
Solving Woeginger’s Hiking Problem: Wonderful
Partitions in Anonymous Hedonic Games
Andrei Constantinescu1 #Ñ

ETH Zürich, Zürich, Switzerland

Pascal Lenzner #

Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Rebecca Reiffenhäuser #

University of Amsterdam, Amsterdam, The Netherlands

Daniel Schmand #

University of Bremen, Bremen, Germany

Giovanna Varricchio #

University of Calabria, Rende, Italy

Abstract
A decade ago, Gerhard Woeginger posed an open problem that became well-known as “Woeginger’s
Hiking Problem”: Consider a group of n people that want to go hiking; everyone expresses preferences
over the size of their hiking group in the form of an interval between 1 and n. Is it possible to
efficiently assign the n people to a set of hiking subgroups so that every person approves the size
of their assigned subgroup? The problem is also known as efficiently deciding if an instance of an
anonymous Hedonic Game with interval approval preferences admits a wonderful partition.

We resolve the open problem in the affirmative by presenting an O(n5) time algorithm for
Woeginger’s Hiking Problem. Our solution is based on employing a dynamic programming approach
for a specific rectangle stabbing problem from computational geometry. Moreover, we propose
natural, more demanding extensions of the problem, e.g., maximizing the number of satisfied
participants and variants with single-peaked preferences, and show that they are also efficiently
solvable. Last but not least, we employ our solution to efficiently compute a partition that maximizes
the egalitarian welfare for anonymous single-peaked Hedonic Games.

2012 ACM Subject Classification Theory of computation → Dynamic programming; Theory of
computation → Algorithmic game theory; Theory of computation → Discrete optimization

Keywords and phrases Algorithmic Game Theory, Dynamic Programming, Anonymous Hedonic
Games, Single-Peaked Preferences, Social Optimum, Wonderful Partitions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2024.42

Category Track A: Algorithms, Complexity and Games

Funding Giovanna Varricchio: The author is grateful for the support by the PNRR MUR project
FAIR - Future AI Research (PE00000013), and the DFG, German Research Foundation, grant (Ho
3831/5-1).

Acknowledgements We would like to thank the Schloss Dagstuhl-Leibniz-Zentrum für Informatik
who hosted the event “Computational Social Dynamics” (Seminar 22452) in November 2022 [25],
where the work leading to this paper was started. We are grateful to Martin Hoefer, Sigal Oren,
and Roger Wattenhofer for organizing this event. We additionally thank Roger Wattenhofer for the
useful discussions concerning this work. We thank Tamio-Vesa Nakajima for contributing to the
hardness proof in Appendix B.

1 Corresponding author.

© Andrei Constantinescu, Pascal Lenzner, Rebecca Reiffenhäuser, Daniel Schmand and Giovanna
Varricchio;
licensed under Creative Commons License CC-BY 4.0

51st International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Editors: Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson; Article No. 42; pp. 42:1–42:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aconstantine@ethz.ch
https://andrei1998.github.io/
https://orcid.org/0009-0005-1708-9376
mailto:pascal.lenzner@hpi.de
https://orcid.org/0000-0002-3010-1019
mailto:r.e.m.reiffenhauser@uva.nl
https://orcid.org/0000-0002-0959-2589
mailto:schmand@uni-bremen.de
https://orcid.org/0000-0001-7776-3426
mailto:giovanna.varricchio@unical.it
https://orcid.org/0000-0001-6839-8551
https://doi.org/10.4230/LIPIcs.ICALP.2024.42
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Solving Woeginger’s Hiking Problem

Figure 1 Gerhard Woeginger, Oberwolfach, 2011. [29]

1 Introduction

Suppose there are n attendees of a workshop, who aim to go for a joint hike during a break.
Keeping the whole group together is logistically challenging, so typically the attendees split
into smaller subgroups that will do the hike together. It is natural that different attendees
might have different preferences for the sizes of the subgroups they will eventually join. In
particular, each attendee i reports an interval [ℓi, ri] signifying that they will be content if
they are in a group of size s ∈ [ℓi, ri]. The organizers of the hike now face the following
problem: Is there a polynomial time algorithm that determines whether there is a partition of
the attendees into subgroups such that they are all content with the sizes of their subgroups?

In 2013, Gerhard Woeginger famously phrased this problem underlying an anonymous
hedonic game to explain an open question stemming from his work [31]. It is one of the very
nice problems that he used to share at various occurrences, e.g., at the coffee machine, while
waiting in a seminar room, or even during a joint walk.2 As this is one of the problems he
explained to many people, it became known as Woeginger’s Hiking Problem.

In this work we answer Woeginger’s question in the affirmative by exploiting a tight
connection to a variant of the rectangle stabbing problem from computational geometry that
can be solved in polynomial time via elegant dynamic programming.

Using Woeginger’s motivation of the problem, many natural extensions arise that we
introduce in this paper. If the sought partition does not exist, then what is the maximum
number of attendees that can be satisfied with their group sizes, or what is the minimum
number of attendees to exclude such that the remaining ones can be partitioned to all
become satisfied? Moreover, we also consider a version where the hikers have single-peaked
preferences over the group sizes and a partition is sought that minimizes the utilitarian or
egalitarian cost, where cost is defined as a function of the assigned and the ideal group size.
We show that these more demanding problems can also be solved efficiently. Finally, we
discuss the relationship between the hiking problem and the problem of maximizing the
egalitarian welfare in (general) anonymous Hedonic Games.

2 Gerhard’s ability to explain open research questions in an easily accessible way has been extraordinarily
motivating. In particular, this work would not have started without Gerhard meeting one of the authors
for lunch and explaining the problem exactly in this way. With this work we contribute to the recent
line of publications celebrating the life and work of Gerhard Woeginger, see [26].

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:3

1.1 Related Work
Hedonic Games (HGs), introduced by Dreze and Greenberg in [18], model multi-agent systems
where selfish agents have to be partitioned into coalitions and have preferences over the
possible outcomes. Such games are called hedonic as agents’ preferences only depend on the
coalition they belong to but not on how the other agents are grouped. HGs have been widely
studied (see [7] for a survey) and numerous prominent subclasses have been identified based
on properties of the agents’ preferences or other possible constraints: [8, 14, 1, 27, 20, 2].
Simple examples of such classes are anonymous HGs [9], where the preferences of the agents
depend only on the size of their coalition and not on the individual participants, or HGs with
approval-based (Boolean) preferences [6], where agents have binary values for the coalitions.
Woeginger’s Hiking Problem resides in the intersection of these classes.

The HGs literature has typically focused on the existence and computation of stable or
optimal solutions, see, e.g., [14]. The most desirable, ideal partition is the one where every
agent is assigned to one of her best coalitions — called perfect (or wonderful) partition [3].
Unfortunately, such a solution rarely exists and the related decision or computational problem
is usually hard [3, 28]. Even in simple cases such as anonymous approval-based HGs, it
is NP-complete to determine the existence of a wonderful partition [17, 31]. Such a result
holds true even if the number of approved coalition sizes of each agent is at most 2 [17]. The
problem of finding a wonderful partition in Hedonic Games is related to the one of maximizing
the utilitarian welfare, i.e. the sum of agents’ utilities, for Boolean utilities. An overall picture
of the complexity of finding wonderful partitions in Boolean Hedonic Games, including
anonymous ones, is given in [28]. For general utility functions, the problem of maximizing
the utilitarian or egalitarian social welfare has been studied in various settings, e.g., in
fractional [5] and additively separable Hedonic Games [4]. To the best of our knowledge,
these objectives have not been considered in the context of anonymous Hedonic Games.

In our paper, we show the tractability of computing a wonderful partition for instances
with interval approvals as formulated by Woeginger [31]. To this aim, we provide a dynamic
program that relies on the approach used in [21] to solve a capacitated rectangle stabbing
problem from computational geometry. Here, the goal is to stab a set of rectangles with a
minimum subset of a given set of lines, each intersecting (i.e., potentially stabbing) some of
the rectangles. Each line has a maximum number of rectangles it can stab, and to stab all
rectangles, one is allowed to use multiple copies of each line.

We also consider variants with single-peaked cost functions of the agents. Single-peaked
preferences date back to Black [12]. Such preferences are a common theme in the Economics
and Game Theory literature. In particular, they play a prominent role in different fields
such as Hedonic Diversity Games [16, 13], Schelling Games [11, 22], and in various works on
voting and social choice [30, 32, 10, 19, 15].

1.2 Model
The hiking problem as formulated by Gerhard Woeginger is a special case of anonymous
Hedonic Games with approval-based preferences. In an anonymous Hedonic Game with
approval-based preferences we are given a set N of n agents to be partitioned into coalitions.
Each agent i ∈ N reports an approval set Si ⊆ [n] representing the approved group sizes
for agent i. In particular, agent i wants to be in some group of size s such that s ∈ Si. An
approval set Si is said to be an interval if Si = {ℓi, ℓi + 1, . . . , ri}, for some 1 ≤ ℓi ≤ ri ≤ n.
The agents have to be partitioned into coalitions, i.e., subsets of the agent set. This induces
a partition π of the set of agents N . We denote by π(i) the coalition agent i belongs to

ICALP 2024

42:4 Solving Woeginger’s Hiking Problem

in the partition π. We follow the notation in Woeginger’s survey paper [31] and call a
partition π wonderful if each agent approves of the size of its coalition in π, i.e., for each
agent i, |π(i)| ∈ Si. This leads to the following natural computational problem called
WONDERFUL-PARTITION.

WONDERFUL-PARTITION

Input: A set N of agents and size approval sets (Si)i∈N .

Problem: Decide whether there exists a wonderful partition of the agents. If yes,
compute one.

Woeginger’s Hiking Problem is WONDERFUL-PARTITION with interval approval sets,
which we formally define as follows.

WONDERFUL-PARTITION-INTERVALS (HIKING)
Input: A set N of agents and for each agent i ∈ N two numbers ℓi ≤ ri such that
Si = {ℓi, . . . , ri}.
Problem: Decide whether there exists a wonderful partition of the agents. If yes,
compute one.

We also consider natural extensions of the hiking problem, to be introduced later.

1.3 Our Contribution
We solve Woeginger’s Hiking Problem in the affirmative by giving an O(n5)-algorithm that
computes a wonderful partition for an instance with n agents that each have interval approval
sets (see Figure 2 (a)), if such a partition exists. For this we use a dynamic programming
approach for a rectangle stabbing problem from computational geometry. Moreover, we
extend this approach to achieve an O(n5)-algorithm for computing the minimum set of hikers
that have to be excluded from the hike, in order for a wonderful partition to become possible.
We also give an O(n7)-algorithm for deciding if a wonderful partition exists if exactly x hikers
are excluded. This is then used to derive an O(n7 log n)-algorithm for finding a partition that
maximizes the number of hikers that approve of their assigned group size. These approaches
can also be extended to a setting where hikers have weights.

