
Distributed Symmetry Breaking on
Power Graphs via Sparsification

Yannic Maus · yannic.maus@ist.tugraz.at · TU Graz

Saku Peltonen · saku.peltonen@gmail.com · Aalto University

Jara Uitto · jara.uitto@aalto.fi · Aalto University

Abstract. In this paper we present efficient distributed algorithms for classical sym-
metry breaking problems, maximal independent sets (MIS) and ruling sets, in power
graphs. We work in the standard CONGEST model of distributed message passing,
where the communication network is abstracted as a graph G. Typically, the prob-
lem instance in CONGEST is is identical to the communication network G, that is, we
perform the symmetry breaking in G. In this work, we consider a setting where the
problem instance corresponds to a power graph Gk, where each node of the communi-
cation network G is connected to all of its k-hop neighbors.

A β-ruling set is a set of non-adjacent nodes such that each node in G has a ruling
neighbor within β hops; a natural generalization of an MIS. On top of being a natural
family of problems, ruling sets (in power graphs) are well-motivated through their
applications in the powerful shattering framework [BEPS JACM’16, Ghaffari SODA’19]
(and others). We present randomized algorithms for computing maximal independent
sets and ruling sets of Gk in essentially the same time as they can be computed in G.
Our main contribution is a deterministic polylogarithmic time algorithm for computing
k-ruling sets of Gk, which (for k > 1) improves exponentially on the current state-
of-the-art runtimes. Our main technical ingredient for this result is a deterministic
sparsification procedure which may be of independent interest.

We also revisit the shattering algorithm for MIS [BEPS J’ACM’16] and present
different approaches for the post-shattering phase. Our solutions are algorithmically
and analytically simpler (also in the LOCAL model) than existing solutions and obtain
the same runtime as [Ghaffari SODA’16].

ar
X

iv
:2

30
2.

06
87

8v
1

 [
cs

.D
S]

 1
4

Fe
b

20
23

Contents

1 Introduction 1
1.1 Our contributions. 2
1.2 Why should we care about problems on power graphs? 4
1.3 Further related work . 5

2 Notation and k-wise independent random variables 7

3 Technical overview 9

4 Communication tools 13

5 Sparsification of Power Graphs 16
5.1 Randomized Sparsification via Sampling . 17
5.2 Deterministic Sparsification via Derandomization . 19
5.3 Sparsification in Power Graphs . 22
5.4 Sparsification with no Diameter Dependency . 25

6 Deterministic (k + 1, k2)-ruling set (Theorem 1.1) 27

7 Maximal Independent Set on G: Shattering Revisited (Theorem 1.4) 29
7.1 Basics of Shattering . 30
7.2 Post-shattering. 31

7.2.1 Approach 1: Two pre-shattering phases . 32
7.2.2 Approach 2: One pre-shattering phase . 33

7.3 The approach in [BEPS16, arXiv] (and presumably also in [Gha16, Gha19]) 35

8 Randomized Symmetry Breaking on Power Graphs (Thm. 1.2, Cor. 1.3) 37
8.1 Luby’s Algorithm on Power Graphs . 37
8.2 MIS of Gk (Theorem 1.2) . 37
8.3 Ruling sets in Gk (Corollary 1.3) . 42

A Network decomposition for power graphs 49

B Pseudocode for Section 5.3 53

1 Introduction

In this paper we provide efficient deterministic and randomized algorithms for symmetry breaking
problems on power graphs, that is, we compute maximal independent sets and ruling sets on the
power graph Gk for an integer k, where G is the input graph. To illustrate the setting, let us define
the central problem of our work. A maximal independent set (MIS) S of a graph G is a set of non-
adjacent nodes such that every node v of G is dominated by a node in S, that is, there is a node
in S with distance at most 1 from v. Ruling sets generalize this notion by relaxing the distance of
domination. In the power graph Gk, any two nodes nodes of G are connected if they are at most k
hops apart. Hence, in an MIS of Gk any two nodes have distance at least k+1 and every node of G is
dominated by a node of S with distance at most k. MIS and ruling sets have been studied extensively
in the classic message passing models of distributed computing, i.e., the LOCAL and the CONGEST
model, e.g., see [Lub86, ABI86, BEPS16, AGLP89, Gha16, Gha19, SEW13, KMW18, BBKO22].

Understanding symmetry breaking on power graphs is crucial as they appear naturally in var-
ious settings. A classic example is given by the frequency assignment problem. In order to avoid
interference in a network of wireless transmitters, one wants to assign frequencies to the nodes of
a communication network such that all neighbors of each node receive different frequencies. The
problem is a vertex coloring problem on the power graph G2 [KMR01, HKM20, HKMN20]. Prob-
lems on power graphs also appear as subroutines when solving problems for G. One example is the
state-of-the-art randomized algorithm to compute an MIS (of G) that relies on the computation of
ruling sets of power graphs, both in the LOCAL model [BEPS16, Gha16] and in the CONGEST model
[Gha19]. A second example is the current state-of-the-art deterministic algorithms for computing
MIS [FGG+22]. A third example where such ruling sets appear as subroutines is the algorithm to
compute spanners in [EM19]. In Section 1.2, we provide further examples and further motivate
(symmetry breaking) problems on power graphs. The main model of our work is the CONGEST
model of distributed computing.

The challenges of working with power graphs in the CONGEST model. In the LOCAL and
the CONGEST model, a communication network is abstracted as an n-node graph G with nodes
representing computing entities and edges communication links [Lin92, Pel00]. Nodes are equipped
with O(log n)-bit IDs. In order to solve some problem in the network, the nodes communicate
with each other in synchronous rounds. In each round, nodes are allowed to perform arbitrary
local computations and send messages to each of their neighbors in G. In the LOCAL model
messages can be of unbounded size, while in the CONGEST model message sizes are restricted to
O(log n) bits. The time complexity of an algorithm is the number of rounds until each node has
computed its own part of the solution, e.g., whether it is contained in an independent set or not.
Classically in the literature, an algorithm for a problem—think of the MIS problem— assumes
that the communication network is also the problem instance. In contrast, in our work the power
graph Gk serves as the problem instance while G remains the communication network. In the
LOCAL model, the setting does not yield any major difficulties as an algorithm designed for G
(e.g., to compute an MIS of G), can be run on Gk with a multiplicative overhead of k rounds (to
compute an MIS of Gk). However, such a statement is not true in the CONGEST model. In fact,
in the CONGEST model, a node does not even know its degree in the problem instance Gk and
if many vertices want to send different messages to their neighbors in Gk, congestion appears in
the communication network and the messages cannot be delivered efficiently. This seemingly small
difference has huge effects and makes it much more challenging to construct algorithms.

1

1.1 Our contributions.

An r-ruling set S of a graph G is a set of non-adjacent nodes such that for every node v of G there
is a node in S with distance at most r from v. Hence, in an r-ruling set of Gk any two nodes have
distance at least k + 1 and the domination distance is r · k. In the literature this often appears as
an (α, β)-ruling set where α specifies the minimum distance between nodes and β the domination
distance. As ruling sets relax the domination guarantee of maximal independent sets, they are
usually easier to compute. Often, ruling sets are sufficiently powerful to replace MIS computations
as subroutines in algorithmic applications. Our main contribution is the first efficient deterministic
algorithm to compute k-ruling sets for Gk. Throughout the paper Õ(x) omits factors that are
logarithmic in x and ∆ refers to the maximum degree of the graph G, even when we are solving a
problem on the power graph Gk.

Theorem 1.1 (k-ruling set of Gk). Let k ≥ 1 be an integer (potentially a function of n). There is
a deterministic distributed algorithm that computes a k-ruling set of Gk in polylogarithmic time in
the CONGEST model. More detailed, the round complexity is Õ(k2 · log4 n · log ∆) rounds.

For a constant k > 1, Theorem 1.1 improves exponentially on the previous state of the art
that required O(n1/k) rounds [EM19]. This previous algorithm is an extension to Gk of a classic
deterministic algorithm for computingO(logB n)-ruling sets (ofG) inO(B·logB n) rounds [AGLP89,
SEW13, HKN21, KMW18, EM19], where B is a parameter that can trade domination for runtime.

For k = 1, Theorem 1.1 computes a (2, 1) ruling set (aka an MIS), for k = 2, it computes a
(3, 4) ruling set and for k = 3 it is a (4, 9) ruling set. Our main technical contribution in order to
obtain Theorem 1.1 is a novel sparsification procedure. On a very high level, we turn Gk into a
much sparser representation Ḡ such that an MIS of Ḡ is a good ruling set on the original Gk. The
benefit is that we can communicate more efficiently on Ḡ.

Randomized symmetry breaking in power graphs. Our second result is an algorithm for
MIS of Gk with (essentially) the same runtime as the state of the art for computing an MIS of G.

Theorem 1.2. There is a randomized distributed algorithm that computes a maximal independent
set of Gk in Õ(k2 log ∆·log log n+k4 log5 log n) rounds of the CONGEST model, with high probability.

The best result that can be achieved with previous work is an O(k log n)-round algorithm based
on Luby’s algorithm for computing an MIS (see Section 8.1 for details) [Lub86, ABI86]. Theorem 1.2
compares favorably to the state of art for computing an MIS ofG in O(log ∆ log log n+poly log log n)
rounds in the CONGEST model [Gha19]. The randomized complexity of MIS on Gk in LOCAL is
O(k2 log ∆ + k poly log log n), simply by running the best known algorithm for MIS on G on the
power graph [Gha16]. By combining Theorem 1.2 with the sparsification methods of [KP12] and
[BKP14] we obtain the following corollary.

Corollary 1.3. There is a randomized distributed algorithm that computes a β-ruling set of Gk in
Õ(β · k1+1/(β−1)(log ∆)1/(β−1) + β · k log log n+ k4 log5 log n) rounds.

The only previous randomized algorithm for computing a ruling set of Gk is a O(k log logn)-
ruling set algorithm that works in O(k2 log log n) rounds [Gha19]. The technique can inherently
not compute O(1)-ruling sets of Gk.

2

Simplifying shattering for MIS and Ruling Sets on G (in LOCAL and CONGEST). Ruling
sets of power graphs are essential in the the current state-of-the-art randomized algorithms to
compute an MIS in LOCAL [BEPS16, Gha16] and the CONGEST model [Gha19]. In our last
contribution, we revisit1 the current state-of-the-art algorithms for computing an MIS in G in
LOCAL [BEPS16, Gha16] and CONGEST [Gha19]. These results are based on the by-now-standard
shattering technique that uses a random process to solve the respective problem on most of the
graph such that the remaining unsolved parts only consists of (many) small connected components.
The components are small in the sense that a certain power graph ruling set of a single component
has at most logarithmically many nodes. This fact is exploited to solve the remaining problem on
these small components efficiently. The challenge here is that to algorithmically exploit the fact
that these ruling sets are of a small size, one also has to compute them. Intuitively, one wants to just
run a classic (5, O(log log n))-ruling set algorithm on each of the remaining connected components
in parallel. The crux is that the distance between ruling set nodes needs to be measured in G
(for the ruling set to be small) and not just within the small component. But a node cannot tell
efficiently whether a node in distance 5 in G is in the same small component as itself or not. Hence,
the nodes cannot easily determine whether they can both be contained in the ruling set or not and
one cannot readily treat different small components independently.

Thus, the arXiv version of [BEPS16] presents an involved two-phase shattering procedure with
an involved analysis. It turns out that the presented analysis of bounding the size of the ruling
set has a small (but crucial) mistake (see Sections 3 and 7 for details). The journal version of the
respective work presents a fix through an even more involved analysis [BEPS16]. The later works
[Gha16, Gha19] build upon the arXiv version of [BEPS16]. While we believe that both works can
be adapted to build upon the arguments in the journal version of [BEPS16], this cannot be done
in a black-box manner. Both works use a different ruling set algorithm than [BEPS16] and the
internals of the ruling set algorithm are crucial for the arguments in [BEPS16].

As our last contribution, we revisit the shattering framework and present two different algo-
rithmic and analytical solutions for computing an MIS that work in the LOCAL and the CONGEST
model. While these do not improve upon the complexity of [BEPS16, Gha16, Gha19], our approach
is simpler and provides a fix for results that build upon the arXiv version of [BEPS16].

Theorem 1.4. There are randomized LOCAL and CONGEST algorithms that w.h.p. compute a
maximal independent set on any n-node graph with maximum degree ∆ and that run in O(log ∆) +
poly log log n rounds and in O(log ∆ log log n) + poly log log n rounds, respectively.

Even though Theorem 1.4 deals with the classic setting of computing an MIS of the graph G
(and not its power graph), the flaw in the current argument is closely related to properly dealing
with ruling sets in power graphs. Some other works in the literature build upon the ideas of the
arXiv version of [BEPS16], e.g., algorithms for ∆-coloring [GHKM21] or the Lovász Local Lemma
[FG17], and thus undergo a similar issue. However, we note that the aforementioned power graph
ruling sets are only relevant when ∆ ≥ poly log n as otherwise one can use simpler approaches to
exploit the smallness of the components. But for ∆ ≥ poly log n it is not necessary to correcting
the flaw in the two papers. For the ∆-coloring problem a very recent paper provided a genuinely
different algorithm to solve the problem for ∆ ≥ poly log n, making a fix unnecessary [FMH22].
For the Lovász Local Lemma problem, one can use the algorithm by Chung, Pettie and Su to

1We revisited the details of these algorithms as they rely on the shattering framework that we also use to obtain
Theorem 1.2. However, the setting in Theorem 1.2 is more involved.

3

solve the problem in O(log n) rounds [CPS17b], which is faster than the O(∆2) + poly log log n
rounds of [FG17] when ∆ ≥ poly log n. Last but not least, let us remark that the state-of-the-art
randomized (∆+1)-coloring algorithms are not impacted by the flaw as they only rely on shattering
when ∆ ≤ poly log n [CLP20, HN21]. For more details on the background of Theorem 1.4 and our
solutions, see Section 3 and Section 7. Note that Theorem 1.4 is also central to countless results in
the literature as the algorithm belongs to the most used subroutines in the area. Also Theorem 1.2
and Corollary 1.3 rely on extensions of the algorithmic ideas used for Theorem 1.4.

1.2 Why should we care about problems on power graphs?

We have already mentioned that ruling sets of power graphs are important subroutines. In this
section, we provide various further reasons for studying CONGEST algorithms on power graphs.
Derandomization and learning distant information. The main challenge when working with
power graphs is that even though we aim at solving problems on Gk, the communication network
is just G itself and a node cannot immediately communicate with its neighbors in Gk. For an
example, consider the simple task of learning some small individual piece information from each
of your neighbors. In G, this problem is trivial and can clearly be achieved in a single CONGEST
round. However, as soon as we turn to G2, we suffer a huge overhead in the number of rounds.
Solving this task requires Ω(∆) rounds in the worst case, where ∆ is the maximum degree of the
graph which may be very large.

But learning large amounts of information that is not stored at immediate neighbors of G is
an important ingredient of recent efficient LOCAL algorithms. Prime examples of this behavior
are the general derandomization results [GKM17, GHK18, RG20] in the LOCAL model. Note that
besides the aspect of learning large amounts of information, another crucial ingredient to these
results is the computation of so called network decompositions of the power graph Gk, usually for
a non-constant k. It is a major open problem of the area to determine for which type of problems
such derandomizations can be obtained in the CONGEST model.

On the positive side, for selected problems on G, there are efficient CONGEST algorithms
that are all based on limiting the amount of information that one has to aggregate for an effi-
cient derandomization of a (simple) randomized procedure. Examples are given by algorithms for
(∆ + 1)-coloring [BKM20, GK21], MIS [CPS17a, FGG+22], or minimum dominating set approx-
imations [DKM19, FGG+22]. Our sparsification results are also based on derandomization (in a
more extreme setting) and hence add to the class of problems that can be efficiently derandomized
in the CONGEST model. In Section 3 we detail on how we circumvent the necessity to learn large
amounts of information used by the sparsification process in the LOCAL model.
Power graph and virtual graph problems as subroutines. Another prevalent ingredient to
many recent results is that they solve intermediate problems on virtual graphs. For example, in
the state of the art deterministic algorithm for MIS in LOCAL and CONGEST, we must simulate
an algorithm (for some intermediate problem) on G2 [FGG+22]. Hence, despite the fact that we
consider the setting where the communication network equals the input graph, intermediate steps
require solving problems on power graphs. In LOCAL, the unbounded message sizes allow us to
communicate in G2 with a constant overhead and hence, algorithms for the intermediate steps in
the virtual graph G2 are straight-forward to implement with a constant overhead in the runtime.
In contrast, handling these intermediate steps is much more involved in the CONGEST model. In
general, we believe that the study of power graph problems contributes to the general important
theme of detaching the input graph from the communication network. Problems on power graphs

4

serve as a clean abstraction to develop tools that can be used whenever the problem instance and
the communication network are not exactly the same.
Robustness of algorithms and techniques. More broadly, studying problems on power graphs
also serves as a clean abstraction to develop algorithmic techniques that are robust in the sense that
they can work in settings with stronger communication restrictions. In the long run we also expect
this kind of research to lead to algorithms that are more model independent. For example, many
recent MPC algorithms are fast implementations of communication efficient LOCAL or CONGEST
algorithms [GU19, CDP20, CFG+19, CDP21, BBF+22]. An extreme case of communication ef-
ficiency are algorithms in the beeping model which is similar to the CONGEST model with 1-bit
messages. An excellent example is the pre-shattering phase of Ghaffari’s MIS algorithm that when
computing an MIS for G works in the beeping model [Gha17]. Due to its robust design, it has been
used (with slight adaptations) to obtain the state-of-the-art in other settings, such as MPC and
LCA [GU19, Gha22]. Theorem 1.2 is also based on an extension of this result to Gk that works
in a stronger version of the beeping model, allowing O(log log n)-sized messages. See Section 8 for
details.

Another aspect that makes algorithms for power graphs more robust is that they have to
operate in the setting where nodes do not know their degree (in Gk). Even though there are ways
to remove the necessity of knowing your degree from an algorithm [KSV13], these cannot be applied
in a black-box manner in all settings.

1.3 Further related work

Recent years have seen several results for problems in power graphs in the CONGEST model,
reaching from verifying solutions efficiently (or showing that this is not possible) [FHN20], and
answering several computational questions in the settings, e.g., for the already discussed problem
of distance-2 coloring [HKM20, HKMN20] or optimization problems [BCM+20].

Ruling sets. We first focus on results in LOCAL. We have already discussed the deterministic
ruling set algorithm of [SEW13, HKN21, KMW18]. Actually, the result is more general and it
provides an O(logB C)-ruling set of G in O(B · logB C) time if the graph is equipped with a vertex
coloring with C colors. By choosing the parameter B appropriately and combining it with Linial’s
algorithm that computes a O(∆2)-coloring in O(log∗ n) rounds, one can compute a β-ruling set in
O(β ·∆2/β + log∗ n) rounds.

Gfeller and Vicari [GV07] provide a randomized sparsification algorithm to compute aO(log log n)-
dominating set2 S ⊆ V in O(log log n) rounds, such that the maximum degree of G[S] is O(log5 n).
This can be combined with the aforementioned approach to obtain a randomized an O(log log n)-
ruling set algorithm with round complexity O(log log n). Ghaffari extends this approach to Gk in
the CONGEST model and obtains an O(k log logn)-ruling set in O(k2 log logn) rounds [Gha19].

Kothapalli and Pemmaraju [KP12] provide another sparsification method that computes a
dominating set with degree O(∆′ log n) in O(log ∆/ log ∆′) rounds. Ghaffari uses multiple iterations
of this sparsification method to compute a β-ruling set in O(β log1/β ∆) + poly log log n rounds in
LOCAL [Gha16]. He also provides similar but slightly weaker results in CONGEST [Gha19].

2The definition of ruling sets is different in [GV07]: what we refer to as a t-dominating set is called a t-ruling set
in [GV07], while a (2, t)-ruling set is called an independent t-ruling set.

5

Paper Result Model Running time

[RG20] MIS det. LOCAL O(log7 n)

[CPS20] + [RG20] MIS det. CONGEST O(log8 n)

[FGG+22] MIS det. CONGEST Õ(log n · log2 ∆)

[AGLP89], [HKN21] (k + 1, k · log n) det. CONGEST O(k · log n)

[SEW13], [KMW18]∗ (k + 1, kdlogB ne) det. CONGEST O(k ·B · logB n)

[SEW13], [KMW18] (k + 1, kc) det. CONGEST O(k · c · n1/c)

New (k + 1, k2) det. CONGEST Õ(k2 log4 n · log ∆)

[Lub86] MIS of Gk rand. CONGEST O(k · log n)

[BEPS16] + [RG20] MIS rand. LOCAL O(log2 ∆ + poly log log n)

[Gha16] + [RG20] MIS rand. LOCAL O(log ∆ + poly log log n)

[Gha19] + [GGR21] MIS rand. CONGEST O(log ∆ · log log n+ poly log log n)

New MIS of Gk rand. CONGEST Õ(k2 log ∆ · log log n+ k4 log5 log n)

[GV07] (−, O(log log n))† rand. CONGEST O(log log n)

[KP12] (−, 2)‡ rand. CONGEST O (log ∆/(log n)ε)

[BKP14]+[Gha16]+[RG20] (2, β) rand. LOCAL O(β · (log ∆)1/β + poly log log n)

[BKP14]+[Gha19]+[GGR21] (2, β) rand. CONGEST O(β · (log ∆)1/(β−1) + poly log log n)

[Gha19] (k + 1, O(k2 log logn)) rand. CONGEST O(k2 log log n)

New (k + 1, kβ) rand. CONGEST
O
(
βk1+1/(β−1)(log ∆)1/(β−1)

)
+ Õ

(
βk log log n+ k4 log5 log n

)
Table 1: Summary of related work on the MIS and ruling set problem in the CONGEST and
LOCAL models. The CONGEST algorithms that can be used to solve the corresponding problem
on Gk for any k ≥ 1 are explicitly specified. In LOCAL, all algorithms can trivially be used for Gk

with a slowdown factor of poly k (not shown in the runtimes). (*) Additionally, given a γ-coloring
of Gk, there is a deterministic (k + 1, kdlogB γe)-ruling set algorithm running in O(k · B · logB γ)
rounds. (†, ‡) The respective algorithms do not satisfy the independence condition of ruling sets but
compute bounded degree subgraphs with the respective domination property. The degree bounds
are (†) O(log5 n) and O(log n · 2(logn)ε) for (‡).

