observations we get that

Pr[E] = Pr[ψ(e) ∈ C′(u) ∩ C′(v) | N t−1(e)] ≤ 2L,

and the claim follows.

Definition 4. Nice node neighbourhoods. Let N t−1(u) be
fixed. We say that the neighbourhood N t−1(u) is nice if the
probability that u is a sink when executing B′ is at most L3,
that is, if

Pr[B′(e) = u← v for all e = {u, v} | N t−1(u)] ≤ L3

holds. Otherwise, we call N t−1(u) a bad neighbourhood.

Lemma 6. Assume that the fixed neighbourhood N t−1(u)
is nice. Then C′(u) 6= ∅.

Proof. Fix the coin flips in N t−1(u) and assume N t−1(u)
is nice. For the sake of contradiction, suppose C′(u) = ∅.
Now by definition of C′(u) we have

Pr[B′(e) = u← v | N t−1(u)] > L

for each edge e = {u, v}. Since the coin flips in N t−1(u)
are fixed, the output B′(e) only depends on the coin flips in
N t−1(v) \N t−1(u). Since the girth is larger than 2t, for each
e = {u, v} and e′ = {u, v′}, where v 6= v′, the coin flips in
N t−1(v) \N t−1(u) and N t−1(v′) \N t−1(u) are independent.
Therefore, the events B′(e) = u ← v and B′(e′) = u ← v′

are independent. This implies that

Pr[C′(u) = ∅ | N t−1(u)]

=
∏

e={u,v}

Pr[B′(e) = u← v | N t−1(u)] > L3,

contradicting the assumption that N t−1(u) is nice.

Lemma 7. Suppose B′ is a sinkless orientation algorithm
that runs in time t such that the probability that any node u
is a sink is at most `. Then there exists a sinkless colouring
algorithm B′′ that runs in time t− 1 such that the probability
for any edge e = {u, v} having a forbidden configuration

B′′(u) = ψ(e) = B′′(v) is less than 4`1/4.

Proof. Let B′′ as defined earlier and consider an edge
e = {u, v}. If algorithm B′′ outputs a forbidden configuration
B′′(u) = ψ(e) = B′′(v), then either C′(u) ∪ C′(v) = ∅
or ψ(e) ∈ C′(u) ∩ C′(v) holds. We will now bound the
probability of both events.

Observe that before fixing any random bits, the probability
of having a bad radius-(t − 1) neighbourhood is the same
for all nodes, as all radius-(t− 1) node neighbourhoods are
identical. Let S = Pr[N t−1(u) is bad] be this probability.
By union bound and Lemma 6 we get that

Pr[C′(u) ∪ C′(v) = ∅]
≤ Pr[C′(u) = ∅] + Pr[C′(v) = ∅]
≤ Pr[N t−1(u) is bad] + Pr[N t−1(v) is bad] ≤ 2S.

From Lemma 5 we get that

Pr[ψ(e) ∈ C′(u) ∩ C′(v)] ≤ 2L.

Using the union bound and the above, we get that the
probability of a forbidden configuration is

Pr[B′′(u) = ψ(e) = B′′(v)] ≤ 2S + 2L.

To prove the claim, observe that from Definition 4 and the
assumption that B′ produces a sink at u with probability at
most `, it follows that

` ≥ Pr[u is a sink]

≥ Pr[u is a sink | N t−1(u) is bad] · Pr[N t−1(u) is bad]

> SL3.

Therefore, ` > SL3. By setting L = `1/4 we get that S < `1/4

implying 2S + 2L < 4`1/4.

4.3 The Speedup Lemma

Lemma 8. Suppose B is a sinkless colouring algorithm
that runs in time t such that for any edge e the probability
that B produces a forbidden configuration at e is at most p.
Then there is a sinkless colouring algorithm B′′ that runs in
t− 1 rounds such that it produces a forbidden configuration
at any edge with probability less than 4 · 61/4 · p1/12.

Proof. Follows from Lemmas 4 and 7.

5. LOWER BOUNDS

Lemma 9. Fix d ≥ 3. There exists an infinite family of
d-regular graphs G such that the edges of every G ∈ G can be
coloured with d colours and the girth of G is Ω(logn).

