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ABSTRACT

Meta-learning, transfer learning and multi-task learning have recently laid a path
towards more generally applicable reinforcement learning agents that are not lim-
ited to a single task. However, most existing approaches implicitly assume a uni-
form similarity between tasks. We argue that this assumption is limiting in set-
tings where the relationship between tasks is unknown a-priori. In this work, we
propose a general approach to automatically cluster together similar tasks during
training. Our method, inspired by the expectation-maximization algorithm, suc-
ceeds at finding clusters of related tasks and uses these to improve sample com-
plexity. In the expectation step, we evaluate the performance of a set of policies on
all tasks and assign each task to the best performing policy. In the maximization
step, each policy trains by sampling tasks from its assigned set. This method is
intuitive, simple to implement and orthogonal to other multi-task learning algo-
rithms. We show the generality of our approach by evaluating on simple discrete
and continuous control tasks, as well as complex bipedal walker tasks and Atari
games. Results show improvements in sample complexity as well as a more gen-

eral applicability when compared to other approaches.

1 INTRODUCTION

Imagine we are given an arbitrary set of tasks. We know that dis-
similarities and/or contradicting objectives can exist. However, in
most settings we can only guess these relationships and how they
might affect joint training. Many recent works rely on such hu-
man guesses and (implicitly or explicitly) limit the generality of
their approaches. This can lead to impressive results, either by
explicitly modeling the relationships between tasks as in transfer
learning (Zhu et al., 2020), or by meta learning implicit relations
(Hospedales et al., 2020). However, in some cases an incorrect sim-
ilarity assumption can hurt learning performance (Lazaric, 2012).
Our aim with this paper is to provide an easy, straightforward ap-
proach to avoid human assumptions on task similarities.

An obvious solution is to train a separate agent for each task. How-
ever, this leads to a large amount of experience being required to
learn the desired behaviors. Therefore, it is desirable to learn a sin-
gle agent and allow the sharing of knowledge between tasks. This is
generally known as multi-task learning, a field which has received
a large amount of interest in both the supervised learning and re-
inforcement learning (RL) community (Zhang & Yang, 2017). If
tasks are sufficiently similar, a policy that is trained on one task
provides a good starting point for another task, and experience from
each task will help training in the other tasks. This is known as pos-
itive transfer (Lazaric, 2012). However, if the tasks are sufficiently
dissimilar, negative transfer occurs and reusing a pre-trained policy
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Figure 1: An agent (smiley)
should reach one of 12 goals
(stars) in a grid world. Learn-
ing to reach a goal in the top
right corner helps him to learn
about the other goals in that
corner. However, learning
to reach the green stars (bot-
tom left corner) at the same
time gives conflicting objec-
tives, hindering training. Task
clustering resolves the issue.
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is disadvantageous. It can even lead to a worse performance than simply starting with a random
initialization. Here using experience from the other tasks might slow training or even prevent con-
vergence to a good policy. Most previous approaches to multi-task learning do not account for
problems caused by negative transfer directly and either accept its occurrence or limit their experi-
ments to sufficiently similar tasks. We present a hybrid approach that is helpful in a setting where
the task set contains clusters of related tasks, amongst which transfer is helpful. To illustrate the
intuition we provide a conceptualized example in Figure 1. The figure shows a grid world with 12
tasks that can be naturally clustered in 4 clusters. Note however that our approach goes beyond this
conceptual ideal and can be beneficial even if the clustering is not perceivable by humans a-priori.

Our approach is inspired by the expectation-maximization framework and uses a set of completely
separate policies. We iteratively evaluate the set of policies on all tasks, assign tasks to policies based
on their respective performance and train policies on their assigned tasks. This leads to policies
naturally specializing to clusters of related tasks, yielding an interpretable decomposition of the full
task set. Moreover, we show that our approach can improve the learning speed and final reward in
multi-task RL settings. To summarize our contributions:

e We propose a general approach inspired by Expectation-Maximization (EM) that can find
clusters of related tasks in an unsupervised manner during training.

e We provide an evaluation on a diverse set of multi-task RL problems that shows the im-
proved sample complexity and reduction in negative transfer in our approach.

e We show the importance of meaningful clustering and the sensitivity to the assumed num-
ber of clusters in an ablation study

2 RELATED WORK

Expectation-Maximization (EM) has previously been used in RL to directly learn a policy. By
reformulating RL as an inference problem with a latent variable, it is possible to use EM to find
the maximum likelihood solution, corresponding to the optimal policy. We direct the reader to
Deisenroth et al. (2013) for a survey on the topic. Our approach is different: We use an EM-inspired
approach to cluster tasks in a multi-task setting and rely on recent RL algorithms to learn the tasks.