6

The recently developed powerful round elimination technique [Bra19] has been used to prove
lower bounds for the computation of ruling sets in LOCAL [BBO22, BBKO22]. Parameterized by
the number of nodes the lower bounds for β-ruling sets is Ω(log n/(β log logn)) for deterministic
algorithms and Ω(log log n/(β log log log n)) for randomized algorithms, as long as β is at most
≈
√

log n/ log log n and ≈
√

log logn/ log log log n, respectively. As a function of the maximum
degree ∆, the lower bound is Ω(β ·∆1/β). In Table 1, we provide an overview of known ruling set
and MIS algorithms and contrast them with our results.

Related work for graph sparsification. A fundamental building block of our most involved re-
sult (Theorem 1.1) is the method of graph sparsification [AGM12, HPP+15, Gha17, GU19, ACK19,
CDP20, CDP21]. Roughly speaking, the idea is to turn the input graph into a sparser representa-
tion that still allows us to solve the given problem. Sparsification has been used in many different
settings and computational models and often the exact properties we want from the sparsification
vary depending on the setting.

Global sparsification. In models with Õ(n) memory, such as streaming, sketching, congested
clique, and linear memory MPC, the goal is to reduce the total (global) number of edges in the graph.
If the sparser representation has roughly n edges, then it can be processed locally in constant time.
For example, the current state-of-the-art for connectivity/MST [JN18, Now21], MIS [ACG+21,
GGK+18], and (∆ + 1)-vertex-coloring (and list-coloring) [CFG+19, ACK19, AA20, CDP21] are
based on this method.

Local sparsification. Another sparsification approach is to sparsify the graph locally. To get
an intuition, suppose that the output of each node v depends only on some local information, i.e.,
the output of node v can be decided by examining the graph in the small T -hop neighborhood
around node v. Then, a local sparsification reduces the number of edges in that neighborhood
and, at the same time, preserves the property that a correct output for v can be determined
from the local neighborhood of v in the sparser graph. Combined with the memory-hungry graph
exponentiation technique [LW10], this approach has been successfully used in sublinear models such
as the low-space MPC model. For example, the current state-of-the-art for MIS [GU19, CDP20]
and (∆ + 1)-vertex-coloring [CFG+19, CDP21] are based on this method.

In the context of the CONGEST model, locally sparsifying the communication graph is a natural
way to avoid congestion. In one previous work, this line of thinking was used for vertex coloring
G2 [HKM20]. However, in the context of coloring, one can split the problem into independent
instances with disjoint color palettes. This property creates a fundamental difference between
coloring and other symmetry breaking problems, such as MIS and ruling sets, which do not enjoy
the luxury of splitting into disjoint instances. Sparsified graphs are also of independent interest,
for example in the context of finding distance preserving spanners, both in cases of linear memory
models [DN20, DFKL21] and local sparsification [FGdV22].

2 Notation and k-wise independent random variables

We always use G = (V,E) to refer to the original input graph. Similarly, the degree d(v) and (non-
inclusive) neighborhood N(v) of a vertex do not change throughout our algorithms. For s ≥ 0, the
power graph Gs is the graph where V (Gs) = V and E(Gs) = {{v, w} ∈ V × V : distG(v, w) ≤ s}.
A subgraph of the power graph induced by a set of nodes X is denoted Gs[X]. Note that this
is not the same as (G[X])s: the latter only contains edges formed by paths only using nodes in

7

X. N s(v) is called the distance-s neighborhood of v, which is the neighborhood of v in Gs. Let
ds(v) := |N s(v)|. For any X ⊆ V , let N s(X) := ∪v∈XN s(v). We use distance-s X-neighborhood to
refer to N s(v,X) := N s(v) ∩X. Distance-s X-degree is defined as ds(v,X) := |N s(v,X)|.
I ⊆ V is α-independent in G, if for all distinct v, w ∈ I, distG(v, w) ≥ α. For α = 2, we

simply say that I is independent in G. For any S ⊆ V , Q ⊆ S is a β-dominating set of S, if for
all u ∈ S, there exists some v ∈ Q such that distG(u, v) ≤ β. When S = V , we say that Q is
a β-dominating set. An (α, β)-ruling set of a graph G = (V,E) is a subset Q ⊆ V , such that Q
is α-independent and β-dominating. α and β are generally referred to as the independence and
domination parameters, respectively. Note that a (2, 1)-ruling set is a maximal independent set of
G and a (k+ 1, k)-ruling set is a maximal independent set of Gk. A set S ⊆ V is k-connected in G
if for all S′ ⊂ S : distG(S′, S \ S) ≤ k. Equivalently, S is k-connected if Gk[S] is connected.

A breadth-first search tree (BFS-tree) T ⊆ G with root r ∈ V and depth s ≥ 0 is a tree such
that V (T) = N s(v)∪{v} and ∀v ∈ V (T) : distT (v, r) = distG(v, r). We say that a BFS tree T ⊆ G
is known in the distributed setting, if each v ∈ V (T) knows its immediate ancestor(T, v) ∈ N(v),
descendants(T, v) ⊆ N(v) and the ID of the root node root(T) ∈ V . A depth-s BFS tree includes
all nodes in the distance-s neighborhood of the root node. BFS trees are non-unique whenever the
underlying graph is not a tree. We say that a BFS tree T is spanning when V (T) = V (G).

Definition 2.1 (Network decomposition). A (c, d)-network decomposition of G is a partition of V
into disjoint d-diameter clusters. There is a c-coloring of the clusters, such that adjacent clusters
have different colors. The cluster diameter can be measured in two ways. A cluster C ⊆ V has
strong-diameter d, if any two vertices of C have distance at most d in G[C]. In a weak-diameter
cluster, any two vertices of C have distance at most d in G. For communication between the nodes
in a cluster, we associate C with a Steiner tree TC , which is a tree subgraph of G with a set of
terminal and non-terminal nodes. Terminal nodes are equal to the nodes in the cluster, while non-
terminal nodes may be any nodes in the graph. The diameter of the Steiner tree is O(d). The
Steiner trees of clusters may overlap with each other. We say that a network decomposition has
congestion τ , if each edge is in at most τ Steiner trees for clusters of any single color. In power
graphs, a network decomposition of Gk clusters the vertices with a separation of k+ 1. For any two
clusters C,C ′ of the same color, it is required that distG(C,C ′) > k.

k-wise independent variables. A collection of discrete random variables X1, . . . , Xn is k-wise
independent if for any I ⊆ [n] with |I| ≤ k and any values xi, we have P(∧i∈IXi = xi) =∏
i∈I P(Xi = xi). We can simulate such variables by picking a random hash function from a

family of k-wise independent hash functions:

Definition 2.2. For N,L, k ∈ N such that k ≤ N , a family of functions H = {h : [N] → [L]} is
k-wise independent if for all distinct x1, . . . , xk ∈ [N], the random variables h(x1), . . . , h(xk) are
independent and uniformly distributed in [L] when h is chosen uniformly at random from H.

Lemma 2.3 (Corollary 3.34 in [Vad12]). For every a, b, k, there is a family of k-wise independent
hash functions H = {h : {0, 1}a → {0, 1}b

}
such that choosing a random function from H takes

k ·max{a, b} random bits, and evaluating a function from H takes time poly(a, b, k).

8

3 Technical overview

Deterministic Sparsification. Our main technical ingredient is a deterministic sparsification
procedure. From a high level point of view, we gradually sparsify the input graph, i.e., we compute
a sequence of sparser node sets V ⊇ Q0 ⊇ Q1 ⊇ . . . ⊇ Qk, while ensuring that every node in V
remains within constant distance of the set. More precisely, for each 1 ≤ s ≤ k, the distance from
any node in Qs−1 to Qs is at most 2 in Gs (at most 2s in G), and the set Qs is sparse in Gs, that is,
every node has a bounded number of Qs-neighbors in Gs. We use the sparsity of Qs to efficiently
limit the congestion when computing the sparser set Qs+1. At the end Qk−1 is sparse enough to
efficiently simulate any algorithm on Gk[Qk−1], i.e., the subgraph of Gk induced by Qk−1. For
example, to compute a k-ruling set of Gk, we can use sparsification to find Qk−1 and then compute
an MIS of Qk−1 on the power graph Gk, where only nodes in Qk−1 are allowed to enter the MIS.

We believe that this sparsification procedure is of independent interest and may be helpful for
other problems and in other models of computation. We summarize it in the next lemma. Recall,
the distance-k Q-degree of a node v is the number of neighbors in Nk(v) ∩Q.

Lemma 3.1 (Sparsification in Power Graphs). Let k ≥ 1 (potentially a function of n). There is
a deterministic distributed algorithm that, given a subset Q0 ⊆ V , finds a set of vertices Q ⊆ Q0

such that for all v ∈ V ,

• (bounded distance-k Q-degree): dk(v,Q) ≤ 72 log n = O(log n)

• (domination): distG(v,Q) ≤ k2 + k + distG(v,Q0)

The algorithm runs in O(diam(G) · k · log2 n · log ∆ + k2 · log ∆) rounds in the CONGEST model.

Using a network decomposition , we can replace the diameter factor in Lemma 3.1 with a term
that is polylogarithmic in n (see Section 5.4 for more details and in particular Lemma 5.8 for the
precise statement). For k = 1 (and if initialized with Q0 = V), we obtain a polylogarithmic-round
algorithm to compute a set with domination distance 2 such that each v ∈ V has at most O(log n)
neighbors in Q. Note that the degree bound is a local property. If one instead wants to compute a
set with the same domination distance and globally minimize its size, it is known that even constant
approximation algorithms require near-quadratic time in CONGEST [BCM+20].

How does the sparsification work? The core idea of our deterministic sparsification is to
derandomize the following randomized sampling algorithm: First assume that the graph Gk is ∆k-
regular. We can sample every node with probability O(log n/∆k) into a set Q. Then every node in
V gets Θ(log n) distance-k Q-neighbors, with high probability. Even though this is a trivial 0-round
algorithm, it is non-trivial to derandomize it, as the constraints imposed by the nodes depend on
the decision of nodes in distance Θ(k). Generally, there is little hope that one can directly (and
deterministically) find good random bits (aka good conditions) in order to fulfill the constraints of
all nodes. Instead, we perform a more fine-grained sparsification method, in which we gradually
sparsify the graph, each time slightly losing in the domination property. This can be viewed as first
computing the set Qk for k = 1, then for k = 2, and so on.

Continuing in the randomized setting, we explain our approach for finding Q1 in G. The
sampling algorithm has two objectives. For all v ∈ V , the number of neighbors in Q1 should be
at most O(log n), while the distance to Q1 should be at most 2 (or at most some constant). Since
degrees are not uniform, it is difficult to find the right sampling probability that satisfies the two
objectives for all nodes. Hence, the process is slowed down to O(log ∆) stages. All nodes in Q0 start

9

as active (Q0 = V in our applications). In each stage, we sample active nodes to Q1. Initially, the
sampling probability is low, so that high degree nodes get at least one sampled neighbor, while not
exceeding the O(log n) bound. At the end of each stage, the distance-2 neighborhood of sampled
nodes is deactivated. This guarantees that high degree nodes do not get more sampled neighbors
in later stages, effectively decreasing the maximum active degree. The decrease in active degree
means that we can sample in the next stage with a slightly higher probability. In the end, only
nodes with low active degree remain, which can be included in the sampled set. The result Q1 is a
2-dominating set, while all v ∈ V have at most O(log n) Q1-neighbors.

Sparsifying G. Our deterministic sparsification for G is based on derandomizing the previous
sampling algorithm. The randomized analysis works with O(log n)-wise independence. This allows
simulating the randomness in one stage with a O(log2 n)-bit random seed. Derandomization is done
stage by stage, using the method of conditional expectations. In each stage, we need to guarantee
two events: (1) each node gets at most O(log n) sampled neighbors, while (2) each high active
degree node gets at least one of its neighbors sampled. Both events only depend on the events in
the immediate neighborhood in G, which makes the required information easily available for each
node. The bits of the seed are fixed one by one. In order to fix a single bit b (to 0 or 1) of the
seed, each node computes conditional expectations for its two events, for both choices of b. To
compute the conditional expectations, a node needs to know the values of the already fixed bits
of the seed and the IDs of its active neighbors. In G, learning the relevant identifiers can be done
in one round, because the two events are determined by the decisions of active neighbors in the
immediate neighborhood. Then, the conditional expectations of all nodes are aggregated (summed
up) at a leader node who can then decide on the better choice for the bit b. Then all nodes proceed
with the next bit. The method of conditional expectation implies that all nodes’ events hold at the
end of this process.

Sparsifying power graphs. Fix some 1 ≤ s ≤ k. The sth iteration of the sparsification
is simulated on the power graph Gs. The output of the previous iteration acts as the initial set
of active nodes Qs−1. The sth iteration results in Qs ⊆ Qs−1, where Qs is sparse in Gs, while
weakening the domination distance of Qs−1 by at most 2 in Gs (or 2s in G). The sum of increases
in distance over s iterations is

∑s
j=1 2j ≤ s2 + s, hence Qs is a (s2 + s)-dominating set of G (when

initialized with Q0 = V).
A main challenge of our work is to ensure that all nodes can obtain the necessary information

for derandomization (distance-s neighbor’s random bits and IDs) when sparsifying power graphs.
To guarantee sparsity in Gs, all nodes must remain as observers (and also relay messages), taking
part in the derandomization. Here, in a nutshell, the sparsity with regard to the previous iteration
helps to learn the required information. More formally, we build communication tools to efficiently
run the algorithm on Gs, relying on the sparsity of Qs−1.

Communication tools. In order to benefit from the sparsity of Q := Qs, we develop com-
munication tools (see Lemma 4.2) that allow us to execute basic communication primitives on
power graphs. The sparsity of Q in Gs can be used to efficiently send messages from Q to their
neighbors in Gs+1. The communication algorithms include sending broadcasts from nodes in Q to
their neighbors in Gs+1 in O(s+ log n) rounds, and simulating one round of a CONGEST algorithm
on Gs+1[Q] in O(s+ log2 n) rounds (then, one can basically assume that the algorithm is running
on the communication network Gs+1[Q] with O(s + log2 n) overhead). The efficiency is based on
the bounded number ∆̂ of distance-s neighbors in Q for all nodes in G. This effectively bounds
the number of messages forwarded through any edge in the graph. For example with broadcasts,

10

for any edge {v, w} of the communication network, the number of nodes x ∈ Q whose broadcast
must be forwarded from v to w is at most ds(v,Q) ≤ ∆̂, because the message is forwarded for
at most s + 1 hops. The communication tools are also used to obtain the sparsification lemma
(Lemma 3.1), where the sparsity of Qs in Gs is used to run the (s+ 1)th iteration of sparsification
on Gs+1 efficiently. In our ruling set application, we use the communication tools to simulate an
MIS algorithm on Gk.

Deterministic k-ruling set of Gk. Our deterministic sparsification algorithm is used to compute
a sparse subset Q := Qk−1 ⊆ V , while maintaining constant domination distance to the rest of the
graph. After sparsifying the graph, we compute an MIS of Gk[Q]. Using our communication tools,
we can simulate any MIS algorithm on Gk[Q] in a black-box manner. In general, this approach
yields a (k + 1, β + k)-ruling set of G, where β is the domination distance of Q (see Lemma 6.3
for the formal statement). With our sparsification algorithm, the result is a (k + 1, k2)-ruling
set of G, or equivalently a k-ruling set of Gk. Messaging between distance-k neighbors in Q can
be implemented with a (k + log2 n)-factor slowdown. Combined with the state of the art MIS
algorithm [FGG+22], we compute a (k + 1, k2)-ruling set in O(poly log n)-rounds (Theorem 1.1).
For a constant k > 1 this improves exponentially upon prior work that required O(k2 ·n1/k) rounds
[SEW13, KMW18, EM19].

Randomized MIS of Gk. For our randomized results, we use the shattering framework, where a
randomized base algorithm is used to solve the problem efficiently on most parts of the graph. The
remaining connected components (in Gk) are small, with high probability. The small connected
components are solved with a different algorithm. Also see the next paragraph on Theorem 1.4 for
further details on the shattering framework. For the base algorithm, we cannot use a black-box
simulation of Ghaffari’s MIS algorithm from [Gha16], as simulation on Gk would be prohibitively
expensive. Hence, we use the BeepingMIS algorithm of [Gha17] (with a minor but crucial modifi-
cation), which works in a simple beeping model of communication. However, we need to be careful
when forwarding the beeps: With cycles in the communication network, nodes may confuse the
beep of a neighbor with that of their own, when k ≥ 3. To avoid this, we equip the beeps with
an identifier of the beeping node. Nodes forward an arbitrary subset of at most two beeps, which
is enough for any beeping node to distinguish if there is a beeping neighbor or not. In the post-
shattering phase, the remaining unsolved parts of the graph form small connected components in
Gk, each with N = O(∆4k · log n) nodes, with high probability. To find a solution in the remaining
components, we run O(logN n) executions of the BeepingMIS algorithm in parallel, which guaran-
tees that at least one of the executions succeeds, with high probability in n. To limit congestion,
we assign unique IDs to the nodes in the connected component from [N]. This bounds the total
communication to O(logN n · logN) = O(log n) (for simulating one step for all instances). This
approach achieves the same runtime as the state of the art algorithm for MIS of G [Gha19], up to
slowdown factors of k.

Theorem 1.4, shattering in G, in LOCAL and CONGEST. Since the seminal work of [BEPS16]
the shattering technique has become an essential tool in the area. The technique has two phases.
In the pre-shattering phase the problem at hand (e.g., the MIS problem) is solved in large parts
of the graph via a very efficient randomized process such that with high probability only small
components—think of components of polylogarithmic size—remain afterwards. In the post-shattering
phase one employs a different algorithm, usually a deterministic algorithm, that finishes the small

11

components very efficiently by exploiting their small size. The difficulty here is that the components
are actually of size poly ∆ · log n, which is not small for large values of ∆.

The high level solution. Fortunately, components have further beneficial properties: Fix a
small component C and some suitable β and α ≥ 5 (the constant 5 depends on the properties of the
pre-shattering phase and works for the MIS algorithms in [BEPS16, Gha16, Gha19], other problems
may need other values). Then it is known that any (α, β)-ruling set RC of C has at most O(log n)
nodes. If we had such a ruling set available, we could exploit its size algorithmically by creating
a virtual graph as follows: Each node in RC forms a connected ball of nodes around it, such that
each node in C joins a unique ball. Then, one can build a virtual graph H with one vertex for each
such ball. Two balls are connected in H if the respective balls contain nodes that are adjacent in
the original graph G. Since |V (HC)| = |RC | = O(log n), and since one round of communication
in HC can be simulated in G in O(β) rounds (in the LOCAL model) one can compute a network
decomposition (ND) of H very efficiently, e.g., with the algorithm of [RG20]. The details do not
matter for the current exposition, but it is known that an ND of HC implies an ND of C which
can be used to compute an MIS on C.

The challenge. The challenge is that it is unclear how to compute a ruling set RC . The
algorithm would have to run on all small components in parallel and running it on the induced
subgraph does not work as the resulting ruling set needs to be 5-independent in G; 5-independence
in G[C] is insufficient. It is also critical if a node v ∈ C, v 6= RC is dominated by some node in the
ruling set of some other small component C ′ 6= C. To illustrate the difficulty, observe that a node
cannot tell efficiently whether a node in distance 5 in G is in the same small component as itself or
not. Hence, the nodes cannot easily determine whether they can both be contained in the ruling
set or not.

The solution. Inspired by a combination of the different versions of [BEPS16], we present the
following solution. After the pre-shattering phase, we perform a second randomized pre-shattering
phase that is run on all small components in parallel (it works w.h.p. in n and there are at most n
components so we can perform a union-bound over the error probabilities of different components).
It splits each component into so called tiny components. Then, we prove the following lemma.

Lemma (Informal version of Lemma 7.5). Let α = 5 and let β be an integer and consider a small
component C. Then, each (α, β)-ruling set of its tiny components has at most O(log n) nodes. Both
distances of the ruling set are measured in the graph induced by C and the bound on the size even
holds if a node of one tiny component is dominated by a node in another tiny component.

The benefit of this lemma is that we can run a ruling set algorithm (in order to dominate all
remaining nodes in tiny components) on the graph induced by the small components, making the
algorithm fully independent between different small components. Instead of worrying whether a
node in distance 5 in G is within the same component as oneself, one can simply ignore all edges
that are not contained in G[C] and work in the graph induced by small components.

Proof of the lemma. While the whole setup is rather complicated and very similar to the one
in [BEPS16], the proof of the lemma is very simple. If we fix one specific ruling set RC as in the
lemma, then the core shattering argument of [BEPS16] states that w.h.p. in n the set RC is of size
O(log n). The intuitive reason for this fact is that each node only remains undecided with a small
probability and these events are independent for nodes that are at least 5 hops apart. Hence, w.h.p.
not more than O(log n) nodes with pairwise distance 5 can remain undecided. Now, we obtain the
lemma by performing a union bound over all such ruling sets. The crucial point in this solution is

12

that one can rely on the small size of C (that holds w.h.p. after the first pre-shattering phase) to
show that there are only poly n many of these sets making the union bound a feasible approach.3

Previous solutions. The arXiv version of [BEPS16] has a very similar two-phase setup, but
uses a different (and faulty4) approach to prove a statement that is similar to our lemma. The
(correct) journal version of [BEPS16] also uses a similar two-phase structure, but then uses a
different and more involved argument to show that a network decomposition of the virtual graph
H can be computed efficiently. Besides some other technical details, the main difference is that they
show that each ball satisfies certain power graph connectivity requirements if nodes are assigned to
rulers on-the-fly while computing the ruling set (their proof is insufficient if nodes simply join the
ball of the closest ruler). Hence, the proof requires internals of the used ruling set algorithm and
it is difficult to formally black-box it, as it is done in later works.

Our second solution. Our second solution shows that using the internals of current state-of-
the-art ruling set algorithms one can omit the second pre-shattering phase. While this is simpler
than the proof in the journal version of [BEPS16], we believe that our solution that is based on the
two-phase structure is more approachable. However, the version with a single pre-shattering phase
is easier to generalize to Gk, which is needed for Theorem 1.2 and Corollary 1.3.

4 Communication tools

In this section, we present the communication tools that we need to communicate efficiently on
sparse representations of power graphs.

