
Sensor Networks: Distributed
Algorithms Reloaded – or Revolutions?

Roger Wattenhofer

Computer Engineering and Networks Laboratory
ETH Zurich, 8092 Zurich, Switzerland
wattenhofer@tik.ee.ethz.ch

Abstract. This paper wants to motivate the distributed algorithms community
to study sensor networks. We discuss why sensor networks are distributed algo-
rithms, and why they are not.

1 Introduction

Wireless sensor networks currently exhibit an incredible research momentum. Com-
puter scientists and engineers from all flavors are embracing the area. Sensor networks
are adopted by researchers from hardware technology to operating systems, from an-
tenna design to middleware, from graph theory to computational geometry. Information
and communication theorists study fundamental scaling laws such as the capacity of
a sensor network. Networking researchers propose new protocols for all layers of the
stack. And for the database community, a sensor network essentially is – a database.

The distributed algorithms community should join this big interdisciplinary party!
Distributed algorithms are central since – in a first approximation – a sensor network can
be modeled as a message passing graph. Hence there is hope that distributed algorithms
can be either directly used for or at least adapted to sensor networks.

In the last twenty years, distributed network algorithms have been a thriving theoreti-
cal research subject. So far however with limited influence on practice. Sensor networks
may be a foremost application area of this vivid theory. Unlike other natural applica-
tion areas such as the Internet or peer-to-peer/overlay networks, sensor networks are
less prone to side effects such as selfish behavior of individual nodes, as generally the
whole network is owned by a single entity.1

So, can we directly apply our distributed algorithms instruments when developing
algorithms for sensor networks? In other words, are sensor networks nothing but dis-
tributed algorithms reloaded?! In this paper we study to what extent the wireless nature
of sensor networks is changing the game. We identify and briefly discuss two model-
ing aspects for which we believe that sensor networks are fundamentally different from
orthodox distributed algorithms.

1 Interestingly, the other camp of the distributed computing community which deals less with
loosely-coupled networks and more with tightly-coupled multiprocessors (a.k.a. shared mem-
ory systems) is currently experiencing a similar impetus from the application domain with
forthcoming multicore architectures.

R. Flocchini and L. Gasieniec (Eds.): SIROCCO 2006, LNCS 4056, pp. 24–28, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Sensor Networks: Distributed Algorithms Reloaded – or Revolutions? 25

First, we need a model which reflects a typical topology of a sensor network. Tra-
ditionally, a sensor network is modeled as a graph, representing nodes by vertices and
wireless links by edges. Geometry comes into play as the distribution of nodes in space,
and the propagation range of wireless links, usually adhere to geometric constraints.
Several models inspired by both graph theory and geometry are possible; what model
is right depends on the question analyzed. A media access study might need a detailed
model capturing several low-level aspects. For instance, it has to be taken into account
that a message may not be received correctly due to a near-by concurrent transmis-
sion. Hence, it is crucial that the model appropriately incorporates interference aspects.
However, for a transport layer study, a much simpler model which assumes random
transmission errors might be sufficient. In a recent survey [12], a whole zoo of models
borrowing from both graph theory and geometry is presented, comprising classic mod-
els such as the unit disk graph or the signal-to-interference-plus-noise ratio, but also
novel generalizations such as the bounded independence graph or the unit ball graph.
These geometric graph models will probably influence the research on distributed net-
work algorithms. For details, we refer the reader to [12].

Second, the very definition of a distributed algorithm is about to change when en-
tering the sensor network domain. We believe that new algorithm types will emerge,
and will influence the distributed algorithms community in the coming years. In the
remainder of the paper, we briefly discuss possible directions of research.

2 Algorithms

The distributed algorithms community has never been shy of models. We study mes-
sage passing and shared memory systems, synchronous and asynchronous algorithms,
Byzantine and selfish nodes, self-stabilization and failure-detection, to only name a few
of the most typical modeling facets. In fact, what is (im)possible and/or (in)efficient in
which model of distributed computation often outranks the importance of solving this
or that problem in a specific model. Still, when it comes to sensor networks it seems
that our abundance of models is not enough.