In supervised learning, the idea of subdividing tasks into related clusters was first proposed by Thrun
& O’Sullivan (1996). They use a distance metric based on generalization accuracy to cluster tasks.
A variety of other methods have been proposed in the supervised learning literature, for brevity
we direct the reader to the survey by Zhang & Yang (2017), which provides a good overview of
the topic. Our work differs in that we focus on RL, where no labeled data set exists. In RL, task
clustering has in the past received attention in works on transfer learning. Carroll & Seppi (2005)
proposed to cluster tasks based on a distance function. They propose distances based on ()-values,
reward functions, optimal policies or transfer performance. They propose to use the clustering to
guide transfer. Similarly, Mahmud et al. (2013) propose a method for clustering Markov Decision
Processes (MDPs) for source task selection. They design a cost function for their chosen transfer
method and derive an algorithm to find a clustering that minimizes this cost function. Our approach
differs from both in that we do not assume knowledge of the underlying MDPs and corresponding
optimal policies. Furthermore, the general nature of our approach allows it to scale to complex tasks,
where comparing properties of the full underlying MDPs is not feasible.

Related research on multi-task RL can be split into two categories: works that focus on very similar
tasks with small differences in dynamics and reward, and works that focus on very dissimilar tasks.
In the first setting, approaches have been proposed that condition the policy on task characteristics
identified during execution. Lee et al. (2020) use model-based RL and a learned embedding over
the local dynamics as additional input to their model. Yang et al. (2020) train two policies, one that
behaves in a way that allows the easy identification of the environment dynamics and another policy
that uses an embedding over the transitions generated by the first as additional input. Zintgraf et al.
(2020) train an embedding over the dynamics that accounts for uncertainty over the current task
during execution and condition their policy on it. Our approach is more general than these methods
as our assumption on task similarity is weaker.

In the second group of papers, the set of tasks is more diverse. Most approaches here are searching
for a way to reuse representations from one task in the others. Riemer et al. (2018) present an



Presented at Deep RL Workshop, NeurIPS 2020

approach to learn hierarchical options, and use it to train an agent on 21 Atari tasks. They use the
common NatureDQN network (Mnih et al., 2015) with separate final layers for option selection
policies, as well as separate output layers for each task to account for the different action spaces.
Eramo et al. (2020) show how a shared representation can speed up training. They then use a network
strucuture with separate heads for each task, but shared hidden layers. Our multi-head baseline is
based on these works. Brim et al. (2019) propose a method that addresses negative transfer between
multiple tasks by learning an attention mechanism over multiple sub-networks. However, as all tasks
yield experience for one overarching network, their approach still suffers from interference between
tasks. We limit this interference by completely separating policies. Wang et al. (2020) address
the problem of open-ended learning in RL by iteratively generating new environments. Similar
to us, they use policy rankings as a measure of difference between tasks. However, they use this
ranking as a measure of novelty to find new tasks, addressing a very different problem. Hessel et al.
(2019) present PopArt for multi-task deep RL. They address the issue that different tasks may have
significantly different reward scales. Sharma et al. (2018) look into active learning for multi-task RL
on Atari tasks. They show that uniformly sampling new tasks is suboptimal and propose different
sampling techniques. Yu et al. (2020) propose Gradient Surgery, a way of projecting the gradients
from different tasks to avoid interference. These last three approaches are orthogonal to our work
and can be combined with EM-clustering. We see this as an interesting direction for future work.

3 BACKGROUND AND NOTATION

In RL (Sutton & Barto, 2017) tasks are specified by a Markov Decision Process (MDP), defined
as tuple (S, A, P, R, ), with state space S, action space A, transition function P(:|s, a), reward
function R(s, a) and decay factor . As we are interested in reusing policies for different tasks, we
require a shared state-space S’ and action-space A across tasks. Note however that this requirement
can be omitted by allowing for task specific layers. Following prior work, we do allow for a task
specific final layer in our Atari experiments to account for the different action spaces. In all other
experiments however, tasks only differ in their transition function and reward function. We therefore
describe a task as 7 = (P,, R.) and refer to the set of given tasks as 7.

