
FnF-BFT: A BFT protocol with provable
performance under attack

Zeta Avarikioti1, Lioba Heimbach2, Roland Schmid2, Laurent Vanbever2,
Roger Wattenhofer2, and Patrick Wintermeyer2

1 TU Wien, Austria
2 ETH Zürich, Switzerland

Abstract. We introduce FnF-BFT, the first partially synchronous BFT
protocol with performance guarantees under truly byzantine attacks dur-
ing stable networking conditions. At its core, FnF-BFT parallelizes the
execution of requests by allowing all replicas to act as leaders indepen-
dently. Leader parallelization distributes the load over all replicas. Con-
sequently, FnF-BFT fully utilizes all correct replicas’ processing power
and increases throughput by overcoming the single-leader bottleneck.
We prove lower bounds on FnF-BFT’s efficiency and performance in
synchrony: the amortized communication complexity is linear in the num-
ber of replicas and thus competitive with state-of-the-art protocols; FnF-
BFT’s amortized throughput with less than 1

3
byzantine replicas is at

least 16
27

th of its best-case throughput. We also provide a proof-of-concept
implementation and preliminary evaluation of FnF-BFT.

Keywords: BFT, SMR, parallel leaders, byzantine-resilient performance

1 Introduction
Byzantine fault tolerance has been the gold standard for making distributed sys-
tems more robust. Instead of modeling every single failure scenario, the byzan-
tine failure model considers arbitrarily malicious actors that may infiltrate the
system, thus covering many unforeseeable failure scenarios. This failure model
has been broadly applied to state machine replication (SMR). In SMR, a set
of distributed replicas aims to agree on a unique ordering of client requests,
even though a subset of the replicas, the byzantine failures, tries to disrupt the
protocol. Therefore, the primary objectives of a protocol are the system’s cor-
rectness (safety) and continuous progress (liveness). SMR protocols that offer
these guarantees, i.e., are resilient against byzantine failures while continuing
system operation, are known as byzantine fault-tolerant (BFT) protocols.

The first practical BFT system, PBFT [9], was introduced more than two
decades ago and has inspired numerous other BFT systems, e.g., [22,18,38]. How-
ever, even today, BFT protocols do not scale well with an increasing number of
replicas, making large-scale deployment of BFT systems a challenge. Often, the
origin of this issue stems from the single-leader bottleneck : most BFT protocols
rest the responsibility of uniquely ordering client requests on a single leader in-
stead of distributing this task amongst the replicas [35]. More recently, protocols

2 Avarikioti et al.

tackling the single-leader bottleneck through parallelization emerged, demon-
strating a staggering performance increase over state-of-the-art sequential-leader
protocols [26,35,19,36,34,11,20]. Similar to most of their single-leader counter-
parts, these works only consider non-malicious faults for their performance anal-
ysis. However, malicious attacks may lead to significant performance losses that
are not evaluated. While these systems exhibit promising performance with sim-
ple faults, they fail to provide lower bounds on their performance under attack.

Our contribution. In this work, we introduce the first parallel-leader BFT
protocol with a provable performance guarantee under truly byzantine attack in
stable network conditions, which we term Fast’n’Fair-BFT (FnF-BFT). To
formally capture this performance guarantee, we define the byzantine-resilient
performance of a BFT protocol as the ratio between its worst-case and its best-
case throughput, i.e., the effective utilization. For FnF-BFT, we bound this ratio
to be constant, meaning that the throughput of our protocol under byzantine
faults is lower-bounded by a constant fraction of its best-case throughput where
no faults are present. Concretely, we show that FnF-BFT achieves byzantine-
resilient performance with a ratio of 16/27 while maintaining safety and liveness.

In short, FnF-BFT is the first BFT protocol that provably achieves all the
following properties in the partially synchronous communication model, i.e.,
where after some unknown global stabilization time (GST), messages are de-
livered within a known bound ∆.
– Optimistic Performance: After GST, the best-case throughput is Ω(n)

times higher than the throughput of sequential-leader protocols.
– Byzantine-Resilient Performance: After GST, the worst-case through-

put of the system is at least a constant fraction of its best-case throughput.
– Efficiency: After GST, the amortized authenticator complexity of reaching

consensus is Θ(n).
FnF-BFT achieves these properties by combining two key insights: First,

by enabling all replicas to continuously act as leaders in parallel – sharing the
load of clients’ requests. Second, FnF-BFT does not replace leaders upon failure
but configures each leader’s load based on the leader’s past performance. With
this combination, we guarantee a fair distribution of requests according to each
replica’s capacity, which in turn results in fast processing of requests.

The rest of this paper is structured as follows: First, we present our formal
model, an overview of the protocol, and define the protocol goals (§2). We then
explain the design of FnF-BFT (§3), and analyze its security and performance
formally (§4). We conclude with a related work section (§5). Proofs omitted in
Section 4 can be found in Appendix A, where we present the complete analysis of
FnF-BFT. A description and preliminary evaluation of our proof-of-concept im-
plementation of FnF-BFT based on HotStuff [38] can be found in Appendix B.

2 FnF-BFT Overview
Model. The system consists of n = 3f +1 authenticated replicas and a set of
clients. We index replicas by i ∈ [n] = {1, 2, . . . , n}. Throughout an execution,
at most f unique replicas in the system are byzantine, i.e., they are controlled by

FnF-BFT 3

an adversary with full information on their internal state. All other replicas are
correct, i.e., following the protocol. The adversary cannot intercept the commu-
nication between two correct replicas. Any number of clients may be byzantine.

Communication model: We assume a partially synchronous communication
model, i.e., a known bound ∆ on message transmission will hold between any two
correct replicas after some unknown global stabilization time (GST). We show
that FnF-BFT is safe in asynchrony, that is, when messages between correct
replicas may arrive in arbitrary order after any finite delay. We evaluate all other
properties of the system after GST, thus assuming a synchronous network.

Cryptographic primitives: We make the usual cryptographic assumptions: the
adversary is computationally bounded, and cryptographically-secure communi-
cation channels, computationally secure hash functions, (threshold) signatures,
and encryption schemes exist. Similar to other BFT algorithms [5,38,18], FnF-
BFT makes use of threshold signatures. In an (l, n) threshold signature scheme,
there is a single public key held by all replicas and clients. Additionally, each
replica u holds a distinct private key allowing the generation of a partial signa-
ture σu(m) of any message m. Any set of l distinct partial signatures for the
same message, {σu(m) | u ∈ U, |U | = k} can be combined (by any replica) into a
unique signature σ(m). The combined signature can be verified using the public
key. We assume that the scheme is robust, i.e., any verifier can easily filter out
invalid signatures from malicious replicas. In this work, we set l = 2f + 1.

Authenticator complexity: Message complexity has long been considered the
main throughput-limiting factor in BFT protocols [18,38]. In practice, however,
the throughput of a BFT protocol is limited by both its computational footprint
(mainly caused by cryptographic operations), as well as its message complex-
ity. Hence, to assess the performance and efficiency of FnF-BFT, we adopt a
complexity measure called authenticator complexity [38]. An authenticator is
any (partial) signature. We define the authenticator complexity of a protocol as
the average number of all computations or verifications of any authenticator by
replicas during the protocol execution per request. Note that the authenticator
complexity also captures the message complexity of a protocol if, like in FnF-
BFT, each message can be assumed to contain at least one signature. Unlike
[38], where only the number of received signatures is considered, our definition
allows to capture the load handled by each individual replica more accurately.
Note that authenticator complexities according to the two definitions only differ
by a constant factor. We only analyze the authenticator complexity after GST,
as it is impossible for a BFT protocol to ensure deterministic progress and safety
at the same time in an asynchronous network [15].

Protocol Overview. The FnF-BFT protocol implements a state machine
(cf. Section 2) that is replicated across all replicas in the system. Clients broad-
cast requests to the system. Given client requests, replicas decide on the order
of request executions and deliver commit-certificates to the clients.

Our protocol moves forward in epochs. In an epoch, each replica u is re-
sponsible for ordering a set of up to Cu client requests that are independent of
all requests ordered by other replicas in the epoch. Every replica in the system

4 Avarikioti et al.

simultaneously acts as both a leader and a backup to the other leaders. The
number of assigned client requests Cu is based on u’s past performance as a
leader. The client space is rotated between replicas between epochs to guarantee
liveness. More precisely, during the epoch-change, a designated replica acting as
primary: (a) ensures that all replicas have a consistent view of the past leader
and primary performance, (b) deduces non-overlapping sequence numbers for
each leader, and (c) assigns parts of the client space to leaders.

An epoch-change occurs when requested by more than two-thirds of replicas.
Replicas requesting an epoch-change immediately stop participating in the pre-
vious epoch. The primary in charge of the epoch-change is selected through pe-
riodic rotation based on performance history. Replicas request an epoch-change
if: (a) all replicas have exhausted their requests, (b) their local epoch timeout
is exceeded, (c) not enough progress by other leaders is observed, or (d) enough
other replicas request an epoch-change. Hence, epochs have bounded-length.

Protocol goals. FnF-BFT achieves scalable and byzantine fault-tolerant
state machine replication (SMR). In SMR, a group of replicas decide on a grow-
ing log of client requests. Clients are provided with cryptographically secure
certificates which prove the commitment of their request. The protocol ensures:
1. Safety: If any two correct replicas commit a request with the same sequence

number, they both commit the same request.
2. Liveness: If a correct client broadcasts a request, then every correct replica

eventually commits the request.
Thus, FnF-BFT will eventually make progress, and valid client requests can-
not be censored. Additionally, FnF-BFT guarantees low overhead in reaching
consensus. Unlike other protocols limiting the worst-case efficiency for a single
request, we analyze the amortized authenticator complexity per request after
GST. We find this to be the relevant throughput-limiting factor:
3. Efficiency: After GST, the amortized authenticator complexity of reaching

consensus is Θ(n).
Furthermore, FnF-BFT achieves competitive performance under both opti-

mistic and pessimistic adversarial scenarios:
4. Optimistic Performance: After GST, the best-case throughput is Ω(n)

times higher than the throughput of sequential-leader protocols.
5. Byzantine-Resilient Performance: After GST, the worst-case through-

put of the system is at least a constant fraction of its best-case throughput.
Hence, unlike many other BFT systems, FnF-BFT guarantees that byzantine
replicas cannot arbitrarily slow down the system when the network is stable.

3 FnF-BFT Architecture
FnF-BFT executes client requests on a state machine replicated across n repli-
cas. We advance FnF-BFT in epochs – identified by monotonically increasing
epoch numbers. Replicas in the system act as leaders and backups concurrently.
As a leader, a replica is responsible for ordering client requests within its ju-
risdiction. Each leader v is assigned a predetermined number of requests Cv to
execute during an epoch. To deliver a client request, v starts by picking the next

FnF-BFT 5

available sequence number and shares the request with the backups. Leader v
must collect 2f + 1 signatures from replicas in the leader prepare and commit
phase (Algorithm 1) to commit the request. We employ threshold signatures for
the signature collection – allowing us to achieve linear authenticator complexity
for reaching consensus on a request. Additionally, we use low and high water-
marks for each leader to represent a range of request sequence numbers that
each leader can propose concurrently to boost individual leaders’ throughput.