Lemma 4.1 (Learning IDs in distance-(s+ 1) Q-neighborhood). Let s ≥ 1 and ∆̂ ≥ 1 be integers.
Let Q ⊆ V such that all v ∈ V have at most ∆̂ distance-s Q-neighbors. Each v ∈ V has a unique
a-bit identifier ID(v). Given that all v ∈ V know the set of IDs in N s(v,Q), all v ∈ V can learn
the set of IDs in N s+1(v,Q) in O(∆̂ · a/bandwidth) rounds, using bandwidth-bit messages.

Furthermore, suppose that for each v ∈ Q, there is a depth-s BFS tree Tv rooted in v, given
distributedly. Each tree can be extended to depth s+ 1 in additional O(∆̂ · a/bandwidth) rounds.

Proof. Each node v ∈ V sends the set of IDs in N s(v,Q) to each of its neighbors w ∈ N(v)
by pipelining. By assumption, ds(v,X) ≤ ∆̂ for all v ∈ V . Hence, pipelining the IDs takes at
most ∆̂ · a/bandwidth rounds. Each v ∈ V takes the union of the incoming sets of IDs to form
∪w∈N(v)N

s(w,Q) = N s+1(v,Q).
To extend the BFS trees, each v ∈ V is added to trees of nodes in Q at distance exactly s+ 1.

For each x ∈ N s+1(v,Q) \ N s(v,Q), we add v as a leaf node to the tree Tx. Let wx ∈ N(v) be a
neighbor who sent ID(x) to v. One such neighbor w ∈ N(v) is chosen arbitrarily, in case there are
many. By assumption, w is already included in Tx. Now, v sends a confirmation to wx including
ID(x). v sets ancestor(Tx, v) := wx, and w adds v to descendants(Tx, w). The additional time
complexity is the same as the time taken to send the IDs.

Lemma 4.2 (Sending messages from Q ⊆ V). Let s ≥ 1 and ∆̂ ≥ 1 be integers. Let Q ⊆ V such
that all v ∈ V have at most ∆̂ distance-(s− 1) Q-neighbors. For each v ∈ Q, let Tv be a BFS tree
rooted in v with depth s. Assume that each v ∈ Q knows the set of IDs in N s(v,Q), as well as
N s−1(w,Q) for each w ∈ N(v). There is a deterministic algorithm for the following tasks:

3The informed reader will notice that this is different from (and simpler than) the standard proof for showing that
small components emerge after the first pre-shattering phase. In that setting a similar union-bound is not possible.

4See Section 7 for details.

13

• Broadcast: Each v ∈ Q sends an m-bit message msgv to all w ∈ N s(v)
in O(s+m∆̂/bandwidth) rounds.

• Q-message: Each v ∈ Q sends an m-bit message msgv,w to each w ∈ N s(v,Q)

in O(s+ (m+ a)∆̂2/bandwidth) rounds.

Each node has a a-bit identifier that is unique within its s-neighborhood. The algorithm uses
bandwidth-bit messages, where bandwidth ≥ ∆̂.

Proof. Both algorithms use the BFS tree rooted in each v ∈ Q for sending messages from v to
nodes in N s(v). First, we show that any edge is in at most P := 2∆̂ trees. Let e = {v, w} ∈ E be
any edge and let x ∈ Q such that e is part of the tree of x. The tree Tx is formed by a breadth-first
search from x to depth s. Hence, either x ∈ N s−1(v,Q) or x ∈ N s−1(w,Q). The distance-(s − 1)
Q-degree of any node is at most ∆̂, so e is in at most 2∆̂ trees.

Broadcast : We use the broadcast algorithm from [GGR21, Section 5]. The following paragraph
is a summary of their algorithm. Each tree Tv is only allocated b′ := bandwidth/P bits of commu-
nication bandwidth on its edges. The root v breaks its message into m/b′ pieces. The message is
sent from the root piece by piece, with the ith piece being sent in the ith round. Other nodes of
the tree forward pieces to their descendants, without congestion. We can execute this algorithm
in parallel in all trees – in total, the number of bits per round sent on a single edge is at most
P · b′ = bandwidth. The full message can be formed without including information about each tree:
given a set of pieces, a sender v forms a message to each w ∈ N(v) including the pieces for trees T
where w ∈ descendants(v, T). The sender v sorts the pieces by the ID of root(T) and concatenates
them. The receiver w splits the message into b′-bit pieces and maps them to the corresponding
trees, using knowledge of ancestor(w, T). The total time required for the last piece of a message
to reach all leaves is O(s+m/b′) = O(s+mP/bandwidth) rounds. In our application, P = 2∆̂, so
the round complexity of the broadcast algorithm is O(s+m∆̂/bandwidth).

Q-message: Consider any x ∈ Q. It has an m-bit message msgx,y to each y ∈ N s(x,Q). The

total number of messages from x is at most ∆·∆̂, because |N s(x,Q)| = |∪w∈N(v)N
s−1(w,Q)| ≤ ∆·∆̂,

since ds−1(w,Q) ≤ ∆̂ by assumption. The algorithm has two steps. In the first step, we distribute
the messages evenly between the immediate neighbors of x. Each message msgx,y is packaged as a
tuple of the form (msgx,y, ID(y)). Now, x sends each immediate neighbor w ∈ N(x) a set of messages
Sx,w := {(msgx,y, ID(y)) : y ∈ N s−1(w,Q)}, using the assumption that x knows N s−1(w,Q) for

each w ∈ N(x). This can send some tuples to multiple neighbors. Still, for any w, |Sx,w| ≤ ∆̂,

since ds−1(w,Q) ≤ ∆̂ by assumption. The set of tuples sent from x to w fit in M := (m+a)∆̂ bits.
The first step takes O(M/bandwidth) rounds, and it can be done by all nodes in Q in parallel.

In the second step, we split the tree Tx of each x ∈ Q into O(∆) subtrees Tx,w, rooted at each
w ∈ N(x). Tx,w is the subtree induced by w and all descendants of w in Tx. For any x ∈ Q, the
subtrees of Tx are edge-disjoint and node-disjoint. Earlier, we showed that for any e ∈ E, there
are at most 2∆̂ root nodes x ∈ Q such that e ∈ Tx. By edge-disjointness of the subtrees of Tx, for
any e ∈ E, there are at most 2∆̂ subtrees Tx,w such that e ∈ Tx,w. Now, the task in each subtree
Tx,w is to deliver the messages msgx,y to each y ∈ N s−1(w,Q) ∩ V (Tx,w). This is done in parallel
in all subtrees of all x ∈ Q as follows. The full set of tuples Sx,w is sent as a single broadcast in
Tx,w, using the previously described broadcast algorithm of [GGR21]. All nodes v ∈ Tx,w have the
required knowledge to run the broadcast algorithm: each non-root node knows ancestor(v, Tx,w)
and descendants(v, Tx,w), since they are the same as in Tx. The ID of the original root x can be

14

Figure 1: Example graph for Lemma 4.2 with nodes in Q in grey. With s = 3, the total number of
messages over {v, w} is up to ∆̂ (when nodes in Q broadcast) and ∆̂2/4 (Q-message).

used as the root ID, since the subtrees of Tx are node-disjoint. Running the broadcast algorithm
takes O(s+M∆̂/bandwidth) rounds, where M is the size of the broadcasted message and the depth
of Tx,w is at most s− 1. The nodes y ∈ N s−1(w,Q) ∩ V (Tx,w) find msgx,y from the received set of

tuples using their ID. The total complexity is O
(

M
bandwidth + s+ M∆̂

bandwidth

)
= O

(
s+ (m+a)∆̂2

bandwidth

)
The results of Lemma 4.2 are tight, which can be seen in Figure 1.

Lemma 4.3 (Convergecast in spanning tree). Let T be a spanning BFS tree rooted in some r ∈ V ,
given distributedly. Suppose that each v ∈ V has a m-bit non-negative integer xv. There is a
distributed algorithm that computes the sum

∑
v∈V xv in the root. The algorithm runs in

O (diam(G) + (m+ log n)/bandwidth)

rounds in the CONGEST model, using bandwidth-bit messages.

Proof. The sum
∑

v∈V xv is at most n · 2b. Using the algorithm of [GGR21, Lemma 5.1] with
O(log n+ b)-bit messages,

∑
v∈V xv is computed in the root in O(diam(G)+(m+log n)/bandwidth)

rounds.

A spanning BFS tree for Lemma 4.3 can be formed by leader election in O(diam(G)) time, by
starting a BFS token from each node and forwarding the token of the tree T whose root has the
smallest identifier. When using Lemma 4.3 in network decomposition clusters, we use the Steiner
tree of the cluster as the spanning tree.

Simulating virtual graphs with communication network G

Definition 4.4 (Virtual graph H = (VH , EH)). Let G = (V,E) be the communication network.
Let VH ⊆ V and EH ⊆ {{v, w} | v, w ∈ VH , v 6= w}. H = (VH , EH) is called a virtual graph of G.

Any subgraph of G is a virtual graph of G, but the definition does not require the edges of H to
be present in G. We may for example define H as Gs, for some s ≥ 1.

Let A be any CONGEST algorithm (deterministic or randomized). Suppose that we want to
run A on H, but the available communication network is G instead of H. We define generally what
it means to simulate A on H with communication network G:

15

Definition 4.5 (Simulating A on virtual graph H with communication network G). Let A be any
CONGEST algorithm and let H = (VH , EH) be a virtual graph of G. Assume that nodes in VH
know their input for A, if there is any, as well as know their degree in H, if it is required in the
algorithm. A is simulated round by round. To simulate a round of A:

1. Each v ∈ VH form a set of messages {msgv,w : w ∈ NH(v)}, based on their state in A, in zero
rounds.

2. Communication between neighbors in H is done in the communication network G, using
some message passing algorithm. The algorithm may relay to each v ∈ VH the full set of
incoming messages {msgw,v : w ∈ NH(v)}, or some aggregation of the messages with sufficient
information for v to update its state in A, exactly as if it received the full set of messages.
The type of aggregation is specified alongside the simulated algorithm.

3. Each v ∈ VH updates its state based on its previous state in A and the received information,
without further communication.

From now on, the communication network is assumed to be G, without explicitly specifying it.
The efficiency of simulating A on H depends heavily on the type of algorithm, the virtual

graph H and how H relates to the communication network G. In general, edges of G may be forced
to relay messages between an arbitrary number of pairs of nodes in VH . Furthermore, in many
algorithms, it is not possible to compact the set of relayed messages. We will do algorithm-specific
optimizations later. For now, we focus on the setting where the virtual graph is Gs[Q], for some
s ≥ 2 and Q ⊆ V . The next lemma shows that if Q satisfies certain sparseness conditions, any
CONGEST algorithm can be simulated efficiently:

Lemma 4.6 (Simulating A on Gs[Q] with communication network G). Let A be any CONGEST
algorithm. Let s ≥ 1 and ∆̂ ≥ 1 be integers. Let Q ⊆ V such that all v ∈ V have at most ∆̂
distance-(s− 1) Q-neighbors. For each v ∈ Q, let Tv be a BFS tree rooted in v with depth s, known
distributedly. Assume that each v ∈ Q knows the set of IDs in N s(v,Q), as well as N s−1(w,Q)
for each w ∈ N(v). Let TA(H) be the time complexity of running algorithm A on an input graph
H. There is a deterministic CONGEST algorithm that simulates A on Gs[Q] with communication
network G in O((s+ ∆̂2) · TA(Gs[Q])) rounds.

Proof. We use the Q-message algorithm of Lemma 4.2, which allows each v ∈ Q to send a message
of O(log n) bits to each w ∈ N s(v,Q) in O(s+ ∆̂2) rounds. These are exactly the neighbors of v in
Gs[Q]. Note that the required knowledge to run Q-message is available by assumption. Simulating
each round takes O(s+ ∆̂2) rounds, so the total time complexity is O((s+ ∆̂2) · TA(Gs[Q])).

5 Sparsification of Power Graphs

The goal of this section is to prove Lemma 3.1, our main sparsification result for power graphs.
First, in the next two sections, we prove the following deterministic sparsification result. Lemma 5.1
is standalone and does not refer to power graphs. In Section 5.3, we use it iteratively to obtain a
sequence V ⊇ Q1 ⊇ Q2 ⊇ . . . ⊇ Qk where Qi is sparse in the power graph Gi.

16

Lemma 5.1 (Deterministic Sparsification). Let A ⊆ V be a set of initially active vertices. There
is a deterministic distributed algorithm that finds a set of vertices Q ⊆ A such that for all v ∈ V ,

• (bounded Q-degree): d(v,Q) ≤ 72 log n = O(log n)

• (domination): distG(v,Q) ≤ 2 + distG(v,A)

Let ∆A ≥ maxv∈V d(v,A) be an input parameter given to all nodes, which is at least the maximum
number of active neighbors. The algorithm runs in O(diam(G)·log2 n·log ∆A) rounds in CONGEST.

5.1 Randomized Sparsification via Sampling

We start with a randomized sparsification algorithm to find a certain sparse set of vertices, satisfying
the properties of Lemma 5.1, with high probability. See Algorithm 1. The algorithm consists of
r := blog ∆A − log log nc − 5 stages. Let H1 := A, where A ⊆ V is any set of initially active nodes.
For 1 ≤ i ≤ r, Hi is a set of active nodes in the respective stage. In each stage i, we sample a set

Mi ⊆ Hi. Each node v ∈ Hi is included in Mi with probability 24·2i·logn
∆A

, where the decisions of
the nodes are 8 log n-wise independent. We deactivate all sampled nodes, as well as active nodes
that have a sampled node within 2 hops in G. This is done by sending a flag from each sampled
node, propagated for two hops, where multiple incoming flags can be forwarded as one. Once
nodes are deactivated, they stay inactive forever. Let Hi+1 = Hi \ (Mi∪N2(Mi)) be the remaining
active nodes. After r stages, the algorithm returns Q := ∪r+1

i=1Mi, consisting of the sampled sets
M1, . . . ,Mr and the remaining active nodes Mr+1 := Hr+1.

Algorithm 1: Randomized sparsification

Input: ∆A ≥ maxv∈V d(v,A),
Each v ∈ V knows if it is in a set of initially active nodes A ⊆ V .

Set r := blog ∆A − log log nc − 5 and H1 := A
for stage i = 1, . . . , r :

Mi := ∅
foreach v ∈ Hi in parallel :

Join Mi with probability 24·2i·logn
∆A

Hi+1 := Hi \ (Mi ∪N2(Mi))

Mr+1 := Hr+1

return Q := ∪r+1
i=1Mi

Definition 5.2 (Active degree). For v ∈ V , its active degree in stage i is defined as d(v,Hi). We
say that v ∈ V has a high active degree in stage i if d(v,Hi) ≥ ∆A/2

i.

The active degree of a node changes throughout the algorithm. Note that inactive nodes are never
reactivated, so we have d(v,H1) ≥ d(v,H2) ≥ · · · ≥ d(v,Hr+1) for all v ∈ V . Also, whether v itself
is active or inactive does not affect its active degree directly. Next, we prove the properties that
hold after each stage with high probability.

Theorem 5.3 (Theorem 2.5 in [SSS95]). Let X be the sum of p-wise independent [0, λ]-valued ran-
dom variables with expectation µ = E(X) and let δ ≤ 1. Then P(|X−µ| ≥ δµ) ≤ e−bmin{p/2,δ2µ/(3λ)}c.

17

Lemma 5.4 (Stage i of randomized sparsification). Fix some stage 1 ≤ i ≤ r and let Hi ⊆ V be a
set of active nodes, such that all nodes v ∈ V have at most ∆A/2

i−1 neighbors in Hi. The ith stage
of Algorithm 1 returns Mi and Hi+1 such that for all v ∈ V :

(i) d(v,Mi) ≤ 72 log n, with probability at least 1− 1/n3.

(ii) if d(v,Hi) ≥ ∆A/2
i, then v ∈Mi ∪N(Mi), with probability at least 1− 1/n3.

(iii) d(v,Hi+1) < ∆A/2
i, with probability at least 1− 1/n3.

One stage requires 2 rounds. The claims hold if the random choices are 8 log n-wise independent.

Proof. For an active node w ∈ Hi, let Xw be an indicator variable for the event that w is sampled.
Proof of (i). Let v ∈ V be any vertex. By assumption, v has at most ∆A/2

i−1 active neighbors.
Let W be a set of fake vertices, added to the set of active neighbors of v such that v has exactly
∆A/2

i−1 active neighbors. Define the indicator variable Xw for fake vertices w ∈W similarly as for
real active nodes. Clearly v has at most 72 log n real sampled neighbors whenever at most 72 log n
vertices in N(v,Hi) ∪W are sampled. The probability of this event can be lower bounded using
Theorem 5.3. Let X =

∑
w∈N(v,Hi)∪W Xw be a sum of the indicator variables, with expected value

µ := E[X] = ∆A

2i−1
24·2i·logn

∆A
= 48 log n. Let δ = 1

2 in Theorem 5.3:

P(X ≥ 72 log n) ≤ P(|X − 48 log n| ≥ 1

2
48 log n)

≤ e−bmin{8 logn/2,48 logn/12}c = e−b4 lognc ≤ n−3 .

Hence, v has at most 72 log n neighbors in Mi with probability at least 1− 1/n3.
Proof of (ii). Let v ∈ V be a node with at least ∆A/2

i active neighbors. We will compute a lower
bound for the probability that v is adjacent to a sampled node. Fix any subset S ⊆ N(v,Hi) of
active neighbors such that |S| = ∆A/2

i. Let X =
∑

w∈S Xw be a sum of indicator variables, with

expected value µ := E[X] = ∆A

2i
24·2i·logn

∆A
= 24 log n. At least one neighbor is sampled when X > 0.

The probability of X = 0 can be upper bounded using Theorem 5.3. Let δ = 3
4 :

P(X = 0) ≤ P(|X − µ| ≥ (3/4) · µ)

≤ e−bmin{8 logn/2,72 logn/16}c = e−b4 lognc ≤ n−3 .

Hence, at least one active neighbor of v is sampled with probability at least 1− 1/n3.
Proof of (iii). First, consider v ∈ V with d(v,Hi) < ∆A/2

i. Since nodes are never reactivated,
the active degree of v will be less than ∆A/2

i in stage i+1 as well. Now, let v ∈ V be any node with
high active degree in stage i, that is, d(v,Hi) ≥ ∆A/2

i. The algorithm deactivates the distance-2
neighborhood of sampled nodes. Hence, all of N(v,Hi) is deactivated, whenever some w ∈ N(v,Hi)
is sampled. By (ii), this happens with probability at least 1 − 1

n3 . In this case, the active degree
d(v,Hj) of v is zero for all remaining stages i < j ≤ r.

We are now ready to prove a randomized version of Lemma 5.1, running in O(log ∆) rounds:
The r = O(log ∆A) = O(log ∆) stages of Algorithm 1 produce Q := ∪r+1

i=1Mi, consisting of the
sampled sets M1, . . . ,Mr and the remaining active nodes Mr+1 := Hr+1. Lemma 5.4 (i) states
that any node has O(log n) neighbors in any Mi, with high probability, given that maximum active

18

degree decreased to ∆A/2
i−1 in the previous stage. The maximum active degree decreases for any

node, with high probability by Lemma 5.4 (iii). The sets Mi and Mj are at distance at least 2
from each other for any i 6= j, so any node does not have neighbors in more than one Mi. Taking
a union bound over all stages, we get that any node has at most O(log n) neighbors in the whole
Q = ∪r+1

i=1Mi. This also includes the remaining active nodes Mr+1 := Hr+1. Next, we construct a
deterministic sparsification algorithm by derandomizing the random choices of the active nodes in
each stage.

5.2 Deterministic Sparsification via Derandomization

We construct a deterministic sparsification algorithm to prove Lemma 5.1. The deterministic
algorithm, Algorithm 2, is referred to as DetSparsification. The structure of DetSparsification is
the same as the randomized sparsification algorithm (Algorithm 1). As before, the input is a set
of active nodes A ⊆ V and a maximum active degree parameter ∆A ≥ maxv∈V d(v,A), where
each v ∈ V knows whether v ∈ A, and the value of ∆A. There are r = blog ∆A − log lognc − 5
stages. For 1 ≤ i ≤ r, Hi is the set of active nodes in the ith stage, where H1 := A and
Hi ⊆ Hi−1. Fix some stage 1 ≤ i ≤ r. In the ith stage, DetSparsification selects a set Mi ⊆ Hi

by derandomizing the sampling procedure of the ith stage of Algorithm 1, in O(diam(G) · log2 n)
rounds. This is described in the next lemma. The rest of the algorithm works exactly like the
randomized version. The remaining active nodes are Hi+1 = Hi \ (Mi ∪N2(Mi)). After r stages,
the algorithm returns Q := ∪r+1

i=1Mi, consisting of the sampled sets M1, . . . ,Mr and the remaining
active nodes Mr+1 := Hr+1.

Algorithm 2: DetSparsification

Input: ∆A ≥ maxv∈V d(v,A),
Each v ∈ V knows if it’s in a set of initially active nodes A ⊆ V .

r := blog ∆A − log log nc − 5
H1 := A
for stage i = 1, . . . , r :

Find Mi ⊆ Hi using Claim 5.6 s.t. neither Ψv nor Φv (1, 2) occur for any v ∈ V
Hi+1 := Hi \ (Mi ∪N2

G(Mi))
foreach v ∈ V in parallel :

Inform each w ∈ N(v) whether v ∈ Hi+1

Mr+1 := Hr+1

return Q := ∪r+1
i=1Mi

Lemma 5.5 (Derandomizing ith stage). The round complexity of a stage is O(diam(G) · log2 n).
Fix a stage 1 ≤ i ≤ r and let Hi ⊆ V be a set of active nodes, such that all nodes v ∈ V have at
most ∆A/2

i−1 neighbors in Hi. The ith stage of DetSparsification returns Mi and Hi+1 such that
for all v ∈ V :

(i) d(v,Mi) ≤ 72 log n, ,

(ii) if d(v,Hi) ≥ ∆A/2
i , then v ∈Mi ∪N(Mi) ,

(iii) d(v,Hi+1) < ∆A/2
i .

19

Proof. We derandomize one stage 1 ≤ i ≤ r of the randomized sampling algorithm (see Section 5.1

and Algorithm 1). Each active node v ∈ Hi is sampled to Mi with probability 24·2i logn
∆A

. After our
derandomization, there are two types of events that we want to guarantee for all v ∈ V . First, all
v ∈ V have a maximum of 72 log n neighbors in Mi. Secondly, nodes with high active degree in
stage i are have at least one sampled neighbor, or are sampled themselves. The purpose of this is
to guarantee that the maximum active degree in the graph decreases, because the neighborhood of
any high active degree node is deactivated.

