FNF-BFT: Exploring Performance Limits of BFT Protocols

ZETA AVARIKIOTI, ETH Ziirich

LIOBA HEIMBACH, ETH Ziirich
ROLAND SCHMID, ETH Ziirich
LAURENT VANBEVER, ETH Ziirich
ROGER WATTENHOFER, ETH Ziirich
PATRICK WINTERMEYER, ETH Ziirich

We introduce FNF-BFT, a parallel-leader byzantine fault-tolerant state-machine replication protocol for the partially synchronous model
with theoretical performance bounds during synchrony. By allowing all replicas to act as leaders and propose requests independently,
FNF-BFT parallelizes the execution of requests. Leader parallelization distributes the load over the entire network — increasing
throughput by overcoming the single-leader bottleneck. We further use historical data to ensure that well-performing replicas are
in command. FNF-BFT’s communication complexity is linear in the number of replicas during synchrony and thus competitive
with state-of-the-art protocols. Finally, with FNF-BFT, we introduce the first BFT protocol with performance guarantees in stable
network conditions under truly byzantine attacks. A prototype implementation of FNF-BFT outperforms (state-of-the-art) HotStuff’s

throughput, especially as replicas increase, showcasing FNF-BFT’s significantly improved scaling capabilities.

Additional Key Words and Phrases: State machine replication, consensus, byzantine fault tolerant, parallel leaders, performance

optimization

1 INTRODUCTION
1.1 Motivation

In state machine replication (SMR) protocols, distributed replicas aim to agree on a sequence of client requests in the
presence of faults. To that end, SMR protocols rely strongly on another primitive of distributed computing, consensus.
For protocols to maintain security under attack from malicious actors, consensus must be reached even when the
replicas are allowed to send arbitrary information, namely under byzantine failures. The protocols that offer these
guarantees, i.e., are resilient against byzantine failures while continuing system operation, are known as byzantine
fault-tolerant (BFT) protocols.

The first practical BFT system, PBFT [10], was introduced more than two decades ago and has since sparked the
emergence of numerous BFT systems [16, 19, 29]. However, even today, BFT protocols do not scale well with the number
of replicas, making large-scale deployment of BFT systems a challenge. Often, the origin of this issue stems from the
single-leader bottleneck: most BFT protocols rest the responsibility of executing client requests on a single leader instead
of distributing it amongst replicas [27]. In such systems, the sole leader’s hardware easily becomes overburdened with
its duty as the central communication point of message flow.

Recently, protocols tackling the single-leader bottleneck through parallelization emerged demonstrating staggering
performance increases over state-of-the-art sequential-leader protocols [17, 22, 27]. In the same fashion as most of their

single leader counterparts, these works only consider non-malicious faults for the performance analysis. However,

Authors’ addresses: Zeta Avarikioti, zetavar@ethz.ch, ETH Ziirich; Lioba Heimbach, hlioba@ethz.ch, ETH Ziirich; Roland Schmid, roschmi@ethz.ch, ETH
Ziirich; Laurent Vanbever, lvanbever@ethz.ch, ETH Ziirich; Roger Wattenhofer, wattenhofer@ethz.ch, ETH Ziirich; Patrick Wintermeyer, patricwi@ethz.
ch, ETH Ziirich.

2 Avarikioti et al.

malicious attacks may lead to significant performance losses that are not evaluated. While these systems exhibit
promising system performance with simple faults, they fail to lower-bound their performance in the face of malicious
attacks from byzantine replicas.

In this work, we propose FAST'N’FAIR-BFT (FNF-BFT), a parallel-leader BFT protocol. FNF-BFT circumvents the
common single-leader bottleneck by utilizing parallel leaders to distribute the weight amongst all system replicas —
achieving a significant performance increase over sequential-leader systems. FNF-BFT scales well with the number of
replicas and preserves high throughput even under arbitrarily malicious attacks from the byzantine replicas.

To establish this ability of our protocol, we define a new performance property, namely byzantine-resilient performance,
which encapsulates the ratio between the best-case and worst-case throughput of a BFT protocol, i.e., the effective
utilization. Specifically, we bound this ratio to be constant, meaning that the throughput of a protocol under byzantine
faults is lower-bounded by a constant fraction of the best-case throughput where no faults are present. We show that
FNF-BFT achieves byzantine-resilient performance with a ratio of 16/27 while maintaining safety and liveness. The
analysis of FNF-BFT is conducted in the partially synchronous communication model, meaning that a known bound
A on message delivery holds after some unknown global stabilization time (GST). We further evaluate our protocol’s
efficiency by analyzing the amortized authenticator complexity after GST, similarly to HotStuff [29].

Finally, we provide a prototype implementation of FNF-BFT to demonstrate its scalability. Our implementation
is based on state-of-the-art Hostuff protocol [29]. FNF-BFT outperforms Hostuff’s throughput by a factor rapidly
increasing with the number of replicas, indicating remarkable improvement on scalability, while exhibiting faster

average performance.

1.2 Related Work

Lamport et al. [20] first discussed the problem of reaching consensus in the presence of byzantine failures. Following its
introduction, byzantine fault tolerance was initially studied in the synchronous network setting [12, 13, 24]. Concurrently,
the impossibility of deterministically reaching consensus in the asynchronous setting with a single replica failure
was shown by Fischer et al. [15]. Dwork et al. [14] proposed the concept of partial synchrony and demonstrated the
feasibility of reaching consensus in partially synchronous networks. While the presented protocol always ensures
safety, liveness relies on synchronous network conditions. During synchrony, the communication complexity of DSL is
O(n*) - making it unsuitable for deployment. In contrast to these works, FNF-BFT guarantees safety and liveness in
partial synchrony, while the communication complexity is only O(n).

Reaching consensus is needed to execute requests for state machine replication. Reiter [25, 26] introduced Rampart,
an early protocol tackling byzantine fault tolerance for state machine replication. Rampart excludes faulty replicas
from the group and replaces them with new replicas to make progress. Thus, Rampart relies on failure detection, which
cannot be accurate in an asynchronous system, as shown by Lynch [21]. FNF-BFT does not rely on failure detection.

With PBFT, Castro and Liskov [10] devised the first efficient protocol for state machine replication that tolerates
byzantine failures. The leader-based protocol requires O(n?) communication to reach consensus, as well as O(n>)
for leader replacement. While widely deployed, PBFT does not scale well when the number of replicas increases. The
quadratic complexity faced by the leader represents PBFT’s bottleneck [9]. While the PBFT implementation introduced
by Behl et al. [7, 8] is optimized for multi-cores, the complexity faced at the leader still presents the bottleneck of
the state-of-the-art implementation. In this work, we tackle this issue by introducing n parallel leaders that share the

weight, thus efficiently alleviating the single leader’s bottleneck.

FNF-BFT: Exploring Performance Limits of BFT Protocols 3

Kotla et al. [19] were the first to achieve O(n) complexity with Zyzzyva, an optimistic linear path PBFT. The
complexity of leader replacement in Zyzzyva remains O(n®), and safety violations were later exposed [1]. SBFT, devised
by Gueta et al. [16], is a recent leader-based protocol that achieves O(n) complexity and improves the complexity
of exchanging leaders to O(n?). While reducing the overall complexity, the single leader is the bottleneck for both
Zyzzyva and SBFT.

Developed by Yin et al. [29], leader-based HotStuff matches the O(n) complexity of Zyzzyva and SBFT. HotStuft
rotates the leader with every request and is the first to achieve O(n) for leader replacement. However, HotStuff offers
little parallelization, and experiments have revealed high complexity in practice [27]. While HotStuff’s pipeline design
offers an improvement over PBFT, its primary downside lies in the sequential proposal of requests and results in a lack
of parallelism. On the contrary, n parallel leaders propose requests simultaneously in FNF-BFT.

Mao et al. [22, 23] were the first to point out the importance of multiple leaders for high-performance state machine
replication with Mencius and BFT-Mencius. Mencius maps client requests to the closest leader, and in turn, requests
can become censored. However, no de-duplication measures are in place to handle the re-submission of censored client
requests. FNF-BFT addresses this problem by periodically rotating leaders over the client space.

Gupta et al. [17] recently introduced MultiBFT. MultiBFT is a protocol-agnostic approach to parallelize and improve
existing BFT protocols. While allowing multiple instances to each run an individual client request, the protocol requires
instances to unify after each request — creating a significant overhead. Additionally, MultiBFT relies on failure detection,
which is only possible in synchronous networks [21]. With FNF-BFT, we allow leaders to make progress independently
of each other without relying on failure detection.

Similarly, Stathakopoulou et al. [27] further investigated multiple leader protocols with Mir. Mir significantly improves
throughput in comparison to sequential-leader approaches. However, as Mir runs instances of PBFT on a set of leaders, it
incurs O(n?) complexity, as well as O(n?) complexity to update the leader set. We further expect Mir’s performance to
drop significantly in the presence of fully byzantine replicas, despite its high-throughput in the presence of crash failures.
Mir updates the leader set as soon as a single leader in the set stops making progress — allowing byzantine leaders to
repeatedly end epochs early. FNF-BFT, however, continues to make progress in the presence of unresponsive byzantine
leaders. We also show that the byzantine-resilient throughput is a constant fraction of the best-case throughput.

Byzantine resilience was initially explored by Clement et al. [11] who introduced Aardvark. Aardvark is an adaptation
of PBFT with frequent view-changes: a leader only stays in its position when displaying an increasing throughput level.
This first approach, however, comes with significant performance cuts in networks without failures. Parallel leaders
allow FNF-BFT to be byzantine-resilient without accepting significant performance losses in an ideal setting.

Byzantine resilience has further been studied since the introduction of Aardvark. Prime, proposed by Amir et al. [2, 3],
aims to maximize performance in malicious environments. Besides, adding delay constraints that further confine the
partially synchronous network model, Prime restricts its evaluation to delay attacks, i.e., the leader adds as much delay
as possible to the protocol. Similarly, Veronese et al. [28] only evaluated their proposed protocol, Spinning, in the
presence of delay attacks — not fully capturing possible byzantine attacks. Consequently, the maximum performance
degradation Spinning and Prime can incur under byzantine faults is at least 78% [5]. We analyze FNF-BFT theoretically
to capture the entire spectrum of possible byzantine attacks.

Aublin et al. [5] further explored the performance of BFT protocols in the presence of byzantine attacks with RBFT.
RBFT runs f backup instances on the same set of client requests as the master instance to discover whether the master

instance is byzantine. Thus, RBFT incurs quadratic communication complexity for every request. In this work, we

4 Avarikioti et al.

reduce the communication complexity to O(n) and further increase performance through parallelization — allowing

byzantine-resilience without the added burden of detecting byzantine leaders.

1.3 Our Contribution

To the best of our knowledge, we introduce the first multiple leader BFT protocol with performance guarantees in
stable network conditions under truly byzantine attacks, which we term FNF-BFT. Specifically, FNF-BFT is the first BFET

protocol that achieves all the following properties:

e Optimistic Performance: After GST, the best-case throughput is Q(n) times higher than the throughput of
sequential-leader protocols.

¢ Byzantine-Resilient Performance: After GST, the worst-case throughput of the system is at least a constant
fraction of its best-case throughput.

o Efficiency: After GST, the amortized authenticator complexity of reaching consensus is ©(n).

We achieve these properties by combining two key components. First, we enable all replicas to continuously act as
leaders in parallel to share the load of clients’ requests. Second, unlike other protocols, we do not replace leaders upon
failure but configure each leader’s load based on the leader’s past performance. With this combination, we guarantee a
fair distribution of request according to each replica’s capacity, which in turn results in fast processing of requests.

We further evaluate FNF-BFT’s performance with a prototype implementation demonstrating its significantly
improved scalability as well as its fast performance and high transaction throughput in comparison with state-of-the-art
protocol HotStuff [29].

The rest of the paper is structured as follows. We first define the model and the protocol goals (Section 2). Then, we
introduce the design of FNF-BFT (Section 3). Later, we present a security and performance analysis of our protocol

(Section 4). We conclude with an evaluation of FNF-BFT’s performance (Section 5).