All these positive results hold for the case where the agents have interval approval sets
(Figure 2 (a)). The special case where every hiker only approves of one group size, i.e.,
approval intervals of size 1, can be solved efficiently by checking if for all i the number of
agents approving only of size i is divisible by i. In contrast to this, it was already known that

group size

u
ti
li
ty

0
1 n

1

(a) (b) (c) (d)

group size

u
ti
li
ty

0
1 n

1

group size1 n

1

u
ti
li
ty

0

agent 1
agent 2

agent 1
agent 2

group size

u
ti
li
ty

0
1 n

1

Figure 2 Examples of utility functions considered in this paper. (a) interval approval sets, (b)
non-interval approval sets with two approved group sizes, (c) utility functions are single-peaked and
all agents with the same peak have the same utility function (under some additional mild technical
assumptions), (d) individual single-peaked utility functions for all agents (as shown, the functions
may differ even if they have the same peak).

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:5

the problem is NP-hard even if each attendee has at most two different approved group sizes
that need not form an interval [17] (see Figure 2 (b)). One can modify the original proof to
establish hardness even for the case where each attendee approves of exactly two group sizes.
For the sake of completeness and to improve readability, we show the details in Appendix B.
Our presentation hinges on an elegant connection to a graph orientation problem that has
not been used in the previous proof.

We complete the picture by considering agents with single-peaked preferences over group
sizes. In this setting an agent has a cost that is a function of its assigned group size and
its ideal group size. If all agents incur a cost that is given by a fixed function that depends
on their peak (but different peak values are allowed, see Figure 2 (c)) and if this function
satisfies a mild technical condition, we compute a partition that minimizes the social cost in
time O(n2(α + 1)), if at most α agents can be excluded from the hike. This holds for the
utilitarian setting, i.e., minimizing the sum of the agents’ costs, and also for the egalitarian
setting, where the maximum agent cost is to be minimized. Finally, we prove polynomial time
equivalence of the wonderful partition problem and the problem of minimizing the egalitarian
social cost in (general) anonymous Hedonic Games. We use this result to show that even for
the setting where each agent has its own single-peaked cost function (see Figure 2 (d)), a
partition that minimizes the egalitarian social cost can be computed in O(n5 log n).

2 Efficient Algorithm for Woeginger’s Hiking Problem, and Extensions

We prove that WONDERFUL-PARTITION-INTERVALS can be solved in polynomial time by
casting it as a version of capacitated rectangle stabbing that is efficiently solvable via an
elegant dynamic programming approach introduced by Even, Levi, Rawitz, Schieber, Shahar,
and Srividenko [21]. In the capacitated rectangle stabbing problem, we are given axis-parallel
rectangles and a set of axis-parallel lines. The goal is to find a minimum number of lines
that intersect and ‘stab’ all rectangles, or, in a version where lines have costs, lines with
minimum total cost with the same property. Each line has a maximum number of intersected
rectangles that it can ‘stab’, and, to stab all rectangles, one is allowed to use multiple copies
of each line. Woeginger’s Hiking Problem can be seen as a special case of the one-dimensional
capacitated rectangle stabbing problem with costs, where the agents’ intervals correspond to
one-dimensional rectangles and stabbing rectangles at some integer position i costs i and
corresponds to creating a group of size i in which we include the agents corresponding to the
stabbed rectangles. Solutions with total cost n (which is also a lower bound on the cost) then
correspond to those where all groups are full. Building on the approach of [21] applied to
this case, we give a simpler O(n5) dynamic program that is specifically tailored to our needs.
Note that this reduction from our partition problem to a version of rectangle stabbing draws
a powerful new connection between the problem types that is not limited to one specific
variant of the partition problem, but also holds more generally; e.g., it can be adapted to the
variant where there can be at most one group of each size.

In the following, we use the central observations of Even, Levi, Rawitz, Schieber, Shahar,
and Srividenko [21] to derive a dynamic programming solution to Woeginger’s Hiking
problem, i.e., to WONDERFUL-PARTITION-INTERVALS. Its definition and analysis will then
also power our results on the more demanding problem variants discussed in the introduction.

2.1 Dynamic Program for Woeginger’s Hiking Problem
Consider an instance of WONDERFUL-PARTITION-INTERVALS, i.e., a set N of n agents,
without loss of generality N = [n], and n pairs (ℓi, ri)i∈N such that agent i ∈ [n] approves

ICALP 2024

42:6 Solving Woeginger’s Hiking Problem

of sizes Si = {ℓi, . . . , ri}. We are interested in checking whether there exists a wonderful
partition of the agents; i.e., one where every agent approves of their coalition size. For
consistent tie-breaking reasons, throughout this section we write i ≺ j for two distinct agents
i, j ∈ [n] if either ri < rj , or ri = rj and i < j. Note that ≺ is a well-defined strict linear
order and, without loss of generality, assume that agents are ordered so that 1 ≺ . . . ≺ n.

As the main technical ingredient of our approach, given a subset N ′ ⊆ N of agents, we
say that a wonderful partition π of N ′ is earliest-due-date if for any two agents i ≺ j it
does not hold that ℓi ≤ |π(j)| < |π(i)|. This terminology is borrowed from the scheduling
literature, and based on the following well-known observation: let us view the agents’ allowed
intervals of coalition sizes on an axis labeled with the natural numbers 1, . . . , n, and consider
an arbitrary collection of coalition sizes we might decide on using, in non-decreasing order of
coalition size. Then, going in this order, it is always safe to include those agents first whose
right interval endpoints are the smallest: in said order of coalitions, they are the ones that
stop being servable first, making an earliest-due-date approach impose the least restrictions
on later assignments. In other words, whenever a wonderful partition into the given coalition
sizes exists, there also exists one that is earliest-due-date. We prove this formally below for
completeness. Note that, to make the process well-defined, instead of comparing agents by
right endpoints, we compare them by ≺.

▶ Lemma 1. If a subset N ′ ⊆ N of agents admits a wonderful partition, then it admits an
earliest-due-date wonderful partition.

Proof. Consider a wonderful partition π of N ′. If it satisfies the required property, then we are
done, otherwise, consider i, j ∈ N ′ such that i ≺ j and ℓi ≤ |π(j)| < |π(i)|. These conditions
imply that |π(j)| ∈ [ℓi, ri] and |π(i)| ∈ [ℓj , rj]. Hence, one can construct a new wonderful
partition π′ from π by exchanging the groups of agents i and j; i.e., π′(i) = (π(j) \ {j})∪{i}
and π′(j) = (π(i) \ {i}) ∪ {j}. Subsequently, set π ← π′ and repeat the same procedure
until the required condition is satisfied. To complete the proof, we need to show that this
is eventually the case. To do so, since 1 ≺ . . . ≺ n, each exchange strictly increases the
sequence (|π(n)|, . . . , |π(1)|) lexicographically. Because this sequence is bounded from above
by (n, . . . , n), the process eventually ends. ◀

Hence, from now on, we will only seek earliest-due-date wonderful partitions. This crucial
restriction, which we have shown to be without loss of generality, will allow us to bootstrap
a dynamic programming algorithm that determines a wonderful partition if one exists.

To construct our algorithm, we first show that earliest-due-date partitions admit an
attractive recursive decomposition. Consider an earliest-due-date wonderful partition π of
the agents (if any exist), and consider the size of the coalition that agent n is a part of; i.e.,
|π(n)|. Moreover, consider an arbitrary agent i ̸= n. Agent i is part of a coalition of size |π(i)|.
Because π is earliest-due-date, by definition it can not be the case that ℓi ≤ |π(n)| < |π(i)|,
so either |π(n)| < ℓi or |π(i)| ≤ |π(n)| holds.

▶ Lemma 2. Consider an earliest-due-date wonderful partition π of N. Partition the agents
as N = N− ∪N+ ∪ {n}, where N− = {i ∈ N \ {n} | ℓi ≤ |π(n)|} and N+ = {i ∈ N \ {n} |
ℓi > |π(n)|}, then it holds that:

1. For all i ∈ N− we have |π(i)| ≤ |π(n)|;
2. For all i ∈ N+ we have |π(i)| > |π(n)|.

Proof. For (2) note that any i ∈ N+ by definition satisfies ℓi > |π(n)|. Since we have the
requirement that |π(i)| ∈ [ℓi, ri], this means that |π(i)| ≥ ℓi > |π(n)|, as desired.

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:7

For (1), consider some i ∈ N−. By definition, we have that ℓi ≤ |π(n)|. Assume for a
contradiction that |π(i)| > |π(n)|. This implies that ℓi ≤ |π(n)| < |π(i)|. Since ri ≤ rn and
by the sorting criterion we also have i ≺ n, which contradicts that π is earliest-due-date. ◀

Notably, the same result holds true if we work with a subset of the agents N ′ ⊊ N and n is
replaced with the agent a ∈ N ′ with maximum ra.

Armed as such, to build intuition, Lemma 2 tells us that no two agents a− ∈ N−
and a+ ∈ N+ can go into the same group, so a first attempt at a recursive algorithm
looking for a wonderful partition of N, to be later optimized by memorization/dynamic
programming, would proceed as follows: start with N ′ = N ; at each step, identify the
agent a ∈ N ′ maximizing ra and exhaust over all possibilities for |π(a)|; for each one, write
N ′ = N ′

− ∪N ′
+ ∪ {a} as defined in Lemma 2 and recurse with N ′

− and N ′
+. We will specify

the details of the process such that, if the recursive calls yield wonderful partitions of N ′
−

and N ′
+, a wonderful partition of N can also be constructed by incorporating agent a into

them. Of course, the last step of reasoning is incorrect, since one needs to make sure that
a group of size |π(a)| with one space available indeed exists, and this information needs to
be somehow propagated across recursive calls. Moreover, it is unclear what the number
of sets N ′ reachable by the recursion is. This has to be polynomially bounded so that
memorization/dynamic programming leads to a polynomial-time algorithm.