Define indicator variables for the complements of these events. Let Z = {v ∈ V : d(v,Hi) ≥
∆A/2

i} be the set of nodes with high active degree in stage i. For each v ∈ Z, let Φv be an indicator
variable for the event that v is not sampled and does not have a sampled neighbor:

Φv :=

{
1 v 6∈Mi ∪N(Mi)

0 else
(1)

For convenience, we also define Φv for v ∈ V \ Z as Φv = 0. By Lemma 5.4 (ii), for all v ∈ Z, the
probability that v does not have any of its neighbors sampled or is not sampled itself is at most
1/n3. Hence, for all v ∈ V ,

P(Φv = 1) ≤ 1

n3

Next, for all v ∈ V (including Z), let Ψv be an indicator variable for the event that v has more
than 72 log n sampled neighbors,

Ψv :=

{
1 d(v,Mi) > 72 log n

0 else
(2)

By assumption, the maximum active degree at the start of stage i is at most ∆A/2
i−1. With this

assumption, Lemma 5.4 (i) states that, for all v ∈ V ,

P(Ψv = 1) ≤ 1

n3

For each v ∈ Hi, let Xv be an indicator variable for the event that is sampled to Mi. We use
Claim 5.6 to fix the decisions of the active nodes:

Claim 5.6. Fix some stage 1 ≤ i ≤ r. Let Hi ⊆ V and let ∆A = O(n) be an integer parameter. Let
T be a spanning BFS tree with root r ∈ V , given distributedly. Let {Xv}v∈Hi be a set of 8 log n-wise

independent binary variables with P(Xv = 1) = 24·2i·logn
∆A

. For each v ∈ V , let Φv and Ψv be events,

each with probability at most 1
n3 . Let vbl(v) ⊆ Hi be a (unique minimal) set of nodes such that the

values of Xw, w ∈ vbl(v) determine Φv and Ψv. Assume that each v ∈ V knows the IDs in vbl(v).
There is a deterministic CONGEST algorithm that selects the values of Xv for each v ∈ Hi such
that none of the events occur. All communication is done using convergecast operations in T . The
round complexity is O(diam(G) · log2 n).

Proof. We simulate the random choices of the active nodes by choosing a hash function h : [n] →
[∆A] uniformly at random from a family H of 8 log n-wise independent hash functions. Setting

Xv = 1 with probability 24·2i·logn
∆A

is equivalent to setting Xv = 1 if h(v) ≤ 24 · 2i · log n. By

Lemma 2.3, choosing a random function from H takes γ := 8 log2 n random bits.

20

We call a hash function h ∈ H good for a variable (Φv or Ψv), if it makes its value to be zero,
that is, the corresponding event does not occur. The probability of each event is at most 1/n3 and
the total number of events is 2n. Hence,

E
(∑
v∈V

Φv + Ψv

)
≤ 2n · 1

n3
=

2

n2

For large enough n, the expected number of unwanted events is less than 1. Hence, by law of total
expectation, there exists a hash function such that none of the unwanted events occur.

Let B = (B1, . . . , Bγ) be the random bits that are used to select a hash function. We fix
the values of the random bits one by one, using the method of conditional expectations. Now, we
describe how to select the value of the jth random bit Bj , given that the values B1 = b1, . . . , Bj−1 =
bj−1 have already been fixed. Consider any node v ∈ V . v computes two conditional expectations:

αv,0 = E[Φv + Ψv | B1 = b1, . . . , Bj−1 = bj−1, Bj = 0]

αv,1 = E[Φv + Ψv | B1 = b1, . . . , Bj−1 = bj−1, Bj = 1]

The expectation αv,b, b ∈ {0, 1} is the average outcome of Φv + Ψv over the hash functions with the
prefix b1, . . . , bj−1, b. Given any hash function h ∈ H, v can check whether h is good for its variables.
To do this, v determines the values ofXw, w ∈ vbl(v): the value ofXw is 1 iff h(ID(w)) ≤ 24·2i·log n.
This takes zero rounds, since these IDs in vbl(v) are known to v by assumption. Hence, computing
the conditional expectations takes zero rounds. Next, we compute the sums

∑
v∈V αv,b, b ∈ {0, 1}

in the root r of T . This is done by running two instances of Lemma 4.3 in parallel, one for
each bit. The round complexity of computing the sums is O(diam(G)) rounds5. The root chooses
bj := argminb∈{0,1}

∑
v∈V αv,b and sends the chosen value to all the nodes.

The choice of hash function is deterministic, once all γ bits have been fixed. The outcomes of
Φv and Ψv are now determined by the fixed seed for all nodes v ∈ V . The number of unwanted
events that occur can now be written as

∑
v∈V E[Φv + Ψv | B1 = b1, . . . , Bγ = bγ]. By the law of

total expectation, we have∑
v∈V

E[Φv + Ψv | B1 = b1, . . . , Bγ = bγ] ≤
∑
v∈V

E[Φv + Ψv] = E
[∑
v∈V

Φv + Ψv

]
< 1

Hence none of the unwanted events occur.
The total time complexity is O(diam(G) · log2 n). This consists of fixing the γ = O(log2 n) bits

one by one. For each bit, nodes can compute the conditional expectations αv,0, αv,1 in zero rounds.
Gathering the sums of the conditional expectations to some root node takes O(diam(G)) rounds.
The root node sends the fixed value of the bit to the rest of the graph in O(diam(G)) rounds.
Once all γ bits have been fixed, active nodes extracts their decision from the hash function in zero
rounds. �

For all v ∈ V , the events Φv and Ψv depend only on the decisions of active neighbors. Each
v ∈ V can learn the IDs in N(v,H) in one round. The probabilities of the events are at most 1

n3 .

5When fixing the ith bit, αv,b is a fraction of the form xv,b/2
γ−i+1, where xv,b ∈ [2 · 2γ] is the total number of

times Ψv and Φv occurs over the at most 2γ = n2 hash functions with prefix b1, . . . , bi−1, b. The denominator is the
same for all nodes, so we can instead send xv,b, taking O(logn) bits of space.

21

Claim 5.6 provides a deterministic algorithm to fix the values of Xv, v ∈ H such that neither Φv

nor Ψv occur for any v ∈ V . Let Mi = {v ∈ Hi : Xv = 1} be the set of sampled nodes.
Proof of (i). All nodes have d(v,Mi) ≤ 72 log n, since Ψv = 0 for all v ∈ V .

Proof of (ii). Any v ∈ V with at least ∆A/2
i active neighbors is in Mi ∪N(Mi), since Φv = 0 for

all v ∈ Z.
Proof of (iii). The sampled nodes and their distance-2 neighborhood are removed from the set of
active nodes, just like in the randomized algorithm. Let Hi+1 ⊆ Hi be the set of remaining active
nodes. The neighborhood of any v ∈ V with d(v,Hi) ≥ ∆A/2

i is fully deactivated because at least
one of the active nodes in N(v,Hi) was sampled. Hence, d(v,Hi+1) < ∆A/2

i for all v ∈ V .
The total time complexity is O(diam(G) · log2 n): the derandomization takes O(diam(G) · log2 n)

by Claim 5.6, and deactivating the distance-2 neighborhood of sampled nodes takes 2 rounds. �

Proof of Lemma 5.1. Run the DetSparsification algorithm. The number of stages is r = blog ∆A−
log lognc−5. Note that we can assume that ∆A ≥ 25 log n,6 which makes r non-negative. DetSpar-
sification returns Q = ∪r+1

i=1Mi ⊆ A, where M1, . . . ,Mr are the sets selected in stages 1 ≤ i ≤ r and
Mr+1 = Hr+1 is the set of remaining active nodes.
Domination property: We start by showing the domination property of Q, that is, ∀v ∈ V :
distG(v,Q) ≤ 2 + distG(v,A). Let v ∈ V be any node and let w ∈ A be any initially active node
that is closest to v, i.e., distG(v, w) = distG(v,A). There are three possible outcomes for w in the
algorithm: (1) w ∈ Q. Now distG(v,Q) = distG(v,A). (2) w is deactivated in some stage i. By
definition, there exists some w′ ∈ N2(w) such that w′ ∈ Mi. Hence distG(v,Q) ≤ distG(v,A) + 2.
(3) w is never deactivated. Hence w ∈ Hr+1. The remaining active nodes Mr+1 := Hr+1 are
included in Q. Hence distG(v,Q) = distG(v,A). In all cases, distG(v,Q) ≤ 2 + distG(v,A).
Sparsity: We prove the claim about bounded Q-degree, ∀v ∈ V : d(v,Q) ≤ 72 log n. For any
stage 1 ≤ i ≤ r, Lemma 5.5 states that any v ∈ V has at most 72 log n neighbors in Mi, assuming
that the maximum active degree at the start of stage i is at most ∆A/2

i−1. The assumption holds
for i = 1, since ∆A ≥ maxv∈V d(v,A) by definition. For stages i = 2, . . . , r, this is guaranteed by
Lemma 5.5 (iii), which states that the maximum active degree at the end of stage i− 1 is at most
∆A/2

i−1. Finally, Mr+1 = Hr+1 consists of the nodes who are still active after r stages of sampling.
By Lemma 5.5 (iii), the maximum active degree after stage r = blog ∆A − log lognc − 5 is

∆A

2blog ∆A−log lognc−5
≤ ∆A

2log ∆A−log logn−6
= 64 log n

Hence, any v ∈ V has at most 72 log n neighbors in Mi, for any 1 ≤ i ≤ r+ 1. Finally, nodes in Mi

and Mj , i 6= j ∈ 1, . . . , r do not have any common neighbors, because the distance-2 neighborhood
of sampled nodes is deactivated. Nodes in Mr+1 and Mi, 1 ≤ i ≤ r do not have any common
neighbors for the same reason. We conclude that each node has at most 72 log n = O(log n)
neighbors in Q.

The runtime of DetSparsification consists of blog ∆A − log lognc − 5 stages, each taking
O(diam(G) · log2 n) rounds by Lemma 5.5. The total runtime is O(diam(G) · log ∆ · log2 n).

5.3 Sparsification in Power Graphs

In this section, we present a deterministic sparsification algorithm for Gk, proving Lemma 3.1.

6If ∆A < 25 logn, then maxv∈V d(v,A) < 25 logn by definition of ∆A. Return the initial set of active nodes A,
which now satisfies both conditions of Lemma 5.1.

22

Construction outline Let Q0 ⊆ V be any set of initially active nodes. Our algorithm consists
of k iterations of the deterministic sparsification algorithm for G (DetSparsification, Algorithm 2).
The first iteration runs DetSparsification in G with the active nodes initialized as Q0. In iteration
2 ≤ s ≤ k, DetSparsification is simulated on a power graph Gs with communication network G.
The set of active nodes for the sth iteration is initialized as Qs−1 ⊆ V , where Qs−1 is the result of
the previous iteration. The result of the sth iteration is some Qs ⊆ Qs−1. After k iterations, the
algorithm outputs Qk.

A full algorithm description, as well as details on how to simulate DetSparsification on Gs will
be given later. The efficiency of the simulation in each iteration s relies on properties of the set of
active nodes Qs−1, returned by DetSparsification in the previous iteration. Concretely, we maintain
the following invariants:

Algorithm invariants The sparsification algorithm for Gk finds a sequence of sets of nodes
Q0 ⊇ Q1 ⊇ · · · ⊇ Qk. The following invariants hold deterministically after all iterations 1 ≤ s ≤ k:

I1.1 (bounded distance-s Qs-degree) ∀v ∈ V : ds(v,Qs) ≤ 72 log n

I1.2 (bounded distance-(s+ 1) Qs-degree) ∀v ∈ V : ds+1(v,Qs) ≤ 72∆ log n

I2 (domination) ∀v ∈ V : distG(v,Qs) ≤
∑s

j=1 2j + distG(v,Q0) = s2 + s+ distG(v,Q0)

I3 (knowledge of distance-(s+1) Qs-neighborhood) All v ∈ V know the set of IDs in N s+1(v,Qs).
Moreover, for each x ∈ Qs, there is a BFS tree of depth s + 1 rooted in x. Each
v ∈ V knows, for each Tx it belongs to, the ID of the root x, ancestor(Tx, v) ∈ N(v) and
descendants(Tx, v) ⊆ N(v).

Algorithm description Let k ≥ 1 be an integer and Q0 ⊆ V be any set. The algorithm consists
of k iterations of DetSparsification (Algorithm 2), where the sth iteration is simulated on the power
graph Gs.

In the first iteration, we run DetSparsification on G. The set of active nodes is initialized as

Q0, and the maximum active degree parameter ∆A is set to ∆
(1)
A := ∆. Let Q1 be the set of nodes

returned by DetSparsification in the first iteration. To prepare for simulation on G2 in the next
iteration, we must maintain invariant (I3). To do this, each v ∈ V sends the set of IDs in N(v,Q1)
to all neighbors w ∈ N(v) in O(log n) rounds, as described in Lemma 4.1. As a result, each v ∈ V
knows the set of IDs in N2(v,Q1), and for each x ∈ Q1, there is a BFS tree of depth 2 with root x.

Fix some iteration 2 ≤ s ≤ k. Assume that the invariants hold for iteration s − 1. We
simulate DetSparsification on the power graph Gs with communication network G. Active nodes
are initialized as Qs−1, where Qs−1 is the result of the previous iteration. The maximum active

degree parameter ∆A is set as ∆
(s)
A := 72∆ log n (for all 2 ≤ s ≤ k). The details of the simulation

are given in Lemma 5.7. Let Qs ⊆ Qs−1 be the set of nodes returned by DetSparsification in this
iteration. At the end of the iteration, we must again maintain (I3). Each v ∈ V sends the set of
IDs in N s(v,Qs) to each of its neighbors w ∈ N(v) in O(log n) rounds, as described in Lemma 4.1.
Now all nodes v ∈ V know the set of IDs in ∪w∈N(v)N

s(w,Qs) = N s+1(v,Qs), and the BFS trees
of nodes in Qs are extended to depth s+ 1. The trees of nodes in Qs−1 \Qs are not used anymore.
This concludes one iteration of the algorithm.

After k iterations, the algorithm outputs Qk.

23

Proof of invariants. We prove the invariants using induction over the number of iterations.
Base case s = 1. (I1.1) and (I2) follow from the analysis of DetSparsification in Lemma 5.1,

which states that for any v ∈ V it holds that dG(v,Q1) ≤ 72 log n and distG(v,Q1) ≤ 2 +
distG(v,Q0). (I1.2) is a direct consequence of (I1.1), since for any v ∈ V , d2(v,Q1) = |N2(v,Q1)| =
| ∪w∈N(v) N(w,Q1)| ≤

∑
w∈N(v) |N(w,Q1)| ≤ ∆ · 72 log n. (I3) holds by Lemma 4.1.

Assume that the invariants hold for s− 1. In the sth iteration, we set Qs−1 as the initial set of
active nodes. By (I1.2) for iteration s − 1, the distance-s Qs−1-degree is at most 72∆ log n for all

v ∈ V . The maximum active degree parameter ∆A in DetSparsification was set to ∆
(s)
A = 72∆ log n.

This satisfies the requirement ∆A ≥ maxv∈V d(v,A) in Lemma 5.1 (which has the form ∆A ≥
maxv∈V d

s(v,A) as we are simulating DetSparsification on Gs). Now, we can apply Lemma 5.1.
For Gs, Lemma 5.1 (bounded Q-degree) states that, for all v ∈ V , ds(v,Qs) ≤ 72 log n, proving
(I1.1). (I1.2) is again a consequence of (I1.1), as for any v ∈ V , ds+1(v,Qs) = |N s+1(v,Qs)| =
|∪w∈N(v)N

s(w,Qs)| ≤
∑

w∈N(v) d
s(w,Qs) ≤ ∆ ·72 log n. For (I2), we use Lemma 5.1 (domination),

which states that ∀v ∈ V : distGs(v,Qs) ≤ 2 + distGs(v,Qs−1). The increase of 2 in distance in
Gs corresponds to an increase of at most 2s in G. Combined with (I2) for iteration s − 1, we get
distG(v,Qs) ≤ 2s + distG(v,Qs−1) ≤ 2s + (s − 1)2 + s − 1 + distG(v,Q0) = s2 + s + distG(v,Q0).
Lastly, (I3) holds by construction (see Lemma 4.1). �

Proof of Lemma 3.1. Initialize the active nodes as Q0 ⊆ V . Run the algorithm of Section 5.3 with
k iterations. Let Q := Qk be the result of the last iteration.

The correctness of the algorithm follows from the invariants. For the kth iteration, (I1.1) states
that ∀v ∈ V : dk(v,Q) ≤ 72 log n and by (I2), ∀v ∈ V : distG(v,Q) ≤ k2 + k + distG(v,Q0).

Lastly, we analyze the runtime of the algorithm. There are k iterations. In each iteration s, we

run DetSparsification with blog ∆A− log lognc−5 stages. The parameter ∆A is set to ∆
(1)
A = ∆ for

s = 1 and ∆
(s)
A = 72∆ log n for 2 ≤ s ≤ k. Hence, the number of stages is O(log ∆) in all iterations.

Simulating DetSparsification on Gs takes O(diam(G) · log2 n · log ∆+s log ∆) rounds by Lemma 5.7.
At the end of the iteration, each v ∈ V sends the set of IDs in N s(v,Qs) to each of their neighbors
w ∈ N(v). Pipelining the IDs takes O(log n) rounds, since ds(v,Qs) = O(log n) by (I1). The time
complexity of the sth iteration is O(diam(G) · log2 n · log ∆ + s log ∆ + log n) = O(diam(G) · log2 n ·
log ∆ + k log ∆). Hence, the total time complexity is O(k · diam(G) · log2 n · log ∆ + k2 · log ∆).

Lastly, we show how to simulate DetSparsification on Gs, for any 1 ≤ s ≤ k, where the active
nodes are initialized as the result of the previous iteration s − 1. The efficiency of the simulation
relies on the invariant (I1.1) for the previous iteration.

Lemma 5.7 (Simulating DetSparsification on Gs). Consider iteration 2 ≤ s ≤ k. Let ∆A =
72∆ log n. Initialize the set of active nodes as Qs−1, where Qs−1 ⊆ Q0 is the set of nodes returned
in iteration s − 1. Given that the invariants hold for iteration s − 1, there is a deterministic
CONGEST algorithm that simulates DetSparsification on Gs with communication network G in
O(diam(G) · log2 n · log ∆ + s log ∆) rounds.

Proof. We simulate DetSparsification, consisting of r = blog ∆A− log lognc− 5 = O(log ∆) stages.
The active nodes are initialized as H1 := Qs−1 and ∆A = 72∆ log n. A stage of DetSparsification
was described in Lemma 5.5. We show how to efficiently simulate it on Gs with communication
network G. Fix any stage 1 ≤ i ≤ r. Assume that each v ∈ V knows the IDs of its active neighbors,
N s(v,Hi). This is true for the first stage by (I3) for iteration s − 1: each v ∈ V knows the set of

24

IDs in N s(v,H1) = N s(v,Qs−1). We later show how to learn the IDs in N s(v,Hi+1) at the end of
the stage.

The ith stage starts with derandomizing the choices of the active nodes. For clarity, we first
rewrite the definitions of events in Lemma 5.5 for Gs. For v ∈ Hi, let Xv be an indicator variable
for the event that v is sampled. Let Z = {v ∈ V : ds(v,Hi) ≥ ∆A/2

i} be the set of nodes with high
active degree in Gs in the ith stage. For each v ∈ Z, let Φv := 1(v 6∈ Mi ∪N s(Mi)) and for each
v′ ∈ V \ Z, let Φv′ := 0. For each v ∈ V , let Ψv := 1(ds(v,Mi) > 72 log n). Note that these are
exactly the events of Lemma 5.5, rewritten for Gs. Given that we are simulating the ith stage of
the sparsification algorithm in Gs, the randomized analysis in Lemma 5.4 states that for all v ∈ V ,
P(Φv = 1) ≤ 1/n3 and P(Ψv = 1) ≤ 1/n3.

As in the DetSparsification, we apply Claim 5.6 to fix the decisions of the active nodes. For
all v ∈ V , the events Φv and Ψv depend on the decisions of their active neighbors in Gs. By
assumption, each v ∈ V knows the IDs in N s(v,Hi). Hence, by Claim 5.6, the values of Xv, v ∈ H
can be fixed in O(diam(G) · log2 n) rounds, such that neither Φv nor Ψv occur for any v ∈ V .
Note that the only communication in Claim 5.6 is done by aggregating values on a spanning tree
subgraph of G. In particular, there is no need to simulate communication between neighbors in
Gs. Let Mi = {v ∈ Hi : Xv = 1} be the set of sampled nodes.

Each v ∈ Mi deactivates itself. We also need to deactivate the distance-2 neighborhood in
Gs (distance-2s neighborhood in G) of sampled nodes. Each v ∈ Mi sends a flag sampled that
propagates for 2s hops in G. Nodes forward an incoming flag, keeping track of the distance left.
Multiple flags can be combined into one, since they do not contain any information specific to the
sender, so there is no congestion. The round complexity is 2s = O(s). Any active node v′ ∈ Hi

who receives a flag sampled deactivates itself. Let Hi+1 ⊆ Hi be the remaining active nodes.
To prepare for the next stage, each v ∈ V needs to learn the IDs in N s(v,Hi+1) ⊆ N s(v,Hi).

To do this, each v ∈ Hi \Hi+1 informs its neighborhood in Gs about the fact that v is no longer
active. Using Lemma 4.2, each deactivated node v broadcasts a message deactivated, along with
ID(v), to all of its neighbors in Gs. By (I1.1) for iteration s − 1, any v ∈ V has at most O(log n)
distance-(s− 1) Qs−1-neighbors. The BFS trees of depth s around each x ∈ Qs−1 are given by (I3)
for iteration s− 1. Hence, Lemma 4.2 sends the broadcasts from all deactivated nodes (possibly all
of Qs−1 ⊇ Hi) in parallel in O(s+log n) rounds. Nodes w ∈ V use the incoming broadcasts to form
knowledge of N s(v,Hi+1) by removing deactivated nodes from the set N s(v,Hi).

7 This concludes
the simulation of one stage of DetSparsification.

The time complexity of one stage is O(diam(G) · log2 n+2s+s+log n). There are r = O(log ∆)
stages, so the time complexity of simulating DetSparsification in Gs is O(diam(G) · log2 n · log ∆ +
s log ∆).

5.4 Sparsification with no Diameter Dependency

We combine the result of Lemma 3.1 with a network decomposition algorithm to improve the spar-
sification runtime to O(poly log n). See Definition 2.1 for the definition of a network decomposition.