Proof. Let H be an infinite family of d-regular graphs
with girth Θ(logn); see e.g. [8, Ch. 3] how to obtain one.
For any graph H = (U,F) ∈ H consider its bipartite double
cover G = (V,E), where V = {ui : u ∈ U, i ∈ {0, 1}} and
E = {{ui, v1−i} : {u, v} ∈ F, i ∈ {0, 1}}. Note that G is
also d-regular and has girth of Θ(logn). By König’s line
colouring theorem the edges of G can be coloured with d
colours [15, Ch. 5.3].

Theorem 3. There does not exist a Monte Carlo dis-
tributed algorithm solving the sinkless colouring problem
in d-regular graphs, where d ≥ 3, with high probability in
o(log log n) rounds.

Proof. For the sake of contradiction, suppose A is an
algorithm that solves sinkless colouring in fc(n) ∈ o(log log n)
rounds with probability at least 1− 1/nc for an arbitrarily
large constant c. Now fix a sufficiently large 3-regular graph
G of n nodes given by Lemma 9.

Let t = fc(n) and for i ∈ {0, . . . , t} let Ai be the algorithm
attained after i iterated applications of Lemma 8. Let pi be
the probability that Ai produces a forbidden configuration
at any given edge e. By assumption p0 ≤ 1/nc and from

Lemma 8 it follows that pi+1 ≤ zp
1/12
i , where z = 4 · 61/4.

In particular, the probability that algorithm At running in 0
rounds produces a forbidden configuration at edge e is

pt ≤ zsp1/12
t

0 ≤ zsq(n, c),

where

s =

t∑
i=0

1/12i < 2 and q(n, c) = n−c/(12t).

By applying the union bound we get that for any node u
executing At, the probability that one of its incident edges
has a forbidden configuration is at most∑

e:u∈e

z2q(n, c) < 3z2q(n, c).

Since fc(n) ∈ o(log log n), picking a sufficiently large n yields
t = fc(n) ≤ (log logn)/4 and 1/12t ≥ 1/ logn. It follows
that q(n, c) ≤ 1/2c and by setting c = log(30z2) ∈ O(1) we
obtain

Pr[node u is incident to a forbidden configuration]

≤ 3z2 · 1/2c ≤ 1/10.

Finally, observe that in 0 rounds, all nodes choose their
output independently of each other (and using the same
algorithm). Since each node needs to output a colour, at
least one colour c out of the three colours is picked with
probability at least 1/3. Now the probability that node u
has an edge of colour c with a forbidden configuration is at
least 1/32 > 1/10, which is a contradiction.

As observed in Section 2.4 we can obtain a sinkless colour-
ing from a sinkless orientation without communication. This
implies the following result.

Corollary 1. There does not exist any Monte Carlo
distributed algorithm solving the sinkless orientation problem
in d-regular graphs, where d ≥ 3, with high probability in
o(log logn) rounds.

Together with Theorem 2 we get our main result. Note
that in the following theorem we can plug in, for example,
either of the commonly used LLL criteria: ep(d+ 1) ≤ 1 or
4pd ≤ 1.

Corollary 2. Let f : N→ R be such that f(4) ≤ 16. Let
A be a Monte Carlo distributed algorithm for LLL that finds
an assignment avoiding all the bad events under the LLL
criterion pf(d) ≤ 1 with high probability. Then the running
time of A is Ω(log log n) rounds.

Since any proper d-colouring of the nodes is also a sinkless
colouring, we get the following lower bound as a by-product.
Our lower bound can be contrasted with Linial’s classical
result [28]: Linial shows that any algorithm colouring a d-

regular tree of radius r in 2r/3 rounds needs Ω(
√
d) colours,

and this result can be strengthened to Ω(d/ log d) colours
using the graph constructions of Alon [2]. However, Linial’s
technique does not seem to imply any nontrivial lower bounds
for the case of d colours.

Corollary 3. There does not exist any Monte Carlo dis-
tributed algorithm that finds a d-colouring in d-regular, bipar-
tite, Ω(log n)-girth graphs with high probability in o(log log n)
rounds.

6. CONCLUSIONS
In this paper, we have shown that any Monte Carlo dis-

tributed algorithm for the sinkless orientation problem re-
quires Ω(log log n) rounds even in the case of 3-regular graphs.
In particular, as the existence of such orientations can be
shown using the symmetric version of the Lovász local lemma
with the classical ep(d+ 1) ≤ 1 criterion, it follows that any
algorithm for the distributed Lovász local lemma working
under this criterion also requires Ω(log log n) communication
rounds.