2 THE MODEL
2.1 System model

The system consists of n = 3f + 1 authenticated replicas and a set of clients. We index replicas by i € [n] = {1,2,...,n}.
Throughout a protocol execution, at most f unique replicas in the system are byzantine, that is, instead of following the
protocol they are controlled by an adversary with full information on their internal state. All other replicas are assumed
to be correct, i.e., following the protocol. Byzantine replicas may exhibit arbitrary adversarial behavior, meaning they
can also behave like correct replicas. The adversary cannot intercept the communication between two correct replicas.

Any number of clients may be byzantine.

2.2 Communication Model

We assume a partially synchronous communication modelji.e., a known bound A on message transmission will hold
between any two correct replicas after some unknown global stabilization time (GST). We show that FNF-BFT is safe in
asynchrony, that is, when messages between correct replicas are assumed to arrive in arbitrary order after any finite

delay. We evaluate all other properties of the system after GST thus assuming a synchronous network.

FNF-BFT: Exploring Performance Limits of BFT Protocols 5

2.3 Cryptographic Primitives

We make the usual cryptographic assumptions: the adversary is computationally bounded, and cryptographically-secure
communication channels, computationally secure hash functions, (threshold) signatures, and encryption schemes exist.
Similar to other BFT algorithms [4, 16, 29], FNF-BFT makes use of threshold signatures. In a (I, n) threshold signature
scheme, there is a single public key held by all replicas and clients. Additionally, each replica u holds a distinct private
key allowing to generate a partial signature o;,(m) of any message m. Any set of [distinct partial signatures for the
same message, {oy(m) | u € U, |U| = k} can be combined (by any replica) into a unique signature o(m). The combined
signature can be verified using the public key. We assume that the scheme is robust, i.e., any verifier can easily filter out

invalid signatures from malicious participants. In this work, we use a threshold [= 2f + 1.

2.4 Authenticator Complexity

Message complexity has long been considered the main throughput-limiting factor in BFT protocols [16, 29]. In practice,
however, the throughput of a BFT protocol is limited by both its computational footprint (mainly caused by cryptographic
operations), as well as its message complexity. Hence, to assess the performance and efficiency of FNF-BFT, we adopt a
complexity measure called authenticator complexity [29].

An authenticator is any (partial) signature. We define the authenticator complexity of a protocol as the number of
all computations or verifications of any authenticator done by replicas during the protocol execution. Note that the
authenticator complexity also captures the message complexity of a protocol if, like in FNF-BFT, each message can be
assumed to contain at least one signature. Unlike [29], where only the number of received signatures is considered,
our definition allows to capture the load handled by each individual replica more accurately. Note that authenticator
complexities according to the two definitions only differ by a constant factor. We only analyze the authenticator
complexity after GST, as it is impossible for a BFT protocol to ensure deterministic progress and safety at the same time

in an asynchronous network [15].

2.5 Protocol Overview

The FNF-BFT protocol implements a state machine (cf. Section 2.6) that is replicated across all replicas in the system.
Clients broadcast requests to the system. Given client requests, replicas decide on the order of request executions and
deliver commit-certificates to the clients.

Our protocol moves forward in epochs. In an epoch, each replica u is responsible for ordering a set of up to Cy
client requests that are independent of all requests ordered by other replicas in the epoch. Every replica in the system
simultaneously acts as both a leader and a backup to the other leaders. The number of assigned client requests C,, is
based on u’s past performance as a leader. During the epoch-change, a designated replica acting as primary: (a) ensures
that all replicas have a consistent view of the past leader and primary performance, (b) deduces non-overlapping
sequence numbers for each leader, and (c) assigns parts of the client space to leaders.

An epoch-change occurs whenever requested by more than two-thirds of the replicas. When seeking an epoch-change,
a replica immediately stops participating in the previous epoch. The primary in charge of the epoch-change is selected
through periodic rotation based on performance history. Replicas request an epoch-change if: (a) all replicas u have
exhausted their C, requests, (b) a local timeout is exceeded, or (c) enough other replicas request an epoch-change.

Hence, epochs have bounded-length.

6 Avarikioti et al.

2.6 Protocol Goals

FNF-BFT achieves scalable and byzantine fault-tolerant state machine replication (SMR). At the core of SMR, a group
of replicas decide on a growing log of client requests. Clients are provided with cryptographically secure certificates

which prove the commitment of their request. Fundamentally, the protocol ensures:

(1) Safety: If any two correct replicas commit a request with the same sequence number, they both commit the
same request.

(2) Liveness: If a correct client broadcasts a request, then every correct replica eventually commits the request.

Thus, FNF-BFT will eventually make progress, and valid client requests cannot be censored. Additionally, FNF-BFT
guarantees low overhead in reaching consecutive consensus decisions. Unlike other protocols limiting the worst-case
efficiency for a single request, we analyze the amortized authenticator complexity per request after GST. We find this to

be the relevant throughput-limiting factor:
(3) Efficiency: After GST, the amortized authenticator complexity of reaching consensus is ©(n).
Furthermore, FNF-BFT achieves competitive performance under both optimistic and pessimistic adversarial scenarios:

(4) Optimistic Performance: After GST, the best-case throughput is Q(n) times higher than the throughput of
sequential-leader protocols.
(5) Byzantine-Resilient Performance: After GST, the worst-case throughput of the system is at least a constant

fraction of its best-case throughput.

Hence, unlike many other BFT systems, FNF-BFT guarantees that byzantine replicas cannot arbitrarily slow down the

system when the network is stable.

3 FNF-BFT

FNF-BFT executes client requests on a state machine replicated across a set of n replicas. We advance FNF-BFT in a
succession of epochs - identified by monotonically increasing epoch numbers. Replicas in the system act as leaders
and backups concurrently. As a leader, a replica is responsible for ordering client requests within its jurisdiction. Each
leader v is assigned a predetermined number of requests C, to execute during an epoch. To deliver a client request, v
starts by picking the next available sequence number and shares the request with the backups. Leader v must collect
2f + 1 signatures from replicas in the leader prepare and commit phase (Algorithm 1) to commit the request. We employ
threshold signatures for the signature collection - allowing us to achieve linear authenticator complexity for reaching
consensus on a request. Additionally, we use low and high watermarks for each leader to represent a range of request
sequence numbers that each leader can propose concurrently to boost individual leaders’ throughput.

Each epoch has a unique primary responsible for the preceding epoch-change, i.e., moving the system into the epoch.
The replica elected as primary changes with every epoch and its selection is based on the system’s history. A replica
calls for an epoch-change in any of the following cases: (a) the replica has locally committed requests for all sequence
numbers available in the epoch, (b) the maximum epoch time expired, (c) the replica has not seen sufficient progress, or
(d) the replica has observed at least f + 1 epoch-change messages from other replicas.

FNF-BFT generalizes PBFT [10] to the n leader setting. Additionally, we avoid PBFT’s expensive all-to-all communica-
tion during epoch operation, similarly to Linear-PBFT [16]. Throughout this section, we discuss the various components

of the protocol in further detail.

FNF-BFT: Exploring Performance Limits of BFT Protocols 7

3.1 Client

Each client has a unique identifier. A client ¢ requests the execution of an operation r by sending a (request, r, t, c)
to all leaders. Here, timestamp ¢ is a monotonically increasing sequence number used to order the requests from one
client. By using watermarks, we allow clients to have more than one request in flight. Client watermarks, low and high,
represent the range of timestamp sequence numbers which the client can propose concurrently. Thus, we require ¢ to be
within the low and high watermarks of client c. The client watermarks are advanced similarly to the leader watermarks
(cf. Section 3.6). Upon executing operation r, replica u responds to the client with (reply, e, d, u), where e is the epoch

number and d is the request digest (cf. Section 3.5)!. The client waits for f + 1 such responses from the replicas.

3.2 Sequence Number Distribution

We distribute sequence numbers to leaders for the succeeding epoch during the epoch-change. While we commit
requests from each leader in order, the requests from different leaders are committed independently of each other
in our protocol. Doing so allows leaders to continue making progress in an epoch, even though other leaders might
have stopped working. Otherwise, a natural attack for byzantine leaders is to stop working and force the system to an
epoch-change. Such attacks are possible in other parallel-leader protocols such as Mir [27].

To allow leaders to commit requests independently of each other, we need to allocate sequence numbers to all leaders
during the epoch-change. Thus, we must also determine the number of requests each leader is responsible for before
the epoch. The number of requests for leader v in epoch e is denoted by Cy(e). It can be computed deterministically by
all replicas in the network, based on the known history of the system (cf. Section 3.7).

When assigning sequence numbers, we first automatically yield to each leader v € [n] the sequence numbers of
the O, (e) existing hanging operations from previous epochs in the assigned bucket(s). The remaining C,(e) — Oy(e)
sequence numbers for each leader are distributed to them one after each other according to their ordering from the set
of available sequence numbers. Note that O, (e) cannot exceed Cy(e). For each leader v the assigned sequence numbers
are mapped to local sequence numbers 1y, 29, - - ., Cy(€)ye in epoch e. These sequence numbers are later used to

simplify checkpoint creation (cf. Section 3.6).

3.3 Hash Space Division

The request hash space is partitioned into buckets to avoid duplication. Each of these buckets is assigned to a single
leader in every epoch. We consider the client identifier to be the request input and hash the client identifier (h, = h(c))
to map requests into buckets. The hash space partition ensures that no two conflicting requests will be assigned to
different leaders?.

Thus, the requests served by different leaders are independent of each other. Additionally, the bucket assignment is
rotated round-robin across epochs, preventing request censoring. The hash space is portioned into m - n non-intersecting
buckets of equal size, where m € Z* is a configuration parameter. Each leader v is then assigned m,(e) buckets in
epoch e according to their load C,(e) (cf. Section 3.7). Leaders can only include requests from their active buckets.

When assigning buckets to leaders, the protocol ensures that every leader is assigned at least one bucket, as well

as distributing the buckets according to the load handled by the leaders. Precisely, the number of buckets leader v is

!Instead of committing client request independently, the protocol could easily be adapted to process client requests in batches - a standard BFT protocol
improvement [19, 27, 29].

2Note that in case the requests are transactions with multiple inputs, the hash space division is more challenging to circumvent double-spending attacks.
In such cases, we can employ well-known techniques [18, 30] with no performance overhead as long as the average number of transactions’ inputs
remains constant [6].

8 Avarikioti et al.

Cy(e)
Yue [n] Cu(e)

remaining buckets to the leaders — ensuring Y, ,,c[] mu(e) = m - n. The remaining buckets are allocated to leaders v
Co(e) Co(e)

v W om
Zue[n] Cule) Zue[n] Cu(e)
Note that the system will require a sufficiently long stability period for all correct leaders to be working at their

(m—=1)-n|+1+my(e), where my(e) € {0, 1} distributes the

assigned in epoch e is given by my(e) = {

(m-1)-n|l+1-

with the biggest value: {

capacity limit, i.e., C,(e) matching the performance of leader v in epoch e. Once correct leaders function at their capacity,
the number of buckets they serve matches their capacity. The hash buckets are distributed to the leaders through a
deterministic rotation such that each leader repeatedly serves each bucket under f + 1 unique primaries. This rotation
prevents byzantine replicas from censoring specific hash buckets. For the remaining paper, we assume that there are
always client requests pending in each bucket. Since we aim to optimize throughput, we consider this assumption

in-sync with our protocol goals.