Each epoch has a unique primary responsible for the preceding epoch-change,
i.e., moving the system into the epoch. The primary changes every epoch and its
selection is based on the system’s history. A replica calls for an epoch-change in
any of the following cases: (a) the replica has locally committed requests for all
sequence numbers available in the epoch, (b) the maximum epoch time expired,
(c) the replica has not seen sufficient progress, or (d) the replica has observed
at least f + 1 epoch-change messages from other replicas.

FnF-BFT generalizes PBFT [9] and Mir-BFT [35] to the n leader setting.
Additionally, we avoid PBFT’s expensive all-to-all communication during epoch
operation similar to Linear-PBFT [18]. Throughout this section, we discuss the
various components of the protocol in further detail.

3.1 Client

Each client has a unique identifier. A client c requests the execution of an op-
eration r by sending a ⟨request, r, t, c⟩ to all leaders. Here, timestamp t is a
monotonically increasing sequence number used to order the requests from one
client. By using watermarks, we allow clients to have more than one request in
flight. Client watermarks, low and high, represent the range of timestamp se-
quence numbers which the client can propose concurrently. Thus, we require t
to be within the low and high watermarks of client c. The client watermarks are
advanced similarly to the leader watermarks (cf. Section 3.6). Upon executing
operation r, replica u responds to the client with ⟨reply, e, d, u⟩, where e is the
epoch number and d is the request digest (cf. Section 3.5)3. The client waits for
f + 1 such responses from the replicas.

3.2 Sequence Number Distribution

We distribute sequence numbers to leaders for the succeeding epoch during the
epoch-change. While we commit requests from each leader in order, the requests
from different leaders are committed independently of each other in our pro-
tocol. Doing so allows leaders to continue making progress in an epoch, even
though other leaders might have stopped working. Otherwise, a natural attack
for byzantine leaders is to stop working and force the system to an epoch-change.
Such attacks are possible in other parallel-leader protocols such as Mir-BFT [35].

To allow leaders to commit requests independently of each other, we need
to allocate sequence numbers to all leaders during the epoch-change. Thus, we
must also determine the number of requests each leader is responsible for before
3 Instead of committing client request independently, the protocol could be adapted to

process client requests in batches – a standard BFT protocol improvement [22,38,35].

6 Avarikioti et al.

Algorithm 1 Committing a request proposed by leader v

1: Leader prepare phase
2: as replica u:
3: upon receiving a valid ⟨request, r, t, c⟩ from client c:
4: map client request to hash bucket
5: as leader v:
6: accept ⟨request, r, t, c⟩ assigned to one of v’s buckets
7: pick next assigned sequence number sn
8: broadcast ⟨pre-prepare, sn, e, h(r), v⟩
9: Backup prepare phase

10: as backup w:
11: accept ⟨pre-prepare, sn, e, h(r), v⟩
12: if the pre-prepare message is valid:
13: compute partial signature σw(d), where d = h(sn∥e∥r)
14: send ⟨prepare, sn, e, σw(d)⟩ to leader v

15: as leader v:
16: compute partial signature σv(d)
17: upon receiving 2f prepare messages:
18: compute (2f + 1, n) threshold signature σ(d)
19: broadcast ⟨prepared-certificate, sn, e, σ(d)⟩
20: Commit phase
21: as backup w:
22: accept ⟨prepared-certificate, sn, e, σ(d)⟩
23: compute partial signature σ(σw(d))
24: ⟨commit, sn, e, σw(σ(d))⟩ to leader v
25: as leader v:
26: compute partial signature σ(σv(d))
27: upon receiving 2f commit messages:
28: compute (2f + 1, n) threshold signature σ(σ(d))

29: broadcast ⟨commit-certificate, sn, e, σ(σ(d))⟩

the epoch. The number of requests for leader v in epoch e is denoted by Cv(e).
It can be computed deterministically by all replicas in the network, based on the
known history of the system (cf. Section 3.7).

When assigning sequence numbers, we first automatically yield to each leader
v ∈ [n] the sequence numbers of the Ov(e) existing hanging requests from pre-
vious epochs in the assigned bucket(s). The remaining Cv(e) − Ov(e) sequence
numbers for each leader are distributed to them one after the other according to
their ordering from the set of available sequence numbers. Note that Ov(e) can-
not exceed Cv(e). For each leader v the assigned sequence numbers are mapped
to local sequence numbers 1v,e, 2v,e, . . . , Cv(e)v,e in epoch e. These sequence
numbers are later used to simplify checkpoint creation (cf. Section 3.6).

3.3 Hash Space Division

The client hash space is partitioned into buckets to avoid duplication. Each
bucket is assigned to a single leader every epoch. We consider the client identifier
to be the request input and hash the client identifier (hc = h(c)) to map requests

FnF-BFT 7

into buckets. The hash space partition ensures that no two conflicting requests
will be assigned to different leaders4.

Thus, the requests served by different leaders are independent of each other.
Additionally, the bucket assignment is rotated round-robin across epochs, pre-
venting request censoring. The hash space is portioned into m·n non-intersecting
buckets of equal size, where m ∈ Z+ is a configuration parameter. Each leader v
is then assigned mv(e) buckets in epoch e according to their load Cv(e) (cf.
Section 3.7). Leaders can only include requests from their active buckets.

When assigning buckets to leaders, the protocol ensures that every leader
is assigned at least one bucket, as well as distributing the buckets according to
the load handled by the leaders. Precisely, the number of buckets leader v is
assigned in epoch e is given by mv(e) =

⌊
Cv(e)∑

u∈[n] Cu(e)
(m− 1) · n

⌋
+ 1 + m̃v(e),

where m̃v(e) ∈ {0, 1} distributes the remaining buckets to the leaders – ensuring∑
u∈[n] mu(e) = m ·n. The remaining buckets are allocated to leaders v with the

biggest value:
⌊

Cv(e)∑
u∈[n] Cu(e)

(m− 1) · n
⌋
+ 1− Cv(e)∑

u∈[n] Cu(e)
·m · n.

Note that the system will require a sufficiently long stability period for all
correct leaders to be working at their capacity limit, i.e., Cv(e) matching the
performance of leader v in epoch e. Once correct leaders operate at capacity, the
number of buckets they serve matches that. The hash buckets are distributed to
leaders through a deterministic rotation such that each leader repeatedly serves
each bucket under f + 1 unique primaries, i.e., preventing byzantine replicas
from censoring specific hash buckets. For the remaining paper, we assume that
there are always client requests pending in each bucket. Since we aim to optimize
throughput, this assumption is in-sync with our protocol goals.

3.4 Primary Rotation

While all replicas are tasked with being a leader at all times, only a single
replica, the primary, initiates an epoch. FnF-BFT assigns primaries periodically,
exploiting the performance of good primaries and being reactive to network
changes. The primary rotation consists of two core building blocks. First, FnF-
BFT repeatedly rotates through the 2f + 1 best primaries – exploiting their
performance. Second, FnF-BFT explores every primary at least once within
a sliding window. The sliding window consists of g ∈ Z epochs, and we set
g ≥ 3f+1 to allow the exploration of all primaries throughout a sliding window.
We depict a sample rotation in Figure 1.

Throughout the protocol, all replicas record the performance of each primary.
We measure performance as the number of requests successfully committed un-
der a primary in an epoch. Performance can thus be determined during the
succeeding epoch-change by each replica (cf. Section 3.7). To deliver a reactive
system, we update a replica’s primary performance after each turn.
4 Note that in case the requests are transactions with multiple inputs, the hash space

division is more challenging to circumvent double-spending attacks. In such cases,
we can employ well-known techniques [39,21] with no performance overhead as long
as the average number of transactions’ inputs remains constant [7].

8 Avarikioti et al.
replica u’s
last turny

replica u
re-evaluatedy

sliding window

Fig. 1: FnF-BFT primary rotation in a system with n = 10 replicas. In blue, we
show epochs led by primaries elected based on their performance. Epochs shown
in yellow are led by replicas re-evaluated once their last turn as primary falls
out of the sliding window.

We rotate through the best 2f + 1 primaries repeatedly. After every 2f + 1
primaries, the best 2f + 1 primaries are redetermined and subsequently elected
as primary in order of the time passed since their last turn as primary. The pri-
mary that has not been seen for the longest time is elected first. Cycling through
the best primaries maximizes system performance. Simultaneously, basing per-
formance solely on a replica’s preceding primary performance strips byzantine
primaries from the ability to misuse a good reputation. Every so often, we inter-
rupt the continuous exploitation of the best 2f + 1 primaries to revisit replicas
that fall out of the sliding window. If replica u’s last turn as primary occurred in
epoch e− g by the time epoch e rolls around, replica u would be re-explored as
primary in epoch e. The exploration allows us to re-evaluate all replicas as pri-
maries periodically and ensures that FnF-BFT is reactive to network changes.

The protocol starts by exploring all primaries ordered by their identifiers.
Note that only one primary can fall out of the sliding window at any time after
the first exploration. Thus, we always know which primary will be re-evaluated.

3.5 Epoch Operation

To execute requests, we use a leader-based adaption of PBFT, similar to Linear-
PBFT [18]. Threshold signatures are commonly used to reduce the complexity of
the backup prepare and commit phases of PBFT. The leader of a request is used
as a collector of partial signatures to create a (2f + 1, n) threshold signature in
the intermediate stages of the backup prepare and commit phases. We visualize
the schematic of the message flow for one request led by replica 0 in Figure 2
and summarize the protocol executed locally by replicas in Algorithm 1.

Leader prepare phase. Upon receiving ⟨request, r, t, c⟩ from a client, each
replica computes the hash of the client identifier c. If the request falls into one
of leader v’s active buckets, v verifies ⟨request, r, t, c⟩. The request is discarded
if either it has already been prepared or it is already pending. Once verified,
leader v broadcasts ⟨pre-prepare, sn, e, h(r), v⟩, where sn is the sequence number,
e the current epoch, h(r) is the hash digest of request r and v represents the
leader’s signature. The cryptographic hash function h maps an arbitrary-length
input to a fixed-length output. We can use the digest h(r) as a unique identifier
for a request r, as we assume the hash function to be collision-resistant.

Backup prepare phase. Backup w accepts ⟨pre-prepare, sn, e, h(r), v⟩ from
leader v, if (a) the epoch number matches its local epoch number, (b) w has

FnF-BFT 9

leader preparebackup prepare commit
0

1

2

3

Fig. 2: Schematic message flow for one request.

not prepared another request with the same sequence number sn in epoch e,
(c) leader v leads sequence number sn, (d) sn lies between the low and high wa-
termarks of leader v, (e) r is in the active bucket of v, and (f) r was submitted
by an authorized client. Upon accepting ⟨pre-prepare, sn, e, h(r), v⟩, w computes
d = h(sn∥e∥r) where h is a hash function. Additionally, w signs d by comput-
ing a verifiable partial signature σw(d). Then w sends ⟨prepare, sn, e, σw(d)⟩ to
leader v. Upon receiving 2f prepare messages for sn in epoch e, leader v forms
a combined signature σ(d) from the 2f prepare messages and its own signature.
Leader v then broadcasts ⟨prepared-certificate, sn, e, σ(d)⟩ to all backups.