An exponential gap still remains between the lower bound
and the best known upper bound of O(log n log d) rounds [11,
19] for the classical version of LLL. However, Chung et al. [11]
note that it is possible to break the O(logn) barrier for a
weaker version of LLL. Thus, a natural avenue of further
investigation would be to gain better understanding on the
true complexity of the distributed Lovász local lemma and
on what are the trade-offs between various criteria.

Subsequently to our work, Chang et al. [10] gave a sep-
aration result regarding the power of randomisation in the
LOCAL model: d-colouring trees with maximum degree d

has randomised round complexity of Θ(logd logn) for any
d ≥ 55, but the deterministic round complexity is Θ(logd n)
for any d ≥ 3. Moreover, they showed that in bounded-degree
graphs, a lower bound of ω(log∗ n) for randomised algorithms
implies a bound of Ω(logn) for deterministic algorithms. It
follows that the deterministic complexity of finding sinkless
orientations is also Ω(logn).

7. ACKNOWLEDGEMENTS
The problem of sinkless orientations in the context of

distributed computing was originally introduced by Mika
Göös. We have discussed this problem and its variants with
numerous people—including, at least, Laurent Feuilloley,
Pierre Fraigniaud, Teemu Hankala, Joel Kaasinen, Petteri
Kaski, Janne H. Korhonen, Juhana Laurinharju, Christoph
Lenzen, Joseph S. B. Mitchell, Pekka Orponen, Thomas
Sauerwald, Stefan Schmid, Przemys law Uznański, and Uri
Zwick—many thanks to all of you! We also wish to thank
the anonymous reviewers for their helpful comments and
suggestions regarding the manuscript.

8. REFERENCES
[1] N. Alon. A parallel algorithmic version of the local

lemma. Random Structures & Algorithms, 2(4):367–378,
1991.

[2] N. Alon. On constant time approximation of
parameters of bounded degree graphs. In O. Goldreich,
editor, Property Testing, volume 6390 of Lecture Notes
in Computer Science, pages 234–239. Springer, 2010.
doi:10.1007/978-3-642-16367-8 14.

[3] N. Alon and J. H. Spencer. The Probabilistic Method.
John Wiley & Sons, Hoboken, NJ, USA, third edition,
2008.

[4] L. Barenboim and M. Elkin. Distributed Graph
Coloring: Fundamentals and Recent Developments.
Morgan & Claypool, 2013.
doi:10.2200/S00520ED1V01Y201307DCT011.

[5] L. Barenboim, M. Elkin, and F. Kuhn. Distributed
(∆ + 1)-coloring in linear (in ∆) time. SIAM Journal
on Computing, 43(1):72–95, 2014. doi:10.1137/12088848X.

[6] L. Barenboim, M. Elkin, S. Pettie, and J. Schneider.
The locality of distributed symmetry breaking. In Proc.
53rd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2012), pages 321–330. IEEE
Computer Society Press, 2012. doi:10.1109/FOCS.2012.60.

[7] J. Beck. An algorithmic approach to the Lovász local
lemma. Random Structures and Algorithms,
2(4):343–365, 1991.

[8] B. Bollobás. Extremal Graph Theory. Academic Press,
London, 1978.

[9] K. Chandrasekaran, N. Goyal, and B. Haeupler.
Deterministic algorithms for the Lovász local lemma.
SIAM Journal on Computing, 42(6):2132–2155, 2013.
doi:10.1137/100799642.

[10] Y.-J. Chang, T. Kopelowitz, and S. Pettie. An
exponential separation between randomized and
deterministic complexity in the LOCAL model,
February 2016. arXiv:1602.08166.

[11] K.-M. Chung, S. Pettie, and H.-H. Su. Distributed
algorithms for the Lovász local lemma and graph
coloring. In Proc. 33rd ACM SIGACT-SIGOPS

http://dx.doi.org/10.1007/978-3-642-16367-8_14
http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011
http://dx.doi.org/10.1137/12088848X
http://dx.doi.org/10.1109/FOCS.2012.60
http://dx.doi.org/10.1137/100799642
http://arxiv.org/abs/1602.08166

Symposium on Principles of Distributed Computing
(PODC 2014), pages 134–143. ACM Press, 2014.
doi:10.1145/2611462.2611465.