3.4 Primary Rotation

While all replicas are tasked with being a leader at all times, only a single replica, the primary, initiates an epoch.
FNF-BFT assigns primaries periodically, exploiting the performance of good primaries and being reactive to network
changes. The primary rotation consists of two core building blocks. First, FNF-BFT repeatedly rotates through the 2f + 1
best primaries and thus exploits their performance. Second, the primary assignment ensures that FNF-BFT explores
every primary at least once within a sliding window. The sliding window consists of g € Z epochs, and we setg > 3f +1

to allow the exploration of all primaries throughout a sliding window. We depict a sample rotation in Figure 1.

replica u’s replica u
last turn re-evaluated

IIIIIIi AL RO T 0 IIIIiH

sliding window

Fig. 1. FNF-BFT primary rotation in a system with n = 10 replicas. In blue, we show epochs led by primaries elected based on their
performance. Epochs shown in yellow are led by replicas re-evaluated once their last turn as primary falls out of the sliding window.

Throughout the protocol, all replicas record the performance of each primary. We measure performance as the
number of requests successfully committed under a primary in an epoch. Performance can thus be determined during
the succeeding epoch-change by each replica (cf. Section 3.7). To deliver a reactive system, we update a replica’s primary
performance after each turn.

We rotate through the best 2f + 1 primaries repeatedly. After every 2f + 1 primaries, the best 2f + 1 primaries are
redetermined and subsequently elected as primary in order of the time passed since their last turn as primary. The
primary that has not been seen for the longest time is elected first. Cycling through the best primaries maximizes system
performance. Simultaneously, basing performance solely on a replica’s preceding primary performance strips byzantine
primaries from the ability to misuse a good reputation. Every so often, we interrupt the continuous exploitation of the
best 2f + 1 primaries to revisit replicas that fall out of the sliding window. If replica u’s last turn as primary occurred in
epoch e — g by the time epoch e rolls around, replica u would be re-explored as primary in epoch e. The exploration

allows us to re-evaluate all replicas as primaries periodically and ensures that FNF-BFT is reactive to network changes.

FNF-BFT: Exploring Performance Limits of BFT Protocols 9

Note that we start the protocol by exploring all primaries ordered by their identifiers. We would also like to point
out that only one primary can fall out of the sliding window at any time after the initial exploration. Thus, we always

know which primary will be re-evaluated.

3.5 Epoch Operation

To execute requests, we use a leader-based adaption of PBFT, similar to Linear-PBFT [16]. Threshold signatures are
commonly used to reduce the complexity of the backup prepare and commit phases of PBFT. The leader of a request is
used as a collector of partial signatures to create a (2f + 1, n) threshold signature in the intermediate stages of the backup
prepare and commit phases. We visualize the schematic of the message flow for one request led by replica 0 in Figure 2

and summarize the protocol executed locally by replicas to deliver a request proposed by leader v in Algorithm 1.

leader prepare backup prepare commit

X7 X7 X\
v

Fig. 2. Schematic message flow for one request.

—_

Leader prepare phase. Upon receiving a (request, r, t, ¢) from a client, each replica computes the hash of the client
identifier c. If the request falls into one of the active buckets belonging to leader v, v verifies (request,r, t,c) from
client c. The request is discarded, if (a) it has already been prepared, or (b) it is already pending. Once verified, leader v
broadcasts (pre-prepare, sn, e, h(r), v), where sn is the sequence number, e the current epoch, h(r) is the hash digest of
request r and v represents the leader’s signature. The cryptographic hash function A maps an arbitrary-length input to
a fixed-length output. We can use the digest h(r) as a unique identifier for a request r, as we assume the hash function

to be collision-resistant.

Backup prepare phase. A backup w accepts (pre-prepare, sn, e, h(r), v) from leader v, if (a) the epoch number matches
its local epoch number, (b) w has not prepared another request with the same sequence number sn in epoch e, (c) leader v
leads sequence number sn, (d) sn lies between the low and high watermarks of leader v, () r is in the active bucket of v,
and (f) r was submitted by an authorized client. Upon accepting (pre-prepare, sn, e, h(r),v), w computes d = h(sn||e||r)
where h is a cryptographic hash function. Additionally, w signs d by computing a verifiable partial signature o, (d).
Then w sends (prepare, sn, e, 04,(d)) to leader v. Upon receiving 2f prepare messages for sn in epoch e, leader v
forms a combined signature o(d) from the 2f prepare messages and its own signature. Leader v then broadcasts

(prepared-certificate, sn, e, o(d)) to all backups.

Commit phase. Backup w accepts the prepared-certificate and replies (commit, sn, e, o,y (0(d))) to leader v. After
collecting 2f commit messages, leader v creates a combined signature o(o(d)) using the signatures from the col-
lected commit messages and its own signature. Once the combined signature is prepared, v continues by broadcasting
(commit-certificate, sn, e, (o (d))). Upon receiving the commit-certificate, replicas execute r after delivering all preced-

ing requests led by v, and send replies to the client.

10 Avarikioti et al.

3.6 Checkpointing

Similar to PBFT [10], we periodically create checkpoints to prove the correctness of the current state. Instead of requiring
a costly round of all-to-all communication to create a checkpoint, we add an intermediate phase and let the respective
leader collect partial signatures to generate a certificate optimistically. Additionally, we expand the PBFT checkpoint
protocol to run for n parallel leaders.

For each leader v, we repeatedly create checkpoints to clear the logs and advance the watermarks of leader v whenever
the local sequence number sn, . . is divisible by a constant k € Z*. Recall that when a replica u delivers a request
for leader v with local sequence number sn, k., this implies that all requests led by v with local sequence number
lower than sn, . ;. have been locally committed at replica u. Hence, after delivering the request with local sequence

number sn, i, replica u sends (checkpoint, sn, ¢ . h(sn; o) W) to leader v. Here, sn; is the last checkpoint and

ek
h(sn; o) 1s the hash digest of the requests with sequence number sn,, in the range sn; ek

proceeds by collecting 2f + 1 checkpoint messages (including its own) and generates a checkpoint-certificate by creating

< sny < shy e k. Leader v

a combined threshold signature. Then, leader v sends the checkpoint-certificate to all other replicas. If a replica sees the
checkpoint-certificate, the checkpoint is stable and the replica can discard the corresponding messages from its logs, i.e.,
for sequence numbers belonging to leader v lower than sn,, .

We use checkpointing to advance low and high watermarks. In doing so, we allow several requests from a leader
to be in flight. The low watermark L, for leader v is equal to the sequence number of the last stable checkpoint, and
the high watermark is H, = L, + 2k. We set k to be large enough such that replicas do not stall. Given its watermarks,

leader v can only propose requests with a local sequence number between low and high watermarks.

3.7 Epoch-Change

At a high level, we modify the PBFT epoch-change protocol as follows: we use threshold signatures to reduce the
message complexity and extend the epoch-change message to include information about all leaders. Similarly to Mir [27],
we introduce a round of reliable broadcast to share information needed to determine the configuration of the next
epoch(s). In particular, we determine the load assigned to each leader in the next epoch, based on their past performance.
We also record the performance of the preceding primary. An overview of the epoch-change protocol can be found in

Algorithm 2, while a detailed description follows.

Calling epoch-change. Replicas call an epoch-change by broadcasting an epoch-change message in four cases:

(1) Replica u triggers an epoch-change in epoch e, once it has committed everyone’s assigned requests locally.

(2) Replica u calls for an epoch-change when its epoch timer expires. The value of the epoch timer T is set to ensure
that after GST, correct replicas can finish at least Cpip, requests during an epoch. Cpin € Q(n?) is the minimum
number of requests assigned to leaders.

(3) Replicas call epoch-changes upon observing inadequate progress. Each replica u has individual no-progress timers
for all leaders. The no-progress timer is initialized with the same value T, for all leaders. Initially, replicas set all
no-progress timers for the first time after 5A in the epoch — accounting for the message transmission time of
the initial requests. A replica resets the timer for leader v every time it receives a commit-certificate from v. In
case the replica has already committed C, requests for leader v, the timer is no longer reset. Upon observing
no progress timeouts for b € [f + 1,2f + 1] different leaders, a replica calls an epoch-change. Requiring at
least f + 1 leaders to make progress ensures that a constant fraction of leaders makes progress, and at least one

correct leader is involved. On the other hand, we demand no more than 2f + 1 leaders to make progress such

FNF-BFT: Exploring Performance Limits of BFT Protocols

11

Algorithm 1 Committing a request proposed by leader v

Algorithm 2 Epoch-change protocol for epoch e + 1

Leader prepare phase
as replica u:
upon receiving a valid (request, r, t, c) from client c:
map client request to hash bucket
as leader v:
accept (request, r, t, c) assigned to one of v’s buckets
pick next assigned sequence number sn
broadcast (pre-prepare, sn, e, h(r), v)
Backup prepare phase
as backup w:
accept (pre-prepare, sn, e, h(r),v)
if the pre-prepare message is valid:
compute partial signature o, (d)
send (prepare, sn, e, 04,(d)) to leader v
as leader v:
compute partial signature o, (d)
upon receiving 2f prepare messages:
compute (2f + 1, n) threshold signature o(d)
broadcast (prepared-certificate, sn, e, o(d))
Commit phase
as backup w:
accept (prepared-certificate, sn, e, o(d))
compute partial signature o(o.,(d))
(commit, sn, e, o1y (c(d))) to leader v
as leader v:
compute partial signature o (o, (d))
upon receiving 2f commit messages:
compute (2f + 1, n) threshold signature o (o (d))
broadcast (commit-certificate, sn, e, 0(a(d)))

Starting epoch-change
as replica u:
broadcast (epoch-change,e + 1,S,C, P, Q, u)
upon receiving 2f epoch-change messages for e +1:
start epoch-change timer T,
Reliable broadcast
as primary pes+1:
compute Cy(e + 1) for all leaders v € [n]
perform 3-phase reliable broadcast sharing configu-
ration details of epoch e + 1 and the performance of
primary pe
as replica u:
participate in reliable broadcast initiates by pe+1
Starting epoch
as primary pesi:
broadcast (new-epoch, e + 1,V, O, pe+1)
enter epoch e + 1
as replica u:
accept (new-epoch,e + 1,V, O, pe+1)
enter epoch e + 1

Algorithm 3 Configuration adjustment

initially Cy(1) = Cpin for all replicas v
if cy(e) < Cy(e)
Cole +1) = max (Conin, maxic o, _) (cale = 1)
else
Cole+1) =2-cy(e)

that byzantine leaders failing to execute requests cannot stop the epoch early. We let b = 2f + 1 and set the

no-progress timer such that it does not expire for correct leaders and simultaneously ensures sufficient progress,
e, Ty € O(T/Cain)-

(4) Finally, replica u calls an epoch-change if it sees that f + 1 other replicas have called an epoch-change for an
epoch higher than e. Then, replica u picks the smallest epoch in the set such that byzantine replicas cannot

advance the protocol an arbitrary number of epochs.

After sending an epoch-change message, the replica will only start its epoch-change timer, once it saw at least 2f + 1

epoch-change messages. We will discuss the epoch-change timer in more detail later.

Starting epoch-change (Algorithm 2, steps 1-5). To move the system to epoch e + 1, replica u sends (epoch-change, e +1,
S,C, P, Q, u) to all replicas in the system. Here, S is a vector of sequence numbers sn, of the last stable checkpoints S,
Vo € [n] known to u for each leader v. C is a set of checkpoint-certificates proving the correctness of S, Yo € [n], while
P contains sets P, Yo € [n]. For each leader v, P, contains a prepared-certificate for each request r that was prepared

at u with sequence number higher than sn,, if replica v does not possess a commit-certificate for r. Similarly, Q contains

12 Avarikioti et al.

sets Qy Yo € [n]. Q, consists of a commit-certificate for each request r that was prepared at u with sequence number

higher than sn,.

Reliable broadcast (Algorithm 2, steps 6-11). The primary of epoch e + 1 (pe+1) Waits for 2f epoch-change messages
for epoch e. Upon receiving a sufficient number of messages, the primary performs a classical 3-phase reliable broadcast.
During the broadcast, the primary informs leaders on the number of requests assigned to each leader in the next epoch
and the identifiers of the replicas which send epoch-change messages. The number of requests assigned to a leader is
computed deterministically (Algorithm 3). Through the reliable broadcast, we ensure that the primary cannot share
conflicting information regarding the sequence number assignment and, in turn, the next epoch’s sequence number
distribution. In addition to sharing information about the epoch configuration, the primary also broadcasts the total
number of requests committed during the previous epoch. This information is used by the network to evaluate primary

performance and determine epoch primaries.