7Note that nodes v ∈ V who have a sampled neighbor in Gs could perform the update in zero rounds: v checks
if any of its active neighbors w ∈ Ns(v,Hi) are sampled, using the hash function h determined by the fixed random
bits. If there exists a sampled node w ∈ Ns(v,Hi), all of the remaining active nodes in Ns(v,Hi) will have already
been deactivated, because they are in the distance-2 neighborhood of w in Gs. However, the sampled node may not
be in Ns(v,Hi), but only in the distance-2s neighborhood of some active node w ∈ Ns(v,Hi). In this case, w is
deactivated but v does not know it yet.

25

With a network decomposition, the classic approach is to compute a solution greedily, by iterating
through the colors of the network decomposition. However, we need to be careful not to spoil the
solution for nodes in clusters of later colors. When computing a solution for a cluster C, we must
also consider nodes in the distance-k neighborhood Nk(C). This cluster border acts as inactive ob-
servers in the algorithm to make sure that they have a bounded number of distance-k neighbors in
Q. Furthermore, nodes in the cluster border are important, because connections in Gk[C] can also
be formed through neighbors of C (up to distance bk/2c). With this in mind, we need a separation
of 2k + 1 between clusters to run Lemma 3.1 independently for each cluster of same color.

Lemma 5.8. Let k ≥ 1 (potentially a function of n). Let TND be the complexity of computing a
weak (c, d)-network decomposition deterministically with cluster distance 2k + 1 and congestion τ .

There is a deterministic distributed algorithm that, given a subset Q0 ⊆ V , finds a set of vertices
Q ⊆ Q0 such that for all v ∈ V ,

• (bounded distance-k Q-degree): dk(v,Q) ≤ 72 log n = O(log n)

• (domination): distG(v,Q) ≤ k2 + k + distG(v,Q0) = O(k2) + distG(v,Q0)

The algorithm runs in O
(
TND + c(dτk · log2 n · log ∆ + k2 · log ∆)

)
rounds in the CONGEST model.

The runtime is Õ(k2 · log4 n · log ∆), using the network decomposition of Theorem A.1.

Proof. We start by computing a weak (c, d)-network decomposition deterministically with cluster
distance 2k+1 and congestion τ . Define a set of globally active nodes HG := Q0. We iterate through
the c color classes of the network decomposition. The sparsification algorithm of Lemma 3.1 is run
on clusters of the same color in parallel. The set of globally active nodes is updated after each
color.

Fix a color 1 ≤ j ≤ c and let C ⊆ V be any cluster of color j. The distance-k neighborhood of
C also takes part in the algorithm. We refer to Nk(C) as the cluster border. Separation of 2k + 1
guarantees that cluster borders are disjoint for clusters of the same color. Let TC be the Steiner tree
of C, given by the network decomposition. We can extend TC to include Nk(C) in O(k) rounds by
running a BFS starting from each v ∈ C. Nodes outside of the cluster forward one of the incoming
searches for k hops in total. Let TC be the updated Steiner tree (not necessarily a tree anymore).
By disjointness of the cluster borders, congestion is increased on any edge by at most one.

The final output Q is the union of QC sets over all colors and clusters C. We prove correctness
by showing the two properties of Lemma 3.1 for Q. (Bounded distance-k Q-degree): Consider any
v ∈ V . Let C be the first cluster containing a distance-k neighbor of v that is selected to Q. C is
unique, since clusters of the same color are at least 2k + 1 hops apart. The number of distance-
k Q-neighbors of v is at most 72 log n by (I1) for iteration k. Furthermore, any sampled node
deactivates the globally active nodes in its distance-2k neighborhood. Hence, no more distance-k
neighbors of v join Q in later colors. (Domination): Let x ∈ Q0 be any initially active node closest
to v. There are three possibilities: (i) x ∈ Q, (ii) x starts as active in its own cluster, but x 6∈ Q (iii)
x is deactivated before its own cluster runs the algorithm. For (i), the domination clearly holds. In
the second case, there is another node in Q in the cluster of x, because x is not in Q. The distance
from x to a node in Q in the cluster is at most k2 + k by Lemma 3.1. In case (iii), the reason that
x was deactivated is because there is a selected node in another cluster, within distance 2k from x.
Hence, the domination property holds in all three cases.

Lastly, we analyze the runtime. Computing the network decomposition takes TND rounds. We
iterate through c colors. The diameter of each cluster is d and communication in the Steiner tree of

26

each cluster is slowed down by a O(τ) factor due to congestion. Computing the cluster border and
deactivating globally active nodes in other clusters takes O(k) rounds each. Hence, running the
sparsification algorithm for a single color class takes O(dτk · log2 n · log ∆ + k2 log ∆)) rounds. The
total runtime isO(TND+c(dτk·log2 n·log ∆+k2 log ∆)). Using the network decomposition algorithm
of Theorem A.1, we compute a (Õ(log n), O(k ·log n))-network decomposition with separation 2k+1
and τ = 1 in Õ(k · log3 n) rounds. The total runtime is Õ(k2 · log4 n · log ∆).

6 Deterministic (k + 1, k2)-ruling set (Theorem 1.1)

In this section, we prove our main result (Theorem 1.1), that is, we present our poly logn-time
deterministic (k + 1, k2)-ruling set algorithm. We start by showing that the simplest known deter-
ministic ruling set algorithms extend to power graphs. The downside of these algorithms is that
they either provide a poor domination property or are exponentially slower than our main result.

Existing ruling set algorithms for power graphs There is a well-known deterministic (k +
1, k · log n)-ruling set algorithm [AGLP89], adapted to the CONGEST model in [HKN21]. A general
form of the algorithm was given by [KMW18]:

Theorem 6.1 ([AGLP89, SEW13, HKN21, KMW18]). Let k be a positive integer. Given a
distance-k coloring of G with γ colors, there is a deterministic distributed algorithm that, for any
B ≥ 2, computes a (k+ 1, k · dlogB γe)-ruling set of G in O(k ·B · logB γ) rounds of the CONGEST
model.

Proof sketch. Consider the base-B representation of the input coloring, which can be given in
m := dlogB γe digits. Let χi(v) ∈ {0, . . . , B − 1} be the ith digit of the color of v ∈ V in base B.
Let U := V be a set of nodes, which is eventually returned as the ruling set. Initially, U is a trivial
dominating set, with no independence guarantees. The algorithm iterates through the m digits of
the coloring. Each iteration 1 ≤ i ≤ m maintains the following invariant: for any v, w ∈ U such
that distG(v, w) ≤ k, the colors of v and w agree in the first i digits. This implies that after m
iterations, any pair of nodes in U within distance k agree in all digits, i.e., have the same color. Such
a pair does not exist, since the input is a coloring of Gk, hence the result is (k + 1)-independent.

Fix some iteration 1 ≤ i ≤ m. It consists of B steps, going through the possible values of the ith
digit. In the sth step, for any 0 ≤ s ≤ B − 1, the nodes v ∈ U with χi(v) = s send a beep to their
distance-k neighborhood. Any w ∈ U with χi(w) > s, who receives a beep, removes itself from U
permanently (note that beeping nodes do not need to be able to listen to beeps of other nodes while
beeping). This maintains the invariant for the ith iteration: after B steps, there are no distance-k
neighbors v, w ∈ U with χi(v) 6= χi(w). The sth iteration weakens the domination of U by at most
k: nodes who beep and cause some of their distance-k neighbors to be removed, will remain in U
for the rest of the iteration. Hence, the domination of the final ruling set is k ·m = k · dlogB γe.
The runtime of one iteration is k ·B rounds. The total runtime is O(k ·B ·m) = O(k ·B · logB γ) �

The algorithm of Theorem 6.1 scales well for larger distances, but the domination is non-constant
and depends on the size of the input coloring. Furthermore, deterministic coloring of power graphs
is difficult. For larger distances, one usually has to rely on a coloring given by the unique IDs,
which makes the domination logarithmic in n. Constant domination can be achieved by choosing
a non-constant base B, but the runtime grows significantly:

27

Corollary 6.2. Let k be a positive integer. There is a deterministic distributed algorithm that, for
any c ≥ 1, computes a (k + 1, ck)-ruling set of G in O(k · c · n1/c) rounds of the CONGEST model.

Proof. Use the (k + 1, kdlogB χe)-ruling set algorithm of Theorem 6.1 with the unique IDs of the
nodes as colors and B = dn1/ce. The runtime is O(k · c · n1/c) rounds. The resulting ruling set has
domination kd logn

logdn1/cee ≤ kc.

To our knowledge, this is the only deterministic ruling set algorithm that, for k ≥ 2 and k = o(log n),
computes a ruling set with domination constant in n. For k = Ω(log n), it is possible to compute
a (k + 1, O(k2))-ruling set with Theorem 6.1 in O(k · log n) time.

Network decompositions also yield ruling sets. Given a (c, d)-network decomposition (weak or
strong diameter), with separation 2k between clusters of the same color, it is possible to compute
a (k + 1,max(d, k))-ruling set in O(c(d + k)) rounds. Initially, all nodes are active and the ruling
set is empty. Iterate through the c color classes. In clusters of a given color class, pick any active
node (if exists) to join the ruling set, e.g. by choosing the one with the minimum ID in O(d)
time. Nodes joining the ruling set deactivate their distance-k neighborhood in the whole graph.
The distance-k neighborhoods are disjoint for distinct clusters of the same color, hence the result
is (k + 1)-independent. The domination is at least d, because there is a ruling set node in any
cluster, unless all of the nodes of the cluster are already dominated. The current state of the art
network decomposition with larger separation (see Theorem A.1) does not improve from the result
of Theorem 6.1. Furthermore, to find ruling sets of power graphs with constant domination, we
would need the cluster diameter to be constant. This is not possible with a polylogarithmic number
of colors, as a constant diameter implies Ω(n1/λ) color classes for some constant λ [LS93].

Deterministic (k + 1, k2)-ruling set Our deterministic ruling set algorithm computes a (k +
1, k2)-ruling set for any k ≥ 1 in poly log n-time. The algorithm combines sparsification with a
maximal independent set procedure on an induced subgraph of Gk. The goal of sparsification is
to find a set of vertices Q ⊆ V , such that all v ∈ V are close to Q in G, while having a bounded
number of distance-(k − 1) neighbors in Q. The second property makes it possible to efficiently
simulate algorithms on Gk[Q] with communication network G. In particular, we can run any
maximal independent set algorithm in a black-box way to compute a MIS of Gk[Q]. The result is
returned as the ruling set. The following lemma describes the general approach formally:

Lemma 6.3 (Ruling set via sparsification). Let k ≥ 1 (potentially a function of n). Denote the
complexity of solving the following problems deterministically in the CONGEST model by

• TMIS(n,∆): complexity of solving MIS in graphs with n nodes and maximum degree ∆

• T sparsification(k, β, ∆̂): complexity of finding a subset Q ⊆ V such that all v ∈ V have dk(v,Q) ≤
∆̂ and distG(v,Q) ≤ β (in graphs with n nodes and maximum degree ∆)

There is a deterministic distributed algorithm that, given a graph G = (V,E) with n nodes and
maximum degree ∆, computes a (k+ 1, β+ k)-ruling set of G in O(T sparsification(k− 1, β, ∆̂) + k∆̂ +
(k + ∆̂2) · TMIS(n,∆ · ∆̂)) rounds of the CONGEST model.

Proof. Let β and ∆̂ be any positive integers. Start by finding a subset of nodes Q ⊆ V such that
all v ∈ V have at most ∆̂ distance-(k − 1) Q-neighbors and distG(v,Q) ≤ β. The time complexity
of finding Q is T sparsification(k − 1, β, ∆̂).

28

We simulate computing a maximal independent set on Gk[Q] with communication network G
using Lemma 4.6. To prepare for the simulation, we need to form BFS trees of depth k rooted at
nodes in Q, used for communication between nodes in Q. The trees are also provided by invariant
(I3) of Section 5.3, so the following preparation step can be skipped when using the sparsification
algorithm of Lemma 3.1. For each v ∈ Q, let Tv be a BFS tree, initially containing just v. Run k−1
iterations of Lemma 4.1. In the sth iteration, for any 1 ≤ s ≤ k−1, each v ∈ V learns the set of IDs
in N s+1(v,Q) and the tree of each v ∈ Q is extended to cover N s+1(v). Any v ∈ V knows, for each
tree T it belongs to, the ID of the root, descendants(T, v) ⊆ N(v) and ancestor(T, v) ∈ N(v). The
sth iteration takes O(∆̂) rounds, using the Θ(log n)-bit communication bandwidth and O(log n)-bit
IDs. After k − 1 iterations, required BFS trees are formed and known distributedly. Also, each
v ∈ Q knows its degree and the IDs of its neighbors in Gk[Q]. The preparation step takes O(k · ∆̂)
rounds.

The maximum degree of Gk[Q] is at most ∆ · ∆̂, since all v ∈ V have at most ∆ immediate
neighbors in G, each of which has at most ∆̂ distance-(k−1) Q-neighbors. The number of nodes in
Gk[Q] is at most n. The complexity of computing a MIS on an input graph Gk[Q] is TMIS(n,∆ ·∆̂).
We simulate computing MIS on Gk[Q] with communication network G. By Lemma 4.6, we can
simulate any CONGEST algorithm on Gk[Q] with communication network G with an O(k + ∆̂2)
slowdown factor. This gives a runtime of O((k+ ∆̂2) · TMIS(n,∆ · ∆̂)) for the MIS step. Let I ⊆ Q
be the resulting MIS of Gk[Q].

For correctness, note that a maximal independent set of Gk is a (k + 1, k)-ruling set of G. A
maximal independent set of Gk[Q] is independent in Gk. It is not maximal in Gk, we only have
distG(v, I) ≤ k for all v ∈ Q. Hence, for all v ∈ V , distG(v, I) ≤ distG(v,Q) +k ≤ β+k. The total
runtime is T sparsification(k − 1) + k∆̂ + (k + ∆̂2) · TMIS(n,∆ · ∆̂).

We use the sparsification algorithm of Lemma 5.8 and the maximal independent set algorithm
of [FGG+22] to compute a (k + 1, k2)-ruling set in poly log n-time:

Theorem 1.1 (k-ruling set of Gk). Let k ≥ 1 be an integer (potentially a function of n). There is
a deterministic distributed algorithm that computes a k-ruling set of Gk in polylogarithmic time in
the CONGEST model. More detailed, the round complexity is Õ(k2 · log4 n · log ∆) rounds.

Proof. Apply Lemma 6.3. We have T sparsification(k) = Õ(k2 · log4 n · log ∆) by Lemma 5.8. For the
computation of maximal independent set, we use [FGG+22, Theorem 3.1] which computes a MIS
in O(log2 ∆ · log log ∆ · log n) rounds in any n-node graph with maximum degree ∆. This gives
TMIS(n,∆ log n) = Õ(log n · log2 ∆). The runtime of Lemma 6.3 becomes Õ(k2 · log4 n · log ∆ + (k+
log2 n) · log n · log2 ∆) = Õ(k2 · log4 n · log ∆).

7 Maximal Independent Set on G: Shattering Revisited (Theo-
rem 1.4)

In this section, we present randomized algorithm for computing an MIS (of G) in the LOCAL and the
CONGEST model. Just as previous works, we rely on the shattering framework and our high level
approach is identical to these works, mainly to [BEPS16, BEPS16, Gha16, Gha19]. In fact, we use
the randomized pre-shattering phase of [Gha16, Gha19] in a black-box manner in order to effectively
reduce the problem to small unsolved components. Then in [BEPS16, BEPS16, Gha16, Gha19]

29

and in our work these small components are solved in the post-shattering phase. We present two
different post-shattering approaches that differ algorithmically and/or analytically from previous
works. Additionally, they are simpler than previous approaches.

7.1 Basics of Shattering

As we rely on the same general shattering framework [BEPS16] and the pre-shattering phase of
[Gha16] this section is very similar to statements in these works.

Pre-shattering. The first part of the algorithm is called the pre-shattering phase. It consists
of O(log ∆) steps of a random process, simply referred to as IndependentSet. The pre-shattering
phase computes an independent set I ⊆ V . Some nodes B := V \ (I ∪ N(I)) remain undecided,
as they didn’t join I and do not have a neighbor who joined it. It can be shown that, for any
5-independent set U ⊆ V , the probability that all nodes in U remain undecided is low:

Lemma 7.1 ([Gha16]). Let H = (V,E) with at most n nodes and maximum degree at most ∆.
Let c > 0 be an arbitrary constant. Let U ⊆ V be any 5-independent set in H. The probability that
U ⊆ B after running IndependentSet on H for Θ(c log ∆) steps is at most ∆−c|U |.

The same statement as in Lemma 7.1 holds for the algorithm of [BEPS16] after O(log2 ∆) steps. A
consequence of Lemma 7.1 is that, for any fixed 5-independent U ⊆ V with size at least t := log∆ n,
the probability that all nodes in U remain undecided is at most 1/nc. This only holds for a fixed U ,
and the number of choices for such U is prohibitively high to get a with high probability guarantee
by taking a union bound. For this reason, an additional connectedness requirement is added. Recall
that a set U ⊆ V is s-connected in G if for all U ′ ⊂ U : distG(U ′, U \ U) ≤ s. We also use the fact
that a (5, 4)-ruling set of a s-connected set U is 5-independent and (s+ 8)-connected.

Lemma 7.2 (Ruling set of s-connected component). Let H = (V,E). Let α, s ≥ 1 and let β ≥ α−1.
Let U ⊆ V be an s-connected set in H. Any R ⊆ U that is an (α, β)-ruling set of U with respect to
distances in H, is α-independent and (s+ 2β)-connected in H.

Proof. See Figure 2 for an illustration of the proof. First, R is α-independent in H by definition. To
prove that R is (s+2β)-connected, we need to show that for all R′ ⊂ R : distH(R′, R\R′) ≤ s+2β.
Note that by the domination of R, for any v ∈ U , there exists some w ∈ R s.t. distH(v, w) ≤ β.

Now, take any R′ ⊂ R. Let X = Nβ
H(R′, U) = ∪u∈R′Nβ

H(u, U) be the distance-β U -neighborhood
in H of nodes in R′. By the s-connectedness of U , we have distH(X,U \X) ≤ s. Let x ∈ X and
y ∈ U \X be some minimizers of distH(X,U \X). We have distH(R′, x) ≤ β by definition of X.
For y, there exists some w ∈ R s.t. distH(y, w) ≤ β. Furthermore, since y 6∈ X, we know that y
cannot be dominated by a node in R′, hence w ∈ R \R′. In total, this gives

distH(R′, R \R′) ≤ distH(R′, x) + distH(x, y) + distH(y,R \R′) ≤ β + s+ β

This makes it possible to prove the following shattering guarantee ([BEPS16, Theorem 3.3],
[Gha16, Lemma 4.2]). We use a slightly more general version of the same statement:

30

Figure 2: A β-dominating set R (red and green nodes) of a s-connected set U (in grey) is (s+ 2β)-
connected. X ⊆ U is the distance-β U -neighborhood of R′ ⊂ R. The distance from X to U \X is
at most s. There, y ∈ U \X is dominated by another node w ∈ R \R′.

Lemma 7.3 (Shattering). Let s ≥ 1 and H = (V,E) be any graph with at most n nodes and
maximum degree at most ∆. Let t = log∆ n. Run Θ(s log ∆) steps of IndependentSet on H. Let
I ⊆ V be the computed independent set and B = V \ (I ∪N(I)) be the undecided nodes. With high
probability in n,

(P1) There is no 5-independent (8 + s)-connected U ⊆ B s.t. |U | ≥ t.

(P2) All s-connected sets C ⊆ B have at most O(t ·∆4) nodes.

Proof. (P1) Let s′ = s+ 8. Any U ⊆ B with these properties forms a t-node tree in H [5,s′], where
H [5,s′] is the power graph where v, w ∈ V are adjacent if 5 ≤ distH(v, w) ≤ s′. There may be many
possible trees for U . In general, the number of rooted unlabeled t-node trees is less than 4t, because
the Euler tour of such trees can be encoded in 2t bits. The number of ways to embed such a tree in
H [5,s′] is less than n ·∆s′(t−1). By Lemma 7.1, for any constant c > 0, the probability that U ⊆ B
after Θ((s+ c) log ∆) steps is at most ∆−(s+c)·|U |. By union bound, the probability that any such
U is contained in the undecided nodes is at most

4t · n ·∆s′(t−1) ·∆−(s+c)·t = nlog∆ 4+1 ·∆s′(t−1)−(s+c)·t ≤ nlog∆ 4+1 ·∆t(8−c) ≤ n10−c

(P2) Suppose there is a s-connected set C ⊆ B with t ·∆4 nodes. We show how to construct U ⊆ B
that violates (P1). Form a (5, 4)-ruling set U ⊆ C of C, with respect to distances in G, greedily.
Initially, pick any v ∈ C and let U := {v}. Iteratively select v ∈ C \ U for which distH(v, U) ≥ 5
and set U = U ∪ {v}. This removes all nodes in C within distance 4 of v from consideration,
which is at most ∆4 nodes. Hence U has size at least t ·∆4/∆4 = t. Since C is s-connected and
U is a (5, 4)-ruling set of C w.r.t. distances in H, Lemma 7.2 states that U is 5-independent and
(s+ 8)-connected in H. This is a contradiction of (P1).

7.2 Post-shattering.

Lemma 7.3 states that after one pre-shattering phase lasting for O(log ∆) rounds, the graph is
shattered into small connected components of undecided nodes: Formally, Lemma 7.3 (P2), with

31

s = 1, states that after one phase of pre-shattering the number of nodes in any connected compo-
nent C of G[B] is at most O(log∆ n · ∆4), with high probability. As ∆ can be much larger than
polylogarithmic, we rather rely on property (P1) in order to algorithmically exploit the smallness
of the component. As a consequence of (P1), in any connected component C, there does not exist
any U ⊆ V (C) such that U is 5-independent in G and |U | ≥ t, with high probability. To see this,
note that such a U would be a subset of some (5, 4)-ruling set U∗ of V (C). As a (5, 4)-ruling set of
a connected component, U∗ is 5-independent and 9-connected by Lemma 7.2. Hence, by (P1) U∗

does not remain fully undecided by Lemma 7.3, with high probability.