[12] A. Czumaj and C. Scheideler. Coloring nonuniform
hypergraphs: A new algorithmic approach to the
general Lovász local lemma. Random Structures &
Algorithms, 17(3–4):213–237, 2000.
doi:10.1002/1098-2418(200010/12)17:3/4<213::

AID-RSA3>3.0.CO;2-Y.

[13] A. Czumaj and C. Scheideler. A new algorithmic
approach to the general Lovász local lemma with
applications to scheduling and satisfiability problems.
In Proc. 32nd Annual ACM Symposium on Theory of
Computing (STOC 2000), pages 38–47. ACM, 2000.
doi:10.1145/335305.335310.

[14] A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak.
Fast distributed approximations in planar graphs. In
Proc. 22nd International Symposium on Distributed
Computing (DISC 2008), volume 5218 of Lecture Notes
in Computer Science, pages 78–92. Springer, 2008.
doi:10.1007/978-3-540-87779-0 6.

[15] R. Diestel. Graph Theory. Springer, Berlin, 4th edition,
2010. http://diestel-graph-theory.com/.

[16] M. Elkin, S. Pettie, and H.-H. Su.
(2∆− 1)-edge-coloring is much easier than maximal
matching in the distributed setting. In Proc. 26th
Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2015), pages 355–370. SIAM, 2015.
doi:10.1137/1.9781611973730.26.

[17] P. Erdős and L. Lovász. Problems and results on
3-chromatic hypergraphs and some related questions.
Infinite and finite sets, 2(2):609–627, 1975.

[18] D. Gamarnik and M. Sudan. Limits of local algorithms
over sparse random graphs. In Proc. 5th Conference on
Innovations in Theoretical Computer Science (ITCS
2014), pages 369–376. ACM Press, 2014.
doi:10.1145/2554797.2554831. arXiv:arXiv:1304.1831.

[19] M. Ghaffari. An improved distributed algorithm for
maximal independent set. In Proc. 27th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
2016). SIAM, 2016. To appear. arXiv:1506.05093.

[20] M. Göös, J. Hirvonen, and J. Suomela. Lower bounds
for local approximation. Journal of the ACM,
60(5):39:1–23, 2013. doi:10.1145/2528405. arXiv:1201.6675.

[21] M. Göös, J. Hirvonen, and J. Suomela. Linear-in-∆
lower bounds in the LOCAL model. Distributed
Computing, 2015. doi:10.1007/s00446-015-0245-8.
arXiv:1304.1007.

[22] B. Haeupler and D. G. Harris. Improved bounds and
parallel algorithms for the Lovász local lemma,
September 2015. arXiv:1509.06430.

[23] B. Haeupler, B. Saha, and A. Srinivasan. New
constructive aspects of the Lovász local lemma. Journal
of the ACM, 58(6):28:1–28:28, 2011.
doi:10.1145/2049697.2049702. arXiv:arXiv:1001.1231v5.

[24] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What
cannot be computed locally! In Proc. 23rd Annual
ACM Symposium on Principles of Distributed
Computing (PODC 2004), pages 300–309. ACM Press,
2004. doi:10.1145/1011767.1011811.

[25] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The
price of being near-sighted. In Proc. 17th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
2006), pages 980–989. ACM Press, 2006.
doi:10.1145/1109557.1109666.

[26] T. Leighton, B. Maggs, and A. W. Richa. Fast
algorithms for finding O(congestion + dilation) packet
routing schedules. Combinatorica, 19(3):375–401, 1999.
doi:10.1007/s004930050061.

[27] C. Lenzen and R. Wattenhofer. Leveraging Linial’s
locality limit. In Proc. 22nd International Symposium
on Distributed Computing (DISC 2008), volume 5218 of
Lecture Notes in Computer Science, pages 394–407.
Springer, 2008. doi:10.1007/978-3-540-87779-0 27.

[28] N. Linial. Locality in distributed graph algorithms.
SIAM Journal on Computing, 21(1):193–201, 1992.
doi:10.1137/0221015.

[29] M. Luby. A simple parallel algorithm for the maximal
independent set problem. SIAM Journal on Computing,
15(4):1036–1053, 1986. doi:10.1137/0215074.

[30] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, Cambridge, UK,
2005.