Starting epoch (Algorithm 2, steps 12-18). The primary pe4+1 multicasts (new-epoch, e +1,V, O, pe+1). Here, the set V
contains sets V,,, which carry the valid epoch-change messages of each replica u of epoch e received by the primary of
epoch e + 1, plus the epoch-change message the primary of epoch e + 1 would have sent. O consists of sets O, Yv € [n]
containing pre-prepare messages and commit-certificates.

Oy is computed as follows. First, the primary determines the sequence number Sy, (v) of the latest stable checkpoint
in V and the highest sequence number Spax (v) in a prepare message in V. For each sequence number sn, between
Smin (v) and Spmax (0) of all leaders v € [n] there are three cases: (a) there is at least one set in Q, of some epoch-change
message in V with sequence number sn,, (b) there is at least one set in £, of some epoch-change message in V with
sequence number sn, and none in @y, or (c) there is no such set. In the first case, the primary simply prepares a commit-
certificate it received for sn,. In the second case, the primary creates a new message (pre-prepare, sny, e + 1,d, pe+1),
where d is the request digest in the pre-prepare message for sequence number sn, with the highest epoch number in V.
In the third case, the primary creates a new pre-prepare message (pre-prepare, shy, e + 1, gnull, De+1), Where dnull g
the digest of a special null request; a null request goes through the protocol like other requests, but its execution is a
no-op. If there is a gap between Smax (v) and the last sequence number assigned to leader v in epoch e, these sequence
numbers will be newly assigned in the next epoch.

Next, the primary appends the messages in O to its log. If Spin () is greater than the sequence number of its latest
stable checkpoint, the primary also inserts the proof of stability (the checkpoint with sequence number Sy, (v)) in its
log. Then it enters epoch e + 1; at this point, it can accept messages for epoch e + 1.

A replica accepts a new-epoch message for epoch e + 1 if: (a) it is signed properly, (b) the epoch-change messages
it contains are valid for epoch e + 1, (c) the information in V matches the new request assignment, and (d) the set O
is correct. The replica verifies the correctness of O by performing a computation similar to the one previously used
by the primary. Then, the replica adds the new information contained in O to its log and decides all requests for
which a commit-certificate was sent. Replicas rerun the protocol for messages between Sy (v) and Spax (v) without a
commit-certificate. They do not execute client requests again (they use their stored information about the last reply
sent to each client instead). As request messages and stable checkpoints are not included in new-epoch messages, a
replica might not have some of them available. In this case, the replica can easily obtain the missing information from

other replicas in the system.

FNF-BFT: Exploring Performance Limits of BFT Protocols 13

leader prepare backup prepare commit

T~
N7

NN P74AN\N
3 N\ N\

Fig. 3. Schematic of message flow for hanging requests. In this example, the primary is replica 0, and the request falls into the bucket
of replica 1.

Hanging requests. While the primary sends out the pre-prepare message for all hanging requests, replicas in whose
buckets the requests fall, are responsible for computing prepared- and commit-certificates of the individual requests. In
the example shown in Figure 3, the primary of epoch e + 1, replica 0, sends a pre-prepare message for a request in a
bucket of replica 1, contained in the new-epoch message, to everyone. Replica 1 is then responsible for prepared- and
commit-certificates, as well as collecting the corresponding partial signatures.

The number of request Cy (e + 1) assigned to leader v in epoch e + 1 is determined deterministically based on its past
performance (Algorithm 3). By c¢,(e) we denote the number of requests committed under leader v in epoch e. Each
leader is re-evaluated during the epoch-change. If a leader successfully committed all assigned requests in the preceding
epoch, we double the number of requests this leader is given in the following epoch. Else, it is assigned the maximum

number of requests it committed within the last f + 1 epochs.

Epoch-change timer. A replica sets an epoch-change timer T, upon entering the epoch-change for epoch e + 1. By
default, we configure the epoch-change timer T such that a correct primary can successfully finish the epoch-change
after GST. If the timer expires without seeing a valid new-epoch message, the replica requests an epoch-change for
epoch e + 2. If a replica has experienced at least f unsuccessful consecutive epoch-changes previously, the replica
doubles the timer’s value. It continues to do so until it sees a valid new-epoch message. We only start doubling the timer
after f unsuccessful consecutive epoch-changes to avoid having f byzantine primaries in a row, i.e., the maximum
number of subsequent byzantine primaries possible, purposely increasing the timer value exponentially and, in turn,
decreasing the system throughput significantly. As soon as replicas witness a successful epoch-change, they reduce T,

to its default again.

Assignment of requests. Finally, the number of requests assigned to each leader is updated during the epoch-change.
We limit the number of requests that can be processed by each leader per epoch to assign the sequence numbers ahead
of time and allow leaders to work independently of each other. We assign sequence numbers to leaders according to
their abilities. As soon as we see a leader outperforming their workload, we double the number of requests they are
assigned in the following epoch. Additionally, leaders operating below their expected capabilities are allocated requests
according to the highest potential demonstrated in the past f + 1 rounds. By looking at the previous f + 1 epochs,
we ensure that there is at least one epoch with a correct primary in the leader set. In this epoch, the leader had the
chance to display its capabilities. Thus, basing a leader’s performance on the last f + 1 rounds allows us to see its ability

independent of the possible influence of byzantine primaries.

4 ANALYSIS

We show that FNF-BFT satisfies the properties specified in Section 2.6. A detailed analysis can be found in Appendix A.

14 Avarikioti et al.

Safety. We prove FNF-BFT is safe under asynchrony. FNF-BFT generalizes Linear-PBFT [16], which is an adaptation
of PBFT [10] that reduces its authenticator complexity during epoch operation. We thus rely on similar arguments to

prove FNF-BFT’s safety in Theorem 1.

Liveness. We show FNF-BFT makes progress after GST (Theorem 5). FNF-BFT’s epoch-change uses the following
techniques to ensure that correct replicas become synchronized (Definition 2) after GST: (1) A replica in epoch e
observing epoch-change messages from f + 1 other replicas calling for any epoch(s) greater than e issues an epoch-
change message for the smallest such epoch. (2) A replica only starts its epoch-change timer after receiving 2f other
epoch-change messages, thus ensuring that at least f + 1 correct replicas have broadcasted an epoch-change message
for the epoch (or higher). Hence, all correct replicas start their epoch-change timer for an epoch e’ within at most 2
message delay. After GST, this amounts to at most 2A. (3) Byzantine replicas are unable to impede progress by calling
frequent epoch-changes, as an epoch-change will only happen if at least f + 1 replicas call it. A byzantine primary can

hinder the epoch-change from being successful. However, there can only be f byzantine primaries in a row.

Efficiency. To demonstrate that FNF-BFT is efficient, we start by analyzing the authenticator complexity for reaching
consensus during an epoch. Like Linear-PBFT [16], using each leader as a collector for partial signatures in the backup
prepare and commit phase, allows FNF-BFT to achieve linear complexity during epoch operation. We continue by
calculating the authenticator complexity of an epoch-change. Intuitively speaking, we reduce PBFT’s view-change
complexity from ©(n3) to ©(n?) by employing threshold signatures. However, as FNF-BFT allows for n simultaneous
leaders, we obtain an authenticator complexity of ©(n®) as a consequence of sharing the same information for n leaders
during the epoch-change. Finally, we argue that after GST, there is sufficient progress by correct replicas to compensate

for the high epoch-change cost (Theorem 8).

Optimistic Performance. We assess FNF-BFT’s optimistic performance, i.e., we theoretically evaluate its best-case
throughput, assuming all replicas are correct and the network is synchronous. We further assume that the best-case
throughput is limited by the available computing power of each replica — mainly required for the computation and
verification of cryptographic signatures — and that the available computing power of each correct replica is the same.

In this model, we demonstrate that FNF-BFT achieves higher throughput than sequential-leader protocols by the
means of leader parallelization. To show the speed-up gained through parallelization, we first analyze the optimistic
epoch throughput of FNF-BFT, i.e., the throughput of the system during stable networking conditions in the best-case
scenario with 3f+1 correct replicas (Lemma 10). Later, we consider the repeated epoch changes and show that FNF-BFT’s
throughput is dominated by its authenticator complexity during the epochs. To that end, observe that for Cppin € Q(n?),
every epoch will incur an authenticator complexity of Q(n®) per replica and thus require Q(n?) time units. We show that
after GST, an epoch-change under a correct primary requires ©(n?) time units (Lemma 11). We conclude our analysis
by quantifying FNF-BFT’s overall best-case throughput. Specifically, we prove that the speed-up gained by moving

from a sequential-leader protocol to a parallel-leader protocol is proportional to the number of leaders (Theorem 13).

Byzantine-Resilient Performance. While many BFT protocols present practical evaluations of their performance that
ignore byzantine adversarial behavior [10, 16, 27, 29], we provide a novel, theoretical byzantine-resilience guarantee.
We first analyze the impact of byzantine replicas in an epoch under a correct primary. We consider the replicas’ roles
as backups and leaders separately. On the one hand, for a byzantine leader, the optimal strategy is to leave as many
requests hanging, while not making any progress (Lemma 14). On the other hand, as a backup, the optimal byzantine

strategy is not helping other leaders to make progress (Lemma 15). In conclusion, we observe that byzantine replicas

FNF-BFT: Exploring Performance Limits of BFT Protocols 15

have little opportunity to reduce the throughput in epochs under a correct primary. Specifically, we show that after
GST, the effective utilization under a correct primary is at least % for n — oo (Theorem 16).

Next, we discuss the potential strategies of a byzantine primary trying to stall the system. We fist show that under a
byzantine primary, an epoch is either aborted quickly or Q(n®) new requests become committed (Lemma 17). Then, we
prove that rotating primaries across epochs based on primary performance history reduces the control of the byzantine
adversary on the system. In particular, byzantine primaries only have one turn as primary throughout any sliding

window in a stable network. Combining all the above, we conclude that FNF-BFT’s byzantine-resilient utilization is

Lot
g

stable state, while simultaneously dictates how long it takes to get there after GST.

asymptotically % > % for n — oo (Theorem 20), where g is the fraction of byzantine primaries in the system’s

5 EVALUATION

In this section, we evaluate a prototype implementation of FNF-BFT with respect to performance, i.e., throughput and
latency. We compare FNF-BFT to the state-of-the-art BFT protocol HotStuff [29].

Implementation. Our proof-of-concept implementation is directly based on libhotstuff,> changing roughly 2000 lines
of code while maintaining the general framework and experiment setup. We implemented the basic functionality
of our protocol as well as the epoch-change and watermarks. To adapt to our protocol while fairly comparing with
HotStuff using the code from libhotstuff, we extended both implementations to support BLS threshold signatures.*

Implementation details can be found in Appendix B.>

Setup. We evaluate FNF-BFT on Amazon EC2 using c5.4xlarge AWS cloud instances. We run each replica on a single
VM instance. Each instance has 16 CPU cores powered by Intel Xeon Platinum 8000 processors clocked at up to 3.6
GHz, 32 GiB of RAM, and a maximum available TCP bandwidth of 10 Gigabits per second.

Methodology. We measure and report the average throughput and latency when all n replicas operate correctly. We
run the experiments for n € {4, 7,10, 16,31, 61}.

Our evaluation includes the epoch-change, so we measure the average throughput and latency over multiple epochs.
Specifically, for each experiment, we run both protocols over a period of three minutes and measure the average
performance of FNF-BFT and HotStuff accordingly. We believe this is representative of FNF-BFT’s performance as the
prototype implementation is deterministic and therefore the difference between independent executions lies in the
ordering of messages, which does neither affect the average throughput nor the average latency.