How to use (P1) algorithmically? To get an intuition on how the bound of P1 could be used
in the rest of the MIS algorithm, suppose we are given a ruling set RC ⊆ V (C), such that RC is
5-independent in G and h-dominating in C. We can contract each undecided node to the closest
ruling set node, forming balls of radius h. This defines a virtual ball graph, with RC as nodes, and
an edge between v, w ∈ RC if the corresponding balls share an edge. A network decomposition (see
Section 2 for a definition) of the ball graph is computed. This induces a network decomposition of
the connected component:

Claim 7.4. A network decomposition of a ball graph can be transformed to a network decomposition
of C. The cluster diameter increases by a factor proportional to the ball diameter.

Proof. Each cluster (a set of balls) is expanded to a set of nodes in C in the natural way by taking
a union of the balls. Any adjacent nodes in C that are in the same ball are also in the same cluster.
If they are in different balls, the balls are adjacent in the ball graph. A network decomposition of
the ball graph clusters these balls in the same cluster, or in two clusters of different colors.

On a t-node graph, a network decomposition can be computed in poly log t = poly log log n
time. Additionally, there is an h-factor slowdown due to the fact that each node is an h-radius ball
in the communication network. The final MIS is computed by iterating through the colors of the
network decomposition, and solving each cluster in time proportional to the cluster diameter (in
CONGEST this requires more work).

Why do standard approaches not realize the bound given by (P1)? One approach is to
compute a (5, h)-ruling set R of B w.r.t. distances in G, for all components at once. Now, nodes in
C may be dominated by a ruling set node in another component C ′ 6= C, i.e., balls formed around
the ruling set nodes are not confined to one connected component, but may contain nodes from
other components at distance h. Without better connectedness guarantees in G, Lemma 7.3 (P1)
cannot bound the number of balls in a connected component of the ball graph. Another approach
is to run the ruling set algorithm in each induced subgraph C, but this is wrong because Lemma 7.3
requires 5-independence in G, not C.

The rest of the section is devoted to presenting two approaches for actually making use of the
small size of the components.

7.2.1 Approach 1: Two pre-shattering phases

This version of the ruling set argument is most similar to the original proof in [BEPS16, journal
version]. It is conceptually simple and, unlike the original proof, does not rely on the internals of
the ruling set algorithm used.

32

We start by running O(log ∆) steps of IndependentSet on G. Let I ⊆ V be the computed
independent set, and let B := V \ (I ∪ N(I)) be the undecided nodes. In light of previous
considerations, we run the O(log ∆) steps of IndependentSet again, this time on each connected
component C of G[B] in parallel. Nodes can determine their incident edges in G[B], which makes it
possible to run the algorithm on each G[V (C)] in parallel. Let IC ⊆ V (C) be the independent set
computed in C, and let BC := V (C)\(IC∪NC(IC)) be the remaining undecided nodes. Running the
MIS algorithm on C guarantees that executions of nodes at least 5 hops apart in C are independent.
This allows us to apply Lemma 7.1 on the subgraph C. We compute a (5, O(log log n))-ruling set
RC of BC , with respect to distances in C with the algorithm of [Gha19, Lemma 2.2]. The algorithm
succeeds with high probability in n, in fact for all the components.

So far, this approach is the same as in [BEPS16], up to a different ruling set algorithm.8 The
next step is to bound the size of |RC | for each connected component, where our solution differs
from [BEPS16] and is significantly shorter. We use that after the first pre-shattering phase each
component C of undecided nodes has at most t · ∆4 nodes by Lemma 7.3 (P2) for G, with high
probability. We can use this to bound the number of possible subsets U ⊆ V (C) to bound the size
of RC by a union bound:

Lemma 7.5. Let G = (V,E) be any graph with n nodes and maximum degree ∆. Let C be any
subgraph of G with at most t · ∆4 nodes and maximum degree at most ∆. Run Θ(log ∆) steps of
IndependentSet on C. Let IC ⊆ V (C) be the computed independent set and BC = V (C) \ (IC ∪
N(IC)) be the undecided nodes. There is no U ⊆ BC such that U is 5-independent in C and
|U | ≥ t, with high probability in n.

Proof. Recall that t = log∆ n. Let U ⊆ C be any 5-independent set in C. By Lemma 7.1 for
the graph C, the probability of U remaining after Θ(c log ∆) rounds is at most ∆−c|U |, where c is
a large-enough constant. We use the fact that the first pre-shattering phase significantly reduces

the total number of nodes. This reduces the number of choices for subsets of size t to
(
t·∆4

t

)
≤(

e·t·∆4

t

)t
≤ ∆5t . By union bound over the different sets, the probability that any 5-independent

U , with |U | = t is contained in the undecided nodes is at most ∆5t ·∆−c|U | = ∆5t−ct = n5−c.

By Lemma 7.5, the size of RC is less than t, with high probability in n. Form a ball graph
B, where each v ∈ V (C) joins the ball of the closest ruling set node, with respect to distances in
C. The ball graph has an edge between each pair of balls that are adjacent in G. B has at most
t nodes, and it is contained in the small component. Next, a network decomposition of the ball
graph is computed. This provides a network decomposition of C (see Claim 7.4). The rest of the
MIS algorithm works as in [Gha16] or [Gha19], depending on the model used.

7.2.2 Approach 2: One pre-shattering phase

As an alternative to the previous section, we present another approach that works without rerunning
the IndependentSet algorithm on each connected component of undecided nodes. After the pre-
shattering phase on G, we compute a ruling set of the undecided nodes with respect to distances

8As [BEPS16] aimed for a larger overall runtime, they could use a simpler ruling set algorithm, i.e., one that
computes a (5, O(log ∆)-ruling set of BC with respect to distances in C. However, the value of the domination is not
relevant for this proof.

33

in G. We show that specific balls formed around ruling set nodes are well-connected, which can be
used to bound the number of balls in a connected component of the ball graph.

Run Θ(s log ∆) steps of IndependentSet on G, with s = 8. Let I ⊆ V be the computed
independent set and let B = V \ (I ∪N(I)) be the set of undecided nodes. So far, this is essentially
what was done in the previous approach. Next, we use Claim 7.6 to compute a (5, O(log log n))-
ruling set R of B with respect to distances in G. This uses the ruling set algorithm of [Gha19,
Lemma 2.2]. Additionally, it partitions B into a set of disjoint balls {Ball(v) ⊆ B : v ∈ R} around
the ruling set, such that each ball is an 8-connected set in G:

Claim 7.6. A (k+ 1, O(k2 log log n))-ruling set R of B can be computed in O(k2 log log n) rounds,
with high probability, together with a partition of B into a set of disjoint clusters {Ball(v) ⊆ B |
v ∈ R}. For each v ∈ R, Ball(v) is 2k-connected and has weak diameter O(k2 log log n). For each
v ∈ R, there is a Steiner tree Tv with Ball(v) as the terminal nodes. Each edge in E is in at most
O(k log log n) trees.

Proof sketch. The ruling set is computed with the algorithm of [Gha19, Lemma 2.2]. Please see the
original proof for correctness of the ruling set computation. We show how the algorithm can be used
to partition B into 2k-connected balls around the ruling set nodes. The ruling set algorithm starts
with R := B as the candidate ruling set. For each v ∈ R, we maintain a set of nodes Ball(v) ⊆ B,
initialized as Ball(v) = {v} for each v ∈ R. The Steiner tree of v ∈ R is initialized as only
containing v. The ruling set algorithm consists of two parts, where nodes are gradually removed
from R. The coarse-grained part is a randomized sampling process to sparsify R, consisting of
O(log log n) phases. In the second, fine-grained part, the remaining R is made (k+ 1)-independent
in k epochs. In the ith epoch, some nodes are removed from R to make it (i+ 1)-independent. This
is done by first computing a distance-i O(log5 n)-coloring of R. The coloring is used to compute
a (i + 1, O(i log log n))-ruling set of R with the algorithm of [AGLP89] (see Theorem 6.1). Each
ruling set computation consists of O(log log n) phases.

We show how to update the ball and Steiner tree for each remaining u ∈ R after each phase, for
both the coarse-grained and fine-grained parts. In both parts, whenever a node v is removed from
R, we can point to a unique remaining node u ∈ R that knocked v out, i.e., that caused the removal
of v. When this happens, the ball of v is added to the ball of u. In the coarse and fine-grained parts,
the distance from v to the node that knocked it out is at most 2k and k, respectively. Furthermore,
for any v′ on the shortest path between v and u in G, it can be guaranteed that in case v′ is also
knocked out, it is knocked out by the same node u. To update the Steiner tree of u, the tree Tv, as
well as a shortest path between v and u is added to Tu.

A simple induction over the phases of the two parts shows that the ball of each remaining node
is 2k-connected. Whenever a node is removed, the shortest path to a remaining node is added
to the Steiner tree of the remaining node. The length of this path is at most 2k. Over a total
of O(log log n + k log log n) phases, this leads to a Steiner tree diameter of O(k2 log log n). In any
phase, for any edge e ∈ E, there is at most one u ∈ R that knocks out some other nodes, such that e
is on a shortest path between u and the removed nodes. Hence, e is added to at most O(k log log n)
trees over all phases. �

In general, Claim 7.6 shows that specific balls formed around a (k + 1, O(k2 log log n))-ruling
set computed with [Gha19, Lemma 2.2] are 2k-connected in G. Similarly, it can be shown that
specific balls formed around a (k+ 1, k log n)-ruling set computed with the algorithm of [AGLP89]
are k-connected [BEPS16, journal version, Theorem 2.4].

34

Claim 7.6 gives a partition of B into balls Ball(v) ⊆ B, v ∈ R. Each ball is 8-connected in G. For
each v ∈ R, a Steiner tree Tv with Ball(v) as the terminal nodes is given. We form a ball graph B,
with R as the nodes. In the ball graph, there is an edge between v, w ∈ R if the corresponding balls
are adjacent in G, i.e. ∃v′ ∈ Ball(v),∃w′ ∈ Ball(w) : (v′, w′) ∈ E. The rest of the MIS algorithm
is executed on each connected component of the ball graph in parallel. Let C be a connected
component of B. Let RC be the corresponding ruling set nodes and let BC := ∪v∈RC Ball(v) be the
set of all undecided nodes contained in the balls of RC .

Claim 7.7. BC is 8-connected in G.

Proof. BC := ∪v∈RC Ball(v), where each Ball(v) is 8-connected. As C is a connected component of
the ball graph, for any v ∈ RC , there exists w ∈ RC , v 6= w such that distG(Ball(v),Ball(w)) = 1
(unless C only contains one node). It follows that, for any S ⊂ BC ,distG(S,BC\S) ≤ max(1, 8) = 8.

We prove that the number of balls in C is at most t = log∆ n. We bound |V (C)| = |RC | with
Lemma 7.3 (P1), by showing that RC is a subset of some 5-independent, 16-connected set R′C ⊇ RC .
The set RC is 5-independent, but the nodes may still be far apart from each other. For analysis,
construct another set R′C ⊇ RC , such that R′C is a (5, 4)-ruling set of BC , with respect to distances in
G. By Lemma 7.2, R′C is 16-connected in G, where we use the fact that BC is an 8-connected set in
G. Recall that we run Θ(s log ∆) steps of IndependentSet on G, with s = 8. Hence, by Lemma 7.3
(P1), with high probability, there are no 5-independent, 16-connected sets U ⊆ B with |U | ≥ t. If
no such set exists, the size of RC ⊆ R′C is at most t, proving the claim. We can also bound the total
number of undecided nodes in the connected component C, which is useful in CONGEST. The set
BC is 8-connected. Lemma 7.3 (P2) states that the size of any 8-connected subset of B is at most
O(t ·∆4).

Continuing in each connected component C of the ball graph, we compute a network decom-
position of C. A network decomposition of C gives a network decomposition of the underlying set
of nodes BC (see Claim 7.4). The distance from one connected components of the ball graph to
another is at least 2 in G, by definition of the ball graph. This makes it possible to solve the rest
of the problem independently for each connected component of the ball graph. The final MIS is
computed by iterating through the colors of the network decomposition, and solving each cluster
in time proportional to the cluster diameter (in CONGEST this requires more work).

7.3 The approach in [BEPS16, arXiv] (and presumably also in [Gha16, Gha19])

In this section, we discuss how our approaches and proofs related to algorithms that use the
shattering framework for symmetry breaking problems. We have discussed earlier that the approach
in [BEPS16, journal] gives correct algorithms with very involved, but correct proofs for properties
required by the shattering framework. However, many follow up works build on top of the flawed
earlier approach in [BEPS16, arXiv]. While our first approach provides a different proof for the
troublesome parts (see Section 7.2.1), we believe that it is beneficial for the community to underline
these technical subtleties, simply as the shattering technique has grown into an essential technique
for developing randomized algorithms.

Similar to our first approach they use two-phases of pre-shattering9 where the first phase pro-
duces small components and the second phase, executed on all small components independently

9Of course our work is inspired by theirs and not the other way around.

35

and in parallel splits each of them into (many) tiny components. In order to explain the issue in
their work let us fix some notation. Consider one small component C and let BC be the nodes of
C that are still undecided after the second pre-shattering phase, i.e., the nodes in the tiny compo-
nents. In order to profit from the smallness of the components, they compute10 a (5, h)-ruling set
RC for some non-constant h. In order to bound the size of RC , they want to use Lemma 7.3 (P1),
with s = 1, for the graph C with the randomness of the second pre-shattering phase. While (P1)
indeed guarantees that there are no 5-independent, 9-connected sets U ⊆ BC with |U | ≥ t, with
high probability, the constructed (5, h)-ruling set RC is not necessarily 9-connected. Therefore,
the authors use a greedy procedure that adds undecided nodes to the ruling set until it becomes
9-connected (and while always ensuring that it remains 5-independent). In fact, the greedy proce-
dure should return some (5, 4)-ruling set R′C ⊇ RC of BC , w.r.t. distances in C. Note that this
set is only defined for the purposes of analysis. However, such a construction cannot always make
the set 9-connected. If the tiny components are far from each other (in C) it is impossible to add
further undecided nodes (nodes in BC) to the set to obtain a sufficiently connected ruling set. Thus
Lemma 7.3 cannot be applied. In fact, the issue in [BEPS16, arxiv v3] work appears on page 19 in
Step 3 and 4 where this greedy construction is performed. Here also nodes of C that are already
decided (not contained in a tiny component) are added to the ruling set to make it 9-connected.
But then the probabilistic analysis of the second pre-shattering phase does not bound the existence
of R′C as it only bounds the probability that all nodes of 5-independent sets of nodes remain un-
decided in the second pre-shattering phase. Also, one cannot rely on a probabilistic analysis of the
first pre-shattering phase, as that would require the distance between nodes in R′ to be measured
in G (instead of in the small component).

Enlarging this ruling set greedily is actually an integral part in all known proofs for the first
pre-shattering phase, and in particular for proving (P2). The crucial difference in these proofs is
that the prover can create the ruling set greedily such that it becomes 9-connected. This becomes
straightforward, as in this setting one can focus on a single connected component of undecided
nodes.

The solution of [BEPS16, journal]. Recall, when using the smallness of the components
algorithmically, it is more difficult to focus on a single connected component. When computing a
ruling set (in a black-box manner) with some algorithm and forming balls around each ruler by
assigning nodes to the closest ruling set node, it may happen that a node is assigned to a ruler that
actually lives in a different small component than its own. Hence, the journal version of [BEPS16]
has a different approach. It also has the two-phase pre-shattering approach, but uses the internals
of the ruling set algorithm to assign nodes to ruling set nodes. This ensures that each ball remains
4-connected. Still it is not ruled out that a node can be assigned to a ruling set node contained
in a different component. Thus, their solution restricts the analysis to a connected component of
the constructed ball graph, instead of focusing on a connected component of undecided nodes. If
the balls are created as described, this setting meets the requirement to apply (P1). Our second
approach shows that the second pre-shattering phase is not necessary in this approach. Hence, our
second approach is an alternative way (besides our first approach) to simplify the framework.

10In fact all three works use different ruling set algorithms. One contribution of [Gha19] is actually to come up
with a (5, O(log logn)-ruling set algorithm that works in the CONGEST model and can be used in this situation.

36

8 Randomized Symmetry Breaking on Power Graphs (Thm. 1.2,
Cor. 1.3)

In this section we provide our randomized algorithms for computing maximal independent sets and
ruling set of Gk, i.e., we prove Theorem 1.2 (in Section 8.2) and Corollary 1.3 (in Section 8.3). In
Section 8.1, we begin with a short sketch on why Luby’s algorithm can be extended to Gk (this
does not hold for all versions of the algorithm).

8.1 Luby’s Algorithm on Power Graphs

Luby’s algorithm [Lub86, ABI86] extends to compute a MIS of Gk in O(k · log n) rounds, with high
probability. All start as undecided and become decided once they or one of their neighbors (in Gk)
joins the independent set. In G, one step of the algorithm consists of two rounds. Each undecided
node v picks a random number xv from [nc] [MRSZ11], where c is a sufficiently large constant. The
value is compared with the values of undecided neighbors. If v has the minimum value, v joins the
independent set and informs its neighbors. The algorithm computes a MIS of G in O(log n) rounds,
with high probability (see [MRSZ11] for a simple analysis). The algorithm can be simulated on
Gk with a k-factor slowdown, required for communicating the minimum of the random numbers,
as well as alerting distance-k neighbors when joining the MIS. Importantly, the algorithm does not
require nodes to know their degree.

As nodes do not know their degree in Gk, it is unclear how to modify the version of the algorithm
to Gk where nodes mark themselves with probabilities depending on their degree.

8.2 MIS of Gk (Theorem 1.2)

Similar to the algorithm for Theorem 1.4 our MIS algorithm for Gk is based on the shattering
framework. Both, our pre-shattering and post-shattering phase are modification of the BeepingMIS
algorithm that was originally introduced in [Gha17, Section 2.2]. It can be seen as a communication
saving variant of the pre-shattering phase of [Gha16].

Beeping an MIS (of G) [Gha17, Section 2.2]: All nodes start as undecided, and become
decided once they or one of their neighbors joins the independent set. The algorithm runs in steps
(originally called rounds), each consisting of two communication rounds. In the first step, undecided
nodes v ∈ V mark themselves with some probability xv. Marked nodes notify their neighbors with
a single bit beep. Nodes update their marking probability xv, based on if there was at least one
marked neighbor. In the second step, marked nodes without marked neighbors join the independent
set I and notify their neighbors. The nodes joining I and their neighbors are deactivated and stop
participating in the algorithm.

BeepingMIS can be used to compute a MIS of G in O(log n) rounds, with high probability.
After O(log ∆) rounds, we get the following shattering guarantee from [BEPS16, Theorem 3.3] and
[Gha16, Lemma 4.2].

Lemma 8.1 (Shattering). Let s ≥ 1 and G = (V,E) be any graph with at most n nodes and
maximum degree at most ∆. Let t = log∆ n. Run Θ(s log ∆) steps of BeepingMIS on G. Let
I ⊆ V be the computed independent set and B = V \ (I ∪N(I)) be the undecided nodes. With high
probability in n,

37

(P1) There is no 5-independent (8 + s)-connected U ⊆ B s.t. |U | ≥ t.

(P2) All s-connected sets C ⊆ B have at most O(t ·∆4) nodes.

Proof. For each node v, the probability that v becomes decided after Θ(log d(v) + log 1/ε) is at
least 1 − ε [Gha17, Theorem 2.1]. Moreover, one can carefully trace the probabilities—decisions
of nodes further than 2 hops apart are independent when restricted to a single step—and obtain
that for any 5-independent set U ⊆ V , the probability that all nodes in U remain undecided after
Θ(c log ∆) steps is at most ∆−c|U |. This provides a version of Lemma 7.1. With that result, the
remaining proof is identical to the proof of Lemma 7.3.

High level overview for computing an MIS of Gk. We run O(log ∆k) steps of BeepingMIS
on Gk (where ∆k is an upper bound on ∆(Gk)). After that, Gk is shattered into small components
of undecided nodes.

The high level idea of the post-shattering phase is similar to the algorithm for G. We first
construct a ball graph by computing a suitable ruling set of the power graph of the components A
network decomposition of the ball graph is computed, which then yields a network decomposition
with few color classes and small cluster radius of the small components. The main difficulty lies in
processing a single cluster (independently from all other clusters). To complete the solution on one
cluster we run O(log n) instances of the Beeping MIS algorithm (for Gk) in parallel. We show that
w.h.p. (in n) one of the instances succeeds and all nodes of the cluster can agree on such a winning
instance in time that is essentially proportional to the cluster diameter. Nodes of the cluster take
the output from that instance and we proceed.

We continue with the details of this process and begin with the necessary tools to simulate
BeepingMIS on Gk. Afterwards we present several tools for working with ball graphs in the Gk

setting. The proof of Theorem 1.2 that uses all these primitives follows at the end of the section.

Simulating BeepingMIS on Gk. To do this, the beeps must be accompanied with IDs, for
beeping nodes not to confuse their own beep with the beep of another node. Note that this
difficulty does not appear when when running the algorithm for G. As shown next (Lemma 8.2),
BeepingMIS can be simulated on Gk with a slowdown factor of k. As we need to run instances of
BeepingMIS in parallel in the post-shattering phase, we cannot afford to use O(log n) bits for the
accompanying IDs. We can make use of a distance-k coloring to reduce the bandwidth used by one
instance:

Lemma 8.2 (Simulating beeping on Gk). Let k ≥ 1 and S ⊆ V be any set of nodes. Each v ∈ V
can learn if there exists some w ∈ Nk(v, S) (where w 6= v) in Õ(k · da/bandwidthe) rounds, using
bandwidth-bit messages, given that each node has an a-bit identifier unique up to distance k.

Proof. Each x ∈ S beeps by sending a tuple (ID(x),k), where the second element is a distance
left counter, initialized as k and decreased every time the tuple is forwarded. For k steps, each
v ∈ V forwards to each neighbor w ∈ N(v) an arbitrary subset of at most two incoming tuples
with distinct identifiers, with the maximum of the distances left. After k steps, any v ∈ V with
Nk(v, S) 6= ∅ receives at least one beep from some w ∈ Nk(v, S), regardless of whether v ∈ S.
Each step can be implemented in d(a + log k)/bandwidthe rounds. The total time complexity is
Õ(k · da/bandwidthe).

38

Distance-k ball graph. Let B ⊆ V be a set of (undecided) nodes and let R ⊆ B be some ruling
set of B. Assume we are given a partition {Ball(v) ⊆ B : v ∈ R} of the undecided nodes. Recall
that a ball graph for {Ball(v) ⊆ B : v ∈ R} is a virtual graph with nodes R. There is an edge
between v, w ∈ R if the corresponding balls Ball(v) and Ball(w) are adjacent in G.