For each task 7 € 7 we aim to maximize the discounted return G, = ZZOL y'r7, where

r] ~ R;(st,a) is the reward at time step ¢ and L is the episode length. Given a set of policies
{m1, ..., mn}, we denote the return obtained by policy ; on task 7 as G (m;).

4 CLUSTERED MULTI-TASK LEARNING

As the growing body of literature on meta-, transfer- and multi-task learning suggests, we can expect
a gain through positive transfer if we train a single policy 7; on a set of related tasks 7, C 7. On the
flip side, the policy 7; might perform poorly on tasks 7 ¢ 7. Moreover, training policy 7; on a task
7 ¢ T might even lead to a decrease in performance on the task set 7 through negative transfer.
We incorporate these insights into our algorithm by modeling the task set 7 as a union of K disjoint

task clusters 71, ..., Tk, ie., T = Uszl Tr with 7; NT; = () for ¢ # j. Tasks within a cluster allow
for positive transfer while the relationship of tasks of different clusters is unconstrained. Tasks in
different clusters can therefore even have conflicting objectives. Note that the assignment of tasks
to clusters is not given to us and therefore needs to be inferred by the algorithm. Note also that this
formulation only relies on minimalistic assumptions. It is therefore applicable to a much broader
range of settings than many sophisticated models with stronger assumptions. As generality is one of
our main objectives, we see the minimalistic nature of the model as a strength rather than a weakness.

Given this problem formulation we note that it reflects a clustering problem, in which we have to
assign each task 7 € T to one of the clusters T, k € {1,...,K}. At the same time, we want
to train a set of policies {1, ..., m,} to solve the given tasks. Put differently, we wish to infer a
hidden latent variable (cluster assignment of the tasks) while optimizing our model parameters (set
of policies). An Expectation-Maximization (EM) (Dempster et al., 1977) inspired algorithm allows
us to do exactly that. On a high level, in the expectation step (E-step) we assign each of the tasks
7 € T to a policy ; representing cluster 7,. We then train the policies in the maximization step
(M-step) on the tasks they got assigned, specializing the policies to their clusters. These steps are
alternatingly repeated — one benefiting from the improvement of the other in the preceding step —
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until convergence. Given this general framework we are left with filling in the details. Specifically,
how to assign tasks to which policies (E-step) and how to allocate training time from policies to
assigned tasks (M-step).

For the assignment in the E-step we want the resulting
clusters to represent clusters with positive transfer. Given - -
that policy 7; is trained on a set of tasks 7; in a preceding Algorithm 1: EM-Task-Clustering
M-step, we can base our assignment of tasks to 7; on the Initialize n policies {1, ..., 7, }
performance of ;: Tasks on which 7; performs well likely = while not converged do

benefited from the preceding training and therefore should > E-Step

be assigned to the cluster of 7;. Specifically, we can eval- Ti+ Oforie{l,...,n}
uate each policy m; € {my,...,m,} on all tasks 7 € T for 7 € 7 do

to get an estimate of G (m;) and base the assignment on k « arg max; G, (m;)
this performance evaluation. To get to an implementable T < TrUT
algorithm we state two additional desiderata for our as- T, < T where T, = 0
signment: (1) We do not want to constrain cluster sizes > M-Step

in any way as clusters can be of unknown, non-uniform for m; € {m1,...,m,} do
sizes. (2) We do not want to constrain the diversity of the t—0

tasks. This implies that the assignment has to be indepen- while t < Ty, do

dent of the reward scales of the tasks, which in turn limits T~T

us to assignments based on the relative performances of Train 7; on 7 for an
the policies 71, ..., m,. We found a greedy assignment — episode of L steps
assigning each task to the policy that performs best — to t«t+1L

work well. A soft assignment based on the full ranking of |

policies might be worth exploring in future work.