In our experiments, we divide the hash space into n buckets resulting in one bucket per replica. Enough clients (2n)
are instantiated such that no buckets are idle to accurately measure throughput. For the latency measurement, we run
a single client instance such that the system does not reach its throughput limit. Each client initially generates and
broadcasts 4 requests in parallel and issues a new request whenever one of its requests is answered. Specifically, we run
the libhotstuff client with its default settings, meaning that the payload of each request is 0.

As in the theoretical analysis, we do not employ a batching process for the evaluation. Hence, each block contains a
single client request. For this reason, the expected throughput in practical deployments is much higher. Nevertheless,
even with larger block size (e.g., 500 requests per block) we expect the bottleneck for FNF-BFT’s performance to be the
computation (authenticator complexity) as shown in our analysis, which is captured in our evaluation. To guarantee a
3hitps://github.com/hot-stuff/libhotstuff

“https://github.com/herumi/bls
>We intend to open source the code.

https://github.com/hot-stuff/libhotstuff
https://github.com/herumi/bls

16

fair comparison, we use the same settings for both HotStuff and FNF-BFT. We also distinguish the performance of the

multi-threaded HotStuff (with 12 threads per replica) and the single-threaded one. Our implementation of FNF-BFT is

Avarikioti et al.

currently single-threaded only but — as we show below - still outperforms multi-threaded HotStuff.

Table 1 summarizes the configuration parameters for all experiments. When applicable, equal settings were chosen

for HotStuff.
Configuration Parameter Setting
Requests per block 1
Threads per replica 1
Threads per client
Epoch timeout 30s
No progress timeout 2s
Blocks per checkpoint (K) 50
Watermark window size (2 * K) 100
Initial epoch watermark bounds 10000

Table 1. FNF-BFT configuration parameters used across all experiments.

Performance. Figure 4 depicts a standard operation of FNF-BFT over 5 epochs and demonstrates its high throughput
even when the batch size is one. As expected, the performance and throughput of our protocol stalls during an epoch-
change. However, the average throughput still remains significantly higher than HotStuff’s throughput, especially when
replicas increase, as illustrated in Figure 5. Specifically, FNF-BFT is at least 1.1X faster than multi-treaded HotStuff and
at least 1.5X faster than single-threaded HotStuff. Figure 6 depicts the average latency of both FNF-BFT and HotStuff,
showing that they scale similarly with the number of replicas. As latency expresses the time between a request being
issued and committed, both protocols exhibit very fast finality for requests on average, even with many replicas. In
combination, Figure 5 and Figure 6 demonstrate the significant scaling capabilities of FNF-BFT, and its competitiveness

against state-of-the-art.

g
o 200 — Epoch 1
; —— Epoch 2
2 100 Epoch 3
g‘ —— Epoch 4
£ o —— Epoch 5
o 10 20 30 40 50 oo 10 20 30 40 50 o 10 20
o oy o
Fig. 4. Throughput of FNF-BFT with n = 4 replicas over 5 epochs.

L"—-____ 80| —=— Single-Threaded FnF-BFT latency
E 200 —a— Single-Threaded FnF-BFT throughput Multi-Threaded HotStuff latency
3 9 ahe @ 60 single-Threaded HotStuff latency
L 150 Multi-Threaded HotStuff throughput =
5 Single-Threaded HotStuff throughput =
=3 o ap
< 100 <
3 =

4 7 10 16 31 61 4 7 10 16 31 61

number of replicas

Fig. 5. Average Throughput Comparison

number of replicas
Fig. 6. Average Latency Comparison

FNF-BFT: Exploring Performance Limits of BFT Protocols 17

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-Philippe Martin. 2017. Revisiting fast practical byzantine fault
tolerance. arXiv preprint arXiv:1712.01367 (2017).

Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2008. Byzantine replication under attack. In 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN). IEEE, 197-206.

Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. 2010. Prime: Byzantine replication under attack. IEEE transactions on dependable and secure
computing 8, 4 (2010), 564-577.

Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina Nita-Rotaru, Josh Olsen, and David Zage. 2008. Steward: Scaling
Byzantine fault-tolerant replication to wide area networks. IEEE Transactions on Dependable and Secure Computing 7, 1 (2008), 80-93.

P. Aublin, S. B. Mokhtar, and V. Quéma. 2013. RBFT: Redundant Byzantine Fault Tolerance. In 2013 IEEE 33rd International Conference on Distributed
Computing Systems. 297-306.

Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Wattenhofer. 2019. Divide and Scale: Formalization of Distributed Ledger Sharding
Protocols. arXiv:1910.10434 [cs.DC]

[7] Johannes Behl, Tobias Distler, and Riidiger Kapitza. 2015. Consensus-oriented parallelization: How to earn your first million. In Proceedings of the

16th Annual Middleware Conference. 173-184.

[8] Johannes Behl, Tobias Distler, and Riidiger Kapitza. 2017. Hybster-A Highly Parallelizable Protocol for Hybrid Fault-Tolerant Service Replication.

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27

[28

(2017).

Alysson Bessani, Jodo Sousa, and Eduardo EP Alchieri. 2014. State machine replication for the masses with BFT-SMaRt. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks. IEEE, 355-362.

Miguel Castro and Barbara Liskov. 2002. Practical Byzantine fault tolerance and proactive recovery. ACM Transactions on Computer Systems (TOCS)
20, 4 (2002), 398-461.

Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco Marchetti. 2009. Making Byzantine Fault Tolerant Systems Tolerate
Byzantine Faults. In NSDI, Vol. 9. 153-168.

Danny Dolev and Riidiger Reischuk. 1985. Bounds on information exchange for Byzantine agreement. Journal of the ACM (JACM) 32, 1 (1985),
191-204.

Danny Dolev and H Raymond Strong. 1982. Polynomial algorithms for multiple processor agreement. In Proceedings of the fourteenth annual ACM
symposium on Theory of computing. 401-407.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. 1988. Consensus in the presence of partial synchrony. Journal of the ACM (JACM) 35, 2
(1988), 288-323.

Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility of distributed consensus with one faulty process. Journal of the ACM
(JACM) 32, 2 (1985), 374-382.

Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin
Tomescu. 2018. SBFT: a scalable decentralized trust infrastructure for blockchains. arXiv preprint arXiv:1804.01626 (2018).

Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. 2019. Scaling blockchain databases through parallel resilient consensus paradigm. arXiv
preprint arXiv:1911.00837 (2019).

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out,
Decentralized Ledger via Sharding. In Security and Privacy (SP), 2018 IEEE Symposium on. 19-34.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong. 2007. Zyzzyva: speculative byzantine fault tolerance. ACM
SIGOPS Operating Systems Review 41, 6 (2007), 45-58.

Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine Generals Problem. ACM Transactions on Programming Languages and
Systems 4, 3 (1982), 382-401.

Nancy A Lynch. 1996. Distributed algorithms. Elsevier.

Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building Efficient Replicated State Machines for WANs. In Proceedings of the
8th USENIX Conference on Operating Systems Design and Implementation (San Diego, California) (OSDI'08). USENIX Association, USA, 369-384.
Zarko Milosevic, Martin Biely, and André Schiper. 2013. Bounded delay in Byzantine-tolerant state machine replication. In 2013 IEEE 32nd
International Symposium on Reliable Distributed Systems. IEEE, 61-70.

Marshall Pease, Robert Shostak, and Leslie Lamport. 1980. Reaching agreement in the presence of faults. Journal of the ACM (JACM) 27, 2 (1980),
228-234.

Michael K Reiter. 1994. Secure agreement protocols: Reliable and atomic group multicast in Rampart. In Proceedings of the 2nd ACM Conference on
Computer and Communications Security. 68-80.

Michael K Reiter. 1995. The Rampart toolkit for building high-integrity services. In Theory and practice in distributed systems. Springer, 99-110.
Chrysoula Stathakopoulou, Tudor David, and Marko Vukoli¢. 2019. Mir-bft: High-throughput BFT for blockchains. arXiv preprint arXiv:1906.05552
(2019).

Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. 2009. Spin one’s wheels? Byzantine fault tolerance with a
spinning primary. In 2009 28th IEEE International Symposium on Reliable Distributed Systems. IEEE, 135-144.

https://arxiv.org/abs/1910.10434
https://eprint.iacr.org/2017/406.pdf
https://eprint.iacr.org/2017/406.pdf

18 Avarikioti et al.

[29] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. 2019. Hotstuff: Bft consensus with linearity and responsiveness.
In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. 347-356.

[30] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain: Scaling blockchain via full sharding. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 931-948.

A ANALYSIS
A.1 Safety

FNF-BFT generalizes Linear-PBFT [16], which is an adaptation of PBFT [10] that reduces its authenticator complexity

during epoch operation. We thus rely on similar arguments to prove FNF-BFT’s safety in Theorem 1.

THEOREM 1. If any two correct replicas commit a request with the same sequence number, they both commit the same

request.

Proor. We start by showing that if (prepared-certificate, sn, e, 0(d)) exists, then (prepared-certificate, sn, e, a(d”))
cannot exist for d’ # d. Here, d = h(snl|e||r) and d’ = h(sn||e||r”). Further, we assume the probability of r # r” and
d = d’ to be negligible. The existence of (prepared-certificate, sn, e, 0(d)) implies that at least f + 1 correct replicas
sent a pre-prepare message or a prepare message for the request » with digest d in epoch e with sequence number sn.
For (prepared-certificate, sn, e, o(d’)) to exist, at least one of these correct replicas needs to have sent two conflicting
prepare messages (pre-prepare messages in case it leads sn). This is a contradiction.

Through the epoch-change protocol we further ensure that correct replicas agree on the sequence of requests that are
committed locally in different epochs. The existence of (prepared-certificate, sn, e, o(d)) implies that (prepared-certificate,
sn,e’,o(d’)) cannot exist for d’ # d and e’ > e. Any correct replica only commits a request with sequence number sn in
epoch e if it saw the corresponding commit-certificate. For a commit-certificate for request r with digest d and sequence
number sn to exist a set Ry of at least f + 1 correct replicas needs to have seen (prepared-certificate, sn, e, o(d)). A
correct replica will only accept a pre-prepare message for epoch e’ > e after having received a new-epoch message
for epoch e’. Any correct new-epoch message for epoch e’ > e must contain epoch-change messages from a set Rz of
at least f + 1 correct replicas. As there are 2f + 1 correct replicas, Ry and Ry intersect in at least one correct replica u.
Replica u’s epoch-change message ensures that information about request r being prepared in epoch e is propagated to
subsequent epochs, unless sn is already included in the stable checkpoint of its leader. In case the prepared-certificate
is propagated to the subsequent epoch, a commit-certificate will potentially be propagated as well. If the new-epoch
message only includes the prepared-certificate for sn, the protocol is redone for request r with the same sequence
number sn. In the two other cases, the replicas commit sn locally upon seeing the new-epoch message and a correct

replica will never accept a request with sequence number sn again. O

A.2 Liveness

One cannot guarantee safety and liveness for deterministic BFT protocols in asynchrony [15]. We will, therefore, show
that FNF-BFT eventually makes progress after GST. In other words, we consider a stable network when discussing
liveness. Furthermore, we assume that after an extended period without progress, the time required for local computation
in an epoch-change is negligible. Thus, we focus on analyzing the network delays for liveness.

Similar to PBFT [10], FNF-BFT’s epoch-change uses the following three techniques to ensure that correct replicas
become synchronized (Definition 2) after GST.

FNF-BFT: Exploring Performance Limits of BFT Protocols 19

(1) A replica in epoch e observing epoch-change messages from f + 1 other replicas calling for any epoch(s) greater
than e issues an epoch-change message for the smallest such epoch.

(2) A replica only starts its epoch-change timer after receiving 2f other epoch-change messages, thus ensuring that
at least f + 1 correct replicas have broadcasted an epoch-change message for the epoch (or higher). Hence, all
correct replicas start their epoch-change timer for an epoch e’ within at most 2 message delay. After GST, this
amounts to at most 2A.

(3) Byzantine replicas are unable to impede progress by calling frequent epoch-changes, as an epoch-change will
only happen if at least f + 1 replicas call it. A byzantine primary can hinder the epoch-change from being

successful. However, there can only be f byzantine primaries in a row.