In the post-shattering phase, a network decomposition is computed for the remaining undecided
nodes. In G, a network decomposition of the ball graph for {Ball(v) ⊆ B : v ∈ R} induces a network
decomposition of G (see Claim 7.4). This does not immediately work for graph powers. Instead,
we compute a network decomposition of a distance-k ball graph for {Ball(v) ⊆ B : v ∈ R}. A
graph B with nodes R is a distance-k ball graph if, for any v, w ∈ R, distG(Ball(v),Ball(w)) ≤ k
implies that distB(v, w) ≤ k. Next, we show how a distance-k ball graph can be formed in the
communication network G:

Lemma 8.3 (Forming distance-k ball graph). Let R ⊆ B ⊆ V and suppose we are given a partition
{Ball(v) ⊆ B : v ∈ R} of B. Assume that for each v ∈ R, there is a Steiner tree Tv with weak
diameter O(D), with Ball(v) as the terminal nodes, such that any edge in E is in at most τ trees.
There is an O(k)-round deterministic CONGEST algorithm that forms {Ball+(v) ⊆ V : v ∈ R},
such that

• Ball+(v) ⊆ V and Ball+(v) ⊇ Ball(v) for all v ∈ R,

• Ball+(v) ∩ Ball+(w) = ∅ for all v 6= w ∈ R,

• The ball graph B for {Ball+(v) : v ∈ R} is a distance-k ball graph for {Ball(v) : v ∈ R}.

• For each v ∈ R, there is a Steiner tree T+
v with weak diameter O(D+ k) and Ball+(v) as the

terminal nodes. Any edge in E is in at most τ + 1 trees.

Proof. For each v ∈ R, let Border(v) ⊆ Nk(v) be a set of nodes around Ball(v). Borders only
consist of nodes in V \ B, and Border(v) ∩ Border(w) = ∅ for all v 6= w ∈ R. See Figure 3.
Eventually, we set Ball+(v) := Ball(v) ∪ Border(v).

Initially, Border(v) := ∅ for all v ∈ R. For each v ∈ R in parallel, run a breadth first search
from all nodes of Ball(v) for at most k hops in G. ID(v) is used as an identifier for the searches
originating from Ball(v). Let z ∈ V \ B. When z receives one or more searches for the first time,
it accepts the one with the smallest identifier (suppose this is v) and joins Border(v). Afterwards,
z forwards the accepted search to its other neighbors, for at most k hops in total. Nodes in B do
not join borders or forward searches.

Let Ball+(v) := Ball(v) ∪ Border(v) for all v ∈ R. A Steiner tree T+
v is formed by adding the

paths of the BFS token to Tv. Each edge is added to at most one tree. Let B be the ball graph for
{Ball+(v) : v ∈ R}. For correctness, consider any v, w ∈ R with distG(Ball(v),Ball(w)) ≤ k (see
Figure 3). We prove that distB+(v, w) ≤ k, i.e., v and w are adjacent in Bk. Let (v′, x1, . . . , xs, w

′)
be a shortest path between Ball(v) and Ball(w) in G, where s ≤ k−1, v′ ∈ Ball(v) and w′ ∈ Ball(w).
The BFS from Ball(v) and Ball(w) travels for k hops in each direction, until it reaches another
ball or border. Hence, each xi, 1 ≤ i ≤ s belongs to Ball+(yi) for some yi ∈ R (possibly yi = v or
yi = w). By the number of nodes on the path, the total number of distinct balls Ball+(yi) is at
most k− 1. These nodes form a path from v to w in the ball graph B+, with length at most k.

Let B be a distance-k ball graph for {Ball(v) ⊆ R : v ∈ R}, formed with Lemma 8.3. We
compute a network decomposition of B with separation k+1, which gives a network decomposition
of Gk for the undecided nodes:

39

Figure 3: Distance-k ball graph B with three vertices v, x, w and parts of the underlying graph
G. The edges of B are shown with thicker lines. Nodes v and x are adjacent in B because, while
Ball(v) and Ball(x) do not share an edge in G, their borders do.

Claim 8.4. A network decomposition of Bk can be transformed to a network decomposition of Gk

for nodes in B. The cluster diameter increases by a factor proportional to k and the diameter of
the balls.

Proof. A network decomposition of Gk is formed in the natural way: for each v ∈ R, nodes in
Ball(v) join the cluster of v.

The cluster diameter in G increases by an O(k + D)-factor, where D is the weak diameter of
balls in {Ball(v) ⊆ B : v ∈ R}, because nodes in B (as formed in Lemma 8.3) are actually balls
of diameter O(k + D). We prove that the clusters are properly separated in Gk. Suppose for a
contradiction that there are two distinct clusters of the same color that are adjacent in Gk. Let
v, w be some nodes from the two clusters such that distG(v, w) ≤ k. The nodes are in two distinct
balls Ball(v′) and Ball(w′) (otherwise v and w join the same cluster). By definition of B, we have
distB(v′, w′) ≤ k. Since we computed a network decomposition of Bk, v′ and w′ must belong to the
same cluster in B. This is a contradiction of v and w belonging to different clusters in G.

We are ready to prove the main result of this section. To compute a maximal independent set
of Gk, we use the shattering framework, with BeepingMIS as the base algorithm. The reader is
advised to take a look at Section 7, containing a more detailed description of shattering in G. We
use the one-phase pre-shattering approach (Section 7.2.2). In the post-shattering phase, multiple
instances of BeepingMIS are run in parallel. To do this efficiently in Gk, we assign the remaining
undecided shorter IDs. Combined with the simulation tools of Lemma 8.2, this achieves the same
runtime as for MIS of G (up to k factors in the runtime).

Theorem 1.2. There is a randomized distributed algorithm that computes a maximal independent
set of Gk in Õ(k2 log ∆·log log n+k4 log5 log n) rounds of the CONGEST model, with high probability.

The runtime can also be given as Õ(k log ∆(Gk) · log log n+ k4 log5 log n).

Proof of Theorem 1.2: Pre-shattering. We simulate the BeepingMIS algorithm of [Gha17] on Gk

with communication network G. Run the algorithm for O(s log ∆k) steps, where s = 8 and ∆k is
an upper bound on ∆(Gk). Each step can be simulated on Gk with Lemma 8.2, with a factor-k

40

slowdown, using the original O(log n)-bit IDs and the full Θ(log n)-bit communication bandwidth.
The total runtime of the pre-shattering phase is O(k2 log ∆). The BeepingMIS algorithm computes
an independent set I ⊆ V of Gk, which is part of the final result.

Post-shattering: ruling set. Let B = V \ (I ∪Nk(I)) be the nodes that remain undecided
after the Θ(log ∆k) steps of BeepingMIS on Gk. We compute a ruling set R of B, such that nodes
in R have independent executions in the pre-shattering phase. For this, nodes in R must be at
least 5 hops apart in Gk, or equivalently at distance at least 4k+ 1 in G (for convenience, we use a
larger independence of 5k + 1). Compute a (5k + 1, O(k2 log log n)-ruling set R of B, with respect
to distances in G, using the ruling set algorithm of [Gha19, Lemma 2.2]. This takes O(k2 log log n)
rounds and succeeds with high probability. Running in parallel with the ruling set algorithm, we
use Claim 7.6 to partition B into a set {Ball(v) ⊆ B : v ∈ R} of disjoint balls around the ruling
set nodes. For each v ∈ R, Ball(v) is an 10k-connected set in G. This implies that each Ball(v) is
10-connected in Gk. For each v ∈ R, there is a Steiner tree Tv in G, with Ball(v) as the terminal
nodes and diameter O(k2 log log n), and any edge is in at most O(k log log n) Steiner trees.

Ball graph. We form a distance-k ball graph B for {Ball(v) ⊆ B : v ∈ R}, using Lemma 8.3
in O(k) rounds. The set of nodes in B is R. Each node v ∈ R corresponds to a set Ball+(v) ⊆ V ,
where Ball+(v) is a superset of Ball(v), and Ball+(v),Ball+(w) are disjoint for any v 6= w ∈ R. For
each v ∈ R, let Tv be the Steiner tree for Ball+(v), combining the original Steiner tree for Ball(v)
and the parts added in Lemma 8.3. Any edge in G is in at most O(k log log n) trees (Lemma 8.3
does not increase congestion). B is defined as the ball graph for {Ball+(v) : v ∈ R}, i.e., v, w ∈ R
are adjacent in B if Ball+(v) and Ball+(w) are adjacent in G. By Lemma 8.3, for any v 6= w ∈ R it
holds that if distG(Ball(v),Ball(w)) ≤ k, then distB(v, w) ≤ k. Hence, any two distinct connected
components of the ball graph are at distance at least k + 1 from each other in G. The rest of the
MIS algorithm is executed independently on each connected component of the ball graph.

Fix a connected component C of B. We bound the number of balls in C, as well as the total
number of undecided nodes contained in the balls of C. Let RC = V (C) ⊆ R be the nodes in C,
and let BC := ∪v∈RC Ball(v) be the set of undecided nodes contained in the balls of nodes in RC .
The set BC is 10k-connected in G, as each ball is 10k-connected and adjacent balls are at most
2k hops apart in G (c.f. Claim 7.7). Equivalently, BC is 10-connected in Gk. Start by bounding
the number of nodes |RC |. Lemma 8.1 for Gk, with s = 10, states that, with high probability, in
Gk there does not exist a 5-independent, 18-connected set U ⊆ R with |U | ≥ t = log∆ n (where
∆ is a lower bound on ∆(Gk)). This is not immediately usable, as the set RC is 5-independent
in Gk, but it is not necessarily 18-connected. For the purposes of analysis, we construct another
set R′C ⊇ RC , where R′C ⊆ BC . R′C is any greedily chosen (5, 4)-ruling set of BC , with respect to
distances in Gk. By Lemma 7.2, R′C is 5-independent and 18-connected in Gk, where we use the
fact that BC is 10-connected in Gk. Given that, with high probability, the size of any 5-independent
and 18-connected set in Gk is less than t, we get |RC | < t. For the second bound, recall that BC is
a 10-connected set in Gk. Given that Lemma 8.1 (P1) holds, (P2) (again for Gk and s = 10) states
that |BC | is at most t ·∆4k, where ∆k is an upper bound on ∆(Gk).

Network decomposition. We compute a network decomposition of C. We use Theorem A.1
to deterministically compute a network decomposition of C with Õ(log log n) colors, weak diameter
O(k · log logn) and separation 2k+ 1 between clusters of the same color. The fact that the network
decomposition algorithm can be simulated on a ball graph is verified in Claim A.4. The simulation
runs with an O(k3 log2 log n)-factor slowdown, due to the fact that each node is simulated by a
Steiner tree with weak diameter O(k2 log logn) and congestion O(k log logn). Hence, the runtime

41

is Õ(k4 log5 log n). By Claim 8.4, we can extract a network decomposition of G for BC : each
node in BC joins the cluster of the ball it belongs in. From now on, the clusters of the network
decomposition are considered as sets of nodes in BC . In G, the actual diameter of the clusters
is O(k3 log2 log n). For each cluster, there is a Steiner tree, originally in the ball graph C. By
replacing each node v ∈ RC in the ball graph with the Steiner tree of the corresponding ball Tv,
we get a Steiner tree for the cluster in G. There is no congestion in the Steiner trees produced by
Theorem A.1, while each edge in E is in at most O(k log logn) Steiner trees of balls. Hence, the
congestion in the Steiner trees formed for the clusters is at most O(k log logn).

We process each color of the network decomposition separately. Fix some color j and let S be
a cluster of color j. Recall that N := t ·∆4k is an upper bound on |BC |. We assign each node v ∈ S
an identifier from [N], such that nodes in a cluster have unique identifiers; these identifiers use
O(logN) = O(log log n + k log ∆) bits. The IDs are assigned using the Steiner tree of the cluster,
in O(k3 log2 log n) time, by distributing a range of IDs to each subtree, based on the number of
nodes in S contained in the subtree.

Final MIS. Now we are ready to make the independent set maximal for nodes in S. We run
BeepingMIS for O(logN) = O(k log ∆+log log n) steps, with O(logN n) executions of the algorithm
running in parallel. Each execution is allocated Θ(logN) bits of communication bandwidth, cor-
responding to the size of the new IDs. Hence, the total bandwidth used by the parallel executions
is O(logN · logN n) = O(log n), which fits in a single message. As one step of BeepingMIS in Gk

requires O(k) communication rounds in G, running the parallel executions for O(logN) steps takes
O(k logN) = O(k2 log ∆ + k log log n) rounds in total. Executions of clusters of the same color can
be run independently, because messages travel for at most k hops from an undecided node, and the
clusters are at least 2k + 1 hops apart. Each execution outputs an MIS of Gk in the cluster with
probability at least 1− 1/N c, for some constant c. The probability that at least one of the execu-
tions succeeds is at least 1− 1/N c·logN n = 1− 1/nc. To find a successful run, we aggregate in the
Steiner tree of the cluster whether each execution was successful or not (an unsuccessful execution
is not maximal, i.e. there exists an undecided node), using a single bit indicator for each execution,
in O(k4 log3 log n) rounds. The cluster leader picks one successful run and informs the rest of the
cluster. The chosen independent set is added to the output. All nodes in BC within k hops of the
independent set also become decided, regardless of whether they are in a cluster of color j. The
runtime for one color class is O(k2 log ∆ + k4 log3 log n). Over all Õ(log log n) colors this becomes
Õ(k2 log ∆ · log logn + k4 log4 log n). The total runtime, including pre-shattering, computing the
ruling set and network decomposition is Õ(k2 log ∆ · log log n+ k4 log5 log n).

Corollary 8.5. The MIS algorithm of Theorem 1.2 computes a MIS of Gk[Q], with high probability,
when used with a subset Q ⊆ V . The runtime is Õ(k log ∆Q · log logn + k4 log5 log n), where
∆Q = ∆(Gk[Q]).

Proof. Only nodes in Q are allowed to join the independent set. Other nodes also take part in the
algorithm, but they are set to the decided state at the start of the algorithm. Like other decided
nodes, they still take part in forwarding messages between the remaining undecided nodes, as they
may be part of edges of Gk[Q]. Both the pre-shattering as well as the post-shattering phase can be
executed in this setting.

8.3 Ruling sets in Gk (Corollary 1.3)

In this section, we prove the following corollary of Theorem 1.2.

42

Corollary 1.3. There is a randomized distributed algorithm that computes a β-ruling set of Gk in
Õ(β · k1+1/(β−1)(log ∆)1/(β−1) + β · k log log n+ k4 log5 log n) rounds.

We can use our MIS of Gk algorithm in combination with the sparsification procedure of [KP12]
and [BKP14] to compute ruling sets of power graphs. We start by briefly explaining the algorithm
of [KP12] in G. Let H = (VH , EH) be any graph with maximum degree ∆H and let f ≥ 2 be a
parameter. The algorithm of [KP12] samples a set of nodes Q ⊆ VH in O(logf ∆H) rounds, such
that (1) the maximum degree in H[Q] is O(f ·log n) with high probability, and (2) Q is a dominating
set of VH . All communication is done with beeps, sent by sampled nodes to notify their neighbors
about being sampled. This can be simulated in Gk in k rounds, using Lemma 8.2 (in fact without
including IDs, because beeping nodes do not need to listen to other beeps). The algorithm also
does not require nodes to know their degree (see algorithm Sparsify-GG of [BKP14]). Hence, we
can simulate it in Gk with communication network G, with an O(k)-factor slowdown.

Given β ≥ 2, it is possible to compute a (2, β)-ruling set by iterating the the algorithm of [KP12]
β − 1 times, combined with a MIS computation on the final sampled subgraph [BKP14, Gha19].
The graph is sparsified iteratively, producing a sequence of subsets V ⊇ Q1 ⊇ · · · ⊇ Qβ−1, where
Qs is the result of the sth iteration, computed with the algorithm of [KP12] on G[Qs−1]. Let
f1 > · · · > fβ−1 be the parameters used in each iteration. For each 1 ≤ s ≤ β − 1, it holds
that (1) the maximum degree ∆s of G[Qs] is O(fi · log n) with high probability, and (2) Qs is an s-

dominating set of G. The sth iteration takes O(logfs ∆s−1) = O(log fs−1+log logn
log fs

) rounds. By setting

fs = 2(log ∆)1−s/(β−1)
, the runtimes of the β−1 iterations are balanced, taking O((β−1)·log1/(β−1) ∆)

rounds in total. The maximum degree of G[Qβ−1] is O(fβ−1 · log n) = O(log n). Now, a maximal
independent set algorithm can be used to compute a MIS of G[Qβ−1], resulting in a (2, β)-ruling
set of G.

Proof of Corollary 1.3. We start by sparsifying Gk for β − 1 iterations, using the algorithm of
[KP12]. For 1 ≤ s ≤ β − 1, let Qs ⊆ V be the result of the sth iteration. Initially, Q0 := V . In

the sth iteration, we set fs = 2(log ∆k)1−s/(β−1)
. We simulate the algorithm of [KP12] on Gk[Qs−1]

and let Qs be the sampled nodes in this iteration. By the analysis in [KP12] applied for Gk, it
holds that (1) the maximum degree of Gk[Qs] is O(fs · log n) with high probability, and (2) Qs is
a dominating set of Qs−1 in Gk. This implies that Qs is a k-dominating set of Qs−1 in G. The
algorithm of [KP12] runs in

O
(
logfs ∆s−1

)
= O

(
log fs−1

log fs
+ log log n

)
= O

(
(log ∆k)1/(β−1) + log log n

)
The simulation in Gk runs with a k-factor slowdown.

The result of the last iteration is a set Qβ−1, such that the maximum degree in Gk[Qβ−1] is

O(fβ−1 · log n) = O(2(log ∆k)0 · log n) = O(log n). We compute a MIS I of Gk[Qβ−1] with the
algorithm of Theorem 1.2 (see Corollary 8.5). Given that ∆

(
Gk[Qβ−1]

)
= O(log n), computing the

MIS takes Õ(k4 · log5 log n) rounds. The result is (k + 1)-independent in G. The domination is
(β − 1) · k + k = β · k. Hence, the result is an (k + 1, β · k)-ruling set of G. The total runtime is

Õ
(

(β − 1) · k ·
(

(log ∆k)1/(β−1) + log log n
)

+ k4 · log5 log n
)

= Õ
(
β · k1+1/(β−1) · (log ∆)1/(β−1) + β · k · log log n+ k4 · log5 log n

)

43

References

[AA20] Noga Alon and Sepehr Assadi. Palette Sparsification Beyond (∆+1) Vertex Coloring.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2020, pages 6:1–6:22, 2020.

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algo-
rithm for the maximal independent set problem. Journal of Algorithms, 7(4):567–583,
1986.

[ACG+21] Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony
Wirth. Correlation clustering in data streams. Algorithmica, 83(7):1980–2017, 2021.

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆ + 1) vertex
coloring. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January
6-9, 2019, pages 767–786. SIAM, 2019.

[AGLP89] Baruch Awerbuch, Andrew V. Goldberg, Michael Luby, and Serge A. Plotkin. Net-
work decomposition and locality in distributed computation. In Proceedings of the
Symposium on Foundations of Computer Science (FOCS), pages 364–369, 1989.

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: Sparsification,
spanners, and subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems (PODS), pages 5—-14, 2012.

[BBF+22] Alkida Balliu, Sebastian Brandt, Manuela Fischer, Rustam Latypov, Yannic Maus,
Dennis Olivetti, and Jara Uitto. Exponential Speedup Over Locality in MPC with
Optimal Memory. In Proceedings of the International Symposium on Distributed Com-
puting (DISC), pages 9:1–9:21, 2022.

[BBKO22] Alkida Balliu, Sebastian Brandt, Fabian Kuhn, and Dennis Olivetti. Distributed ∆-
coloring plays hide-and-seek. In Stefano Leonardi and Anupam Gupta, editors, STOC
’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 464–477. ACM, 2022.

[BBO22] Alkida Balliu, Sebastian Brandt, and Dennis Olivetti. Distributed lower bounds for
ruling sets. SIAM J. Comput., 51(1):70–115, 2022.

[BCM+20] Reuven Bar-Yehuda, Keren Censor-Hillel, Yannic Maus, Shreyas Pai, and Sriram V.
Pemmaraju. Distributed approximation on power graphs. In Proceedings of the 39th
Symposium on Principles of Distributed Computing, PODC ’20, page 501–510, New
York, NY, USA, 2020. Association for Computing Machinery.

[BEPS16] Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schneider. The
locality of distributed symmetry breaking. J. ACM, 63(3), jun 2016.
http://arxiv.org/abs/1202.1983.

44

[BKM20] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed
coloring with small bandwidth. In Yuval Emek and Christian Cachin, editors, PODC
’20: ACM Symposium on Principles of Distributed Computing, Virtual Event, Italy,
August 3-7, 2020, pages 243–252. ACM, 2020.

[BKP14] Tushar Bisht, Kishore Kothapalli, and Sriram V. Pemmaraju. Brief announcement:
Super-fast t-ruling sets. In Magnús M. Halldórsson and Shlomi Dolev, editors, ACM
Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July
15-18, 2014, pages 379–381. ACM, 2014.

[Bra19] Sebastian Brandt. An automatic speedup theorem for distributed problems. In Pe-
ter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing (PODC), pages 379–388. ACM, 2019.

[CDP20] Artur Czumaj, Peter Davies, and Merav Parter. Graph sparsification for derandomiz-
ing massively parallel computation with low space. In Proceedings of the 32nd ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’20, page 175–185,
New York, NY, USA, 2020. Association for Computing Machinery.

[CDP21] Artur Czumaj, Peter Davies, and Merav Parter. Improved deterministic (∆+1) coloring
in low-space MPC. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen,
editors, PODC ’21: ACM Symposium on Principles of Distributed Computing, Virtual
Event, Italy, July 26-30, 2021, pages 469–479. ACM, 2021.

[CFG+19] Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
Complexity of (∆ + 1)-Coloring in Congested Clique, Massively Parallel Computa-
tion, and Centralized Local Computation. In Proceedings of the ACM Symposium on
Principles of Distributed Computing (PODC), pages 471–480, 2019.

[CLP20] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆+1)-coloring via ultrafast
graph shattering. SIAM J. Comput., 49(3):497–539, 2020.

[CPS17a] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local
distributed algorithms under bandwidth restrictions. In 31st Int. Symp. on Distributed
Computing (DISC), 2017.

[CPS17b] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algorithms for the lovász
local lemma and graph coloring. Distributed Comput., 30(4):261–280, 2017.