In the M-step, we take advantage of the fact that clusters

reflect positive transfer, i.e., training on some of the assigned tasks should improve performance on
the whole cluster. We can therefore randomly sample a task from the assigned tasks and train on
it for one episode before sampling the next task. Overall we train each policy for a fixed number
of updates T’y in each M-step with T independent of the cluster size. This independence allows
us to save environment interactions as larger clusters benefit from positive transfer and do not need
training time proportional to the number of assigned tasks.

Note that the greedy assignment (and more generally any assignment fulfilling desiderata 1 above)
comes with a caveat: Some policies might not be assigned any tasks. In this case we sample the tasks
to train these policies from all tasks 7 € 7, which can be seen as a random exploration of possible
task clusters. This also ensures that, early on in training, every policy gets a similar amount of initial
experience. For reference, we provide a simplified pseudo code of our approach in Algorithm 1.
Note that our approach is independent of the RL algorithm used to train the policies in the M-step
and can therefore be combined with any state-of-the-art RL algorithm.

5 EXPERIMENTS

As a proof of concept we start the evaluation of our approach on two discrete tasks. The first
environment consists of a chain of discrete states in which the agent can either move to the left or
to the right. The goal of the agent is placed either on the left end or the right end of the chain. This
gives rise to two task clusters, where tasks within a cluster differ in the frequency with which the
agent is rewarded on its way to the goal. The second environment reflects the 2-dimensional grid-
world presented in Figure 1. Actions correspond to the cardinal directions in which the agent can
move and the 12 tasks in the task set 7 are defined by their respective goal. We refer an interested
reader to Appendix A.1 for a detailed description of the environments.'

We train policies with tabular Q-learning (Watkins, 1989) and compare our approach to two base-
lines: In the first we train a single policy on all tasks. We refer to this as SP (Single Policy). In the
other we train a separate policy per task. This is referred to as PPT (Policy per Task). Our approach
is referred to as EM (Expectation-Maximization).

!The implementation of all our experiments is also available in the supplementary material
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Figure 2: Left: Mean reward and 95% confidence interval (shaded area) from 10 trials when training
on the chain environment. Right: Task assignment (dots) and task specific reward (color) over the
course of training the two policies in our approach. Each plot shows one of the policies/estimated
clusters. The assignments converge to the natural clustering reflected by the goal location.
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Figure 3: Left: Mean reward and 95% confidence interval (shaded area) from 10 trials when training
on the grid-world environment depicted in Figure 1. Right: Task assignment (dots) and task specific
reward (color) over the course of training for the n = 4 policies (estimated clusters) in our approach.
The assignment naturally clusters the tasks of each corner together.

The learning curves as well as the task assignment over the course of training are shown in Figure 2
and Figure 3. Looking at the assignments, we see that in both environments our approach converges
to the natural clustering, leading to a higher reward after finding these assignments. Both our EM-
approach and PPT converge to an optimal reward in the chain environment, and a close to optimal
reward in the corner-grid-world. However, PPT requires a significantly higher amount of environ-
ment steps to reach this performance, as it does not share information between tasks and therefore
has to do exploration for each task separately. SP fails to achieve a high reward due to the different
tasks providing contradicting objectives.

5.1 PENDULUM

Next we consider a simple continuous control environment where tasks differ in their dynamics.
We use the pendulum gym task (Brockman et al., 2016), in which a torque has to be applied to a
pendulum to keep it upright. Here the environment is the same in all tasks, except for the length of
the pendulum, which is varied in the range {0.7,0.8, ..., 1.3}, giving a total of 7 tasks.

We use Twin Delayed Deep Deterministic Policy Gradient (TD3) (Fujimoto et al., 2018) with hy-
perparameters optimized as discussed in Appendix A.2. We compare against a SP, PPT, and a
multi-head network structure similar to the approach used by Eramo et al. (2020). Each policy in
our approach uses a separate replay buffer. The multi-head network has a separate replay-buffer and
a separate input and output layer per task. We adjust the network size of the multi-head baseline to
avoid an advantage of our method due to a higher parameter count, see Appendix A.2 for details.
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Figure 4: Left: Mean reward and 95% confidence interval (shaded area) from 10 trials when training
on the pendulum environment. The curves are smoothed by a rolling average to dampen the noise of
the random starting positions. Right: Task assignment (dots) and task specific reward (color) from
a sample run. Two policies focus on long and short, while the others focus on medium lengths.
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Figure 5: Evaluation of the BipedalWalker experiments. The shaded areas show the 95% confidence
interval on the mean task reward. Left: Track and field task set; 6 tasks with varying objectives.
Results reflect 20 trials of each approach. Right: Task set with varying leg lengths and obstacles; 9
tasks with the same reward function. Results reflect 10 trials of each approach.