Definition 2. Two replicas are called synchronized, if they start their epoch-change timer for an epoch e within at

most 2A.
LEmMMA 3. After GST, correct replicas eventually become synchronized.

ProoF. Let u be the first correct replica to start its epoch-change timer for epoch e at time ty. Following (2), this
implies that u received at least 2f other epoch-change messages for epoch e (or higher). Of these 2f messages, at least f
originate from other correct replicas. Thus, together with its own epoch-change message, at least f + 1 correct replicas
broadcasted epoch-change messages by time t. These f + 1 epoch-change messages are seen by all correct replicas at
the latest by time ty + A. Thus, according to (1), at time #y + A all correct replicas broadcast an epoch-change message
for epoch e. Consequently, at time #p + 2A all correct replicas have received at least 2f other epoch-change messages

and will start the timer for epoch e. O
LEmMA 4. After GST, all correct replicas will be in the same epoch long enough for a correct leader to make progress.

Proor. From Lemma 3, we conclude that after GST, all correct replicas will eventually enter the same epoch if
the epoch-change timer is sufficiently large. Once the correct replicas are synchronized in their epoch, the duration
needed for a correct leader to commit a request is bounded. Note that all correct replicas will be in the same epoch for a
sufficiently long time as the timers are configured accordingly. Additionally, byzantine replicas are unable to impede

progress by calling frequent epoch-changes, according to (3). O
THEOREM 5. If a correct client ¢ broadcasts request r, then every correct replica eventually commits r.

Proor. Following Lemmas 3 and 4, we know that all correct replicas will eventually be in the same epoch after GST.
Hence, in any epoch with a correct primary, the system will make progress. Note that a correct client will not issue
invalid requests. It remains to show that an epoch with a correct primary and a correct leader assigned to hash bucket
h(c) will occur. We note that this is given by the bucket rotation, which ensures that a correct leader repeatedly serves

each bucket in a correct primary epoch. O

A.3 Efficiency

To demonstrate that FNF-BFT is efficient, we start by analyzing the authenticator complexity for reaching consensus
during an epoch. Like Linear-PBFT [16], using each leader as a collector for partial signatures in the backup prepare

and commit phase, allows FNF-BFT to achieve linear complexity during epoch operation.

LEMMA 6. The authenticator complexity for committing a request during an epoch is ©(n).

20 Avarikioti et al.

Proor. During the leader prepare phase, the authenticator complexity is at most n. The primary computes its
signature to attach it to the pre-prepare message. This signature is verified by no more than n — 1 replicas.

Furthermore, the backup prepare and commit phase’s authenticator complexity is less than 3n each. Initially, at most
n — 1 backups, compute their partial signature and send it to the leader, who, in turn, verifies 2f of these signatures. The
leader then computes its partial signature, as well as computing the combined signature. Upon receiving the combined
signature, the n — 1 backups need to verify the signature.

Overall, the authenticator complexity committing a request during an epoch is thus at most 7n + o(n) € ©(n). O

We continue by calculating the authenticator complexity of an epoch-change. Intuitively speaking, we reduce PBFT’s
view-change complexity from ©(n?) to ©(n?) by employing threshold signatures. However, as FNF-BFT allows for n
simultaneous leaders, we obtain an authenticator complexity of ©(n®) as a consequence of sharing the same information

for n leaders during the epoch-change.
LEMMA 7. The authenticator complexity of an epoch-change is ©(n3).

Proor. The epoch-change for epoch e + 1 is initiated by replicas sending epoch-change messages to the primary
of epoch e + 1. Each epoch-change message holds n authenticators for each leader’s last checkpoint-certificates. As
there are at most 2k hanging requests per leader, a further O(n) authenticators for prepared- and commit-certificates of
the open requests per leader are included in the message. Additionally, the sending replica also includes its signature.
Each replica newly computes its signature to sign the epoch-change message, the remaining authenticators are already
available and do not need to be created by the replicas. Thus, a total of no more than n authenticators are computed for
the epoch-change messages. We also note epoch-change message contains ©(n) authenticators. Therefore, the number
of authenticators received by each replica is ©(n?).

After the collection of 2f +1 epoch-change messages, the primary performs a classical 3-phase reliable broadcast. The
primary broadcasts the same signed message to start the classical 3-phase reliable broadcast. While the primary computes
1 signature, at most n — 1 replicas verify this signature. In the two subsequent rounds of all-to-all communication, each
participating replica computes 1 and verifies 2f signatures. Thereby, the authenticator complexity of each round of
all-to-all communication is at most (2f + 1) - n. Thus, the authenticator complexity of the 3-phase reliable broadcast is
bounded by (4f +3) - n € ©(n?).

After successfully performing the reliable broadcast, the primary sends out a new-epoch message to every replica
in the network. The new-epoch message contains the epoch-change messages held by the primary and the required
pre-prepare messages for open requests. There are O(n) such pre-prepare messages, all signed by the primary. Finally,
each new-epoch message is signed by the primary. Thus, the authenticator complexity of the new-epoch message
is ©(n?). However, suppose a replica has previously received and verified an epoch-change from replica u whose
epoch-change message is included in the new-epoch message. In that case, the replica no longer has to check the
authenticators in u’s epoch-change message again. For the complexity analysis, it does not matter when the replicas
verify the signature. We assume that all replicas verify the signatures contained in the epoch-change messages before
receiving the new-epoch messages. Thus, the replicas only need to verify the O(n) new authenticators contained in the
new-epoch message.

Overall, the authenticator complexity of the the epoch-change is at most ©(n3). O

Finally, we argue that after GST, there is sufficient progress by correct replicas to compensate for the high epoch-

change cost.

FNF-BFT: Exploring Performance Limits of BFT Protocols 21

THEOREM 8. After GST, the amortized authenticator complexity of committing a request is ©(n).

Proor. To find the amortized authenticator complexity of committing a request, we consider an epoch and the
following epoch-change. After GST, the authenticator complexity of committing a request for a correct leader is ©(n).
The timeout value is set such that a correct worst-case leader creates at least Cpjn requests in each epoch initiated by a
correct primary. Thus, there are ©(n) correct replicas, each committing Cpin requests. By setting Cpin € Q(n?), we
guarantee that at least Q(n?) requests are created during an epoch given a correct primary.

Byzantine primaries can ensure that no progress is made in epochs they initiate, by failing to share the new-epoch
message with correct replicas. However, at most, a constant fraction of epochs lies in the responsibility of byzantine
primaries. We conclude that, on average, Q(n®) requests are created during an epoch.

Following Lemma 7, the authenticator complexity of an epoch-change is ©(n?). Note that the epoch-change timeout T,
is set so that correct primaries can successfully finish the epoch-change after GST. Not every epoch-change will
be successful immediately, as byzantine primaries might cause unsuccessful epoch-changes. Specifically, byzantine
primaries can purposefully summon an unsuccessful epoch-change to decrease efficiency.

In case of an unsuccessful epoch-change, replicas initiate another epoch-change — and continue doing so — until a
successful epoch-change occurs. However, we only need to start O(1) epoch-changes on average to be successful after
GST, as the primary rotation ensures that at least a constant fraction of primaries is correct. Hence, the average cost
required to reach a successful epoch-change is ©(n?).

We find the amortized request creation cost by adding the request creation cost to the ratio between the cost of a

O) _ g(n). o

successful epoch-change and the number of requests created in an epoch, that is, ©(n) + 005

A.4 Optimistic Performance

Throughout this section, we make the following optimistic assumptions: all replicas are considered correct, and the
network is stable and synchronous. We employ this model to assess the optimistic performance of FNF-BFT, i.e.,
theoretically evaluating its best-case throughput. Note that this scenario is motivated by practical applications, as
one would hope to have functioning hardware at hand, at least initially. Additionally, we assume that the best-case
throughput is limited by the available computing power of each replica — predominantly required for the computation
and verification of cryptographic signatures. We further assume that the available computing power of each correct
replica is the same, which we believe is realistic as the same hardware will often be employed for each replica in
practice. Without loss of generality, each leader can compute/verify one authenticator per time unit. As throughput, we
define the number of requests committed by the system per time unit. Finally, we assume that replicas only verify the
authenticators of relevant messages. For example, a leader receiving 3f prepare messages for a request will only verify
2f authenticators. Similarly, pre-prepare messages outside the leaders’ watermarks will not be processed by backups.

Note that we will carry all assumptions into Section A.5. There they will, however, only apply to correct replicas.

A.4.1 Sequential-Leader Protocols. We claim that FNF-BFT achieves higher throughput than sequential-leader protocols
by the means of leader parallelization. To support this claim, we compare FNF-BFT’s throughput to that of a generic
sequential-leader protocol. The generic sequential-leader protocol will serve as an asymptotic characterization of many
state-of-the-art sequential-leader protocols [10, 16, 29].

A sequential-leader protocol is characterized by having a unique leader at any point in time. Throughout its reign, the
leader is responsible for serving all client requests. Depending on the protocol, the leader is rotated repeatedly or only

upon failure.

22 Avarikioti et al.

LEMMA 9. A sequential-leader protocol requires at least Q(n) time units to process a client request.

ProoF. In sequential-leader protocols, a unique replica is responsible for serving all client requests at any point in
time. This replica must verify Q(n) signatures to commit a request while no other replica leads requests simultaneously.

Thus, a sequential-leader protocol requires Q(n) time units to process a request. O

ORE|OIPEIEIOIEE®

Fig. 7. Sequential leader example with four leaders. Throughout its reign a sequential leader is responsible for serving all client
requests. Leader changes are indicated by vertical lines.

A.4.2 FNF-BFT Epoch. With FNF-BFT, we propose a parallel-leader protocol (cf. Figure 8) that divides client requests
into m - n independent hash buckets. Each hash bucket is assigned to a unique leader at any time. The hash buckets are
rotated between leaders across epochs to ensure liveness (cf. Section 3.3). Within an epoch, a leader is only responsible
for committing client requests from its assigned hash bucket(s). Overall, this parallelization leads to a significant

speed-up.

T O
*E-lo
o H ©
W ©

Fig. 8. Parallel leader example with four leaders and four hash buckets. In each epoch, leaders are only responsible for serving client
requests in their hash bucket. Epoch-changes are indicated by vertical lines.

[XX J

OGO
OGO

To show the speed-up gained through parallelization, we first analyze the optimistic epoch throughput of FNF-BFT,
i.e., the throughput of the system during stable networking conditions in the best-case scenario with 3f + 1 correct
replicas. Furthermore, we assume the number of requests included in a checkpoint to be sufficiently large, such that
no leader must ever stall when waiting for a checkpoint to be created. We analyze the effects of epoch-changes and
compute the overall best-case throughput of FNF-BFT in the aforementioned optimistic setting.

k-(3f+1)
k-(19f+3)+(8f +2)°

LEMMA 10. After GST, the best-case epoch throughput with 3f + 1 correct replicas is

Proor. In the optimistic setting, all epochs are initiated by correct primaries, and thus all replicas will be synchronized
after GST.

In FNF-BFT, n leaders work on client requests simultaneously. As in sequential-leader protocols, each leader needs
to verify at least O(n) signatures to commit a request. A leader needs to compute 3 and verify 4f authenticators
precisely to commit a request it proposes during epoch operation. Thus, leaders need to process a total of 4f + 3 € ©(n)

signatures to commit a request. With the help of threshold signatures, backups involved in committing a request only

FNF-BFT: Exploring Performance Limits of BFT Protocols 23

need to compute 2 and verify 3 authenticators. We follow that a total of 4f + 3+ 5 - 3f = 19f + 3 authenticators are
computed/verified by a replica for one of its own requests and 3 f requests of other leaders.

After GST, each correct leader v will quickly converge to a Cy such that it will make progress for the entire epoch-time,
hence, working at its full potential. We achieve this by rapidly increasing the number of requests assigned to each
leader outperforming its assignment and never decreasing the assignment below what the replica recently managed.