Most algorithms for sensor networks proposed in literature are meant to be executed
by the sensor nodes during the system’s operation. For example, when a node receives
a message, it performs some (simple and local) computation, and—depending on the
computation’s results—sends a new message to its neighbors. A node a priori only
knows its own state. In order to learn more about the other nodes in the network, it has
to communicate with its neighbors. By collaboration of the nodes, global operations
such as (multi-hop) routing can be achieved. Since the activity is distributed among the
nodes, these algorithms are called distributed algorithms [10]. Distributed algorithms
raise many interesting research questions. For example: What can be computed in a
distributed fashion, and what not? How efficient is a distributed algorithm compared to
a corresponding global algorithm?

Every (global) algorithm can easily be turned into a distributed algorithm: Sim-
ply centrally collect the distributed state, compute a global solution, and distribute
this solution. However, this simple routine is often unreasonably pricey. Since sending
and receiving messages are expensive operations in wireless networks (e.g., medium

26 R. Wattenhofer

access control, energy consumption), a reasonable distributed algorithm should mini-
mize communication. This motivates the introduction of localized algorithms [5, 13].2

A localized algorithm is a special case of a distributed algorithm.

Model 1 (Localized Algorithms). In a k-localized algorithm, for some parameter k,
each node is allowed to communicate at most k times with its neighbors. A node can
decide to retard its right to communicate; for example, a node can wait to send messages
until all its neighbors having larger identifiers have reached a certain state of their
execution.

In spite of the restricted communication model, localized algorithms can be slow. A
node u might have to wait for a neighbor v, while node v in turn has to wait for its
neighbor w, etc. Thus, as a matter of fact there can be a linear chain of causality, with
only one node being active at any time. This yields a worst-case execution time of Θ(n),
where n is the number of nodes.3 If we do not want this linear running time, we need
to resort to another model [8, 10].

Model 2 (Local Algorithms). In a k-local algorithm, for some parameter k, each node
can communicate at most k times with its neighbors. In contrast to k-localized algo-
rithms nodes cannot delay their decisions. In particular, all nodes process k synchro-
nized phases, and a node’s operations in phase i may only depend on the information
received during phases 1 to i−1. The most efficient local algorithms are often random-
ized [7, 9]; that is, the number of rounds k can vary.

Observe that in a k-local algorithm, nodes can only gather information about nodes in
their k-neighborhood. In some local algorithms [7] the algorithm designer can choose
an arbitrarily small constant k (at the cost of a lesser approximation ratio). This makes
local algorithms particularly suited in scenarios where the nodes’ environment changes
frequently, as the algorithm can constantly adapt to the new circumstances. However,
due to the synchronous phases, local algorithms may make greater demands on the
media access sub-layer than localized algorithms. In particular, in unreliable wireless
networks it seems to be costly to implement a media access control scheme that al-
lows for synchronous rounds, as messages will be lost due to interference (conflicting
concurrent transmissions) or mobility (even if the nodes themselves are not mobile, the
environment is typically dynamic, temporarily enabling/disabling links).

Dealing with unreliability has always been a core interest of the distributed com-
puting community. A powerful concept for coping with failures is self-stabilization
[4]. Fortunately, using a simple trick [3], every local algorithm is immediately self-
stabilizing. The trick works as follows (Section 4 of [3]): Every node keeps a log of
every state transition it has taken until its current state; generally this boils down to
memorizing the local variables of each step of the main loop. If each node constantly
sends its current log to all neighbor nodes, each node can check and correct every tran-
sition it has made in the past. Assuming that all inputs are correct (variable initialization

2 To the best of our knowledge nobody has ever bothered to formally define what a localized
algorithm is. However, all papers we are aware of implicitly use a model similar to Model 1.

3 And many localized algorithm do exhibit this linear worst-case.

Sensor Networks: Distributed Algorithms Reloaded – or Revolutions? 27

and random seeds are stored in the imperishable program memory, sensor information
can be re-checked) every fault due to memory or message corruption will be detected
and corrected. For details we refer to [3].

Turning a k-local algorithm into a self-stabilizing algorithm with [3] blows up mes-
sages by a factor k (in the worst case); on the other hand we immediately get an algo-
rithm which works on a sensor network as the hardest wireless problems (messages lost
due to interference and mobility) are covered by the self-stabilization model. Also, in
case of an error (such as a lost message), only the k-neighborhood of a node is affected.4

In practice, for some local algorithms the detour to self-stabilization may be costly,
as the message overhead is prohibitive;5 instead we need models that integrate interfer-
ence. One solution is the so-called unstructured radio network model [1, 2, 6] where the
algorithm designer has to implement her own medium access scheme from scratch.