[31] M. Molloy and B. Reed. Further algorithmic aspects of
the local lemma. In Proc. 30th Annual ACM
Symposium on Theory of Computing (STOC 1998),
pages 524–529. ACM, 1998. doi:10.1145/276698.276866.

[32] M. Molloy and B. Reed. Graph Colouring and the
Probabilistic Method. Springer-Verlag, Berlin, 2002.

[33] R. Moser. A constructive proof of the Lovász local
lemma. In Proc. 41st Annual ACM Symposium on
Theory of Computing (STOC 2009), pages 343–350.
ACM, 2009. doi:10.1145/1536414.1536462.

[34] R. A. Moser and G. Tardos. A constructive proof of the
general Lovász local lemma. Journal of the ACM,
57(2):11:1–11:15, 2010. doi:10.1145/1667053.1667060.
arXiv:0903.0544.

[35] M. Naor. A lower bound on probabilistic algorithms for
distributive ring coloring. SIAM Journal on Discrete
Mathematics, 4(3):409–412, 1991. doi:10.1137/0404036.

[36] M. Naor and L. Stockmeyer. What can be computed
locally? SIAM Journal on Computing, 24(6):1259–1277,
1995. doi:10.1137/S0097539793254571.

[37] D. Peleg. Distributed Computing: A Locality-Sensitive
Approach. SIAM Monographs on Discrete Mathematics
and Applications. SIAM, Philadelphia, 2000.

[38] J. B. Shearer. On a problem of Spencer. Combinatorica,
5(3):241–245, 1985.

[39] A. Srinivasan. An extension of the Lovász local lemma,
and its applications to integer programming. SIAM
Journal on Computing, 36(3):609–634, 2006.

[40] A. Srinivasan. Improved algorithmic versions of the
Lovász local lemma. In Proc. 19h Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2008),
pages 611–620. SIAM, 2008.

[41] J. Suomela. Survey of local algorithms. ACM
Computing Surveys, 45(2):24:1–40, 2013.
doi:10.1145/2431211.2431223.
http://www.cs.helsinki.fi/local-survey/.

http://dx.doi.org/10.1145/2611462.2611465
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4%3C213::AID-RSA3%3E3.0.CO;2-Y
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4%3C213::AID-RSA3%3E3.0.CO;2-Y
http://dx.doi.org/10.1145/335305.335310
http://dx.doi.org/10.1007/978-3-540-87779-0_6
http://diestel-graph-theory.com/
http://dx.doi.org/10.1137/1.9781611973730.26
http://dx.doi.org/10.1145/2554797.2554831
http://arxiv.org/abs/arXiv:1304.1831
http://arxiv.org/abs/1506.05093
http://dx.doi.org/10.1145/2528405
http://arxiv.org/abs/1201.6675
http://dx.doi.org/10.1007/s00446-015-0245-8
http://arxiv.org/abs/1304.1007
http://arxiv.org/abs/1509.06430
http://dx.doi.org/10.1145/2049697.2049702
http://arxiv.org/abs/arXiv:1001.1231v5
http://dx.doi.org/10.1145/1011767.1011811
http://dx.doi.org/10.1145/1109557.1109666
http://dx.doi.org/10.1007/s004930050061
http://dx.doi.org/10.1007/978-3-540-87779-0_27
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1137/0215074
http://dx.doi.org/10.1145/276698.276866
http://dx.doi.org/10.1145/1536414.1536462
http://dx.doi.org/10.1145/1667053.1667060
http://arxiv.org/abs/0903.0544
http://dx.doi.org/10.1137/0404036
http://dx.doi.org/10.1137/S0097539793254571
http://dx.doi.org/10.1145/2431211.2431223
http://www.cs.helsinki.fi/local-survey/

	Introduction
	Distributed Lovász Local Lemma
	Main Result and Key Techniques
	Prior Work on LLL
	Prior Work on Other Lower Bounds

	Preliminaries
	Colourings
	Model of Computation
	Local Neighbourhoods
	Distributed Sinkless Orientation and Sinkless Colouring
	Distributed Lovász Local Lemma

	From LLL to Sinkless Orientation
	The Mutual Speedup Lemma
	From Sinkless Colouring to Sinkless Orientation
	From Sinkless Orientation Back to Sinkless Colouring
	The Speedup Lemma

	Lower Bounds
	Conclusions
	Acknowledgements
	References