Checkpoints are created every k requests and add to the computational load. A leader verifies and computes a total
of 2f + 2 messages to create a checkpoint, and the backups are required to compute 1 partial signature and verify 1
threshold signature. The authenticator cost of creating 3f + 1 checkpoints, one for each leader, is, therefore, 81 + 2 per
replica.

k-(3f+1)

Thus, the best-case throughput of the system is k(97 +3)* (8 %2)" O

Note that it would have been sufficient to show that the epoch throughput is Q(1) per time unit, but this more
precise formula will be required in Section A.5. Additionally, we would like to point out that the choice of k does not

influence the best-case throughput asymptotically.

A.4.3 FNF-BFT Epoch-Change. As FNF-BFT employs bounded-length epochs, repeated epoch-changes have to be
considered. In the following, we will show that FNF-BFT’s throughput is dominated by its authenticator complexity
during the epochs. To that end, observe that for Cpin € Q(n?), every epoch will incur an authenticator complexity of

Q(n?) per replica and thus require Q(n%) time units.
LEMMA 11. After GST, an epoch-change under a correct primary requires ©(n?) time units.

Proor. Following Lemma 7, the number of authenticators computed and verified by each replica for all epoch-change
messages is ©(n?). Each replica also processes ©(n) signatures during the reliable broadcast, and O(n) signatures for the
new-epoch messages. Overall, each replica thus processes ©(n?) authenticators during the epoch-change. Subsequently,
this implies that the epoch-change requires ©(n?) time units, as we require only a constant number of message delays
to initiate and complete the epoch-change protocol. Recall that we assume the throughput to be limited by the available

computing power of each replica. O

Theoretically, one could set Cpj, even higher such that the time the system spends with epoch-changes becomes
negligible. However, there is a trade-off for practical reasons: increasing Cp,jy will naturally increase the minimal
epoch-length, allowing a byzantine primary to slow down the system for a longer time stretch. Note that the guarantee

for byzantine-resilient performance (cf. Section A.5) will still hold.
A.4.4 FNF-BFT Optimistic Performance. Ultimately, it remains to quantify FNF-BFT’s overall best-case throughput.

LEMMA 12. After GST, and assuming all replicas are correct, FNF-BFT requires O (n) time units to process n client requests

on average.

Proo¥. Under a correct primary, each correct leader will commit at least Cpin, € Q(n?) requests after GST. Hence,
FNF-BFT will spend at least Q(n®) time units in an epoch, while only requiring @(n?) time units for an epoch-change

(Lemma 11). Thus, following Lemma 10, FNF-BFT requires an average of O(n) time units to process n client requests. O

Following Lemmas 9 and 12, the speed-up gained by moving from a sequential-leader protocol to a parallel-leader

protocol is proportional to the number of leaders.

24 Avarikioti et al.

THEOREM 13. If the throughput is limited by the (equally) available computing power at each replica, the speed-up for

equally splitting requests between n parallel leaders over a sequential-leader protocol is at least Q(n).

A5 Byzantine-Resilient Performance

While many BFT protocols present practical evaluations of their performance that completely ignore byzantine
adversarial behavior [10, 16, 27, 29], we provide a novel, theory-based byzantine-resilience guarantee. We first analyze
the impact of byzantine replicas in an epoch under a correct primary. Next, we discuss the potential strategies of a

byzantine primary trying to stall the system. And finally, we conflate our observations into a concise statement.

A.5.1 Correct Primary Throughput. To gain insight into the byzantine-resilient performance, we analyze the optimal
byzantine strategy. In epochs led by correct primaries, we will consider their roles as backups and leaders separately.
On the one hand, for a byzantine leader, the optimal strategy is to leave as many requests hanging, while not making

any progress (Lemma 14).

LEMMA 14. After GST and under a correct primary, the optimal strategy for a byzantine leader is to leave 2k client

requests hanging and commit no request.

Proor. Correct replicas will be synchronized as a correct primary initiates the epoch. Thus, byzantine replicas’
participation is not required for correct leaders to make progress.

A byzantine leader can follow the protocol accurately (at any chosen speed), send messages that do not comply with
the protocol, or remain unresponsive.

If following the protocol, a byzantine leader can open at most 2k client requests simultaneously as all further prepare
messages would be discarded. Leaving the maximum possible number of requests hanging achieves a throughput
reduction as it increases the number of authenticators shared during the epoch and the epoch-change. Hence, byzantine
leaders leave the maximum number of requests hanging.

While byzantine replicas cannot hinder correct leaders from committing requests, committing any request can only
benefit the throughput of FNF-BFT. To that end, note that after GST, each correct leader v will converge to a C, such
that it will make progress during the entire epoch-time; hence, prolonging the epoch-time is impossible. The optimal
strategy for byzantine leaders is thus to stall progress on their assigned hash buckets.

Finally, note that we assume the threshold signature scheme to be robust and can, therefore, discard any irrelevant

message efficiently. O

On the other hand, as a backup, the optimal byzantine strategy is not helping other leaders to make progress
(Lemma 15).

LEmMMA 15. Under a correct primary, the optimal strategy for a byzantine backup is to remain unresponsive.

ProoF. Byzantine participation in the protocol can only benefit the correct leaders’ throughput as they can simply
ignore invalid messages. Any authenticators received in excess messages will not be verified and thus do not reduce the
system throughput.

[m]

In conclusion, we observe that byzantine replicas have little opportunity to reduce the throughput in epochs under a

correct primary.

FNF-BFT: Exploring Performance Limits of BFT Protocols 25

THEOREM 16. After GST, the effective utilization under a correct primary is at least % forn — co.

Proor. Moving from the best-case scenario with 3f + 1 correct leaders to only 2f + 1 correct leaders, each correct
leader still processes 4f + 3 authenticators per request, and 5 authenticators for each request of other leaders. We know
from Lemma 14 that only the 2f + 1 correct replicas are committing requests and creating checkpoints throughout the
epoch. The authenticator cost of creating 2f + 1 checkpoints, one for each correct leader, becomes 6 f + 2 per replica.

Byzantine leaders can open at most 2k new requests in an epoch. Each hanging request is seen at most twice by
correct replicas without becoming committed. Thus, each correct replica processes no more than 8k authenticators for
requests purposefully left hanging by a byzantine replica in an epoch. Thus, the utilization is reduced at most by a
factor (1 - g) where T is the maximal epoch length. While epochs can finish earlier, this will not happen after GST
as soon as each correct leader v works at its capacity C,.

Hence, the byzantine-resilient epoch throughput becomes

k-(2f +1) kS
k- (14f +3) + (6f +2) (_T)'

By comparing this to the best-case epoch throughput from Lemma 10, we obtain a maximal throughput reduction of

@2f+1)(k-(19f+3)+(8f +2)) . 8kf
(Bf+1)(k- (14f +3) + (6f +2)) (_T)'

Observe that the first term decreases and approaches g for n — oo:

(2f +)(k-(19f +3) + (8f +2)) noeo 16438k _ 8
Bf+1)(k-(14f +3) + (6f +2)) 18+42k — 9

We follow that the epoch time is T € Q(n?), as we set Cin € Q(n?) and each leader requires Q(n) time units to

8k
commit one of its requests. Additionally, we know that 8kf € O(n), and thus: (1 - Tf 2%

In the limit n — oo, the throughput reduction byzantine replicas can impose on the system during a synchronized

epoch is therefore bounded by a factor X O

A.5.2 Byzantine Primary Throughput. A byzantine primary, evidently, aims to perform the epoch-change as slow
as possible. Furthermore, a byzantine primary can impede progress in its assigned epoch entirely, e.g., by remaining

unresponsive. We observe that there are two main byzantine strategies to be considered.
LEMMA 17. Under a byzantine primary, an epoch is either aborted quickly or Q(n®) new requests become committed.

Proor. A byzantine adversary controlling the primary of an epoch has three options. Following the protocol and
injtiating the epoch for all 2f + 1 correct replicas will ensure high throughput and is thus not optimal. Alternatively,
initiating the epoch for s € [f + 1, 2f] correct replicas will allow the byzantine adversary to control the progress made
in the epoch, as no correct leader can make progress without a response from at least one byzantine replica. However,
slow progress can only be maintained as long as at least 2f + 1 leaders continuously make progress. By setting the
no-progress timeout T, € O(T/Cin), Q(n®) new requests per epoch can be guaranteed. In all other scenarios, the
epoch will be aborted after at most one epoch-change timeout T, the initial message transmission time 5A, and one
no-progress timeout Tp.

Note that we do not increase the epoch-change timer T, for f unsuccessful epoch-changes in a row. In doing so, we
prevent f consecutive byzantine primaries from increasing the epoch-change timer exponentially; thus potentially

reducing the system throughput significantly. O

26 Avarikioti et al.

A.5.3 FNF-BFT Primaries. We rotate primaries across epochs based on primary performance history to reduce the

control of the byzantine adversary on the system.

LEmMA 18. After a sufficiently long stable time period, the performance of a byzantine primary can only drop below the

performance of the worst correct primary once throughout the sliding window.

Proor. The network is considered stable for a sufficiently long time when all leaders work at their capacity limit,
i.e., the number of requests they are assigned in an epoch matches their capacity, and primaries have subsequently been
explored once. As soon as all leaders are working at their capacity limit, we observe the representative performance of
all correct primaries, at least.

FNF-BFT repeatedly cycles through the 2f + 1 best primaries. A primary’s performance is based on its last turn as
primary. Consequently, a primary is removed from the rotation as soon as its performance drops below one of the
f remaining primaries. We conclude that a byzantine primary will only be nominated beyond its single exploration

throughout the sliding window if its performance matches at least the performance of the worst correct primary. O

As its successor determines a primary’s performance, the successor can influence the performance slightly. However,
this is bounded by the number of open requests — O (n) many - which we consider being well within natural performance
variations, as Q(n?) requests are created in an epoch under a correct primary. Thus, we will disregard possible
performance degradation originating at the succeeding primary.

From Lemma 18, we easily see that the optimal strategy for a byzantine primary is to act according to Lemma 17 —
performing better would only help the system. In a stable network, byzantine primaries will thus only have one turn
as primary throughout any sliding window. In the following, we consider a primary to be behaving byzantine if it

performs worse than all correct primaries.

THEOREM 19. After the system has been in stability for a sufficiently long time period, the fraction of byzantine behaving
f

primaries is 7
Proor. Following from Lemma 18, we know that a primary can only behave byzantine once in the sliding window.
There are a total of g epochs in a sliding window, and the f byzantine replicas in the network can only act byzantine in

one epoch included in the sliding window. We see that the fraction of byzantine behaving primaries is 5 O

The configuration parameter g determines the fraction of byzantine primaries in the system’s stable state, while
simultaneously dictating how long it takes to get there after GST. Setting g to a small value ensures that the system
quickly recovers from asynchrony. On the other hand, setting g to larger values provides near-optimal behavior once

the system is operating at its optimum.

A.54 FNF-BFT Byzantine-Resilient Performance. Combining the byzantine strategies from Theorem 16, Lemma 17 and

Theorem 19, we obtain the following.
THEOREM 20. After GST, the effective utilization is asymptotically g . %F forn — 0.

Proor. To estimate the effective utilization, we only consider the throughput within epochs. That is because the
time spent in correct epochs dominates the time for epoch-changes, as well as the time for failed epoch-changes under
byzantine primaries, as the number of replicas increases (Lemma 11). Without loss of generality, we consider no progress

to be made in byzantine primary epochs. We make this assumption, as we cannot guarantee asymptotically significant

FNF-BFT: Exploring Performance Limits of BFT Protocols 27

throughput. From Theorem 16, we know that in an epoch initiated by a correct primary, the byzantine-resilient effective
9-f
g
long time period in stability and thus obey this bound (Theorem 19). In the limit for n — oo the effective utilization is
8. 9-f
- O

9 9

utilization is at least g for n — oo. Further, at least of the epochs are led by correct primaries after a sufficiently

B IMPLEMENTATION

We first provide an overview of FNF-BFT s messages and their format, and then describe FNF-BFT’s behavior through
epoch operation and epoch change.