Let us first address the second issue outlined above, namely the size of the state space.
This turns out to be relatively simple: define N(x1, x2, i) = {j ∈ N | j ≤ i and ℓj ∈ [x1, x2]}.
Then, we can adapt the recursive approach: instead of storing N ′ explicitly, start with x1 = 1
and x2 = n, as well as i = n, from which implicitly N ′ = N(x1, x2, i). At each step we will
first check whether i, which by the sorting criterion is the largest agent maximizing ri, is
in N ′ = N(x1, x2, i); i.e., whether ℓi ∈ [x1, x2]. If not, then N(x1, x2, i) = N(x1, x2, i − 1)
and we simply recurse with the same x1, x2 and i′ = i− 1. Otherwise, i is the largest agent
in N ′ maximizing ri, so we can exhaust as before over all possible values for |π(i)| and
perform two recursive calls in each case: one with (x′

1, x′
2, i′) = (x1, |π(i)|, i− 1) and one with

(x′
1, x′

2, i′) = (|π(i)|+ 1, x2, i− 1). We have yet to solve the correctness issue, but we have
made progress: the state space now consists of triples (x1, x2, i) such that 1 ≤ x1 ≤ x2 ≤ n

and 1 ≤ i ≤ n, which there are O(n3) of.
Let us now turn our attention to ensuring correctness. To do so, we need to investigate

more closely how to ensure that the group of size |π(i)| of agent i (recall that we only exhaust
over its size, not over which agents are in it) exists and is used to its full capacity in the
solution constructed by the recursion. There is one crucial guarantee given by Lemma 2 that
we have so far not exploited. Namely, the recursive call with (x1, |π(i)|, i− 1) should only use
groups of sizes s ∈ [x1, |π(i)|] and the one with (x′

1, x′
2, i′) = (|π(i)|+ 1, x2, i− 1) should only

use groups of sizes s ∈ [|π(i)|+ 1, x2]. In general, state (x1, x2, i) should only consider groups
of sizes s ∈ [x1, x2]. This can be ensured by requiring that the exhausted value for |π(i)|
additionally satisfies x1 ≤ |π(i)| ≤ x2. This small, seemingly inconsequential, refinement of
the approach will ultimately allow us to propagate information about incomplete groups
across states in the recursion. Before describing how this is done in general, to build more
intuition, let us consider the first level of the recursion, namely (x1, x2, i) = (1, n, n). At
this level, the algorithm exhausts over the possible values for |π(n)| ∈ [ℓn, rn]. For each
possibility, in the ensuing recursive call with (x′

1, x′
2, i′) = (|π(n)| + 1, n, n − 1) all used

groups will be of size at least |π(n)| + 1 > |π(n)| so nothing special needs to be done in
this case since those agents can not be part of agent n’s group. However, in the other call,
having (x′

1, x′
2, i′) = (1, |π(n)|, n− 1) some |π(n)| − 1 other agents will need to share a group

of size |π(n)| with agent n, and this is not yet modeled by our approach. To model this

ICALP 2024

42:8 Solving Woeginger’s Hiking Problem

effect across recursive calls, we introduce a fourth variable 0 ≤ k < x2 to the state of our
recursive algorithm; i.e., each state is now of the form (x1, x2, i, k). This variable intuitively
signifies that there exists (from upward in the recursion) an incomplete group, currently of
size k, whose final size should be x2. With this setup, the starting top-level call will now
be with (x1, x2, i, k) = (1, n, n, 0). For each value of |π(n)|, the two resultant recursive calls
will be with (x′

1, x′
2, i′, k′) = (1, |π(n)|, n− 1, 1)3 and (x′

1, x′
2, i′, k′) = (|π(n)|+ 1, n, n− 1, 0).

Note how the former call has k′ = 1, signifying that we just “opened a new (incomplete)
group of size one, whose final size should be x′

2 = |π(n)|” The fundamental reason why
such an approach can work is that in any node of the recursion tree, there is at most a
single incomplete group to keep track of. Note that this fact crucially depends on each call
(x1, x2, i, k) only considering partitions into groups of sizes between x1 and x2. We still need
to describe the transitions for general calls (x1, x2, i, k) given the newly added parameter k.
The formal details will following below, but in rough lines, the call for N− creates a new
group; i.e., k′ = 1; while the call for N+ keeps the currently open one; i.e., k′ = k; the
exception comes when |π(i)| = x2, in which case the call for N− adds to the same group,
possibly closing the group; i.e., k′ = (k + 1) (mod x2); and no call for N+ is generated.

▶ Theorem 3. Deciding whether a wonderful partition exists and computing one if so can be
achieved in O(n5) time.

Proof. We show how to solve the decision version. Constructing a wonderful partition for
yes-instances can be subsequently achieved by standard techniques. We proceed by dynamic
programming (DP). Define the Boolean DP array dp[x1, x2, i, k] for 1 ≤ x1 ≤ x2 ≤ n,

0 ≤ i ≤ n and 0 ≤ k < x2, with the meaning dp[x1, x2, i, k] = 1 if and only if there exists
a wonderful partition of agents in N(x1, x2, i) using only groups of sizes in [x1, x2] and
assuming that we start with an incomplete group of current size k which has to have final size
x2. Naturally, if k = 0 this means starting with no partially filled group. The final answer
will be available at the end in dp[1, n, n, 0]. To compute the DP table, we use the following
recurrence relations and base cases (using a hyphen as stand-in for any group size):

1. dp[−,−, 0, 0] = 1;
2. dp[−,−, 0, k] = 0 if k ̸= 0;
3. dp[x1, x2, i, k] = dp[x1, x2, i− 1, k] if ℓi /∈ [x1, x2];
4. dp[x1, x2, i, k] =

∨min(x2,ri)
x=ℓi

Fx if ℓi ∈ [x1, x2], where

Fx :=
{

dp[x1, x2, i− 1, (k + 1) mod x2] x = x2
dp[x1, x, i− 1, 1 mod x] ∧ dp[x + 1, x2, i− 1, k] x < x2.

The first three cases are immediate from the definition of the DP. For the last case, we iterate
over x ∈ [ℓi, max(x2, ri)] which is agent i’s group size. There are two cases: if x = x2, then
we put i into the group of current size k and final size x2 that we assumed to have at our
disposal; this increases the size of the group by one, or completes it if k = x2 − 1; otherwise,
x < x2, and we recurse into partitioning agents in N(x1, x, i− 1) into groups of sizes between
x1 and x, and N(x + 1, x2, i − 1) into groups of sizes between x + 1 and x2. For the first
call, this generates a new group of size 1 (unless x = 1), while for the latter, this keeps the
previously open group of current size k and final size x2 that we assumed to have.

3 Strictly speaking, this should be (x′
1, x′

2, i′, k′) = (1, |π(n)|, n − 1, 1 mod |π(n)|). We omit this detail
from the higher-level exposition to improve readability.

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:9

To compute the DP table in an acyclic fashion, it suffices to iterate through i in ascending
order. The complexity of the approach is O(n5) because there are O(n4) states and computing
the value for states of type (4) requires iterating through O(n) values of x. ◀

2.2 Extensions
Using a similar DP approach, we can solve the following natural extension.

HIKING-MIN-DELETE

Input: A set N of agents and for each agent i ∈ N two numbers ℓi ≤ ri such that
Si = {ℓi, . . . , ri}.
Problem: Compute a set N ′ ⊆ N of minimum size such that N \N ′ has a wonderful
partition. Output N ′ and a wonderful partition of N \N ′.

The approach relies on essentially the same recursive reasoning as before, except that
we now also consider the possibility of “ignoring” an agent i and hence recursing with
(x′

1, x′
2, i′, k′) = (x1, x2, i− 1, k). Moreover, instead of making the recursion return whether

a wonderful partition is possible or not, we make it return the minimum number of agents
that need to be removed so that this is possible. In light of this, the “ignore i” recursive call
incurs a cost of 1 removed agent. The details are formalized in the following.

▶ Theorem 4. HIKING-MIN-DELETE is solvable in O(n5) time.

Proof. We use a similar approach as in the proof of Theorem 3. As before, it suffices to show
how to compute the minimum size of N ′, as computing such a set N ′ and a corresponding
wonderful partition for N \N ′ follow by standard techniques. Define the integer-valued DP
array dp[x1, x2, i, k] for 1 ≤ x1 ≤ x2 ≤ n, 0 ≤ i ≤ n and 0 ≤ k < x2, with the meaning
that dp[x1, x2, i, k] contains the minimum number of agents which need to be removed from
N(x1, x2, i) so that the remaining agents admit a wonderful partition into groups of sizes in
[x1, x2] assuming that we start with an incomplete group of current size k which has to have
final size x2. Note that, in contrast to the previous DP, the value 0 corresponds to removing
no agents, which is the best possible outcome, while previously it corresponded to the need
for removing at least one agent. The final answer will be available at the end in dp[1, n, n, 0].
To compute the DP table, we use the following recurrence relations and base cases:

1. dp[−,−, 0, 0] = 0;
2. dp[−,−, 0, k] =∞ if k ̸= 0;
3. dp[x1, x2, i, k] = dp[x1, x2, i− 1, k] if ℓi /∈ [x1, x2];
4. dp[x1, x2, i, k] = min{1 + dp[x1, x2, i− 1, k], X} if ℓi ∈ [x1, x2], where

X := min{Fx | ℓi ≤ x ≤ min(x2, ri)}

and

Fx :=
{

dp[x1, x2, i− 1, (k + 1) mod x2] x = x2
dp[x1, x, i− 1, 1 mod x] + dp[x + 1, x2, i− 1, k] x < x2.

The reasoning stays largely the same as before, with the only difference being the new
1 + dp[x1, x2, i− 1, k] term, which accounts for discarding agent i and incurring a cost of 1
corresponding to removing an agent. ◀

ICALP 2024

42:10 Solving Woeginger’s Hiking Problem

Another subtly distinct natural variant of Woeginger’s Hiking Problem is the following:

HIKING-MAX-SATISFIED

Input: A set N of agents and for each agent i ∈ N two numbers ℓi ≤ ri such that
Si = {ℓi, . . . , ri}.
Problem: Compute a partition π of N maximizing the number of agents approving
of their coalition sizes.

Indeed, HIKING-MAX-SATISFIED and HIKING-MIN-DELETE are related, in that if N ′ is a
minimum-size set of agents such that N \N ′ has a wonderful partition, then it is also possible
to satisfy at least n− |N ′| agents in a partition of N. This is because agents in N ′ can be
put together in a group in tandem to a wonderful partition of N \N ′ to get a partition of N

with at least n− |N ′| satisfied agents. However, it might be possible to satisfy more than
n− |N ′| agents if unsatisfied agents do not all go into the same group.