Commit phase. Backup w accepts the prepared-certificate and replies with
⟨commit, sn, e, σw(σ(d))⟩ to leader v. After collecting 2f commit messages, v cre-
ates a combined signature σ(σ(d)) using the signatures from the collected com-
mit messages and its own signature. Once the combined signature is prepared,
v continues by broadcasting ⟨commit-certificate, sn, e, σ(σ(d))⟩. Upon receiving
the commit-certificate, replicas execute r after delivering all preceding requests
led by v, and send replies to the client.

3.6 Checkpointing

Similar to PBFT [9], we periodically create checkpoints to prove the correctness
of the current state. Instead of requiring a costly round of all-to-all communica-
tion to create a checkpoint, we add an intermediate phase and let the respective
leader collect partial signatures to generate a certificate optimistically. Addition-
ally, we expand the PBFT checkpoint protocol to run for n parallel leaders.

For each leader v, we repeatedly create checkpoints to clear the logs and
advance the watermarks of leader v whenever the local sequence number snv,e,k

is divisible by a constant k ∈ Z+. Recall that when a replica u delivers a re-
quest for leader v with local sequence number snv,e,k, this implies that all re-
quests led by v with local sequence number lower than snv,e,k have been locally
committed at replica u. Hence, after delivering the request with local sequence
number snv,e,k, replica u sends ⟨checkpoint, snv,e,k, h(sn

′
v,e,k), u⟩ to leader v.

Here, sn′
v,e,k is the last checkpoint and h(sn′

v,e,k) is the hash digest of the re-
quests with sequence number snv in the range sn′

v,e,k ≤ snv ≤ snv,e,k. Leader v
proceeds by collecting 2f+1 checkpoint messages (including its own) and gener-
ates a checkpoint-certificate by creating a combined threshold signature. Then,
leader v sends the checkpoint-certificate to all other replicas. If a replica sees
the checkpoint-certificate, the checkpoint is stable and the replica can discard
the corresponding messages from its logs, i.e., for sequence numbers belonging
to leader v lower than snv,e,k.

10 Avarikioti et al.

We use checkpointing to advance low and high watermarks. In doing so, we
allow several requests from a leader to be in flight. The low watermark Lv for
leader v is equal to the sequence number of the last stable checkpoint, and the
high watermark is Hv = Lv +2k. We set k to be large enough such that replicas
do not stall. Given its watermarks, leader v can only propose requests with a
local sequence number between low and high watermarks.

Calling epoch-change. Replicas call an epoch-change by broadcasting an
epoch-change message in four cases:
1. Replica u triggers an epoch-change in epoch e, once it has committed every-

one’s assigned requests locally.
2. Replica u calls for an epoch-change when its epoch timer expires. The value

of the epoch timer T is set to ensure that after GST, correct replicas can
finish at least Cmin requests during an epoch. Cmin ∈ Ω(n2) is the minimum
number of requests assigned to leaders.

3. Replicas call epoch-changes upon observing inadequate progress. Each replica
u has individual no-progress timers for all leaders. The no-progress timer is
initialized with the same value Tp for all leaders. Initially, replicas set all no-
progress timers for the first time after 5∆ in the epoch – accounting for the
message transmission time of the initial requests. A replica resets the timer
for leader v every time it receives a commit-certificate from v. In case the
replica has already committed Cv requests for leader v, the timer is no longer
reset. Upon observing no progress timeouts for b ∈ [f + 1, 2f + 1] different
leaders, a replica calls an epoch-change. Requiring at least f + 1 leaders to
make progress ensures that a constant fraction of leaders makes progress,
and at least one correct leader is involved. On the other hand, we demand
no more than 2f + 1 leaders to make progress such that byzantine leaders
failing to execute requests cannot stop the epoch early. We let b = 2f + 1
and set the no-progress timer such that it does not expire for correct leaders
and simultaneously ensures sufficient progress, i.e., Tp ∈ Θ(T/Cmin).

4. Finally, replica u calls an epoch-change if it sees that f + 1 other replicas
have called an epoch-change for an epoch higher than e. Replica u picks the
smallest epoch in the set such that byzantine replicas cannot advance the
protocol an arbitrary number of epochs.
After sending an epoch-change message, the replica will only start its epoch-

change timer, upon seeing at least 2f+1 epoch-change messages. We will discuss
the epoch-change timer in more detail later.

3.7 Epoch-Change

At high level, in FnF-BFT’s epoch-change protocol, we modify the PBFT view-
change protocol as follows: we use threshold signatures to reduce the message
complexity and extend the view-change message to include information about
all leaders. Similar to Mir-BFT [35], we introduce a round of reliable broadcast
to share information needed to determine the configuration of the next epoch(s).
We determine the load assigned to each leader in the next epoch, based on their
past performance, and also record the performance of the preceding primary.

FnF-BFT 11

Algorithm 2 Epoch-change protocol for epoch e+ 1

1: Starting epoch-change
2: as replica u:
3: broadcast ⟨epoch-change, e+ 1,S, C,P,Q, u⟩
4: upon receiving 2f epoch-change messages for e+ 1:
5: start epoch-change timer Te

6: Reliable broadcast
7: as primary pe+1:
8: compute Cv(e+ 1) (Algorithm 3) for all leaders v ∈ [n]

9: perform 3-phase reliable broadcast sharing configuration details of epoch e+1
and the performance of primary pe

10: as replica u:
11: participate in reliable broadcast initiates by pe+1

12: Starting epoch
13: as primary pe+1:
14: broadcast ⟨new-epoch, e+ 1,V,O, pe+1⟩
15: enter epoch e+ 1
16: as replica u:
17: accept ⟨new-epoch, e+ 1,V,O, pe+1⟩
18: enter epoch e+ 1

Starting epoch-change (Algorithm 2, steps 1-5). To move the system
to epoch e+ 1, replica u sends ⟨epoch-change, e+ 1,S, C,P,Q, u⟩ to all replicas
in the system. Here, S is a vector of sequence numbers snv of the last stable
checkpoints Sv ∀v ∈ [n] known to u for each leader v. C is a set of checkpoint-
certificates proving the correctness of Sv ∀v ∈ [n], while P contains sets Pv

∀v ∈ [n]. For each leader v, Pv contains a prepared-certificate for each request r
that was prepared at u with sequence number higher than snv, if replica v does
not possess a commit-certificate for r. Similarly, Q contains sets Qv ∀v ∈ [n]. Qv

consists of a commit-certificate for each request r that was prepared at u with
sequence number higher than snv.

Reliable broadcast (Algorithm 2, steps 6-11). The primary of epoch e+1
(pe+1) waits for 2f epoch-change messages for epoch e. Upon receiving a suf-
ficient number of messages, the primary performs a classical 3-phase reliable
broadcast. During the broadcast, the primary informs leaders on the number of
requests assigned to each leader in the next epoch and the identifiers of the repli-
cas which send epoch-change messages. The number of requests assigned to a
leader is computed deterministically (Algorithm 3). Through the reliable broad-
cast, we ensure that the primary cannot share conflicting information regarding
the sequence number assignment and, in turn, the next epoch’s sequence number
distribution. In addition to sharing information about the epoch configuration,
the primary also broadcasts the total number of requests committed during the
previous epoch. This information is used by the network to evaluate primary
performance and determine epoch primaries.

Starting epoch (Algorithm 2, steps 12-18). The primary pe+1 multicasts
⟨new-epoch, e+ 1,V,O, pe+1⟩. Here, the set V contains sets Vu, which carry the

12 Avarikioti et al.

valid epoch-change messages of each replica u of epoch e received by the primary
of epoch e+1, plus the epoch-change message the primary of epoch e+1 would
have sent. O consists of sets Ov ∀v ∈ [n] containing pre-prepare messages and
commit-certificates.

Ov is computed as follows. First, the primary determines the sequence num-
ber Smin(v) of the latest stable checkpoint in V and the highest sequence num-
ber Smax(v) in a prepare message in V. For each sequence number snv between
Smin(v) and Smax(v) of all leaders v ∈ [n] there are three cases: (a) there is
at least one set in Qv of some epoch-change message in V with sequence num-
ber snv, (b) there is at least one set in Pv of some epoch-change message in V
with sequence number snv and none in Qv, or (c) there is no such set. In the first
case, the primary simply prepares a commit-certificate it received for snv. In the
second case, the primary creates a new message ⟨pre-prepare, snv, e+1, d, pe+1⟩,
where d is the request digest in the pre-prepare message for sequence number snv

with the highest epoch number in V. In the third case, the primary creates a
new pre-prepare message ⟨pre-prepare, snv, e+ 1, dnull, pe+1⟩, where dnull is the
digest of a special null request; a null request goes through the protocol like
other requests, but its execution is a no-op. If there is a gap between Smax(v)
and the last sequence number assigned to leader v in epoch e, these sequence
numbers will be newly assigned in the next epoch.

Next, the primary appends the messages in O to its log. If Smin(v) is greater
than the sequence number of its latest stable checkpoint, the primary also inserts
the proof of stability (the checkpoint with sequence number Smin(v)) in its log.
Then it enters epoch e+1; at this point, it can accept messages for epoch e+1.

A replica accepts a new-epoch message for epoch e + 1 if: (a) it is signed
properly, (b) the epoch-change messages it contains are valid for epoch e + 1,
(c) the information in V matches the new request assignment, and (d) the set O
is correct. The replica verifies the correctness of O by performing a computation
similar to the one previously used by the primary. Then, the replica adds the
new information contained in O to its log and decides all requests for which
a commit-certificate was sent. Replicas rerun the protocol for messages with
sequence numbers between Smin(v) and Smax(v) without a commit-certificate.
They do not execute client requests again (they use their stored information
about the last reply sent to each client instead). As request messages and stable
checkpoints are not included in new-epoch messages, a replica might not have
some of them available. In this case, the replica can easily obtain the missing
information from other replicas in the system.

Hanging requests. While the primary sends out the pre-prepare message for
all hanging requests, replicas in whose buckets the requests fall, are responsible
for computing prepared- and commit-certificates of the individual requests. In
the example shown in Figure 3, the primary of epoch e + 1, replica 0, sends
a pre-prepare message for a request in a bucket of replica 1, contained in the
new-epoch message, to everyone. Replica 1 is then responsible for prepared- and
commit-certificates, as well as collecting the corresponding partial signatures.

FnF-BFT 13

leader preparebackup prepare commit
0

1

2

3

Fig. 3: Schematic of message flow for hanging requests. In this example, the
primary is replica 0, and the request falls into the bucket of replica 1.