B.1 Messages and Data Structures

The following is a non-exhaustive list of data structures and message formats used in FNF-BFT.

® | requests p_certs c_certs

opt_ref

us

Fig. 9. Data structure format of PACK (known as block). A PACK consists of a sequence number sn, an epoch number e, a list of
requests requests (to allow for batch-processing of requests), prepared certificates p_certs of replicas having prepared this PACK,
commit certificates c_certs of replicas having sent a COMMIT message and an optional back-reference opt_ref, if a PACK refers to
another PACK (this is mainly used for hanging requests during epoch-changes).

replica sC P q

Fig. 10. Data structure format of EPOCHCHANGEOBJ. An epoch-change object consists of an epoch number e, an unique identifier
replica and maps sc, p and q.

hash

pack

l leader

Fig. 11. Message format of PREPREPARE. It simply contains the
leader’s unique identifier leader and a PACK (in its format de-
scribed above).

l leader

Fig. 13. Message format of PREPARED. It contains the leader’s
unique identifier leader, the hash of a PACK and the threshold
signature p_certx.

l leader

Fig. 15. Message format of COMMITTED. It contains the leader’s
unique identifier leader, the hash of a PACK and the threshold
sighature c_certs.

hash p_cert”

hash c_cert”

p_cert

l backup

Fig. 12. Message format of PREPARE. It contains the replica’s
unique identifier replica, the hash of a PACK and the replica’s
prepare certificate p_cert.

l backup

Fig. 14. Message format of COMMIT. It contains the replica’s
unique identifier replica, the hash of a PACK and the replica’s
commit certificate c_cert.

l client

Fig. 16. Message format of REQUEST. It consists of the client’s
unique identifier client, the request request and the hash of
the request r_hash.

hash c_cert

request r_hash

28

® | response

r_hash

us

l replica

Fig. 17. Message format of ANSWER. It consists of the replica’s
unique identifier replica, the sequence number sn and epoch
number e assigned to the request, the response response and
the request’s hash r_hash.

digest c_cert”

l leader c_sn

Fig. 19. Message format of CHECKPOINTED. It consists of the
leader’s unique identifier leader, the sequence number of the
checkpoint c_sn, the digest of all hashes of all PACK objects in
that checkpoint and the threshold signature c_certs.

Avarikioti et al.

digest c_cert

l backup c_sn

Fig. 18. Message format of NEWCHECKPOINT. It consists of the
backup’s unique identifier backup, the sequence number of the
checkpoint c_sn, the digest of all hashes of all PACK objects in
that checkpoint and the backup’s signature c_cert.

Fig. 20. Message format of EPOCHCHANGE. It consists of an epoch-
change object eco as described above, the primary’s signature
ec_cert and the hash of the EPOCHCHANGEOBJ e_hash.

ec_cert e_hash

l primary eco

ec_cert

e_hash eco_proof

Fig. 21. Message format of NEWEPOCH. It consists of the primary’s unique identifier primary, an epoch-change object eco as described
above, the primary’s certificate ec_cert, the hash of the EPOCHCHANGEOBJ e_hash and a list of EPOCHCHANGEOBJ eco_proof that

were used to compute eco.

l primary

config

conf_hash

Fig. 22. Message format of NEWEPOCHCONF. It consists of the primary’s unique identifier primary, the new replica configuration

config and the configuration’s hash conf_hash.

B.2 Epoch Operation

The following detail the protocol’s behavior during epochs.

Client Request Pipeline. The normal operation of FNF-BFT is as follows:

(1) When a client broadcasts a request, each replica assigns the request to a bucket by hashing the issuer’s unique

client id.

(2) The leader responsible for that bucket assigns a monotonically increasing sequence number to the request and

broadcasts a signed PREPREPARE message.

(3) Backups receiving a PREPREPARE message verify the message and reply with a signed PREPARE message to the

leader, using a partial threshold signature.

(4) Once aleader receives 2f valid PREPARE messages for a given sequence number, it computes a combined signature

from the 2f PREPARE messages and its own signature. It then broadcasts the combined signature in a PREPARED

message to all replicas.

FNF-BFT: Exploring Performance Limits of BFT Protocols 29

(5) A backup receiving a PREPARED message, verifies the signature and replies with a COMMIT message.

(6) Upon receiving 2f COMMIT messages for a sequence number, the leader once again computes a combined signature
from its own signature and 2f COMMIT messages and broadcasts the combined signature in a COMMITTED message.

(7) When a backup receives a COMMITTED message ¢ from leader [and all preceding requests from [have been
delivered, it executes the client request associated with ¢’s sequence number.

(8) The client accepts a reply for a given request, once it received f + 1 replies with the same result.

Checkpoint Operation. Sequence numbers are assigned to leaders within given intervals (watermark bounds). Addi-
tionally, leaders may only distribute a subset of these sequence numbers at any given point in time. This interval is a
sliding window of sequence numbers (watermarks) and updated using checkpoints. The size of the interval is 2K, with K
being a configuration parameter. Checkpoints prove the correctness of a given state by containing signatures of 2f + 1

replicas. The generation of checkpoints work as follows:

e When a backup has K continuous locally committed requests from a given leader [since its last checkpoint, it
will issue a NEWCHECKPOINT message to the leader. In other words, when all requests with sequence numbers
sn, such that prev_checkpoint_sn <= sn < prev_checkpoint_sn + K, where prev_checkpoint_sn is the sequence
number of the previous checkpoint of leader I, have been locally committed, the backup requests the generation
of a new checkpoint for that leader.

e Upon receiving 2f NEWCHECKPOINT messages for a given sequence number, the leader [computes a combined
signature out of these messages and its own signature and broadcasts it in a CHECKPOINTED message.

e Replicas receiving a CHECKPOINTED message verify its contents and advance the watermarks of leader /.

B.3 Epoch-Change

By rotating bucket assignments, FNF-BFT ensures progress and prevents request censoring by byzantine replicas. This
bucket rotation takes place during a phase called epoch-change. During this phase, no new client requests will effectively
be treated.

Epoch-Change Initiation. Replicas will call for an epoch-change if at least one of the following conditions is met:

o 2f +1leaders have exhausted all sequence numbers within their watermark bounds: a majority of correct leaders
will not be able to make progress anymore; thus, replicas request an epoch-change.

o The epoch timer runs out. This timer is set to a constant value and started at the beginning of each epoch.

e 2f + 1 no-progress timers run out. Each replica has a set of n no-progress timers. These timers are reset every
time the replica commits a request from a given leader.

o A replica sees f + 1 EPOCHCHANGE messages for epochs higher than its current epoch.

In summary, replicas initiate epoch-changes either when the system no longer makes enough progress, or when the

epoch’s time runs out.

Epoch-Change Pipeline. The sequence of events in an epoch-change is as follows:

(1) When one of the above condition holds, replicas request an epoch-change to epoch e + 1 by broadcasting an
EPOCHCHANGE message. They then set an epoch-change timer. If the timer runs out before receiving a NEWEPOCH
message, the replica will request an epoch-change to epoch e + 2 (and so on). Replicas increase their local epoch

number and thus stop treating all messages related to old epochs.

30 Avarikioti et al.

(2) Once the primary for the current epoch (assigned in a round-robin manner) has received 2f NEWEPOCH messages
for epoch e*, it will calculate the new replica configuration for e* and initiate a classical reliable 3-phase broadcast
of the new replica configuration using NEWEPOCHCONF messages. The new configuration takes into account past
leader performances — if a leader has successfully committed all assigned requests in the previous epoch, the
watermark bounds are doubled, otherwise the new watermark bounds are equal to the number of previously
processed requests. It then computes and broadcasts a NEWEPOCH message for epoch e*.

(3) Replicas receiving NEWEPOCHCONF messages participate in the reliable broadcast and eventually adopt the new
replica configuration for epoch e*.

(4) Replicas receiving NEWEPOCH messages verify the message’s content by performing the same computation as the
primary. Finally, replicas process the NEWEPOCH message and resume normal operation by treating requests in

their new bucket, according to the new replica configuration.

B.4 Format, Calculation and Processing of Epoch-Change Messages

The basis of EPOCHCHANGE and NEWEPOCH messages are epoch-change objects (see Figure 10).
Epoch-change objects in an EPOCHCHANGE < e, replica, sc, p, ¢ > message contain:

e The epoch-number that this epoch-change object relates to.
replica The unique replica ID of the owner/issuer of this object.
sc Map with keys replica_id and values <checkpoint_sn,checkpoint_cert>, where checkpoint_sn is the
sequence number of the most recent checkpoint seen for replica_id and checkpoint_cert the corresponding
combined signature verifying the checkpoint’s validity.

p Map with keys replica_id and values map<sn, p_certs>, where sn is the sequence number of a prepared
request (received PREPARED) that has not been committed and for which replica_id is the leader and p_certs
the combined signature of the corresponding PREPARED message.

q Map with keys replica_id and values map<sn, qg_certs>, where sn is the sequence number of a committed
request (received COMMITTED) that is not part of any checkpoints and for which replica_id is the leader and
g_certs the combined signature of the corresponding COMMITTED message.

Epoch-change objects eco* in a NEWEPOCH message contain the same elements; however, their content are the
"supersets" (denoted by sc*,p*, g*) of the contents of all 2f + 1 EPOCHCHANGE messages necessary for the generation of
NEWEPOCH messages. Specifically, the primary performs the following calculations.

To calculate sc*, for each replica r, the primary chooses the highest sequence number sn,. and corresponding
certificate among all sets sc received through EPOCHCHANGE messages and adds them to sc*. For all requests with

sequence numbers sn higher than sn/ belonging to r:

o If there is a set q’ among all sets q received through EPOCHCHANGE messages that contains sn, sn and the
corresponding q_cert are added to g*.

o If there is a set p’ among all sets p received through EPOCHCHANGE messages that contains sn and no set g’
among all sets g received through EPOCHCHANGE messages contains sn, sn and the corresponding p_cert are

added to px*.

Note, that both conditions are mutually exclusive.

FNF-BFT: Exploring Performance Limits of BFT Protocols 31

The NEWEPOCH message contains an epoch-change object eco%, a set eco_proof of 2f + 1 EPOCHCHANGE messages
(2f received from replicas and the primary’s) from which the NEWEPOCH message was calculated, the message’s hash
e_hash and the primary’s certificate ec_cert.

Replicas process NEWEPOCH messages as follows:

e For every element in g*, replicas re-send answers of requests back to clients.

o For every element in p#, replicas generate a new PREPREPARE message with a reference (see opt_ref in Figure 9)
to the original request from the previous epoch. The new message is a regular PREPREPARE message and will go
through the pipeline like any other message, but when replicas execute the request after receiving a COMMITTED
message, they will execute requests from the reference instead.

e For every sequence number sn that is within watermarks of each leader, replicas generate null requests and a
new PREPREPARE message with those requests as opt_ref. Null requests are requests, whose execution results

in no-ops. These messages will go through the pipeline like any other message.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Our Contribution

	2 The Model
	2.1 System model
	2.2 Communication Model
	2.3 Cryptographic Primitives
	2.4 Authenticator Complexity
	2.5 Protocol Overview
	2.6 Protocol Goals

	3 FnF-BFT
	3.1 Client
	3.2 Sequence Number Distribution
	3.3 Hash Space Division
	3.4 Primary Rotation
	3.5 Epoch Operation
	3.6 Checkpointing
	3.7 Epoch-Change

	4 Analysis
	5 Evaluation
	References
	A Analysis
	A.1 Safety
	A.2 Liveness
	A.3 Efficiency
	A.4 Optimistic Performance
	A.5 Byzantine-Resilient Performance

	B Implementation
	B.1 Messages and Data Structures
	B.2 Epoch Operation
	B.3 Epoch-Change
	B.4 Format, Calculation and Processing of Epoch-Change Messages