Hence, solving this variant of the problem introduces new challenges that require further
insight. Let us fix a number k and ask whether it is possible to satisfy at least |N | − k

agents. If the answer is affirmative, we also want a partition achieving this. To solve
HIKING-MAX-SATISFIED, we will binary search for the smallest 0 ≤ k ≤ |N | for which the
answer is affirmative, call it k∗, and then recover a partition for k∗. It remains to show how
to solve the problem for a fixed value of k. To do so, we need to adjust the angle from which
we look at the problem. In particular, instead of looking for a partition satisfying at least k

agents, we will look for a size-k subset N ′ ⊆ N (corresponding to k agents which we do not
require to be satisfied) such that (N \N ′) ∪Dk admits a wonderful partition, where Dk is a
set of k dummy agents happy with any group size. Intuitively, k agents are replaced with
dummies not minding their group size. Because it is always no worse to remove agents from
N in contrast to removing agents from Dk, it is enough to ask to remove exactly k agents
from N ∪Dk such that the remaining agents admit a wonderful partition. Checking whether
this is possible and finding a corresponding wonderful partition reduces to the following more
general problem, which we will show can be solved in polynomial time.

HIKING-X-DELETE

Input: A set N of agents, for each agent i ∈ N two numbers ℓi ≤ ri such that
Si = {ℓi, . . . , ri}, and also a number 0 ≤ x ≤ |N |.
Problem: Compute a set N ′ ⊆ N of size x such that N \N ′ has a wonderful partition
(or report impossibility). Output N ′ and a wonderful partition of N \N ′.

We now show how to solve HIKING-X-DELETE in polynomial time. We can once again
try to attack the problem recursively with our usual state (x1, x2, i, k). Just like we did for
HIKING-MIN-DELETE, we will have recursive calls for ignoring an agent; i.e., adding it to
the set N ′ of removed agents.4 In order to ensure that exactly x agents are removed, we add
another variable r to the state of the recursion: (x1, x2, i, k, r), where r is how many agents
we want to remove. The top-level call will be invoked with r = x. The recursive approach
for HIKING-MIN-DELETE now translates relatively swiftly to the new setting. The main
difference is the case where a state of the form (x1, x2, i, k,−) with ℓi ∈ [x1, x2] performs
two recursive calls to (x1, x, i − 1, 1,−) and (x + 1, x2, i − 1, k,−). In particular, say the

4 Note that previously we used N ′ to denote N(x1, x2, i) when discussing the recursive algorithm for the
original hiking problem. We do not keep this notation here.

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:11

state is (x1, x2, i, k, r), then what should be the values r′ and r′′ for the two recursive calls?
Intuitively, there is no fixed answer, since it could be that we remove more agents in the first
or in the second call. In fact, we have full freedom over how to split the r removals across
the two calls as long as r′ + r′′ = r. Hence, we will iterate over all options 0 ≤ r′ ≤ r and set
r′′ = r−r′, and in each case call recursively with (x1, x, i−1, 1, r′) and (x+1, x2, i−1, k, r′′).

▶ Theorem 5. HIKING-X-DELETE is solvable in O(n7) time.

Proof. As before, it suffices to check feasibility, a solution can then be recovered using
standard techniques. Define the Boolean DP array dp[x1, x2, i, k, r] for 1 ≤ x1 ≤ x2 ≤ n,

0 ≤ i ≤ n, 0 ≤ k < x2, and 0 ≤ r ≤ x with the meaning that dp[x1, x2, i, k, r] = 1 if and only
if there exist r agents that can be removed from N(x1, x2, i) such that the remaining agents
admit a wonderful partition into groups of sizes in [x1, x2] assuming that we start with an
incomplete group of current size k which has to have final size x2. At the end, dp[1, n, n, 0, x]
will be 1 if and only if it is possible to remove x agents from N such that the remaining
agents admit a wonderful partition. To compute the DP table, we use the following:

1. dp[−,−, 0, 0, 0] = 1;
2. dp[−,−, 0, k, r] = 0 if k ̸= 0 or r ̸= 0;
3. dp[x1, x2, i, k, r] = dp[x1, x2, i− 1, k, r] if ℓi /∈ [x1, x2];
4. dp[x1, x2, i, k, r] = dp[x1, x2, i−1, k, r−1, d]∨X5 if ℓi ∈ [x1, x2], where X :=

∨min(x2,ri)
x=ℓi

Fx

and

Fx :=
{

dp[x1, x2, i− 1, (k + 1) mod x2, r] x = x2∨r
r′=0

(
dp[x1, x, i− 1, 1 mod x, r′] ∧ dp[x + 1, x2, i− 1, k, r − r′]

)
x < x2.

We explain the four cases separately: for cases (1) and (2) we have i = 0; i.e., the set of
yet-to-be-considered agents is empty, so k = r = 0 is necessary and sufficient for the table to
store a 1, signifying feasibility. As before, case (3) straightforwardly ignores an agent that is
not part of the current set of active agents.

The more interesting case is case (4). First, the dp[x1, x2, i− 1, k, r− 1] term corresponds
to removing an agent, and it only applies to r ≥ 1, as in the footnote. This decreases r by 1
since we have just removed an agent. The X :=

∨min(x2,ri)
x=ℓi

Fx term is more involved. The
selection of ℓi ≤ x ≤ min(x2, ri) corresponds to selecting the size of the group that agent i

will be part of. For x = x2, the analysis is similar to our previous DPs. For x < x2, on the
other hand, we moreover split the r agent removals into r′ removals for the first recursive
call and r′′ = r − r′ for the second. Whether both calls are successful is represented by the
expression dp[x1, x, i− 1, 1 mod x, r′] ∧ dp[x + 1, x2, i− 1, k, r′′].

As before, to compute the DP table in an acyclic fashion, it suffices to iterate through i

in ascending order. The complexity is O(n7) because there are O(n5) states and computing
the value for states of type (4) requires iterating through O(n2) values for (x, r). ◀

Using the above binary search approach we get a solution for HIKING-MAX-SATISFIED that
runs only a O(log n) factor slower than the runtime for HIKING-X-DELETE.

▶ Theorem 6. HIKING-MAX-SATISFIED is solvable in O(n7 log n) time.

5 Only X for r = 0 as otherwise we would be referring to the invalid value r = −1.

ICALP 2024

42:12 Solving Woeginger’s Hiking Problem

2.3 Further Weighted Extensions
If not all agents can be satisfied, HIKING-MIN-DELETE and HIKING-MAX-SATISFIED

provide two ways of implementing a compromise. However, both treat unsatisfied/de-
leted agents equally. In certain settings, it might be more desirable to take into account the
different entitlements of the agents; i.e., one agent might have been dissatisfied with their
group size during the previous edition of the workshop, or another agent might be the senior
invited speaker. One modelling option is to assign a weight wi to each agent i ∈ N and
weigh the dissatisfied/deleted agents accordingly leading to the following variants:

HIKING-MIN-DELETE-WEIGHTED

Input: A set N of agents and for each agent i ∈ N two numbers ℓi ≤ ri such that
Si = {ℓi, . . . , ri}. Moreover, for each agent i ∈ N, a number wi ∈ R≥0.

Problem: Compute a set N ′ ⊆ N minimizing
∑

i∈N ′ wi such that N \ N ′ has a
wonderful partition. Output N ′ and a wonderful partition of N \N ′.

HIKING-MAX-SATISFIED-WEIGHTED

Input: A set N of agents and for each agent i ∈ N two numbers ℓi ≤ ri such that
Si = {ℓi, . . . , ri}. Moreover, for each agent i ∈ N, a number wi ∈ R≥0.

Problem: Compute a partition π of the agents such that if Nπ is the set of agents
approving of their coalition sizes in π, then

∑
i∈Nπ

wi is maximized.

Our dynamic programs, with minor modifications which we sketch next, can also be used
to solve the weighted variants. We begin with HIKING-MIN-DELETE-WEIGHTED.

▶ Theorem 7. HIKING-MIN-DELETE-WEIGHTED is solvable in O(n5) time.

Proof Sketch. In the proof of Theorem 4, we defined the DP as follows: “dp[x1, x2, i, k]
contains the minimum number of agents which need to be removed from N(x1, x2, i) so that
the remaining agents admit a wonderful partition into groups of sizes in [x1, x2] assuming
that we start with an incomplete group of current size k which has to have final size x2”.
To handle weights, this is replaced by “dp[x1, x2, i, k] contains the minimum total weight of
agents which need to be removed from N(x1, x2, i) so that the remaining agents admit a
wonderful partition into groups of sizes in [x1, x2] assuming that we start with an incomplete
group of current size k which has to have final size x2”. The rest of the proof stays the
same, with the minor adaptation that the fourth recurrence relation accordingly becomes
dp[x1, x2, i, k] = min{wi + dp[x1, x2, i− 1, k], X}, where previously wi = 1 has been used. ◀

To get a similar result for HIKING-MAX-SATISFIED-WEIGHTED following our previous proof
outline, we first define a weighted analogue of HIKING-X-DELETE, as follows.

HIKING-X-DELETE-MIN-WEIGHT

Input: A set N of agents, for each agent i ∈ N two numbers ℓi ≤ ri such that
Si = {ℓi, . . . , ri}, and also a number 0 ≤ x ≤ |N |. Moreover, for each agent i ∈ N, a
number wi ∈ R≥0.

Problem: Compute a set N ′ ⊆ N of size x minimizing
∑

i∈N ′ wi such that N \N ′

has a wonderful partition (or report impossibility). Output N ′ and a wonderful
partition of N \N ′.

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:13

▶ Theorem 8. HIKING-X-DELETE-MIN-WEIGHT is solvable in O(n7) time.

Proof Sketch. In the proof of Theorem 5 for the unweighted version, we defined a boolean
DP as follows: “dp[x1, x2, i, k, r] = 1 if and only if there exist r agents that can be removed
from N(x1, x2, i) such that the remaining agents admit a wonderful partition into groups
of sizes in [x1, x2] assuming that we start with an incomplete group of current size k which
has to have final size x2”. For the current problem, we want the states to signal not only
possibility/impossibility but also what is the minimum total weight of those r removed
agents. Hence, we replace this definition by “dp[x1, x2, i, k, r] is the minimum total weight of
r agents that can be removed from N(x1, x2, i) such that [...] (or ∞ if impossible)”. The rest
of the reasoning stays analogous with minor changes: the values 0, 1 in the base cases become
∞, 0, disjunctions (∨) are replaced by “min” and conjunctions (∧) by +. Finally, the fourth
recurrence relation becomes dp[x1, x2, i, k, r] = min{wi + dp[x1, x2, i− 1, k, r − 1, d], X}. ◀

We make use of Theorem 8 to show the following.

▶ Theorem 9. HIKING-MAX-SATISFIED-WEIGHTED is solvable in O(n8) time.