Model 3 (Unstructured Radio Networks). In the unstructured radio network model
time is divided into slots. In each time slot, each node can decide whether to transmit,
listen (or sleep). If two conflicting nodes transmit simultaneously, a potential receiver
cannot decode any message. Nodes are distributed in an arbitrary (worst-case) multi-
hop fashion, and may wake-up asynchronously (also worst-case).

The unstructured radio network model may be classified further, for example depend-
ing to what extent collisions can be detected by a receiver. The unstructured radio
network model seems to fit practice well, especially if teamed up with a sensible topol-
ogy/interference model such as signal-to-interference-plus-noise ratio or bounded inde-
pendence graph [12]. Clearly, the slotted-time assumption is a simplification, however
as usual the difference between slotted and unslotted can easily be bounded [11].

Unfortunately, unstructured radio network algorithms tend to be quite technical, as
even higher-layer algorithms need to specify media access. We believe that there is room
for novel models with more coarse-grained assumptions how the media is accessed.
One might for example imagine a model abstracting away from media access, where
an adversary schedules transmissions. It seems that this model only makes sense if
the adversary is restricted appropriately, that is, if there are fairness guarantees. For
example, the adversary might have to schedule each node at least once every Θ(n)
rounds. Moreover, one could imagine an adversary which delivers a message only to a
subset of a node’s neighbors, because the other neighbors experience collisions.

3 Conclusions

This paper has presented and compared a subjective selection of algorithmic models.
For other modeling aspects, we refer to [12]. We want to emphasize that there is no
optimal model, and that an engineer has to choose the model which reflects her needs
best. Generally, we believe that for efficiency considerations, a slightly idealistic model

4 In principle localized algorithms can also benefit from [3], however, errors are not restricted
to a k-neighborhood but may propagate the whole network – we experience a troublesome
butterfly effect.

5 Currently the payload constant of a packet in TinyOS is 29 bytes.

28 R. Wattenhofer

can be fine. However, when it comes to issues such as correctness of an algorithm,
it seems that a more pessimistic or conservative model should be preferred. In other
words, a robust algorithm is also correct in a more general model than for which it has
been studied or proven efficient.

Acknowledgments

We would like to thank Stefan Schmid and Thomas Moscibroda for valuable
discussions.

References

1. N. Abramson. The ALOHA System. In Computer-Communication Networks, Prentice Hall,
1973.

2. N. Alon, A. Bar-Noy, N. Linial, and D. Peleg. A Lower Bound for Radio Broadcast. In
Journal of Computer and System Sciences, 1991.

3. B. Awerbuch and G. Varghese. Distributed Program Checking: A Paradigm for Building
Self-stabilizing Distributed Protocols. In 32nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 1991.

4. E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. In Communications
of the ACM, 1974.

5. D. Estrin, R. Govindan, J. S. Heidemann, and S. Kumar. Next Century Challenges: Scal-
able Coordination in Sensor Networks. In Fifth Annual International Conference on Mobile
Computing and Networking (MobiCom), 1999.

6. F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing Newly Depoloyed Ad-hoc and Sen-
sor Networks. In 10th Annual Intl. Conf. on Mobile Computing and Networking (MobiCom),
2004.

7. F. Kuhn, T. Moscibroda, and R. Wattenhofer. The Price of Being Near-Sighted. In ACM-
SIAM Symp. on Discrete Algorithms (SODA), 2006.

8. N. Linial. Distributive Graph Algorithms – Global Solutions from Local Data. In 28th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), 1987.

9. M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. In SIAM
Journal on Computing, 1986.

10. D. Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2000.

11. L. G. Roberts. Aloha packet system with and without slots and capture. In Computer Com-
munication Review, 1975.

12. S. Schmid and R. Wattenhofer. Algorithmic Models for Sensor Networks. In 14th Inter-
national Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), Island of
Rhodes, Greece, April 2006.

13. Y. Wang, X.-Y. Li, P.-J. Wan, and O. Frieder. Sparse Power Efficient Topology for Wireless
Networks. Journal of Parallel and Distributed Computing, 2002.

	Introduction
	Algorithms
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