The number of request Cv(e + 1) assigned to leader v in epoch e + 1 is
determined deterministically based on its past performance (Algorithm 3). By
cv(e) we denote the number of requests committed under leader v in epoch e.
Each leader is re-evaluated during the epoch-change. If a leader successfully
committed all assigned requests in the preceding epoch, we double the number
of requests this leader is given in the following epoch. Else, it is assigned the
maximum number of requests it committed within the last f + 1 epochs.

Algorithm 3 Configuration adjustment
1: initially Cv(1) = Cmin for all replicas v
2: if cv(e) < Cv(e):

3: Cv(e+ 1) = max

(
Cmin, max

i∈{0,...,f}
cv(e− i)

)
4: else:
5: Cv(e+ 1) = 2 · cv(e)

Epoch-change timer. A replica sets an epoch-change timer Te upon entering
the epoch-change for epoch e + 1. By default, we configure the timer Te such
that a correct primary can successfully finish the epoch-change after GST. If
the timer expires without seeing a valid new-epoch message, the replica requests
an epoch-change for epoch e + 2. If a replica has experienced at least f un-
successful consecutive epoch-changes previously, the replica doubles the timer’s
value. It continues to do so until it sees a valid new-epoch message. We only
start doubling the timer after f unsuccessful consecutive epoch-changes to avoid
having f byzantine primaries in a row, i.e., the maximum number of subsequent
byzantine primaries possible, purposely increasing the timer value exponentially
and, in turn, decreasing the system throughput significantly. As soon as replicas
witness a successful epoch-change, they reduce Te to its default again.

Assignment of requests Finally, the number of requests assigned to each
leader is updated during the epoch-change. We limit the number of requests
that can be processed by each leader per epoch to assign the sequence numbers
ahead of time and allow leaders to work independently of each other.

We assign sequence numbers to leaders according to their abilities. As soon
as we see a leader outperforming their workload, we double the number of re-
quests they are assigned in the following epoch. Additionally, leaders operating
below their expected capabilities are allocated requests according to the highest

14 Avarikioti et al.

potential demonstrated in the past f+1 rounds. By looking at the previous f+1
epochs, we ensure that there is at least one epoch with a correct primary in the
leader set. In this epoch, the leader had the chance to display its capabilities.
Thus, basing a leader’s performance on the last f +1 rounds allows us to see its
ability independent of the possible influence of byzantine primaries.

4 Analysis
We show that FnF-BFT satisfies the properties specified in Section 2. A detailed
analysis can be found in Appendix A.

Safety. We prove FnF-BFT is safe under asynchrony. FnF-BFT generalizes
Linear-PBFT [18], an adaptation of PBFT [9] that reduces its authenticator
complexity during epoch operation. We thus rely on similar arguments to prove
FnF-BFT’s safety in Theorem 1.

Liveness. We show FnF-BFT makes progress after GST (Theorem 2). FnF-
BFT’s epoch-change uses the following techniques to ensure that correct replicas
become synchronized (Definition 1) after GST: (1) A replica in epoch e observ-
ing epoch-change messages from f + 1 other replicas calling for any epoch(s)
greater than e issues an epoch-change message for the smallest such epoch e′.
(2) A replica only starts its epoch-change timer for epoch e′ after receiving 2f
other epoch-change messages for epoch e′, thus ensuring that at least f +1 cor-
rect replicas have broadcasted an epoch-change message for epoch e′. Hence, all
correct replicas start their epoch-change timer for an epoch e′ within at most 2
message delay. After GST, this amounts to at most 2∆. (3) Byzantine replicas
are unable to impede progress by calling frequent epoch-changes, as an epoch-
change will only happen if at least f + 1 replicas call it. A byzantine primary
can hinder the epoch-change from being successful. However, there can only be
f byzantine primaries in a row.

Efficiency. To demonstrate FnF-BFT’s efficiency, we analyze the authenti-
cator complexity for reaching consensus during an epoch. Like Linear-PBFT [18],
using each leader as a collector for partial signatures in the backup prepare and
commit phase, allows FnF-BFT to achieve linear complexity during epoch op-
eration. We continue by calculating the authenticator complexity of an epoch-
change. Intuitively speaking, we reduce PBFT’s view-change complexity from
Θ(n3) to Θ(n2) by employing threshold signatures. However, as FnF-BFT al-
lows for n simultaneous leaders, we obtain an authenticator complexity of Θ(n3)
as a consequence of sharing the same information for n leaders during the epoch-
change. Finally, we argue that after GST, there is sufficient progress by correct
replicas to compensate for the high epoch-change cost (Theorem 3).

Optimistic Performance. We assess FnF-BFT’s optimistic performance,
i.e., we theoretically evaluate its best-case throughput, assuming all replicas
are correct and the network is synchronous. We further assume that the best-
case throughput is limited by the available computing power of each replica –
mainly required for the computation and verification of cryptographic signa-
tures – and that the available computing power of each correct replica is the

FnF-BFT 15

same. In this model, we demonstrate that FnF-BFT achieves higher through-
put than sequential-leader protocols by the means of leader parallelization. To
show the speed-up gained through parallelization, we first analyze the optimistic
epoch throughput of FnF-BFT, i.e., the throughput of the system during sta-
ble networking conditions in the best-case scenario with 3f + 1 correct repli-
cas (Lemma 6). Later, we consider the repeated epoch changes and show that
FnF-BFT’s throughput is dominated by its authenticator complexity during
the epochs. To that end, observe that for Cmin ∈ Ω(n2), every epoch will in-
cur an authenticator complexity of Ω(n3) per replica and thus require Ω(n3)
time units. We show that after GST, an epoch-change under a correct primary
requires Θ(n2) time units (Lemma 7). We conclude our analysis by quantify-
ing FnF-BFT’s overall best-case throughput. Specifically, we prove that the
speed-up gained by moving from a sequential-leader protocol to a parallel-leader
protocol is proportional to the number of leaders (Theorem 4).

Byzantine-Resilient Performance. While many BFT protocols present
practical evaluations of their performance that ignore byzantine adversarial be-
havior [9,18,38,35], we provide a novel, theoretical byzantine-resilience guarantee.
We first analyze the impact of byzantine replicas in an epoch under a correct
primary. We consider the replicas’ roles as backups and leaders separately. On
the one hand, for a byzantine leader, the optimal strategy is to leave as many
requests hanging, while not making any progress (Lemma 9). On the other hand,
as a backup, the optimal byzantine strategy is not helping other leaders to make
progress (Lemma 10). In conclusion, we observe that byzantine replicas have
little opportunity to reduce the throughput in epochs under a correct primary.
Specifically, we show that after GST, the effective utilization under a correct
primary is at least 8

9 for n → ∞ (Theorem 5).
Next, we discuss the potential strategies of a byzantine primary trying to

stall the system. We first show that under a byzantine primary, an epoch is
either aborted quickly or Ω(n3) new requests become committed (Lemma 11).
Then, we prove that rotating primaries across epochs based on primary perfor-
mance history reduces the control of the byzantine adversary on the system. In
particular, byzantine primaries only have one turn as primary throughout any
sliding window in a stable network. Combining all the above, we conclude that
FnF-BFT’s byzantine-resilient utilization is asymptotically 8

9 · g−f
g > 16

27 for
n → ∞ (Theorem 7), where g is the fraction of byzantine primaries in the sys-
tem’s stable state, while simultaneously dictates how long it takes to get there
after GST.

5 Related Work
Lamport et al. [23] first discussed the problem of reaching consensus in the pres-
ence of byzantine failures. Following its introduction, byzantine fault tolerance
was initially studied in the synchronous network setting [30,13,12]. Dwork et
al. [14] proposed the concept of partial synchrony and demonstrated the fea-
sibility of reaching consensus in partially synchronous networks. Subsequently,
Reiter [32,33] introduced Rampart, an early protocol tackling byzantine fault

16 Avarikioti et al.

tolerance for state machine replication in asynchrony. Then, with PBFT, Castro
and Liskov [9] devised the first efficient protocol for state machine replication
that tolerates byzantine failures. The leader-based protocol requires O(n2) com-
munication to reach consensus, as well as O(n3) for leader replacement. While
widely deployed, PBFT does not scale well when the number of replicas increases.

Kotla et al. [22] were the first to achieve O(n) complexity with Zyzzyva.
The complexity of leader replacement in Zyzzyva remains O(n3), and safety
violations were later exposed [2]. Later, SBFT [18], improved the complexity
of exchanging leaders to O(n2). While reducing the overall complexity, both
Zyzzyva and SBFT suffer from the single-leader bottleneck.

Developed by Yin et al. [38], leader-based HotStuff matches the O(n) com-
plexity of Zyzzyva and SBFT. HotStuff rotates the leader with every request
and is the first to achieve O(n) for leader replacement. However, HotStuff offers
little parallelization due to its sequential proposal of requests, and experiments
have revealed high complexity in practice [35]. Recently, Gelashvili et al. [16] im-
proved on HotStuff’s latency while adding an asynchronous fallback to enhance
its performance during epoch synchronization. Although this work improves the
overall performance of HotStuff, requests are still processed sequentially. In con-
trast, FnF-BFT enables n parallel leaders to propose requests simultaneously.

Parallel leaders. Leveraging parallel leaders to overcome the single-leader
bottleneck was initially introduced by Mao et al. [26,28] with Mencius and BFT-
Mencius. Mencius maps client requests to the closest leader, and in turn, requests
can become censored. However, no de-duplication measures are in place to handle
the re-submission of censored client requests. FnF-BFT addresses this problem
by periodically rotating leaders over the client space.

Later, Stathakopoulou et al. [35] proposed Mir-BFT that significantly im-
proved throughput compared to sequential-leader approaches. Mir runs instances
of PBFT on a set of leaders, updating the leader set as soon as a single leader in
the set stops making progress. Hence, we expect Mir’s performance to drop sig-
nificantly in the presence of byzantine replicas, as it allows byzantine leaders to
repeatedly end epochs early. This is despite its high throughput demonstrated in
the presence of faults. In a follow-up work, Stathakopoulou et al. [36] addressed
Mir’s temporary loss of throughput during epoch changes, but their protocol still
offers no guarantees under attack, unlike FnF-BFT that maintains a constant
fraction of its best-case throughput under byzantine attacks.

In parallel, Gupta et al. [19] proposed RCC protocol-agnostic approach to
parallelize existing BFT protocols. While allowing multiple instances to each run
an individual request, the protocol requires instances to unify after each request,
creating a significant overhead. Further, RCC relies on failure detection, which is
only possible in synchronous networks [24]. With FnF-BFT, we allow leaders to
make progress independently of each other without relying on failure detection.