Proof Sketch. In the proof of Theorem 6 for the unweighted case, we were looking for the
largest k such that there exists a size-k subset N ′ ⊆ N (corresponding to k agents which
we do not require to be satisfied) such that (N \ N ′) ∪ Dk admits a wonderful partition,
where Dk was a set of k dummy agents happy with any group size. We then argued
that we could relax to asking for a size-k subset N ′ ⊆ (N ∪Dk) such that (N ∪Dk) \N ′

admits a wonderful partition, which can be done using our polynomial-time algorithm for
HIKING-X-DELETE-MIN in Theorem 5. This time, we follow a similar approach, except
without binary search: we will try out all values 0 ≤ k ≤ n and ask for a size-k subset
N ′ ⊆ (N ∪Dk) such that (N ∪Dk) \N ′ admits a wonderful partition. For a fixed k, out
of all abiding N ′, we want one minimizing

∑
i∈N ′ wi. Such an N ′ can be computed using

our O(n7) algorithm for HIKING-X-DELETE-MIN-WEIGHT in Theorem 8. We do this for
all values 0 ≤ k ≤ n and take the minimum-weight solution, adding an extra O(n) factor, so
the overall complexity is O(n8). ◀

3 Single-Peaked Preferences Over Group Sizes

We extend the binary version of the hiking problem by considering single-peaked preferences
over group sizes. We assume that each agent i has an ideal group size si and the cost of
agent i if placed in a group of size s is given by a cost function dependent on si and s.

Given these ingredients, minimizing the social cost can be done in two variants: a utilitarian
variant and an egalitarian variant. In the utilitarian variant, the goal is to minimize the total
cost of the agents, while in the egalitarian version we want the cost of the agent having the
highest cost to be as low as possible, i.e., we replace summation with maximum. We are
also interested in a variation of the problem where the hike organizers consider it reasonable
to exclude at most α of the agents from the hike, the goal becoming to select the agents to
remove and then to organize a hike with best social cost among the remaining agents.6 Note
that we assume that each excluded agent has a cost of 0. This is different from assuming
that excluded agents have to hike alone, which is covered by the case α = 0.

More formally, we assume that each agent i ∈ N announces an ideal coalition size si;
i.e., agent i would be most happy when belonging to a coalition of size si. Moreover, given

6 The original problem can be seen to be the α = 0 case.

ICALP 2024

42:14 Solving Woeginger’s Hiking Problem

some cost function cost : N2 → R agent i incurs a cost of cost(si, s) if placed in a coalition
of size s ∈ [n] and a cost equal to 0 if not participating in the hike. We assume c to be
monotone, i.e., cost(si, s) ≤ cost(si, s′) if si ≤ s ≤ s′ or s′ ≤ s ≤ si. Notice that since
agent i incurs a disutility equal to cost(si, s), where si is the most preferred size of i, the
monotonicity condition on cost(·, ·) implies that the preferences of agents are single-peaked
w.r.t. the natural ordering. We refer to the next section for a formal definition. Given a
partition π, we recall that π(i) denotes the coalition of agent i; if i is not participating in the
hike we write π(i) = ⊥. Furthermore, by slight abuse of notation, for an agent i we write
i ∈ π to indicate that agent i takes part in the hike; i.e., π(i) ̸= ⊥.

The utilitarian social cost of a partition π is given by cost(π) =
∑

i∈π cost(si, |π(i)|) while
the egalitarian social cost is given by cost(π) = maxi∈π cost(si, |π(i)|). The goal is, therefore,
to find a partition minimizing the social cost under the constraint |{i | π(i) = ⊥}| ≤ α, or
equivalently, |{i | i ∈ π}| ≥ n−α, where α is the maximum number of agents that are allowed
to not participate in the hike. Without loss of generality, we assume that s1 ≤ . . . ≤ sn.

We begin by proving two structural properties of optimal solutions that will allow us
to greatly reduce the space of solutions that have to be considered, hence enabling us later
to give efficient dynamic programming algorithms computing optimal partitions for both
the utilitarian and the egalitarian settings. For the utilitarian social cost we need a mild
assumption on the cost function cost.

▶ Definition 10. A function cost : N2 → R fulfills the quadrangle inequality if and only if

cost(a, c) + cost(b, d) ≤ cost(a, d) + cost(b, c) for all a ≤ b ≤ c ≤ d.

Analogously, it fulfills the reverse quadrangle inequality if and only if

cost(a, c) + cost(b, d) ≤ cost(a, d) + cost(b, c) for all a ≥ b ≥ c ≥ d.

Note that quadrangle inequality and reverse quadrangle inequality are equivalent if cost
is symmetric, i.e. cost(a, b) = cost(b, a). Moreover, notice that if cost(·, ·) is the Euclidean
distance on R or cost(a, b) = |b − a|k for any k ≥ 1, then it satisfies both aforementioned
quadrangle inequalities. The first observation that our approach will hinge upon is that it is
enough to consider size-monotonic partitions.

▶ Definition 11 (Size-Monotonicity). A partition π is size-monotonic if for any two agents
i, j ∈ π, with i < j, it holds that |π(i)| ≤ |π(j)|.

Roughly speaking, there are optimal solutions where all participating agents with lower
preferred coalition sizes belong to smaller coalitions than agents with higher preferred sizes.
We show this fact in the following, proven in Appendix A.

▶ Lemma 12. The following properties hold:
(a) In the utilitarian setting, if cost(·, ·) is monotone and fulfills quadrangle inequality and

reverse quadrangle inequality, then there exists a size-monotonic optimal solution.
(b) In the egalitarian setting, if cost(·, ·) is monotone, then there exists a size-monotonic

optimal solution.

Finally, we will show that it is enough to consider size-monotonic partitions which are
additionally compact. The latter is defined as follows:

▶ Definition 13 (Compactness). A coalition C is compact if it is of the form C = {i, i +
1, . . . , j} for some i ≤ j. A solution π is compact if all coalitions C ∈ π are compact.

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:15

We now show that we can modify any optimal size-monotonic partition so that it is size-
monotonic and compact, as follows. See Appendix A for the proof.

▶ Lemma 14. There exists an optimal partition which is size-monotonic and compact.

With the above observations, we now know that it is enough to give an efficient algorithm
to compute the best size-monotonic and compact solution. We do so in the following. In
fact, our algorithm will only directly leverage compactness.7 To begin, for any two agents
i ≤ j define c(i, j) to be the social cost induced by agents i, i + 1, . . . , j when forming the
coalition {i, i + 1, . . . , j}. In particular, c(i, j) =

∑j
k=i cost(sk, j − i + 1) in the utilitarian

case, and similarly with summation replaced by maximum in the egalitarian case. With
this definition in place, note that selecting the best compact solution π with at most α

agents not taking part in the hike amounts to selecting compact non-intersecting coalitions
C1, . . . , Cℓ where Ck = {ak, ak + 1, . . . , bk − 1, bk}, such that

∑ℓ
k=1(bk − ak + 1) ≥ n − α,

and the sum/maximum of c(a1, b1), . . . , c(aℓ, bℓ) is minimized. Without loss of generality
we can assume that b1 < a2, b2 < a3, . . . , bℓ−1 < aℓ, i.e., we assume that the coalitions are
sorted by index in increasing order. Before giving the actual algorithm, we note that, to get
the best efficiency possible, we will need that the values c(i, j), for all pairs (i, j) with i ≤ j,
can be computed in total time O(n2) as a preprocessing step. We show this now.

▶ Lemma 15. All values c(i, j) for i ≤ j can be computed in total time O(n2).

Proof. We will compute the values separately for each value of j − i. In particular, for each
0 ≤ ℓ < n we will compute all values c(i, i + ℓ) for 1 ≤ i ≤ n − ℓ in linear time. To do
this, for a fixed ℓ, note the contribution of agent k to the c-values that it counts into is
precisely cost(sk, ℓ+1). Therefore, the values [c(i, i+ ℓ)]1≤i≤n−ℓ that we want to compute are
aggregate queries over a sliding window of length ℓ+1 over the sequence [cost(sk, ℓ+1)]1≤k≤n.

Depending on the utilitarian/egalitarian goal, the aggregate can be either summation or
maximum, but in either case, all the n− ℓ aggregates can be computed in linear time using
standard sliding window techniques. ◀

We are now ready to present our algorithm. We construct a weighted directed acyclic graph
G corresponding to the problem instance, as follows. We are given a source node s = (0, 0)
and a target node t = (n + 1, ∗). For the remaining vertices, we have one vertex for each
pair (i, j) with 1 ≤ i ≤ n + 1 and 0 ≤ j ≤ α. Intuitively, vertex (i, j) has the meaning “agent
1 ≤ i ≤ n + 1 is the next one to consider8 and so far we have excluded 0 ≤ j ≤ α agents from
the hike. The source s is connected with a directed edge towards (1, 0) and such an edge has
weight 0, while t is reachable from the node (n + 1, j), for each 0 ≤ j ≤ α, via an edge of
weight 0. For the remaining edges, we add the following two types:

We add a weighted edge (i, j) 0−→ (i + 1, j + 1) for all 1 ≤ i ≤ n and 0 ≤ j < α. Intuitively,
these correspond to excluding agent i from the hike.
We add a weighted edge (i, j) c(i,k)−−−→ (k + 1, j) for all 1 ≤ i ≤ k ≤ n and 0 ≤ j ≤ α,.
Intuitively, these correspond to adding a new coalition C = {i, i + 1, . . . , k} to the hike,
incurring a cost of c(i, k).

The next lemma establishes how paths in G correspond to compact solutions to our problem
and its statement immediately follows by the construction of G.

7 However, size-monotonicity is crucial in showing that considering compact solutions is enough.
8 Indeed, there is a “dummy” agent n + 1 signifying that there are no more agents to consider.

ICALP 2024

42:16 Solving Woeginger’s Hiking Problem

▶ Lemma 16. There is a bijection from compact solutions to s-t paths in G. Moreover, the
social cost of a compact solution is the cost of the associated path, defined as either the sum
or the maximum of the costs of its constituent edges.

As a result, computing an optimal compact solution amounts to finding a minimum cost s-t
path in G; this gives us a polynomial time algorithm for computing an optimal solution.

▶ Theorem 17. A hike with minimum social cost can be computed in time O(n2(α + 1)).