The results are shown in Figure 4. We again observe that our approach clusters similar tasks together,
leading to a better performance than with a SP agent, and a faster convergence than with PPT. Also
the multi-head approach needs more experience to converge than our approach in this setup, even
more than the PPT approach. We believe this is due to the inherent interference of learning signals in
the shared layers. The cluster assignment in our approach is also intuitive, with two clusters focusing
on the extremes (cf. Figure 4).

5.2 BIPEDAL WALKER

As a more complex continuous control environment we focus on BipedalWalker from the OpenAl
Gym (Brockman et al., 2016), which has previously been used in multi-task and generalization
literature (Portelas et al., 2019; Wang et al., 2019; 2020). It consists of a bipedal robot in a two-
dimensional world, where the default task is to move to the right with a high velocity. The action
space consists of continuous torques for the hip and knee joints of the legs and the state space consists
of joint angles and velocities, as well as hull angle and velocity and 10 lidar distance measurements.

To test our approach, we designed 6 tasks inspired by track and field sports: Jumping up at the
starting position, jumping forward as far as possible, a short, medium and long run and a hurdle run.
As a second experiment, we create a set of 9 tasks by varying the leg length of the robot as well as
the number of obstacles in its way. This task set is inspired by task sets in previous work (Portelas
et al., 2019). Note that we keep the objective — move forward as fast as possible — constant here.
We again use TD3 and tune the hyperparameters of the multi-head baseline and our approach (with
n = 4 fixed) with grid-search. Experiment details and hyperparameters are given in Appendix A.3.
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Figure 6: The results of our experiments on a subset of the Atari Learning Environment games. The
reward is averaged across 3 trials and the shaded region shows the standard deviation of the mean.

The results in Figure 5 (left) on the track and field tasks show a significant advantage in using our
approach over multi-head TD3 or SP and a slightly better initial performance than PPT, with similar
final performance. SP fails to learn a successful policy altogether due to the conflicting reward
functions. In contrast, the results in Figure 5 (right) from the second task set show that SP can
learn a policy that is close to optimal on all tasks here. The multi-head and PPT approaches suffer
in this setup as each head/policy only gets the experience from its task and therefore needs more
time to converge. Our approach can take advantage of the similarity of the tasks. We note that the
experiments presented here reflect two distinct cases: One in which it is advantageous to separate
learning, reflected by PPT outperforming SP, and one where it is better to share experience between
tasks, reflected by SP outperforming PPT. Our approach demonstrates general applicability as it is
the only one performing competitively in both. We provide an insight into the assignment of tasks
to policies in Appendix B.1.

5.3 ATARI

To test the performance of our approach on a more diverse set of tasks, we evaluate on a subset of the
Arcade Learning Environment (ALE) tasks (Machado et al., 2018). Our choice of tasks is similar to
those used by Riemer et al. (2018), but we exclude tasks containing significant partial-observability.
This is done to reduce the computational burden as those tasks usually require significantly more
training data. We built our approach on top of the Implicit Quantile Network (IQN) implementation
in the Dopamine framework (Dabney et al., 2018; Castro et al., 2018). We chose IQN due to its
sample efficiency and the availability of an easily modifiable implementation. As the different ALE
games have different discrete action spaces, we use a separate final layer and a separate replay buffer
for each game in all approaches. We use the hyperparameters recommended by Castro et al. (2018),
except for a smaller replay buffer size to reduce memory requirements. As in the Bipedal Walker
experiments we fix the number of policies in our approach without tuning to n = 4. We choose the
size of the network such that each approach has the same number of total tunable parameters. We
provide the details in Appendix A.4.

The results are given in Figure 6. The good performance of PPT shows that the diversity of this task
set is best addressed with a policy per task. We note also that the multi-head approach is unable to
learn any useful policy here due to negative transfer between tasks. This is in line with experiments
in other research (Hessel et al., 2019). Our approach manages to overcome most of this negative
interference, even with just 4 clusters. Task assignments in our approach are given in Appendix B.2.