Another paradigm that has recently gained traction and enables replicas to
operate in parallel to increase throughput is DAG-based consensus. The core idea
is that the client requests are spread reliably as fast as the network permits and
replicas accumulate them in a DAG. Subsequently, the replicas extract the total

FnF-BFT 17

ordering of the accumulated requests from their local DAG without exchanging
additional messages. DAG-based protocols, initially introduced as consensus sys-
tems for data-center replication, precede blockchains [8,31,29,27,3]. These initial
DAG protocols are, however, very complex and have high latency. Lately, sev-
eral DAG-based consensus protocols have been proposed this time in the context
of blockchains. Some are purely DAG-based [1] while others employ the DAG
structure as transportation means for unconfirmed requests, e.g., [11], and on
top execute a randomized BFT protocol [25,20,17,11,34]. The state-of-the-art
Bullshark [34] achieves (minimum) constant latency with linear communication
complexity in the partially synchronous model, similarly to FnF-BFT. While all
these works achieve staggering throughput, none of them provide any provable
guarantees on their throughput under Byzantine attacks.

Byzantine resilience. Byzantine resilience was initially explored by Clement
et al. [10] with Aardvark. Aardvark is an adaptation of PBFT with frequent
view-changes: a leader only stays in its position when displaying an increasing
throughput level. This approach comes with significant performance cuts in net-
works without failures. Parallel leaders allow FnF-BFT to be byzantine-resilient
without accepting significant performance losses in an ideal setting.

Prime, proposed by Amir et al. [4], aims to maximize performance in ma-
licious environments. Besides adding delay constraints that further confine the
partially synchronous network model, Prime restricts its evaluation to delay at-
tacks, i.e., a byzantine leader adds as much delay to the protocol as possible.
Similarly, Veronese et al. [37] only evaluated their proposed protocol, Spinning,
in the presence of delay attacks – not fully capturing possible byzantine attacks.
Consequently, the maximum performance degradation Spinning and Prime can
incur under byzantine faults is at least 78% [6]. We analyze FnF-BFT theoret-
ically to capture the entire spectrum of possible byzantine attacks.

Aublin et al. [6] further explored the performance of BFT protocols under
byzantine attacks with RBFT. RBFT runs f backup instances on the same set
of client requests as the master instance to discover whether the master instance
is byzantine. Thus, RBFT incurs quadratic communication complexity for ev-
ery request. To the contrary, FnF-BFT achieves a communication complexity
of O(n) and further increases performance through parallelization – allowing
byzantine-resilience without the added burden of detecting byzantine leaders.

Acknowledgments
The work was partially supported by the Austrian Science Fund (FWF) through
the project CoRaF (grant agreement 2020388) and by the European Research
Council (ERC) under the ERC Starting Grant (SyNET) 851809.

18 Avarikioti et al.

References
1. The swirdls hashgraph consensus algorithm: Fair, fast, byzantine fault tolerance.

https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf (Accessed: 2023-
01-30)

2. Abraham, I., Gueta, G., Malkhi, D., Alvisi, L., Kotla, R., Martin, J.P.: Revisiting
fast practical byzantine fault tolerance (2017)

3. Amir, Y., Dolev, D., Kramer, S., Malki, D.: Transis: a communication subsystem
for high availability. In: [1992] Digest of Papers. FTCS-22: The Twenty-Second
International Symposium on Fault-Tolerant Computing. pp. 76–84 (1992). https:
//doi.org/10.1109/FTCS.1992.243613

4. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Prime: Byzantine replication under attack.
IEEE Transactions on Dependable and Secure Computing 8(4), 564–577 (2010)

5. Amir, Y., Danilov, C., Dolev, D., Kirsch, J., Lane, J., Nita-Rotaru, C., Olsen,
J., Zage, D.: Steward: Scaling byzantine fault-tolerant replication to wide area
networks. IEEE Transactions on Dependable and Secure Computing 7(1), 80–93
(2008)

6. Aublin, P., Mokhtar, S.B., Quéma, V.: Rbft: Redundant byzantine fault tolerance.
In: ICDCS. pp. 297–306 (2013)

7. Avarikioti, G., Kokoris-Kogias, E., Wattenhofer, R.: Divide and scale: Formaliza-
tion of distributed ledger sharding protocols (2019)

8. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In:
Proceedings of the Eleventh ACM Symposium on Operating Systems Princi-
ples. p. 123–138. SOSP ’87, Association for Computing Machinery, New York,
NY, USA (1987). https://doi.org/10.1145/41457.37515, https://doi.org/10.1145/
41457.37515

9. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems (TOCS) 20(4), 398–461 (2002)

10. Clement, A., Wong, E.L., Alvisi, L., Dahlin, M., Marchetti, M.: Making byzantine
fault tolerant systems tolerate byzantine faults. In: NSDI. pp. 153–168 (2009)

11. Danezis, G., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A.: Narwhal and tusk: A
dag-based mempool and efficient bft consensus. In: Proceedings of the Seventeenth
European Conference on Computer Systems. p. 34–50. EuroSys ’22, Association
for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3492321.3519594, https://doi.org/10.1145/3492321.3519594

12. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement.
Journal of the ACM (JACM) 32(1), 191–204 (1985)

13. Dolev, D., Strong, H.R.: Polynomial algorithms for multiple processor agreement.
In: ACM STOC. pp. 401–407 (1982)

14. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM (JACM) 35(2), 288–323 (1988)

15. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM (JACM) 32(2), 374–382 (1985)

16. Gelashvili, R., Kokoris-Kogias, L., Sonnino, A., Spiegelman, A., Xiang, Z.: Jolteon
and & ditto: Network-adaptive efficient consensus with & asynchronous fallback.
In: Financial Cryptography and Data Security: 26th International Conference, FC
2022, Grenada, May 2–6, 2022, Revised Selected Papers. p. 296–315. Springer-
Verlag, Berlin, Heidelberg (2022). https://doi.org/10.1007/978-3-031-18283-9_14,
https://doi.org/10.1007/978-3-031-18283-9_14

17. Gągol, A., Leundefinedniak, D., Straszak, D., undefinedwiundefinedtek, M.: Aleph:
Efficient atomic broadcast in asynchronous networks with byzantine nodes. In:

https://doi.org/10.1109/FTCS.1992.243613
https://doi.org/10.1109/FTCS.1992.243613
https://doi.org/10.1109/FTCS.1992.243613
https://doi.org/10.1109/FTCS.1992.243613
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/41457.37515
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1007/978-3-031-18283-9_14
https://doi.org/10.1007/978-3-031-18283-9_14

FnF-BFT 19

Proceedings of the 1st ACM Conference on Advances in Financial Technologies.
p. 214–228. AFT ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3318041.3355467, https://doi.org/10.1145/
3318041.3355467

18. Gueta, G.G., Abraham, I., Grossman, S., Malkhi, D., Pinkas, B., Reiter, M.K.,
Seredinschi, D.A., Tamir, O., Tomescu, A.: Sbft: a scalable decentralized trust
infrastructure for blockchains (2018)

19. Gupta, S., Hellings, J., Sadoghi, M.: Rcc: resilient concurrent consensus for high-
throughput secure transaction processing. In: 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE). pp. 1392–1403. IEEE (2021)

20. Keidar, I., Kokoris-Kogias, E., Naor, O., Spiegelman, A.: All you need is dag. In:
Proceedings of the 2021 ACM Symposium on Principles of Distributed Comput-
ing. p. 165–175. PODC’21, Association for Computing Machinery, New York, NY,
USA (2021). https://doi.org/10.1145/3465084.3467905, https://doi.org/10.1145/
3465084.3467905

21. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Om-
niledger: A secure, scale-out, decentralized ledger via sharding. In: IEEE SP. pp.
19–34 (2018)

22. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.: Zyzzyva: speculative
byzantine fault tolerance. SIGOPS Operating Systems Review 41(6), 45–58 (2007)

23. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems 4(3), 382–401 (1982)

24. Lynch, N.A.: Distributed algorithms. Elsevier (1996)
25. Malkhi, D., Szalachowski, P.: Maximal extractable value (mev) protection on a

dag (2022). https://doi.org/10.48550/ARXIV.2208.00940, https://arxiv.org/abs/
2208.00940

26. Mao, Y., Junqueira, F.P., Marzullo, K.: Mencius: Building efficient replicated state
machines for wans. In: USENIX OSDI. p. 369–384 (2008)

27. Melliar-Smith, P., Moser, L., Agrawala, V.: Broadcast protocols for distributed sys-
tems. IEEE Transactions on Parallel and Distributed Systems 1(1), 17–25 (1990).
https://doi.org/10.1109/71.80121

28. Milosevic, Z., Biely, M., Schiper, A.: Bounded delay in byzantine-tolerant state
machine replication. In: IEEE SRDS. pp. 61–70 (2013)

29. Moser, L.E., Melliar-Smith, P.M.: Byzantine-resistant total ordering algorithms.
Inf. Comput. 150(1), 75–111 (1999). https://doi.org/10.1006/inco.1998.2770,
https://doi.org/10.1006/inco.1998.2770

30. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM (JACM) 27(2), 228–234 (1980)

31. Peterson, L.L., Buchholz, N.C., Schlichting, R.D.: Preserving and using con-
text information in interprocess communication. ACM Trans. Comput. Syst.
7(3), 217–246 (aug 1989). https://doi.org/10.1145/65000.65001, https://doi.org/
10.1145/65000.65001

32. Reiter, M.K.: Secure agreement protocols: Reliable and atomic group multicast in
rampart. In: ACM CCS. pp. 68–80 (1994)

33. Reiter, M.K.: The rampart toolkit for building high-integrity services. In: Theory
and Practice in Distributed Systems, pp. 99–110 (1995)

34. Spiegelman, A., Giridharan, N., Sonnino, A., Kokoris-Kogias, L.: Bullshark: Dag
bft protocols made practical. In: Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security. p. 2705–2718. CCS ’22, Association
for Computing Machinery, New York, NY, USA (2022). https://doi.org/10.1145/
3548606.3559361, https://doi.org/10.1145/3548606.3559361

https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/3318041.3355467
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.1145/3465084.3467905
https://doi.org/10.48550/ARXIV.2208.00940
https://doi.org/10.48550/ARXIV.2208.00940
https://arxiv.org/abs/2208.00940
https://arxiv.org/abs/2208.00940
https://doi.org/10.1109/71.80121
https://doi.org/10.1109/71.80121
https://doi.org/10.1006/inco.1998.2770
https://doi.org/10.1006/inco.1998.2770
https://doi.org/10.1006/inco.1998.2770
https://doi.org/10.1145/65000.65001
https://doi.org/10.1145/65000.65001
https://doi.org/10.1145/65000.65001
https://doi.org/10.1145/65000.65001
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361
https://doi.org/10.1145/3548606.3559361

20 Avarikioti et al.

35. Stathakopoulou, C., David, T., Vukolić, M.: Mir-bft: High-throughput bft for
blockchains (2019)

36. Stathakopoulou, C., Pavlovic, M., Vukolić, M.: State machine replication scala-
bility made simple. In: Proceedings of the Seventeenth European Conference on
Computer Systems. pp. 17–33 (2022)

37. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C.: Spin one’s wheels? Byzan-
tine fault tolerance with a spinning primary. In: IEEE SRDS. pp. 135–144 (2009)

38. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: Hotstuff: Bft con-
sensus with linearity and responsiveness. In: ACM PODC. pp. 347–356 (2019)

39. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full
sharding. In: ACM CCS. pp. 931–948 (2018)

FnF-BFT 21

A Analysis

We show that FnF-BFT satisfies the properties specified in Section 2. In par-
ticular, we prove the safety and liveness of FnF-BFT, argue that it is efficient,
and evaluate its resilience to byzantine attacks in stable network conditions.