[CPS20] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local
distributed algorithms under bandwidth restrictions. Distributed Comput., 33(3-4):349–
366, 2020.

[DFKL21] Michal Dory, Orr Fischer, Seri Khoury, and Dean Leitersdorf. Constant-round spanners
and shortest paths in congested clique and mpc. In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing (PODC), page 223–233, 2021.

[DKM19] Janosch Deurer, Fabian Kuhn, and Yannic Maus. Deterministic distributed dominat-
ing set approximation in the CONGEST model. In Peter Robinson and Faith Ellen,

45

editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed Com-
puting, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 94–103.
ACM, 2019.

[DN20] Michael Dinitz and Yasamin Nazari. Massively Parallel Approximate Distance
Sketches. In 23rd International Conference on Principles of Distributed Systems
(OPODIS 2019), pages 35:1–35:17, 2020.

[EM19] Michael Elkin and Shaked Matar. Near-additive spanners in low polynomial determin-
istic CONGEST time. In Peter Robinson and Faith Ellen, editors, Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, pages 531–540. ACM, 2019.

[FG17] Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for lovász
local lemma, and the complexity hierarchy. In Andréa W. Richa, editor, 31st Interna-
tional Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna,
Austria, volume 91 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017.

[FGdV22] Sebastian Forster, Martin Grösbacher, and Tijn de Vos. An Improved Random Shift
Algorithm for Spanners and Low Diameter Decompositions. In 25th International
Conference on Principles of Distributed Systems (OPODIS 2021), pages 16:1–16:17,
2022.

[FGG+22] Salwa Faour, Mohsen Ghaffari, Christoph Grunau, Fabian Kuhn, and Václav Rozhoň.
Local distributed rounding: Generalized to mis, matching, set cover, and beyond, 2022.

[FHN20] Pierre Fraigniaud, Magnús M. Halldórsson, and Alexandre Nolin. Distributed testing of
distance-k colorings. In Andrea Werneck Richa and Christian Scheideler, editors, Struc-
tural Information and Communication Complexity - 27th International Colloquium,
SIROCCO 2020, Paderborn, Germany, June 29 - July 1, 2020, Proceedings, volume
12156 of Lecture Notes in Computer Science, pages 275–290. Springer, 2020.

[FMH22] Manuela Fischer, Yannic Maus, and Magnús M. Halldórsson. Fast distributed brooks’
theorem. CoRR, abs/2211.07606, 2022.

[GGH+22] Mohsen Ghaffari, Christoph Grunau, Bernhard Haeupler, Saeed Ilchi, and Václav
Rozhoň. Improved distributed network decomposition, hitting sets, and spanners, via
derandomization, 2022.

[GGK+18] Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrovic, and Ronitt
Rubinfeld. Improved Massively Parallel Computation Algorithms for MIS, Matching,
and Vertex Cover. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), pages 129–138, 2018.

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhon. Improved deterministic
network decomposition. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13,
2021, pages 2904–2923. SIAM, 2021.

46

[Gha16] Mohsen Ghaffari. An improved distributed algorithm for maximal independent set. In
Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 270–277. SIAM, 2016.

[Gha17] Mohsen Ghaffari. Distributed MIS via All-to-All Communication. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), pages 141–149,
2017.

[Gha19] Mohsen Ghaffari. Distributed maximal independent set using small messages. In Tim-
othy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019,
pages 805–820. SIAM, 2019.

[Gha22] Mohsen Ghaffari. Local computation of maximal independent set. In 63rd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 - November 3, 2022, pages 438–449. IEEE, 2022.

[GHK18] Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local dis-
tributed algorithms. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages
662–673. IEEE Computer Society, 2018.

[GHKM21] Mohsen Ghaffari, Juho Hirvonen, Fabian Kuhn, and Yannic Maus. Improved dis-
tributed ∆-coloring. Distributed Comput., 34(4):239–258, 2021.

[GK21] Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Sim-
pler, faster, and without network decomposition. In Proceedings of the Symposium on
Foundations of Computer Science (FOCS), pages 1009–1020, 2021.

[GKM17] Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local dis-
tributed graph problems. In Hamed Hatami, Pierre McKenzie, and Valerie King, ed-
itors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 784–797. ACM,
2017.

[GU19] Mohsen Ghaffari and Jara Uitto. Sparsifying Distributed Algorithms with Ramifi-
cations in Massively Parallel Computation and Centralized Local Computation. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019.

[GV07] Beat Gfeller and Elias Vicari. A randomized distributed algorithm for the maximal
independent set problem in growth-bounded graphs. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC ’07,
page 53–60, New York, NY, USA, 2007. Association for Computing Machinery.

[HKM20] Magnús M. Halldórsson, Fabian Kuhn, and Yannic Maus. Distance-2 coloring in the
CONGEST model. In Yuval Emek and Christian Cachin, editors, PODC ’20: ACM
Symposium on Principles of Distributed Computing, Virtual Event, Italy, August 3-7,
2020, pages 233–242. ACM, 2020.

47

[HKMN20] Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Alexandre Nolin. Coloring
fast without learning your neighbors’ colors. In Hagit Attiya, editor, 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Con-
ference, volume 179 of LIPIcs, pages 39:1–39:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020.

[HKN21] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A determinis-
tic almost-tight distributed algorithm for approximating single-source shortest paths.
SIAM J. Comput., 50(3), 2021.

[HN21] Magnús M. Halldórsson and Alexandre Nolin. Superfast coloring in CONGEST via ef-
ficient color sampling. In Tomasz Jurdzinski and Stefan Schmid, editors, Structural In-
formation and Communication Complexity - 28th International Colloquium, SIROCCO
2021, Wroc law, Poland, June 28 - July 1, 2021, Proceedings, volume 12810 of Lecture
Notes in Computer Science, pages 68–83. Springer, 2021.

[HPP+15] James W. Hegeman, Gopal Pandurangan, Sriram V. Pemmaraju, Vivek B. Sardesh-
mukh, and Michele Scquizzato. Toward Optimal Bounds in the Congested Clique:Graph
Connectivity and MST. In Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 91–100, 2015.

[JN18] Tomasz Jurdziński and Krzysztof Nowicki. MST in O(1) Rounds of Congested Clique.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2620–2632, 2018.

[KMR01] Sven Oliver Krumke, Madhav V. Marathe, and S. S. Ravi. Models and approximation
algorithms for channel assignment in radio networks. Wirel. Networks, 7(6):575–584,
2001.

[KMW18] Fabian Kuhn, Yannic Maus, and Simon Weidner. Deterministic distributed ruling sets
of line graphs. In Zvi Lotker and Boaz Patt-Shamir, editors, Structural Information and
Communication Complexity - 25th International Colloquium, SIROCCO 2018, Ma’ale
HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, volume 11085 of Lecture
Notes in Computer Science, pages 193–208. Springer, 2018.

[KP12] Kishore Kothapalli and Sriram V. Pemmaraju. Super-fast 3-ruling sets. In Deepak
D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan, editors, IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2012, December 15-17, 2012, Hyderabad, India, volume 18 of LIPIcs, pages
136–147. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[KSV13] Amos Korman, Jean-Sébastien Sereni, and Laurent Viennot. Toward more localized
local algorithms: removing assumptions concerning global knowledge. Distributed Com-
put., 26(5-6):289–308, 2013.

[Lin92] Nati Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992.

[LS93] Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13:441–454, 12 1993.

48

[Lub86] Michael Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing, 15:1036–1053, 11 1986.

[LW10] Christoph Lenzen and Roger Wattenhofer. Brief announcement: Exponential speed-up
of local algorithms using non-local communication. In Proceedings of the 29th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), page
295–296, 2010.

[MRSZ11] Yves Métivier, John Robson, Nasser Saheb-Djahromi, and Akka Zemmari. An optimal
bit complexity randomized distributed mis algorithm. Distributed Computing, 23:331–
340, 01 2011.

[MU21] Yannic Maus and Jara Uitto. Efficient CONGEST algorithms for the lovász local
lemma. In Seth Gilbert, editor, 35th International Symposium on Distributed Comput-
ing, DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference), volume
209 of LIPIcs, pages 31:1–31:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[Now21] Krzysztof Nowicki. A Deterministic Algorithm for the MST Problem in Constant
Rounds of Congested Clique. In Proceedings of the ACM Symposium on Theory of
Computing (STOC), pages 1154—-1165, 2021.

[Pel00] David Peleg. Distributed computing : a locality sensitive approach. SIAM, 2000.

[RG20] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network de-
composition and distributed derandomization. In Proceedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, page 350–363, New York,
NY, USA, 2020. Association for Computing Machinery.

[SEW13] Johannes Schneider, Michael Elkin, and Roger Wattenhofer. Symmetry breaking de-
pending on the chromatic number or the neighborhood growth. Theoretical Computer
Science, 509, 10 2013.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds
for applications with limited independence. SIAM Journal on Discrete Mathematics,
8(2):223–250, 1995.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and trends in theoretical computer
science. Now Publishers, 2012.

A Network decomposition for power graphs

Our algorithms use network decompositions of power graphs as a subroutine. More formally, we
require that clusters of the same color class are at least k + 1 hops apart for some parameter k.
The respective decompositions can be computed with the algorithm of [MU21]. However, as recent
results on network decomposition [GGH+22] also work in CONGEST, are significantly faster than
the result of [MU21], and provide better guarantees, we sketch on how to adapt their algorithm

49

to provide the necessary decompositions.11 Recall Definition 2.1 for the definition of a network
decomposition.

Theorem A.1 (Network decomposition of Gk). Let k ≥ 1 (potentially a function of n). There is a
deterministic CONGEST algorithm that in Õ(k · log3 n) rounds computes a network decomposition
of Gk with O(log n · log log n) colors and weak-diameter O(k · log n) in G. For each color c and
each cluster C ⊆ V , there is a Steiner tree TC with radius O(k · log n) in G, with C as the terminal
nodes. Each edge of G is in at most one tree of clusters of color c.

Lemma A.2 (Low-degree clustering. Adaptation of [GGH+22, Theorem 4.1]). Let s ≥ 2 (poten-
tially a function of n). Let A ⊆ V be a set of living nodes. There is a deterministic CONGEST
algorithm that, in Õ(s · log2 n) rounds, computes a clustering C, where C ⊆ A for each cluster
C ∈ C, with

1. weak diameter O(s · log n) in G. For each cluster C ∈ C, there is a Steiner tree of radius
O(s · log n) in G, with C as the terminal nodes. Each edge of G is in at most one tree.

2. s-hop degree12 of C is at most d100 log log ne, defined with respect to the Steiner trees,

3. the number of clustered nodes is at least |A|/2.

Proof sketch. We start by giving an overview of the algorithm of [GGH+22, Theorem 5.1]. Their
algorithm consists of two main components, clustering from given delays and computing a suitable
delay function. A delay function assigns each v ∈ V a positive integer delay del(v) from 1 to
O(s log n). Let κ = d100 log log ne be a constant (replacing k in [GGH+22], not to be confused
with the parameter for the power of G in Theorem A.1). Together with the separation parameter
s, a delay function induces a clustering, computed by running a breadth first search from each
node after waiting for a number of steps given by the delay. Each v ∈ V forwards a subset of
at most κ tokens per step. v is associated with the cluster of the node whose BFS token arrives
first (choosing the smallest ID to break ties). After the arrival of the first token, v continues to
forward arriving tokens to others for 2s steps, or until a total of κ tokens have been forwarded. The
total number of tokens received during the interval of 2s steps from the arrival of the first token is
counted. The set of nodes whose tokens arrived to v during this interval is denoted frontier2s(v).
Each v ∈ V with frontier2s(v) ≤ κ joins the cluster of the node whose token arrived first. In total,
the BFS procedure takes Õ(s · log n) rounds. The cluster diameter is bounded by the maximum
delay O(s log n), since after that any node initiates a token itself. The second main component
of the algorithm is computing a suitable delay function. The delay function is computed such
that a constant fraction of nodes satisfy frontier2s(v) ≤ κ, i.e., a constant fraction of nodes are
clustered. The delay function is chosen from an exponential distribution, by derandomizing a
pairwise independent coin-flipping procedure step by step. We make the following modifications to
the two main components.

Clustering from given delays: Only living nodes join clusters. Dead nodes V \A do not initiate
or join clusters. Dead nodes forward the incoming BFS tokens normally. This is necessary, for
distances to be measured in the input graph and not just G[A]. The produced clusters have weak
diameter instead of strong diameter, because there may be dead nodes inside the corresponding

11The methods of [GGH+22] essentially directly provide the required results. Additionally, we have confirmed this
fact with one of the authors of [GGH+22].

12See [GGH+22] for the definition of s-hop degree of a clustering

50

strong diameter cluster. The paths taken by the BFS token of the cluster acts as the Steiner tree,
which has radius O(s log n). Note that the distance to a nearest cluster leader is only bounded for
living nodes (the distance is at most O(s log n), because after at most O(s log n) steps, any living
node starts a cluster itself). To guarantee that the algorithm terminates for dead nodes, we stop
execution after 5sR + 2s = O(s log n) steps, which is the maximum number of steps required to
compute the clusters and frontiers for all living nodes.

Computing the delay function: Originally, the choice of delay function is derandomized to
guarantee that at least |V |/2 nodes are clustered. For our application, the potential functions are
computed as sums over living nodes, instead of all nodes in the graph. This guarantees that the
number of clustered nodes is at least |A|/2. �

Lemma A.3 (From Low-Degree to Isolation. Adaptation of [GGH+22, Theorem 5.1]). Let s ≥
2 (potentially a function of n). Given a set A ⊆ V of living nodes, and a clustering C from
Lemma A.2, there is a deterministic CONGEST algorithm that, in Õ(s · log2 n) rounds, computes a
clustering Cout, where C ⊆ A for each cluster C ∈ Cout, with

1. weak diameter O(s · log n). For each cluster C ∈ Cout, there is a Steiner tree TC with radius
O(s · log n) in G, with C as the terminal nodes. Each edge of G is in at most one tree.

2. separation s

3. the number of clustered nodes of A is at least |∪C|
1000 log logn

Proof. See proof of [GGH+22, Theorem 5.1]. The only difference to the original statement is that
clusters have weak diameter, which does not matter because there is no congestion. Note that the
clusters in Cout consist of only nodes in A, because each C ∈ Cout is a subset of some C ′ ∈ C, where
C ⊆ A by definition in Lemma A.2.

Proof of Theorem A.1. Fix G = (V,E). Let A := V be a set of living nodes. The result is obtained
in O(log n · log log n) iterations. Each iteration forms a color class of the network decomposition
with a clustering procedure combining Lemma A.2 and Lemma A.3.

Fix some iteration i. Start by computing a low-degree clustering C of the living nodes in G using
Lemma A.2 with s = k+ 1. The runtime is Õ(k · log2 n) rounds, and the number of clustered nodes
is at least |A|/2. Using the computed clustering as input, we apply Lemma A.3, which computes
a (k + 1)-separated clustering Cout that clusters at least |A|/2000 log log n nodes, in Õ(k · log2 n)
rounds. We color the clusters in Cout with the ith color. Let A = A \ (∪Cout) be the remaining
living nodes.

Each iteration clusters at least a log logn-fraction of the remaining nodes, so O(log n · log log n)
iterations is sufficient. The total runtime is Õ(k · log3 n).

For the MIS algorithm in Section 8.2, we additionally prove that the network decomposition
algorithm of [GGH+22] (and consequently Theorem A.1) can be simulated on a ball graph. The
simulation is specific to the algorithm of [GGH+22], and cannot be done efficiently for CONGEST
algorithms in general. All messages from a node in the ball graph to its neighbors are sent along
a Steiner tree of the ball. Communication must consist of simple primitives such as broadcast and
convergecast, for efficient simulation to be possible.

51

Claim A.4 (Network decomposition of ball graph). Let R ⊆ V and let {ball(v) ⊆ V : v ∈ R} be
a set of disjoint balls. Let B be a ball graph for {ball(v) ⊆ V : v ∈ R}, with nodes R and an edge
between v, w ∈ R if Ball(v) and Ball(w) are adjacent in G. Assume that for each v ∈ R, there is
a Steiner tree Tv with weak diameter O(r), with Ball(v) as the terminal nodes, such that any edge
in E is in at most O(τ) trees. Theorem A.1 can be simulated on B with communication network G
with an O(r · τ) slowdown factor.

Proof. The proof of Theorem A.1 consists of iterating Lemma A.2 and Lemma A.3. These are
based on [GGH+22, Theorem 4.1, Theorem 5.1], respectively. In particular, the communication
aspects remain unchanged. Communication in [GGH+22, Theorem 4.1, Theorem 5.1] is based
on the communication primitives of [GGH+22, Lemma 4.7, 5.2], respectively. We show that these
communication primitives can be implemented for the ball graph with a slowdown factor of O(r ·τ),
using the Steiner trees of the balls.

[GGH+22, Lemma 4.7]: Each node v ∈ R in the ball graph starts a breadth first search after
a given delay. The BFS token includes ID(v) and whether the delay of v is still being decreased
(whether v ∈ V active

i or not). Let κ := d100 log log ne be a constant. During the entire BFS process,
each node v ∈ R in the ball graph forwards at most κ tokens to its neighbors in B. During one step
of the BFS, a subset of at most κ tokens are forwarded, with priority given for nodes x 6∈ V active

i .
One step of the procedure can be implemented in the ball graph in O(κ · r · τ) CONGEST rounds,
i.e., with an O(r · τ) slowdown factor. A set of tokens sent from v ∈ R is sent to nodes in Ball(v)
along Tv by pipelining, which can be done in O(κ · r · τ) rounds. Each w ∈ Ball(v) sends the set of
tokens to its neighbors w′ ∈ N(w) \ Ball(v) in O(κ) rounds. Incoming tokens are received by each
w ∈ Ball(v). A subset of at most τ tokens are forwarded to the root v along Tv, with priority given
for nodes x 6∈ V active

i , which can similarly be done in O(κ · r · τ) rounds.
The paths taken by the tokens can be used to implement the required communication primitives.

For each v ∈ R, the process defines a tree in the ball graph. The trees formed by the paths of the
token contain all the necessary nodes (namely Mi−1(v)) in the ball graph, by the original analysis
of the BFS procedure in [GGH+22]. The trees in the ball graph can be extended to G by choosing
one path inside the Steiner tree for each ball in the tree. Any edge in E is part of at most O(κ · τ)
extended trees, since any edge is part of at most O(τ) Steiner trees of balls, and each node v ∈ R
in the ball graph forwards at most κ tokens in total. Using the extended tree, each v ∈ R can send
one O(log n)-bit message to nodes in Mi−1(v). One step of this process runs in O(κ · τ · r) rounds,
as in the BFS procedure. Reversing the direction, we can send an aggregation of messages from
Mi−1(v) to v ∈ R, where each step takes O(κ · τ · r) rounds. Hence the slowdown factor is O(τ · r).

[GGH+22, Lemma 5.2]: The lemma is also based on a BFS procedure, consisting of two phases.
In the first phase, each center of a cluster (subset of R) in the ball graph starts a BFS, propagated
for at most s hops in the ball graph (s is the separation parameter in [GGH+22, Theorem 5.1]).
Each node v ∈ R forwards at most κ tokens per step to its neighbors in B. In the second phase, balls
that belong to a cluster propagate the set of received tokens along a tree of the cluster, from the
root toward the leaves. By the clustering procedure (s-hop degree is at most κ for clustered nodes),
the number of tokens forwarded is at most κ. Both phases of this procedure can be implemented for
the ball graph with an O(τ · r) factor slowdown, with the same principle as for [GGH+22, Lemma
4.7]. The process defines a tree in the ball graph, which is extended to G by choosing one path
inside the Steiner tree for each ball in the tree. The required communication primitives are similar
in principle, including sending a single message from the cluster center, and convergecasting to the
cluster center. These are implemented in the extended tree in the same way as above.

52

B Pseudocode for Section 5.3

Algorithm 3: Sparsification for Gk

Input: k ≥ 1; Each v ∈ V knows if it’s in a set of initially active nodes A ⊆ V .
1 Q0 := A
2 for iteration s = 1, . . . , k :
3 H1 := Qs−1

4 ∆
(s)
A := ∆ if s = 1 else 72∆ log n

5 r := blog ∆A − log lognc − 5
6 for stage i = 1, . . . , r :
7 Find Mi ⊆ H using Claim 5.6 s.t. neither Φv nor Ψv (Lemma 5.7) occur for any

v ∈ V
8 foreach v ∈ Hi in parallel :
9 if v ∈Mi :

10 Send flag sampled, propagated to distance-2s neighborhood (distance-2
neighborhood in Gs)

11 if v ∈Mi or received sampled :
12 Remove v from Hi

13 Send broadcast (deactivated, ID(v)) to distance-s neighborhood (distance-1
neighborhood in Gs) using Lemma 4.2

14 foreach v ∈ V in parallel :
15 Form knowledge of N s(v,Hi+1) ⊆ N s(v,Hi) (remove nodes w ∈ Hi who sent

deactivated)
16 Mr+1 := Hr+1

17 Qs := ∪r+1
i=1Mi

18 foreach v ∈ V in parallel :
19 Send N s(v,Qs) to all neighbors w ∈ N(v) to learn N s+1(v,Qs) and extend BFS

trees (Lemma 4.1)

20 return Qk

53

	1 Introduction
	1.1 Our contributions.
	1.2 Why should we care about problems on power graphs?
	1.3 Further related work

	2 Notation and k-wise independent random variables
	3 Technical overview
	4 Communication tools
	5 Sparsification of Power Graphs
	5.1 Randomized Sparsification via Sampling
	5.2 Deterministic Sparsification via Derandomization
	5.3 Sparsification in Power Graphs
	5.4 Sparsification with no Diameter Dependency

	6 Deterministic (k+1,k2̂-ruling set (Theorem 1.1)
	7 Maximal Independent Set on G: Shattering Revisited (Theorem 1.4)
	7.1 Basics of Shattering
	7.2 Post-shattering.
	7.2.1 Approach 1: Two pre-shattering phases
	7.2.2 Approach 2: One pre-shattering phase

	7.3 The approach in [arXiv]BEPS16 (and presumably also in ghaffari16MIS,Gha19)

	8 Randomized Symmetry Breaking on Power Graphs (Thm. 1.2, Cor. 1.3)
	8.1 Luby's Algorithm on Power Graphs
	8.2 MIS of Gk̂ (Theorem 1.2)
	8.3 Ruling sets in Gk̂ (Corollary 1.3)

	A Network decomposition for power graphs
	B Pseudocode for sec:sparsGk