5.4 ABLATIONS

To gain additional insight into our approach, we perform two ablation studies on the discrete corner-
grid-world environment and the pendulum environment.
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Figure 7: Ablations for different number of policies n. Shaded areas show the 95% confidence
interval of the mean reward from 10 trials each. Left: Corner-grid-world tasks. Right: Pendulum
tasks, learning curves smoothed.
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Figure 8: Comparison of our approach against randomly assigning tasks to policies at the start of
training. Shaded areas show the 95% confidence interval of the mean reward. Left: Corner-grid-
world tasks, 10 trials each. Right: Pendulum tasks, 10 trials each, learning curves smoothed.

First, we investigate the performance of our approach for different numbers of policies n. The results
in Figure 7 show that using too few policies can lead to a worse performance, as the clusters cannot
distinguish the contradicting objectives. On the other hand, using more policies than necessary
increases the number of environment interactions required to achieve a good performance in the
pendulum task, but does not significantly affect the final performance.

As a second ablation, we are interested in the effectiveness of the clustering. It might be possible
that simply having fewer tasks per policy is giving our approach an advantage compared to SP or
multi-head TD3. We therefore provide an ablation in which task-policy assignments are determined
randomly at the start and kept constant during the training. Results from this experiment can be seen
in Figure 8. The results show that using random clusters performs significantly worse than using the
learned clusters. This highlights the importance of clustering tasks meaningfully.

6 CONCLUSION

We present an approach for multi-task learning in reinforcement learning (RL) that automatically
clusters tasks into related subsets. Our approach uses a set of policies and alternatingly evaluates
the policies on all tasks, assigning each task to the best policy and then trains policies on their
assigned tasks. Since our approach can be combined with any underlying RL method, we evaluate
it on a varied set of environments. We show its performance on sets of simple discrete tasks, simple
continuous control tasks, two complex continuous control task sets and a set of Arcade Learning
Environment tasks. We show that our approach is able to identify clusters of related tasks and use
this structure to achieve a competitive or superior performance. We further provide an ablation
over the number of policies in our approach, showing that too many policies can lead to slower
convergence while too few policies can hurt performance. In another ablation we also highlight the
need to cluster tasks meaningfully.

Our approach offers many possibilities for future extensions. One interesting direction would be
hierarchical clustering. This could prove helpful for complicated tasks like the Atari games. It would
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also be interesting to see how our approach can be applied to multi-task learning in a supervised
setting. Further, different assignment strategies with soft assignments could be investigated. Overall,
we see our work as a good stepping stone for future work on structured multi-task learning.
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APPENDIX

A EXPERIMENT DETAILS

In addition to the details provided here, the implementation of all experiments can be found in the
supplementary material.

A.1 GRID WORLD EXPERIMENTS

In the first discrete task set we use a one-dimensional state-chain with 51 states, in which the agent

starts in the middle and receives a reward for moving toward either the left or right end. As a reward

weuser = m where 2, is the position of the agent and 4.1 is the goal position (either the
ag goa

left or right end of the chain). We give a reward of » = 20 if the goal position is reached. Depending
on the task, the reward is given every 2, 4, 8 or 16 steps, or only at the goal position, and otherwise
replaced by r = 0.

For our corner grid-world task set we use a 2D-grid-world with edge length 7 and three goal positions

per corner (as depicted in Figure 1). The agent always starts in the center and receives a reward based

on the distance to the target r = ————, with || - ||2 being the Euclidean norm. A reward of
ag goa

r = 10 is given when the agent reaches the goal position.

In both tasks we use tabular Q-Learning with e-greedy exploration. We start with ¢ = 0.2 and

decay the value as €; = egf with 7. = 1 — 1 x 107%, We use a learning rate of o = 0.2 to update
the value estimates, as from the perspective of a single agent the environment can be regarded as
stochastic. Further, we use a discount factor of v = 0.9 and 7, = 500 training steps per policy in
each M-step and evaluate each policy on each task for three episodes during the E-step, using the
greedy policy without exploration.