A.1 Safety

FnF-BFT generalizes Linear-PBFT [18], which is an adaptation of PBFT [9]
that reduces its authenticator complexity during epoch operation. We thus rely
on similar arguments to prove FnF-BFT’s safety in Theorem 1.

Theorem 1. If any two correct replicas commit a request with the same sequence
number, they both commit the same request.

Proof. We start by showing that if ⟨prepared-certificate, sn, e, σ(d)⟩ exists, then
⟨prepared-certificate, sn, e, σ(d′)⟩ cannot exist for d′ ̸= d. Here, d = h(sn∥e∥r)
and d′ = h(sn∥e∥r′). Further, we assume the probability of r ̸= r′ and d = d′

to be negligible. The existence of ⟨prepared-certificate, sn, e, σ(d)⟩ implies that
at least f + 1 correct replicas sent a pre-prepare message or a prepare mes-
sage for the request r with digest d in epoch e with sequence number sn. For
⟨prepared-certificate, sn, e, σ(d′)⟩ to exist, at least one of these correct replicas
needs to have sent two conflicting prepare messages (pre-prepare messages in
case it leads sn). This is a contradiction.

Through the epoch-change protocol we further ensure that correct replicas
agree on the sequence of requests that are committed locally in different epochs.
The existence of ⟨prepared-certificate, sn, e, σ(d)⟩ implies that there cannot ex-
ist ⟨prepared-certificate, sn, e′, σ(d′)⟩ for d′ ̸= d and e′ > e. Any correct replica
only commits a request with sequence number sn in epoch e if it saw the corre-
sponding commit-certificate. For a commit-certificate for request r with digest d
and sequence number sn to exist a set R1 of at least f + 1 correct replicas
needs to have seen ⟨prepared-certificate, sn, e, σ(d)⟩. A correct replica will only
accept a pre-prepare message for epoch e′ > e after having received a new-epoch
message for epoch e′. Any correct new-epoch message for epoch e′ > e must
contain epoch-change messages from a set R2 of at least f + 1 correct repli-
cas. As there are 2f + 1 correct replicas, R1 and R2 intersect in at least one
correct replica u. Replica u’s epoch-change message ensures that information
about request r being prepared in epoch e is propagated to subsequent epochs,
unless sn is already included in the stable checkpoint of its leader. In case the
prepared-certificate is propagated to the subsequent epoch, a commit-certificate
will potentially be propagated as well. If the new-epoch message only includes
the prepared-certificate for sn, the protocol is redone for request r with the same
sequence number sn. In the two other cases, the replicas commit sn locally upon
seeing the new-epoch message and a correct replica will never accept a request
with sequence number sn again. ⊓⊔

22 Avarikioti et al.

A.2 Liveness

One cannot guarantee safety and liveness for deterministic BFT protocols in
asynchrony [15]. We will, therefore, show that FnF-BFT eventually makes
progress after GST. In other words, we consider a stable network when dis-
cussing liveness. Furthermore, we assume that after an extended period without
progress, the time required for local computation in an epoch-change is negligi-
ble. Thus, we focus on analyzing the network delays for liveness.

Definition 1. Two replicas are called synchronized, if they start their epoch-
change timer for an epoch e within at most 2∆.

Similar to PBFT [9], FnF-BFT’s epoch-change employs three techniques to
ensure that correct replicas become synchronized (Definition 1) after GST:

1. A replica in epoch e observing epoch-change messages from f+1 other repli-
cas calling for any epoch(s) greater than e issues an epoch-change message
for the smallest such epoch e′.

2. A replica only starts its epoch-change timer after receiving 2f other epoch-
change messages, thus ensuring that at least f + 1 correct replicas have
broadcasted an epoch-change message for the epoch (or higher). Hence, all
correct replicas start their epoch-change timer for an epoch e′ within at most
2 message delay. After GST, this amounts to at most 2∆.

3. Byzantine replicas are unable to impede progress by calling frequent epoch-
changes, as an epoch-change will only happen if at least f + 1 replicas call
it. A byzantine primary can hinder the epoch-change from being successful.
However, there can only be f byzantine primaries in a row.

Lemma 1. After GST, correct replicas eventually become synchronized.

Proof. Let u be the first correct replica to start its epoch-change timer for
epoch e at time t0. Following (2), this implies that u received at least 2f other
epoch-change messages for epoch e (or higher). Of these 2f messages, at least f
originate from other correct replicas. Thus, together with its own epoch-change
message, at least f + 1 correct replicas broadcasted epoch-change messages by
time t0. These f+1 epoch-change messages are seen by all correct replicas at the
latest by time t0 +∆. Thus, according to (1), at time t0 +∆ all correct replicas
broadcast an epoch-change message for epoch e. Consequently, at time t0 + 2∆
all correct replicas have received at least 2f other epoch-change messages and
will start the timer for epoch e. ⊓⊔

Lemma 2. After GST, all correct replicas will be in the same epoch long enough
for a correct leader to make progress.

Proof. From Lemma 1, we conclude that after GST, all correct replicas will
eventually enter the same epoch if the epoch-change timer is sufficiently large.
Once the correct replicas are synchronized in their epoch, the duration needed
for a correct leader to commit a request is bounded. Note that all correct replicas

FnF-BFT 23

will be in the same epoch for a sufficiently long time as the timers are configured
accordingly. Additionally, byzantine replicas are unable to impede progress by
calling frequent epoch-changes, according to (3). ⊓⊔

Theorem 2. If a correct client c broadcasts request r, then every correct replica
eventually commits r.

Proof. Following Lemmas 1 and 2, we know that all correct replicas will eventu-
ally be in the same epoch after GST. Hence, in any epoch with a correct primary,
the system will make progress. Note that a correct client will not issue invalid
requests. It remains to show that an epoch with a correct primary and a correct
leader assigned to hash bucket h(c) will occur. We note that this is given by
the bucket rotation, which ensures that a correct leader repeatedly serves each
bucket in a correct primary epoch. ⊓⊔

A.3 Efficiency

To demonstrate that FnF-BFT is efficient, we first analyze the authenticator
complexity for reaching consensus during an epoch. Like Linear-PBFT [18], using
each leader as a collector for partial signatures in the backup prepare and commit
phase allows FnF-BFT to achieve linear complexity during epoch operation.

Lemma 3. The authenticator complexity for committing a request during an
epoch is Θ(n).

Proof. During the leader prepare phase, the authenticator complexity is at most
n. The primary computes its signature to attach it to the pre-prepare message.
This signature is verified by no more than n− 1 replicas.

Furthermore, the backup prepare and commit phase’s authenticator complex-
ity is less than 3n each. Initially, at most n − 1 backups, compute their partial
signature and send it to the leader, who, in turn, verifies 2f of these signatures.
The leader then computes its partial signature, as well as computing the com-
bined signature. Upon receiving the combined signature, the n−1 backups need
to verify the signature.

Overall, the authenticator complexity committing a request during an epoch
is thus at most 7n+ o(n) ∈ Θ(n). ⊓⊔

Next, we analyze the authenticator complexity of an epoch-change. Intu-
itively speaking, we reduce PBFT’s view-change complexity from Θ(n3) to Θ(n2)
by employing threshold signatures. However, as FnF-BFT allows for n simulta-
neous leaders, we obtain an authenticator complexity of Θ(n3) as a consequence
of sharing the same information for n leaders during the epoch-change.

Lemma 4. The authenticator complexity of an epoch-change is Θ(n3).

Proof. The epoch-change for epoch e+ 1 is initiated by replicas sending epoch-
change messages to the primary of epoch e + 1. Each epoch-change message
holds n authenticators for each leader’s last checkpoint-certificates. As there are
at most 2k hanging requests per leader, further O(n) authenticators for prepared-

24 Avarikioti et al.

and commit-certificates of the open requests per leader are included in the mes-
sage. Additionally, the sending replica also includes its signature. Each replica
newly computes its signature to sign the epoch-change message, the remain-
ing authenticators are already available and do not need to be created by the
replicas. Thus, a total of no more than n authenticators are computed for the
epoch-change messages. Note that epoch-change messages contain Θ(n) authen-
ticators. Thus, the number of authenticators received by each replica is Θ(n2).

After the collection of 2f + 1 epoch-change messages, the primary performs
a classical 3-phase reliable broadcast. The primary broadcasts the same signed
message to start the classical 3-phase reliable broadcast. While the primary
computes 1 signature, at most n − 1 replicas verify this signature. In the two
subsequent rounds of all-to-all communication, each participating replica com-
putes 1 and verifies 2f signatures. Thereby, the authenticator complexity of each
round of all-to-all communication is at most (2f+1) ·n. Thus, the authenticator
complexity of the 3-phase reliable broadcast is bounded by (4f +3) ·n ∈ Θ(n2).

After successfully performing the reliable broadcast, the primary sends out
a new-epoch message to every replica in the network. The new-epoch message
contains the epoch-change messages held by the primary and the required pre-
prepare messages for open requests. There are O(n) such pre-prepare messages,
all signed by the primary. Finally, each new-epoch message is signed by the pri-
mary. Thus, the authenticator complexity of the new-epoch message is Θ(n2).
However, suppose a replica has previously received and verified an epoch-change
from replica u whose epoch-change message is included in the new-epoch mes-
sage. In that case, the replica no longer has to check the authenticators in u’s
epoch-change message again. For the complexity analysis, it does not matter
when the replicas verify the signature. We assume that all replicas verify the sig-
natures contained in the epoch-change messages before receiving the new-epoch
messages. Thus, the replicas only need to verify the O(n) new authenticators
contained in the new-epoch message.

Overall, the authenticator complexity of an epoch-change is Θ(n3). ⊓⊔

Finally, we argue that after GST, there is sufficient progress by correct repli-
cas to compensate for the high epoch-change cost.

Theorem 3. After GST, the amortized authenticator complexity of committing
a request is Θ(n).

Proof. To find the amortized authenticator complexity of committing a request,
we consider an epoch and the following epoch-change. After GST, the authentica-
tor complexity of committing a request for a correct leader is Θ(n). The timeout
value is set such that a correct worst-case leader creates at least Cmin requests in
each epoch initiated by a correct primary. Thus, there are Θ(n) correct replicas,
each committing Cmin requests. By setting Cmin ∈ Ω(n2), we guarantee that at
least Ω(n3) requests are created during an epoch given a correct primary.

Byzantine primaries can ensure that no progress is made in epochs they
initiate, simply by withholding the new-epoch messages. However, at most a

FnF-BFT 25

constant fraction of epochs lies in the responsibility of byzantine primaries. We
conclude that, on average, Ω(n3) requests are created during an epoch.