Proof. By Lemma 14 it is enough to compute the best hike among compact solutions. To
do so, we construct the graph G corresponding to the problem instance. Subsequently, we
compute an s-t path in G of minimum cost. This can be done in time linear in the size of
the graph, as the graph is acyclic. Correctness is assured by Lemma 16. For the time bound,
note that the number of vertices in the graph is O(n(α + 1)) and the number of edges is
O(n2(α + 1)). Moreover, edge costs can be computed in constant time after O(n2) total
precomputation by Lemma 15. Overall, we get a time complexity of O(n2(α + 1)). ◀

4 Wonderful Partitions Versus Minimum Egalitarian Partitions

So far we assumed each agent has an ideal group size, a peak, and there exists a cost function
cost(x, y) which expresses the cost that any agent having ideal group size x incurs if placed in
a coalition of size y. More broadly, agents may express their disutility with any cost function,
that is, for each agent i there is a mapping costi : N → R simply expressing the cost agent i

incurs when assigned to a coalition of a certain size.
In this section, we are interested in finding the minimum egalitarian cost achievable by any

partition and we denote by MIN-EG the problem of computing this value. In Section 3, we
have already shown that whenever costi(s) = cost(si, s), MIN-EG can be computed in O(n2).
In what follows, we exploit the connection between WONDERFUL-PARTITION and MIN-EG

delineating the tractability of the latter with respect to the properties of the cost functions.
First, we show a general connection between WONDERFUL-PARTITION and MIN-EG.

▶ Proposition 18. WONDERFUL-PARTITION and MIN-EG are polynomial time equivalent.

Proof. A WONDERFUL-PARTITION instance can be transformed into a MIN-EG instance
by setting for each agent a cost function costi where costi(j) = 1 if agent i does not approve
coalition size j and costi(j) = 0, otherwise. Hence, the WONDERFUL-PARTITION instance
is a yes instance if MIN-EG is 0 and it is a no instance, otherwise.

If we have a MIN-EG instance, there are at most n2 distinct values costi(j). Assume
there are k distinct such values and let us sort them from the lowest to the highest, namely,
c1 < . . . < ck. For each value ch, we can define a WONDERFUL-PARTITION instance where
a coalition of size j ∈ [n] is approved by agent i if and only if costi(j) ≤ ch. We can therefore
determine if there exists a partition having egalitarian welfare of at most ch by solving
WONDERFUL-PARTITION on the just described instance. Clearly, if there exists a partition
having an egalitarian cost of at most c then there exists a partition having an egalitarian cost
of value at most c′ for each c ≤ c′. Conversely, if there is no partition having an egalitarian
welfare of at most c then there is no partition having an egalitarian cost of at most c′′, for
each 0 ≤ c′′ ≤ c. Therefore, we can use binary search among the possible values c1, . . . , ck to
find the minimum value c such that a partition having an egalitarian welfare of at most c

exists. This solves MIN-EG. ◀

▶ Corollary 19. If WONDERFUL-PARTITION can be decided in time T (n), then MIN-EG

can be solved in time O((n2 + T (n)) · log2 n).

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:17

Given the polynomial time equivalence between these two problems, it follows that
solving MIN-EG is in general computationally intractable because WONDERFUL-PARTITION

is NP-hard as soon as the approval sets are not intervals [17].
Nevertheless, there exists a special class of costs that can be solved using our dynamic

programming approach for WONDERFUL-PARTITION described in Section 2.1. Such a class
is a generalization of what we discussed in Section 3: Namely, each agent has an ideal group
size si, and the closer the coalition size is to si the lower the cost. We align to the Hedonic
Games literature calling this property naturally single-peakedness.9

▶ Definition 20. A cost function cost : N → R≥0 is said to be naturally single-peaked if
there exists an ideal group size, a peak, p ∈ [n] such that h < k ≤ p or h > k ≥ p imply that
cost(k) < cost(h) holds.

We observe that the reduction from MIN-EG to WONDERFUL-PARTITION described
in Proposition 18 produces an interval instance in the case of naturally single-peaked cost
functions. With this, we obtain the following theorem.

▶ Theorem 21. MIN-EG for naturally single-peaked costs can be solved in time O(n5 log2 n).

Proof. We can use a similar idea as in the polynomial time reduction from MIN-EG to
WONDERFUL-PARTITION, as described in Proposition 18. In MIN-EG we are looking for
a partition that minimizes the cost of the agent having the highest disutility. Here, since
we consider naturally single-peaked preferences, the disutility of an agent i is decreased
the closer the size of their assigned group |π(i)| is to their ideal group size si (the peak
value of agent i). We can now fix, for a value c, some distances ∆, ∆′ such that costi(s) ≤
c for each s ∈ [si − ∆, si + ∆′]. Therefore, we define that any agent i approves their
assigned group size if it is in the interval [si − ∆, si + ∆′]; this defines the instance of
WONDERFUL-PARTITION-INTERVALS to be solved for determining if there exists a partition
of having an egalitarian cost of at most c.

Now, applying Corollary 19 and Theorem 3, the statement follows. ◀

Notice that the computational complexity guaranteed by Theorem 17 is way more efficient
than the one of Theorem 21. However, the former holds true for very specific naturally
single-peaked costs, while the latter establishes the tractability of MIN-EG whenever agents
have naturally single-peaked costs.

5 Conclusions

We resolved an open problem posed a decade ago by Gerhard Woeginger by giving a
polynomial-time algorithm via establishing a connection to a version of rectangle stabbing,
and investigated several interesting variants. We give a complete picture on the tractability
of the Hiking Problem itself and show that maximizing the number of satisfied participants
or deleting the minimal number such that the remaining participants admit a wonderful
partition is polynomial time solvable. The tractability of both the original decision-, and the
according optimization problems is crucially enabled by the existence of optimal solutions
that exhibit simple and intuitive structural properties, fueling the algorithmic solutions based
on Dynamic Programming. Last but not least, we employ our solution to efficiently compute

9 We say naturally as general single-peakedness may be defined w.r.t. any fixed ordering of coalition sizes.
In our setting, we consider cost functions that are single-peaked w.r.t. the natural ordering 1, . . . , n.

ICALP 2024

42:18 Solving Woeginger’s Hiking Problem

a partition that maximizes the egalitarian welfare for anonymous naturally single-peaked
Hedonic Games. We note that our approach also works for general interval instances, that
is, for a given permutation σ of numbers 1, . . . , n, intervals are defined over the numbers
in order of the permutation, i.e., σ(1), . . . , σ(n). This extends our results from naturally
single-peaked to general single-peaked cost functions. The problem of minimizing utilitarian
cost for general single-peaked cost functions remains open.

References
1 José Alcalde and Pablo Revilla. Researching with whom? Stability and manipulation. Journal

of Mathematical Economics, 40(8):869–887, 2004. doi:10.1016/j.jmateco.2003.12.001.
2 Haris Aziz, Florian Brandl, Felix Brandt, Paul Harrenstein, Martin Olsen, and Dominik Peters.

Fractional hedonic games. ACM Transactions on Economics and Computation, 7(2):1–29,
2019. doi:10.1145/3327970.

3 Haris Aziz, Felix Brandt, and Paul Harrenstein. Pareto optimality in coalition formation.
Games and Economic Behavior, 82:562–581, 2013. doi:10.1016/j.geb.2013.08.006.

4 Haris Aziz, Felix Brandt, and Hans Georg Seedig. Computing desirable partitions in additively
separable hedonic games. Artificial Intellgence, 195:316–334, 2013. doi:10.1016/J.ARTINT.
2012.09.006.

5 Haris Aziz, Serge Gaspers, Joachim Gudmundsson, Julián Mestre, and Hanjo Täubig. Welfare
maximization in fractional hedonic games. In International Joint Conference on Artificial
Intelligence, IJCAI 2015, pages 461–467. AAAI Press, 2015. URL: http://ijcai.org/
Abstract/15/071.

6 Haris Aziz, Paul Harrenstein, Jérôme Lang, and Michael J. Wooldridge. Boolean hedonic games.
In Principles of Knowledge Representation and Reasoning, KR 2016, pages 166–175. AAAI
Press, 2016. URL: http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12869.

7 Haris Aziz and Raul Savani. Hedonic games. In Handbook of Computational Social Choice.
Handbook of Computational Social Choice. Cambridge University Press, 2016.

8 Coralio Ballester. Np-completeness in hedonic games. Games and Economic Behavior,
49(1):1–30, 2004. doi:10.1016/j.geb.2003.10.003.

9 Suryapratim Banerjee, Hideo Konishi, and Tayfun Sönmez. Core in a simple coalition formation
game. Social Choice and Welfare, 18:135–153, 2001. doi:10.1007/s003550000067.

10 Nadja Betzler, Arkadii Slinko, and Johannes Uhlmann. On the computation of fully
proportional representation. Journal of Artificial Intelligence Research, 47:475–519, 2013.
doi:10.1613/JAIR.3896.

11 Davide Bilò, Vittorio Bilò, Pascal Lenzner, and Louise Molitor. Tolerance is necessary for
stability: Single-peaked swap schelling games. In International Joint Conference on Artificial
Intelligence, IJCAI 2022, pages 81–87, 2022. doi:10.24963/IJCAI.2022/12.

12 Duncan Black. On the rationale of group decision-making. Journal of political economy,
56(1):23–34, 1948. doi:10.1086/256633.

13 Niclas Boehmer and Edith Elkind. Individual-based stability in hedonic diversity games.
In AAAI Conference on Artificial Intelligence, AAAI 2020, pages 1822–1829, 2020. doi:
10.1609/AAAI.V34I02.5549.

14 Anna Bogomolnaia and Matthew O. Jackson. The stability of hedonic coalition structures.
Games and Economic Behavior, 38(2):201–230, 2002. doi:10.1006/GAME.2001.0877.

15 Felix Brandt, Markus Brill, Edith Hemaspaandra, and Lane A. Hemaspaandra. Bypassing
combinatorial protections: Polynomial-time algorithms for single-peaked electorates. Journal
of Artificial Intelligence Research, 53:439–496, 2015. doi:10.1613/JAIR.4647.

16 Robert Bredereck, Edith Elkind, and Ayumi Igarashi. Hedonic diversity games. In International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, pages 565–573,
2019. URL: http://dl.acm.org/citation.cfm?id=3331741.

https://doi.org/10.1016/j.jmateco.2003.12.001
https://doi.org/10.1145/3327970
https://doi.org/10.1016/j.geb.2013.08.006
https://doi.org/10.1016/J.ARTINT.2012.09.006
https://doi.org/10.1016/J.ARTINT.2012.09.006
http://ijcai.org/Abstract/15/071
http://ijcai.org/Abstract/15/071
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12869
https://doi.org/10.1016/j.geb.2003.10.003
https://doi.org/10.1007/s003550000067
https://doi.org/10.1613/JAIR.3896
https://doi.org/10.24963/IJCAI.2022/12
https://doi.org/10.1086/256633
https://doi.org/10.1609/AAAI.V34I02.5549
https://doi.org/10.1609/AAAI.V34I02.5549
https://doi.org/10.1006/GAME.2001.0877
https://doi.org/10.1613/JAIR.4647
http://dl.acm.org/citation.cfm?id=3331741

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:19

17 Andreas Darmann, Edith Elkind, Sascha Kurz, Jérôme Lang, Joachim Schauer, and Gerhard
Woeginger. Group activity selection problem with approval preferences. International Journal
of Game Theory, 47(3):767–796, 2018. doi:10.1007/S00182-017-0596-4.