A.2 PENDULUM

In our pendulum tasks we use a modified version of the Pendulum environment provided in OpenAl
gym (Brockman et al., 2016). This environment consists of a single pendulum and the goal is to
balance it in an upright position. The observation consists of the current angle #, measured from
the upright position, and current angular velocity represented as (sin#, cos 8, 6). The reward for
each time step is 7, = — (62 + 0.16% + 0.001a?), with a being the torque used as action. Every
episode starts with a random position and velocity. To provide a set of tasks we vary the length of
the pendulum in {0.7,0.8, ..., 1.3}.

A.2.1 HYPERPARAMETERS

Hyperparameters for our EM-TD3 and multi-head TD3 were tuned on the pendulum task set by grid
search over learning rate o = {1 x 1072,3 x 1073, 1 x 1073}, batch-size b = {64, 128} and update-
rate u = {1, 3,5}, specifying the number of collected time-steps after which the value-function is
updated. We increased the network size for multi-head TD3, so that it overall had more parameters
than EM-TD3. This is done to eliminate a potential advantage of our approach stemming from a
higher representational capacity. The tuned hyperparameters are given in Table 1. To represent
the value functions and policies we use fully connected multi-layer perceptrons (MLPs) with two
hidden layers with 64 units each. As activations we use ReLU on all intermediate layers, and tanh
activations on the output. The values are then scaled to the torque limits per dimension. In EM, SP
and PPT we use a separate network for each policy. For our multi-head baseline we share the hidden
layers between tasks, but use separate input and output layers per task. Additionally, we increase the
size of the first hidden layer to 96 in the multi-head approach, such that it has a similar total number
of parameters as our EM approach. For SP and PPT we reuse the hyper-parameters from our EM
approach. During the M-step, we train the agent for 5 x 10 steps per policy and during the E-step
we evaluate each agent on each task by running 20 episodes without added exploration noise.
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Table 1: Hyperparamters for pendulum experiments.

Hyperparameter EM-TD3 Multi-head TD3
learning-rate o 3x 1073 3x 1073
batch-size b 128 128

update-rate u 1 1
policy-update-frequency 3 3

n - EM 4 -

network size 4-(64,64,1) (9-96,64,9-1)
exploration noise o 0.05 0.05
exploration noise clipping [—0.5,0.5] [—0.5,0.5]
target policy smoothing noise ¢ 0.1 0.1

buffer-size 2e6 per policy  2e6 per task
decay vy 0.99 0.99

T]\/[ 5 X 104 -

A.3 BIPEDALWALKER

For the BipedalWalker tasks we look at two different sets of tasks. The first set of tasks consists of
different reward functions with mostly similar environments, inspired by track and field events. The
tasks are jumping up, jumping a long distance, runs for different distances and a run with obstacles.
In all tasks a reward of —¢||a||1 is given to minimize the used energy. The position of the hull of the
bipedal walker is denoted as (x,y). In the jump up task a reward of y — |z| is given upon landing,
and € = 3.5 x 10~*. For the long jump task a reward of = — zq is given upon landing, with o being
the hull position during the last ground contact, ¢ = 3.5 x 10~%. The three runs consist of a sprint
over a length of 67 units, with e = 3.5 X 10~%, a run over 100 units, with ¢ = 3.5 x 10~%, and a long
run over 200 units with ¢ = 6.5 x 10~*. The hurdles task is identical to the long run, but every 4
units there is an obstacle with a height of 1. Additionally, a reward of 0.12 — a reward proportional
to the velocity of the agent in the x-direction — is given during the run and hurdle tasks, to reward
movement to the right.

The second set of tasks consists of varying obstacles and robot parameters. We vary the length
of the legs in {25,35,45} and either use no obstacles, or obstacles with a spacing of 2 or 4 units
apart and height of 1. This results in a total of 9 tasks. Here we use the standard reward for the
BipedalWalker task r = 4.3% — 5|0| — ||a||1 with 6 being the angle of the walker head. Additionally,
in all experiments = —100 is given if the robot falls over or moves to far to the left.