Following Lemma 4, the authenticator complexity of an epoch-change is
Θ(n3). Note that the epoch-change timeout Te is set so that correct primaries
can successfully finish the epoch-change after GST. Not every epoch-change
will be successful immediately, as byzantine primaries might cause unsuccessful
epoch-changes. Specifically, byzantine primaries can purposefully summon an
unsuccessful epoch-change to decrease efficiency.

In case of an unsuccessful epoch-change, replicas initiate another epoch-
change – and continue doing so – until a successful epoch-change occurs. How-
ever, we only need to start O(1) epoch-changes on average to be successful
after GST, as the primary rotation ensures that at least a constant fraction
of primaries is correct. Hence, the average cost required to reach a successful
epoch-change is Θ(n3).

We find the amortized request creation cost by adding the request creation
cost to the ratio between the cost of a successful epoch-change and the number
of requests created in an epoch, that is, Θ(n) + Θ(n3)

Ω(n3) = Θ(n). ⊓⊔

A.4 Optimistic Performance

Throughout this section, we make the following optimistic assumptions: all repli-
cas are considered correct, and the network is stable and synchronous. We employ
this model to assess the optimistic performance of FnF-BFT, i.e., theoretically
evaluating its best-case throughput. Note that this scenario is motivated by prac-
tical applications, as one would hope to have functioning hardware at hand, at
least initially. Additionally, we assume that the best-case throughput is limited
by the available computing power of each replica – predominantly required for
the computation and verification of cryptographic signatures. We further assume
that the available computing power of each correct replica is the same, which
we believe is realistic as the same hardware will often be employed for each
replica in practice. Without loss of generality, each leader can compute/verify
one authenticator per time unit. As throughput, we define the number of requests
committed by the system per time unit. Finally, we assume that replicas only
verify the authenticators of relevant messages. For example, a leader receiving
3f prepare messages for a request will only verify 2f authenticators. Similarly,
pre-prepare messages outside the leaders’ watermarks will not be processed by
backups. Note that we will carry all assumptions into the next section. There
they will, however, only apply to correct replicas.

Sequential-Leader Protocols We claim that FnF-BFT achieves higher
throughput than sequential-leader protocols due to its leader parallelization. To
support this claim, we compare FnF-BFT’s throughput to that of a generic
sequential-leader protocol. The generic sequential-leader protocol serves as an
asymptotic characterization of several sequential-leader protocols, e.g., [9,18,38].

A sequential-leader protocol characteristically relies on a unique leader at
any point in time. During its reign, the leader is responsible for serving all client
requests. The leader can be rotated repeatedly or only upon failure.

26 Avarikioti et al.

Lemma 5. A sequential-leader protocol requires at least Ω(n) time units to pro-
cess a client request.

Proof. In sequential-leader protocols, a unique replica is responsible for serving
all client requests at any point in time. This replica must verify Ω(n) signatures
to commit a request while no other replica leads requests simultaneously. Thus,
a sequential-leader protocol requires Ω(n) time units to process a request. ⊓⊔

1 2 3 4 1 2 3 4 1 2

Fig. 7: Sequential leader example with four leaders taking turns in serving client
requests. Leader changes are indicated by vertical lines.

FnF-BFT Epoch With FnF-BFT, we propose a parallel-leader protocol
that divides client requests into m·n independent hash buckets. Each hash bucket
is assigned to a unique leader at any time. The hash buckets are rotated between
leaders across epochs to ensure liveness (cf. Section 3.3). Within an epoch, a
leader is only responsible for committing client requests from its assigned hash
bucket(s). Overall, this parallelization leads to a significant speed-up.

1# -00

2# -01

3# -10

4# -11

4

1

2

3

3

4

1

2

Fig. 8: Parallel leader example with four leaders and four hash buckets. In each
epoch, leaders are only responsible for serving client requests in their hash
bucket. Epoch-changes are indicated by vertical lines.

To show the speed-up gained through parallelization, we first analyze the
optimistic epoch throughput of FnF-BFT, i.e., the throughput of the system
during stable networking conditions in a best-case scenario with 3f + 1 correct
replicas. Furthermore, we assume the number of requests included in a checkpoint
to be sufficiently large, such that no leader must ever stall when waiting for a
checkpoint to be created. Finally, we analyze the effects of epoch-changes and
compute the overall best-case throughput of FnF-BFT in the aforementioned
optimistic setting.

FnF-BFT 27

Lemma 6. After GST, the best-case epoch throughput with 3f +1 correct repli-

cas is
k · (3f + 1)

k · (19f + 3) + (8f + 2)
.

Proof. In the optimistic setting, all epochs are initiated by correct primaries,
and thus all replicas will be synchronized after GST.

In FnF-BFT, n leaders work on client requests simultaneously. Similar to
sequential-leader protocols, each leader needs to verify at least O(n) signatures
to commit a request. A leader needs to compute 3 and verify 4f authenticators
precisely to commit a request it proposes during epoch operation. Thus, leaders
need to process a total of 4f+3 ∈ Θ(n) signatures to commit a request. With the
help of threshold signatures, backups involved in committing a request only need
to compute 2 and verify 3 authenticators. We follow that a total of 4f+3+5·3f =
19f + 3 authenticators are computed/verified by a replica for one of its own
requests and 3f requests of other leaders.

After GST, each correct leader v will quickly converge to a Cv such that it
will make progress for the entire epoch-time, hence, working at its full potential.
We achieve this by rapidly increasing the number of requests assigned to each
leader outperforming its assignment and never decreasing the assignment below
what the replica recently managed.

Checkpoints are created every k requests and add to the computational load.
A leader verifies and computes a total of 2f +2 messages to create a checkpoint,
and the backups are required to compute 1 partial signature and verify 1 thresh-
old signature. The authenticator cost of creating 3f+1 checkpoints, one for each
leader, is, therefore, 8f + 2 per replica.

Thus, the best-case throughput of the system is
k · (3f + 1)

k · (19f + 3) + (8f + 2)
.

⊓⊔

Note that it would have been sufficient to show that the epoch throughput is
Ω(1) per time unit, but this more precise formula will be required in the next
section. Additionally, we would like to point out that the choice of k does not
influence the best-case throughput asymptotically.

FnF-BFT Epoch-Change As FnF-BFT employs bounded-length epochs,
repeated epoch-changes have to be considered. In the following, we will show that
FnF-BFT’s throughput is dominated by its authenticator complexity during the
epochs. To that end, observe that for Cmin ∈ Ω(n2), every epoch will incur an
authenticator complexity of Ω(n3) per replica and thus require Ω(n3) time units.

Lemma 7. After GST, an epoch-change under a correct primary requires Θ(n2)
time units.

Proof. Following Lemma 4, the number of authenticators computed and verified
by each replica for all epoch-change messages is Θ(n2). Each replica also pro-
cesses Θ(n) signatures during the reliable broadcast, and O(n) signatures for the

28 Avarikioti et al.

new-epoch messages. Overall, each replica thus processes Θ(n2) authenticators
during the epoch-change. Subsequently, this implies that the epoch-change re-
quires Θ(n2) time units, as we require only a constant number of message delays
to initiate and complete the epoch-change protocol. Recall that we assume the
throughput to be limited by the available computing power of each replica. ⊓⊔

Theoretically, one could set Cmin even higher such that the time the system
spends with epoch-changes becomes negligible. However, there is a trade-off for
practical reasons: increasing Cmin increases the minimal epoch-length, allowing
a byzantine primary to slow down the system for a longer time. Note that the
guarantee for byzantine-resilient performance (cf. Section A.5) would still hold.

FnF-BFT Optimistic Performance Ultimately, it remains to quantify
FnF-BFT’s overall best-case throughput.

Lemma 8. After GST, and assuming all replicas are correct, FnF-BFT re-
quires O(n) time units to process n client requests on average.

Proof. Under a correct primary, each correct leader will commit at least Cmin ∈
Ω(n2) requests after GST. Hence, FnF-BFT will spend at least Ω(n3) time
units in an epoch, while only requiring Θ(n2) time units for an epoch-change
(Lemma 7). Thus, following Lemma 6, FnF-BFT requires an average of O(n)
time units to process n client requests. ⊓⊔

Following Lemmas 5 and 8, the speed-up of a parallel-leader protocol over a
sequential-leader protocol is proportional to the number of leaders.

Theorem 4. If the throughput is limited by the (equally) available computing
power at each replica, the speed-up for equally splitting requests between n parallel
leaders over a sequential-leader protocol is at least Ω(n).

A.5 Byzantine-Resilient Performance

While many BFT protocols present practical evaluations of their performance
that neglect truly byzantine adversarial behavior [9,18,38,35], we provide a novel,
theory-based byzantine-resilience guarantee. We first analyze the impact of byzan-
tine replicas in an epoch under a correct primary. Next, we discuss the potential
strategies of a byzantine primary trying to stall the system. And finally, we
conflate our observations into a concise statement.

Correct Primary Throughput To gain insight into the byzantine-resilient
performance, we analyze the optimal byzantine strategy. In epochs led by correct
primaries, we will consider their roles as backups and leaders separately. On the
one hand, for a byzantine leader, the optimal strategy is to leave as many requests
hanging, while not making any progress (Lemma 9).

Lemma 9. After GST and under a correct primary, the optimal strategy for a
byzantine leader is to leave 2k client requests hanging and commit no request.

FnF-BFT 29

Proof. Correct replicas will be synchronized as a correct primary initiates the
epoch. Thus, byzantine replicas’ participation is not required to make progress.

Byzantine leaders can follow the protocol accurately (at any chosen speed),
send messages that do not comply with the protocol, or remain unresponsive.

Hanging requests reduce the throughput as they increase the number of au-
thenticators shared during the epoch and the epoch-change. Hence, byzantine
leaders leave the maximum number of requests hanging, i.e., 2k requests as all
further prepare messages would be discarded by correct replicas.

While byzantine replicas cannot hinder correct leaders from committing re-
quests, committing any request can only benefit the throughput of FnF-BFT.
To that end, note that after GST, each correct leader v will converge to a Cv

such that it will make progress during the entire epoch-time; hence, prolonging
the epoch-time is impossible. The optimal strategy for byzantine leaders is thus
to stall progress on their assigned hash buckets.

Finally, note that we assume the threshold signature scheme to be robust
and can, therefore, discard any irrelevant message efficiently. ⊓⊔

On the other hand, as a backup, the optimal byzantine strategy is not helping
other leaders to make progress (Lemma 10).

Lemma 10. Under a correct primary, the optimal strategy for a byzantine backup
is to remain unresponsive.

Proof. Byzantine participation in the protocol can only benefit the correct lead-
ers’ throughput. Invalid messages can simply be ignored, while additional au-
thenticators are not verified and thus do not reduce the system throughput. ⊓⊔

In conclusion, we observe that byzantine replicas have little opportunity to
reduce the throughput in epochs under a correct primary.

Theorem 5. After GST, the effective utilization under a correct primary is at
least 8

9 for n → ∞.