18 Jacques H Dreze and Joseph Greenberg. Hedonic coalitions: Optimality and stability. Econo-
metrica: Journal of the Econometric Society, pages 987–1003, 1980. doi:10.2307/1912943.

19 Edith Elkind, Piotr Faliszewski, and Piotr Skowron. A characterization of the single-peaked
single-crossing domain. Social Choice and Welfare, 54(1):167–181, 2020. doi:10.1007/
S00355-019-01216-3.

20 Edith Elkind and Michael J. Wooldridge. Hedonic coalition nets. In International Joint
Conference on Autonomous Agents and Multiagent Systems AAMAS 2009, pages 417–424,
2009. URL: https://dl.acm.org/citation.cfm?id=1558070.

21 Guy Even, Retsef Levi, Dror Rawitz, Baruch Schieber, Shimon Shahar, and Maxim Sviridenko.
Algorithms for capacitated rectangle stabbing and lot sizing with joint set-up costs. ACM
Transactions on Algorithms, 4(3):34:1–34:17, 2008. doi:10.1145/1367064.1367074.

22 Tobias Friedrich, Pascal Lenzner, Louise Molitor, and Lars Seifert. Single-peaked jump
schelling games. In International Symposium on Algorithmic Game Theory, SAGT 2023, pages
111–126, 2023. doi:10.1007/978-3-031-43254-5_7.

23 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. 1979.

24 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

25 Martin Hoefer, Sigal Oren, Roger Wattenhofer, and Giovanna Varricchio. Computational Social
Dynamics (Dagstuhl Seminar 22452). Dagstuhl Reports, 12(11):28–44, 2023. URL: https:
//drops.dagstuhl.de/opus/volltexte/2023/17834, doi:10.4230/DagRep.12.11.28.

26 Jan Karel Lenstra, Franz Rendl, Frits Spieksma, and Marc Uetz. In memoriam Gerhard
Woeginger. Journal of Scheduling, 25(5):503–505, 2022. doi:10.1007/s10951-022-00748-4.

27 Martin Olsen. Nash stability in additively separable hedonic games and community structures.
Theory of Computing Systems, 45:917–925, 2009. doi:10.1007/s00224-009-9176-8.

28 Dominik Peters. Complexity of hedonic games with dichotomous preferences. In AAAI
Conference on Artificial Intelligence, AAAI 2016, pages 579–585. AAAI Press, 2016. doi:
10.1609/AAAI.V30I1.10047.

29 Renate Schmid, 2011. © by Mathematisches Forschungsinstitut Oberwolfach gGmbH [Online;
accessed November 01, 2023]. Published under CC-BY-SA 2.0. URL: https://opc.mfo.de/
detail?photo_id=14972.

30 Toby Walsh. Uncertainty in preference elicitation and aggregation. In AAAI Conference on
Artificial Intelligence, AAAI 2007, pages 3–8, 2007. URL: http://www.aaai.org/Library/
AAAI/2007/aaai07-001.php.

31 Gerhard Woeginger. Core stability in hedonic coalition formation. In International Conference
on Current Trends in Theory and Practice of Computer Science, SOFSEM 2013, pages 33–50.
Springer, 2013. doi:10.1007/978-3-642-35843-2_4.

32 Lan Yu, Hau Chan, and Edith Elkind. Multiwinner elections under preferences that are
single-peaked on a tree. In International Joint Conference on Artificial Intelligence, IJCAI
2013, pages 425–431, 2013. URL: http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/
paper/view/6777.

A Proofs Omitted From Section 3

▶ Lemma 12. The following properties hold:
(a) In the utilitarian setting, if cost(·, ·) is monotone and fulfills quadrangle inequality and

reverse quadrangle inequality, then there exists a size-monotonic optimal solution.
(b) In the egalitarian setting, if cost(·, ·) is monotone, then there exists a size-monotonic

optimal solution.

ICALP 2024

https://doi.org/10.1007/S00182-017-0596-4
https://doi.org/10.2307/1912943
https://doi.org/10.1007/S00355-019-01216-3
https://doi.org/10.1007/S00355-019-01216-3
https://dl.acm.org/citation.cfm?id=1558070
https://doi.org/10.1145/1367064.1367074
https://doi.org/10.1007/978-3-031-43254-5_7
https://doi.org/10.1016/0304-3975(85)90224-5
https://drops.dagstuhl.de/opus/volltexte/2023/17834
https://drops.dagstuhl.de/opus/volltexte/2023/17834
https://doi.org/10.4230/DagRep.12.11.28
https://doi.org/10.1007/s10951-022-00748-4
https://doi.org/10.1007/s00224-009-9176-8
https://doi.org/10.1609/AAAI.V30I1.10047
https://doi.org/10.1609/AAAI.V30I1.10047
https://opc.mfo.de/detail?photo_id=14972
https://opc.mfo.de/detail?photo_id=14972
http://www.aaai.org/Library/AAAI/2007/aaai07-001.php
http://www.aaai.org/Library/AAAI/2007/aaai07-001.php
https://doi.org/10.1007/978-3-642-35843-2_4
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6777
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6777

42:20 Solving Woeginger’s Hiking Problem

Proof. We begin with property (a), i.e. the utilitarian case. Assume towards a contradiction
that no optimal solution is size-monotonic. Let π be an optimal solution minimizing the
number of pairs (i, j) of agents in π such that i < j and |π(i)| > |π(j)|. We call such pairs
bad. Since π is not size-monotonic, at least one bad pair exists and let (i, j) be such a bad
pair. For ease of notation, denote |π(i)| and |π(j)| by a and b, respectively. Consider the
alternative solution π′ which is identical to π except that i and j swap coalitions. Note that
π′ has strictly fewer bad pairs than π. Now, consider

cost(π)− cost(π′) = cost(si, a) + cost(sj , b)− cost(si, b)− cost(sj , a).

If we could show that this quantity is non-negative, then we would get that π′ is also an
optimal solution, but one having strictly less bad pairs, contradicting minimality. We will
now show exactly this. Since si ≤ sj and b < a, it follows that we only need to consider the
following six cases.

Case 1a: si ≤ sj ≤ b < a.

The inequality cost(si, a) + cost(sj , b) ≥ cost(si, b) + cost(sj , a) follows immediately from the
quadrangle inequality.

Case 2a: si ≤ b ≤ sj ≤ a.

From quadrangle inequality we get cost(si, a) + cost(b, b) ≥ cost(si, b) + cost(b, a), i.e. the
triangle inequality. By monotonicity we conclude

cost(si, a) + cost(sj , b) ≥ cost(si, a) + cost(b, b) ≥ cost(si, b) + cost(b, a)
≥ cost(si, b) + cost(sj , a).

Case 3a: si ≤ b < a ≤ sj.

By monotonicity we have cost(si, a) ≥ cost(si, b) and cost(sj , b) ≥ cost(sj , a). The inequality
follows immediately.

Case 4a: b ≤ si ≤ sj ≤ a.

We use again monotonicity to observe cost(si, a) ≥ cost(sj , a) and cost(sj , b) ≥ cost(si, b).
This obtains the desired result.

Case 5a: b ≤ si ≤ a < sj.

We use monotonicity and reverse quadrangle inequality to get

cost(si, a) + cost(sj , b) ≥ cost(a, a) + cost(sj , b) ≥ cost(sj , a) + cost(a, b)
≥ cost(sj , a) + cost(si, b).

Case 6a: b < a ≤ si ≤ sj.

This case follows directly from the definition of the reverse quadrangle property. This finishes
the proof for the utilitarian case.

Now, to tackle property (b), the egalitarian case, the argument remains similar, except
that now we need to show that max {cost(si, a), cost(sj , b)} ≥ max {cost(sj , a), cost(si, b)}.
We again use the case distinction as above but we only need to assume monotonicity of cost.

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:21

Case 1b: si ≤ sj ≤ b < a.

By monotonicity we have

max {cost(si, a), cost(sj , b)} = cost(si, a) ≥ max {cost(si, b), cost(sj , a)}

Case 2b: si ≤ b ≤ sj ≤ a.

We observe

max {cost(si, a), cost(sj , b)} ≥ cost(si, a) ≥ max {cost(si, b), cost(sj , a)} .

Case 3b: si ≤ b < a ≤ sj.

By monotonicity we have cost(si, a) ≥ cost(si, b) and cost(sj , b) ≥ cost(sj , a). The inequality
follows immediately.

Case 4b: b ≤ si ≤ sj ≤ a.

We use again monotonicity to observe cost(si, a) ≥ cost(sj , a) and cost(sj , b) ≥ cost(si, b).
This obtains the desired result.

Case 5b: b ≤ si ≤ a < sj.

We get

max {cost(si, a), cost(sj , b)} ≥ cost(sj , b) ≥ max {cost(sj , a), cost(si, b)} .

Case 6b: b < a ≤ si ≤ sj.

The last case can be obtained by

max {cost(si, a), cost(sj , b)} = cost(sj , b) ≥ max {cost(sj , a), cost(si, b)} .

This concludes the proof both for the utilitarian as well as the egalitarian case. ◀

▶ Lemma 14. There exists an optimal partition which is size-monotonic and compact.

Proof. Let π∗ be an optimal size-monotonic partition, which, by Lemma 12, must exist. If
partition π∗ happens to be compact, then we are done. So, we can assume that partition π∗

is not compact. Since compactness is violated, there exists a coalition C ∈ π∗, such that
min{h | h ∈ C} = i and max{h | h ∈ C} = j, and there exists an agent k ̸∈ C such that
i < k < j. For agent k there are only two options:

(i) agent k participates in the hike, i.e., we have π∗(k) = C ′ ̸= C. By size-monotonicity it
follows that |π∗(i)| = |π∗(j)| = |π∗(k)|;

(ii) agent k does not participate in the hike, i.e., π∗(k) = ⊥.
We will now perform transformation steps to partition π∗ to ensure compactness without
sacrificing size-monotonicity or optimality. Step 1 will remove compactness violations of
type (i) and Step 2 will deal with type-(ii)-violations.

Step 1: Partition π∗ contains coalitions of certain sizes. Given a coalition size q ∈ [n], we
rearrange the coalitions of size q in π∗ in the following way: Let C1, C2, . . . , Cℓ be the coalitions
in π∗ of size q, and let Aq =

⋃
1≤i≤ℓ Ci = {i1, i2, . . . , iq·ℓ} be the set of agents that are in a

coalition of size q in partition π∗. Moreover, we assume that the agents in Aq are sorted in

ICALP 2024

42:22 Solving Woeginger’s Hiking Problem

increasing order of their ideal coalition sizes, i.e., we assume that si1 ≤ si2 ≤ · · · ≤ siq·ℓ
holds.