A.3.1 HYPERPARAMETERS

Hyperparameters for our EM-TD3 and multi-head TD3 approaches were tuned on the track and field
task set by grid search over a = {1 x 1073,3 x 1074, 1 x 107}, batch-size b = {100, 1000} and
update-rate u = {1,3,5}, u specifying the number of collected time-steps after which the value-
function is updated. We reuse the optimal parameters found here on the task set with varying leg
lengths and obstacles. For the SP and PPT baselines we reused the parameters from EM-TD3. We
increased the network size for multi-head TD3, so that it overall had more parameters than EM-TD3.
All hyperparameters are given in Table 2. During the M-step, we train the EM agent with 2 x 10°
steps per policy and during the E-step we evaluate each agent on each task by running 20 episodes
without added exploration noise.

A.4  ATARI

To test our approach on a more complex task, we evaluate it on a subset of the Atari games. The set
of chosen games consists of Alien, Assault, BankHeist, ChopperCommand, DemonAttack, James-
Bond, MsPacman, Phoenix, RiverRaid, Spacelnvaders, WizardOfWor and Zaxxon. As stated above,
this task set is similar to the set of games used in Riemer et al. (2018), but without tasks requiring a
large amount of exploration to save computation time.
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Table 2: Hyperparameters for BipedalWalker experiments.

Hyperparameter EM-TD3 Multi-head TD3
learning-rate 1x1073 1x1073
batch-size 1000 1000
update-rate 3 5
policy-update-frequency 3 3

n - EM 4 -

network size 4 - (400, 300,1) (6 - 400,400,6 - 1)
exploration noise o 0.1 0.1

exploration noise clipping [—0.5,0.5] [—0.5,0.5]
target policy smoothing noise 0 0.2 0.2

buffer-size 5e6 per policy 5e6 per task
decay vy 0.99 0.99

T 2 x 10° -

Our implementation is based on the IQN implementation in the Dopamine framework (Dabney
et al., 2018; Castro et al., 2018). As hyperparameters we use the default values recommended by
Dopamine for Atari games, except the changes listed below: Due to the different action spaces, we
use a separate replay buffer for each game, as well as a separate output layer, both for our EM, multi-
head and PPT approaches. We reduce the size of the replay buffer to 3 x 10° compared to 1 x 10°
in the original paper, to reduce the memory demand. We use the normal NatureDQN network, but
scale the size of the layers to ensure that each approach has a similar number of parameters. For
our EM approach, we use Th; = 2.5 x 10° trainings steps per M-step, and evaluate all policies
on all tasks for 27000 steps in the E-step, using the greedy policy without random exploration. In
both EM and the multi-head approach, we record how many transitions were performed in each
M-Step and sample the task with the least transitions as next training task. This is done to ensure
a similar amount of transitions and training steps per game, as episode lengths vary. This approach
was proposed in Riemer et al. (2018).

B ADDITIONAL RESULTS

B.1 BIPEDAL WALKER

In Figure 9 the assignments for 4 randomly chosen trials on the track and field task set are shown.
We can see that in all trials the runs over different distances are grouped together with the long jump
task. This is likely due to these tasks aligning well, as they both favor movements to the right. It
is possible to learn the hurdles task with the same policy as the runs, due to the available LIDAR
inputs. The hurdle task therefore sometimes switches between policies, but usually is learned by a
separate policy. The jump up task is very different from the other tasks, as it is the only one not to
involve movement to the right, and is therefore assigned to a separate policy.

In Figure 10 the assignments for 4 randomly chosen trials on the leg-length and obstacle task set are
shown. As illustrated by the good performance of the SP approach shown in Figure 5, it is possible
to learn a nearly optimal behavior with a single policy here. This makes learning a meaningful
clustering significantly harder and sometimes leads to a single policy becoming close to optimal on
all tasks, as in Trial 2. In most other trials the task set is separated into two or three different clusters
based on the different leg lengths.

B.2 ATARI

In Figure 11 the assignments of all three trials of our approach on the Atari task set are shown.
While we see a consistency in assignments, we cannot identify a clearly repeated clustering across
trial. We assume this is due to the high diversity of tasks preventing the identification of clearly
distinguishable clusters. This lack of clearly distinguishable clusters might also be the reason for
failing to reach the performance of PPT. Yet, the specialization of policies in our approach helps to
avoid negative transfer as seen in Figure 6.
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Figure 9: Shown are the assignments from 4 randomly picked trials on the track and field Bipedal-
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Figure 11: Shown are the assignments of all three trial that were run on the set of Atari games. The
color represents the human-normalized score per game.
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