We now create ℓ many new coalitions of size q by reassigning the agents in Aq as follows:
the first q agents i1, . . . , iq are assigned to coalition C∗

1 , the next q agents iq+1, . . . , i2q are
assigned to coalition C∗

2 , and so on. The last q agents iq·(ℓ−1)+1, . . . , iq·ℓ are then assigned to
coalition C∗

ℓ . Then we modify partition π∗ by replacing the coalitions C1, . . . , Cℓ with the
coalitions C∗

1 , . . . , C∗
ℓ . Note that after this replacement, partition π∗ is still size-monotonic,

since the respective coalition size stays the same for every agent in Aq. We iterate this
replacement procedure for each coalition size q. We end up with a modified partition π∗ that
is still size-monotonic. furthermore, by construction, since we reassigned agents that are in
coalitions having the same sizes in increasing order of their ideal coalition sizes, we cannot
have compactness violations of type (i) in the final partition π∗ at the end of Step 1.

Step 2: We will remove type-(ii)-violations of compactness one by one. For keeping
track of our progress, we consider the following measure. Given a coalition C, the diameter
of C is defined as diam(C) = max{h | h ∈ C} −min{h | h ∈ C}. Moreover, the diameter of
a partition π is diam(π) =

∑
C∈π diam(C).

Assume that there is a coalition C ∈ π∗ with min{h | h ∈ C} = i and max{h | h ∈ C} = j,
that there exists an agent k ̸∈ C such that i < k < j, and that we have π∗(k) = ⊥. There
are two cases, depending on agent k’s ideal coalition size sk. If sk ≥ |C|, then we will change
partition π∗ by swapping agents k and j, i.e., agent j will be excluded from the hike and
agent k will be assigned to coalition C instead. If sk < |C|, then we swap agents i and k.
Since si ≤ sk ≤ sj , none of those swaps can increase the social cost of partition π∗, i.e.,
partition π∗ stays optimal, and the partition π∗ stays size-monotonic. Moreover, in both
cases the diameter of partition π∗ is strictly decreased. This implies that after finitely many
such exchange steps, this process must stop and all type-(ii)-violations are resolved.

It remains to show that the exchanges done in Step 2 do not create new type-(i)-violations
of compactness. We show this via a proof by contradiction. Assume that for some coalition
C ∈ π∗ with min{h | h ∈ C} = i and max{h | h ∈ C} = j we have exchanged agent k

with agent j in Step 2 and this creates a new type-(i)-violation of compactness, that is,
there is some agent k′ with i < k′ < j′, where j′ = max{h | h ∈ C} after the exchange.
However, also before the exchange of j and k, we had that i < k′ < j′ < j holds, which
implies that agent k′ already was a type-(i)-violation of compactness. This contradicts that
a new type-(i)-violation was introduced. The argument for the case where agents i and k are
exchanged is completely analogous.

Thus, by first performing Step 1 to remove all type-(i)-violations of compactness and
then performing Step 2 to remove all type-(ii)-violations of compactness we will eventually
transform the optimal size-monotonic partition π∗ into an optimal partition that this still
size-monotonic but also compact. ◀

B Hardness for Approval Sets of Size 2

We have shown that whenever the approval set of each agent is an interval, solving
WONDERFUL-PARTITION is possible in polynomial time. Clearly, whenever all agents
have approval sets of size 1, the existence of a wonderful partition is polynomial-time de-
cidable as well: This can also be seen as a special case of interval instances (although it
can also be solved directly, as explained in the introduction). In general, the approval sets
are not necessarily intervals, and without any assumption on the structure of the approval
sets, the WONDERFUL-PARTITION problem is NP-complete even if the size of each approval
set is at most 3. This follows from the hardness proof of Woeginger [31] and the fact that

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:23

EXACT COVER BY 3-SETS is NP-hard (see below for the definition).10 Darmann et al. [17]
establish an even stronger version of this result for the case where all approval sets are of
size at most 2.

In this section, we precisely map the boundary of tractability of WONDERFUL-PARTITION

with respect to the approval set size. While the case with approval set size 1 can be solved
in polynomial time, we now show NP-completeness if the approval sets have size exactly 2.
In particular, we will show the following:

▶ Theorem 22. Deciding WONDERFUL-PARTITION is NP-complete, even if the approval
sets are of size exactly 2.

We first observe that WONDERFUL-PARTITION when restricted to the case of approval
sets of size exactly 2, is equivalent to a graph-theoretic problem we call ORIENTATION. For
this, we write d+(v) to denote the in-degree of a vertex v ∈ V in a directed graph G⃗ = (V, E⃗).

ORIENTATION

Input: An undirected graph G = (V, E) with V = [n], admitting parallel edges but
no self-loops.
Question: Does there exist an orientation of the edges G⃗ such that d+(i) ≡ 0 (mod i)
for each i ∈ V ?

We now show that the two problems are equivalent.
Indeed, an instance of WONDERFUL-PARTITION where all agents approve exactly two

sizes can be transformed into an equivalent instance of ORIENTATION by representing each
agent approving sizes i, j ∈ [n] by an undirected edge (i, j). Orienting this edge to either
node i or node j models that the respective agent is part of a partition of size i or j,
respectively. If d+(i) = k · i for some k ≥ 0 then this means that k partitions with size i will
be created. Conversely, an instance of ORIENTATION with m edges can be transformed to
an instance of WONDERFUL-PARTITION with m agents, where each edge (i, j) corresponds
to an agent with approval set {i, j}.

Using the equivalence between WONDERFUL-PARTITION and ORIENTATION, we will
prove Theorem 22 by reducing EXACT COVER BY 3-SETS (X3C) to Orientation. X3C
is well-known to be NP-hard [23] and it is defined as follows:

EXACT COVER BY 3-SETS (X3C)
Input: A ground set X = {x1, . . . , x3k} and a collection C of 3-element subsets
(triples) of X.
Question: Does there exist a subset C′ ⊆ C such that

⋃
C∈C′ C = X and |C′| = k,

i.e., C′ is an exact cover of X?

Proof of Theorem 22. Let us assume that |C| = q and let us enumerate all the triples as
C1, . . . , Cq. For simplicity, we fix p = 3k. Notice that any element x in the ground set can
be contained in at most

(
p−1

2
)

< p2 triples. Let us denote by δ the highest number of such
occurrences. Our reduction is as follows:

10 In fact, as a curiosity, even if every element of the ground set appears in exactly three triples and any
two triples overlap in at most one element [24].

ICALP 2024

42:24 Solving Woeginger’s Hiking Problem

For each element in the ground set xi ∈ X, for i ∈ [p], we create an element gadget which
consists of nodes i · δ and i · δ + 1, respectively. Such two nodes are connected by i · δ − 1
many edges. We may refer to these edges as element-(xi)-edges. Moreover, we call node
i · δ the element-(xi)-node.
For each triple Cj ∈ C, for j ∈ [q], we create a triple gadget which consists of two nodes
having value p · δ + 4j and p · δ + 4j − 3, respectively. Such two nodes are connected by
p · δ + 4j − 3 many edges. We will refer to these edges as triple-(Cj)-edges. Moreover, we
call node p · δ + 4j the triple-(Cj)-node.
Finally, for each xi ∈ X and Cj ∈ C such that xi ∈ Cj , we connect the nodes i · δ and
p · δ + 4j with one edge.

Clearly, the reduction is polynomial. Moreover, the constructed graph is well-defined (there
is no overlap in gadgets corresponding to different compounds). See Figure 3 for an example.

p · δ + 4j − 3 p · δ + 4j

Cj-node

i · δ

xi-node

i · δ + 1

p · δ + 4j′

Cj′ -node

p · δ + 4j′ − 3

Cj-gadget

Cj′ -gadget

xi-gadget

p · δ + 4j − 3

1

p · δ + 4j′ − 3

δ · i − 1

Figure 3 Gadgets – On the left, above (resp. below) the triple gadget for Cj (resp. Cj′); on the
right, the element gadget for xi. The picture shows the set-up of the gadgets if xi ∈ Cj but xi /∈ Cj′ .
Labels on edges represent the number of parallel edges between the two nodes.

The idea is to determine the exact cover by means of the orientation of edges connecting
elements and triple gadgets. Specifically, whenever a triple Cj is in the covering set, the
three edges connecting the gadget Cj with the corresponding element gadgets must all be
oriented towards the corresponding element nodes. In turn, if Cj is not in the covering set,
the orientation of these edges must be towards the triple-(Cj)-node.

With this, it follows that whenever an exact cover exists, an orientation of G exists as
well. In particular, for any triple Cj in the covering set we can orient all edges incident to
the triple-(Cj)-node away from the triple-(Cj)-node, and in the opposite direction, otherwise.
Moreover, every element edge is directed towards the corresponding element node.

It remains to show that whenever an orientation exists, an exact cover exists as well. The
rest of this proof is established by the following observations:
1. In any feasible orientation, the element edges are always oriented toward the element

node. Otherwise, the orientation will not be feasible since the non-element node endpoint
of every element edge has a label that is higher than the number of its incident edges.

2. Denote by ti the number of triples containing xi, the element-(xi)-node has i · δ − 1 + ti

incident edges. By (1), the in-degree in a feasible orientation is at least i · δ − 1. Since
ti ≤ δ, in a feasible orientation of G the in-degree of i · δ is exactly its value. As a
consequence, there is only one incoming edge from triple gadgets, and therefore each
element is covered by exactly one triple.

3. Last but not least, in a feasible orientation, a triple cannot be only partially used.
Specifically, for a triple Cj with triple-(Cj)-node v either all edges incident to v must

A. Constantinescu, P. Lenzner, R. Reiffenhäuser, D. Schmand and G. Varricchio 42:25

be all oriented to v or all away from v. This is ensured by the fact that in any feasible
orientation the in-degree of a triple Cj is either 0 or p · δ + 4j. ◀

ICALP 2024

	1 Introduction
	1.1 Related Work
	1.2 Model
	1.3 Our Contribution

	2 Efficient Algorithm for Woeginger's Hiking Problem, and Extensions
	2.1 Dynamic Program for Woeginger's Hiking Problem
	2.2 Extensions
	2.3 Further Weighted Extensions

	3 Single-Peaked Preferences Over Group Sizes
	4 Wonderful Partitions Versus Minimum Egalitarian Partitions
	5 Conclusions
	A Proofs Omitted From sec:distanceMin
	B Hardness for Approval Sets of Size 2