Proof. Moving from the best-case scenario with 3f + 1 correct leaders to only
2f + 1 correct leaders, each correct leader still processes 4f + 3 authenticators
per request, and 5 authenticators for each request of other leaders. We know
from Lemma 9 that only the 2f +1 correct replicas are committing requests and
creating checkpoints throughout the epoch. The authenticator cost of creating
2f + 1 checkpoints, one for each correct leader, becomes 6f + 2 per replica.

Byzantine leaders can open at most 2k new requests in an epoch. Each hang-
ing request is seen at most twice by correct replicas without becoming com-
mitted. Thus, each correct replica processes no more than 8k authenticators for
requests purposefully left hanging by a byzantine replica in an epoch. Thus, the
utilization is reduced at most by a factor

(
1− 8kf

T

)
, where T is the maximal

epoch length. While epochs can finish earlier, this will not happen after GST as
soon as each correct leader v works at its capacity Cv.

30 Avarikioti et al.

Hence, the byzantine-resilient epoch throughput becomes
k · (2f + 1)

k · (14f + 3) + (6f + 2)
·
(
1− 8kf

T

)
.

By comparing this to the best-case epoch throughput from Lemma 6, we
obtain a maximal throughput reduction of

(2f + 1)(k · (19f + 3) + (8f + 2))

(3f + 1)(k · (14f + 3) + (6f + 2))
·
(
1− 8kf

T

)
.

Observe that the first term decreases and approaches 8
9 for n → ∞:

(2f + 1)(k · (19f + 3) + (8f + 2))

(3f + 1)(k · (14f + 3) + (6f + 2))

n→∞
=

16 + 38k

18 + 42k
≥ 8

9
.

We follow that the epoch time is T ∈ Ω(n3), as we set Cmin ∈ Ω(n2) and
each leader requires Ω(n) time units to commit one of its requests. Additionally,

we know that 8kf ∈ O(n), and thus:
(
1− 8kf

T

)
n→∞
= 1.

For n → ∞, the throughput reduction byzantine replicas can impose on the

system during a synchronized epoch is therefore bounded by a factor
8

9
. ⊓⊔

Byzantine Primary Throughput A byzantine primary, evidently, aims to
perform the epoch-change as slow as possible. Furthermore, a byzantine primary
can impede progress in its assigned epoch entirely, e.g., by remaining unrespon-
sive. We observe that there are two main byzantine strategies to be considered.

Lemma 11. Under a byzantine primary, an epoch is either aborted quickly or
Ω(n3) new requests become committed.

Proof. A byzantine adversary controlling the primary of an epoch has three
options. Following the protocol and initiating the epoch for all 2f + 1 correct
replicas will ensure high throughput and is thus not optimal. Alternatively, ini-
tiating the epoch for s ∈ [f + 1, 2f] correct replicas will allow the byzantine
adversary to control the progress made in the epoch, as no correct leader can
make progress without a response from at least one byzantine replica. However,
slow progress can only be maintained as long as at least 2f + 1 leaders con-
tinuously make progress. By setting the no-progress timeout Tp ∈ Θ(T/Cmin),
Ω(n3) new requests per epoch can be guaranteed. In all other scenarios, the
epoch will be aborted after at most one epoch-change timeout Te, the initial
message transmission time 5∆, and one no-progress timeout Tp.

Note that we do not increase the epoch-change timer Te for f unsuccessful
epoch-changes in a row. In doing so, we prevent f consecutive byzantine pri-
maries from increasing the epoch-change timer exponentially; thus potentially
reducing the system throughput significantly. ⊓⊔

FnF-BFT Primaries Primaries rotate across epochs based on their perfor-
mance history to reduce the control of the byzantine adversary on the system.

FnF-BFT 31

Lemma 12. After a sufficiently long stable time period, the performance of a
byzantine primary can only drop below the performance of the worst correct pri-
mary once throughout the sliding window.

Proof. The network is considered stable for a sufficiently long time when all lead-
ers work at their capacity limit, i.e., the number of requests they are assigned in
an epoch matches their capacity, and primaries have subsequently been explored
once. As soon as all leaders are working at their capacity limit, we observe the
representative performance of all correct primaries, at least.

FnF-BFT repeatedly cycles through the 2f +1 best primaries. A primary’s
performance is based on its last turn as primary. Consequently, a primary is
removed from the rotation as soon as its performance drops below one of the f
remaining primaries. We conclude that a byzantine primary will only be nomi-
nated beyond its single exploration throughout the sliding window if its perfor-
mance matches at least the performance of the worst correct primary. ⊓⊔

As its successor determines a primary’s performance, the successor can in-
fluence the performance slightly. However, this is bounded by the number of
open requests – O(n) many – which we consider being well within natural per-
formance variations, as Ω(n3) requests are created in an epoch under a correct
primary. Thus, we will disregard possible performance degradation originating
at the succeeding primary.

From Lemma 12, we easily see that the optimal strategy for a byzantine
primary is to act according to Lemma 11 – performing better would only help
the system. In a stable network, byzantine primaries will thus only have one
turn as primary throughout any sliding window. In the following, we consider a
primary to be behaving byzantine if it performs worse than all correct primaries.

Theorem 6. After the system has been in stability for a sufficiently long time
period, the fraction of byzantine behaving primaries is f

g .

Proof. Following from Lemma 12, we know that a primary can only behave
byzantine once in the sliding window. There are a total of g epochs in a sliding
window, and the f byzantine replicas in the network can only act byzantine in
one epoch included in the sliding window. We see that the fraction of byzantine
behaving primaries is f

g . ⊓⊔

The configuration parameter g determines the fraction of byzantine primaries
in the system’s stable state, while simultaneously dictating how long it takes to
get there after GST. Setting g to a small value ensures that the system quickly
recovers from asynchrony. On the other hand, setting g to larger values provides
near-optimal behavior once the system is operating at its optimum.

FnF-BFT Byzantine-Resilient Performance Combining the byzantine
strategies from Theorem 5, Lemma 11 and Theorem 6, we obtain the following.

Theorem 7. After GST, the effective utilization is asymptotically 8
9 · g−f

g for
n → ∞.

32 Avarikioti et al.

Proof. To estimate the effective utilization, we only consider the throughput
within epochs. That is because the time spent in correct epochs dominates the
time for epoch-changes, as well as the time for failed epoch-changes under byzan-
tine primaries, as the number of replicas increases (Lemma 7). Without loss of
generality, we consider no progress to be made in byzantine primary epochs.
We make this assumption, as we cannot guarantee asymptotically significant
throughput. From Theorem 5, we know that in an epoch initiated by a correct
primary, the byzantine-resilient effective utilization is at least 8

9 for n → ∞. Fur-
ther, at least g−f

g of the epochs are led by correct primaries after a sufficiently
long time period in stability and thus obey this bound (Theorem 6). In the limit
for n → ∞ the effective utilization is 8

9 · g−f
g . ⊓⊔

FnF-BFT 33

B Implementation & Preliminary Evaluation

Features. FnF-BFT’s proof-of-concept implementation is directly based on
the code of HotStuff’s open-source prototype implementation libhotstuff.5
We implement the basic functionality of FnF-BFT including the epoch-change
and watermarks, while only changing ≈ 2000 lines of code and maintaining the
general framework and experiment setup. In addition, we extend both imple-
mentations to support BLS threshold signatures.6

Threshold Signatures. Note that while HotStuff is designed with threshold
signatures in mind and relies on them for its theoretic performance analysis [38],
libhotstuff uses sets of 2f + 1 signatures instead of real threshold signatures.
While this workaround maintains a complexity of O(n) for creation of such a
“threshold signature”, it comes at the expense of a verification complexity of O(n)
as well. In HotStuff, this additional overhead affects mainly the non-primary
replicas, which would otherwise be idle in the HotStuff protocol. However, the
design of FnF-BFT ensures that all replicas’ computational resources are uti-
lized at all times. Since the originally used secp256k1 cryptographic signatures
appear to be more optimized than the BLS threshold signatures, and to en-
sure a fair comparison, we thus compare FnF-BFT’s throughput and latency
to HotStuff using the identical BLS threshold signature implementation.

Limitations. As in the theoretical analysis (see Section 3.1), we did not im-
plement a batching process for client requests. Hence, each block contains only
a single client request. For this reason, the expected throughput (and typically
reported number for BFT protocols) in practical deployments is much higher.

While FnF-BFT’s design inherently allows to utilize concurrent threads
during epoch operation, e.g., to interact with all parallel leaders, our proof-
of-concept implementation currently only supports single-threaded operation.

Setup & Methodology. We compare FnF-BFT’s single-threaded implemen-
tation to both single- and multi-threaded HotStuff (with 12 threads per replica)
with respect to best-case performance, i.e., throughput and latency when all n
replicas operate correctly. Experiments are repeated for n ∈ {4, 7, 10, 16, 31, 61}
replicas. We deploy both protocols on Amazon EC2 using c5.4xlarge AWS cloud
instances. Each replica is assigned to a dedicated VM instance with 16 CPU cores
powered by Intel Xeon Platinum 8000 processors clocked at up to 3.6 GHz, 32
GB of RAM, and a maximum network bandwidth of 10 Gigabits per second.

We measure the average throughput and latency over multiple epochs to in-
clude the expected drop in perfomance for FnF-BFT during the epoch-change.
For each experiment, we run both protocols for at least three minutes and mea-
sure their average performance accordingly. We divide the hash space into n
buckets, resulting in one bucket per replica. For generating requests, we run the
libhotstuff client with its default settings, meaning that the payload of each
request is empty. Clients generate and broadcast four requests in parallel, and

5 https://github.com/hot-stuff/libhotstuff
6 https://github.com/herumi/bls

https://github.com/hot-stuff/libhotstuff
https://github.com/herumi/bls

34 Avarikioti et al.

issue a new request whenever one of their requests is answered. For the through-
put measurements, we launch sufficiently many clients until we observe that no
buckets are idle. For the latency measurement, we run a single client instance
such that the system does not operate at its throughput limit. In general, we
use the same settings for both protocols wherever applicable (Table 1).

Parameter Value

Requests per block 1
Threads per replica 1
Threads per client 4
Epoch timeout 30s

Parameter Value

No progress timeout 2s
Blocks per checkpoint (K) 50
Watermark window size (2 ∗K) 100
Initial epoch watermark bounds 10000

Table 1: Experiment parameters used for FnF-BFT and HotStuff, if applicable.

Performance. Figure 9 depicts a best-case operation of FnF-BFT over five
epochs and demonstrates its consistently high throughput.7 As expected, the
throughput of our protocol stalls during an epoch-change. However, in com-
parison to HotStuff (Figure 10), FnF-BFT’s average throughput remains on
top over multiple epochs (i.e., including the epoch-change gap). As HotStuff’s
throughput decreases for increasing number of replicas, FnF-BFT showcases its
superior scalability. Specifically, FnF-BFT handles large amounts of requests up
to 4.7× faster than multi-threaded and 16× faster than single-threaded HotStuff.

Figure 11 depicts the average latency of both FnF-BFT and HotStuff, show-
ing that they scale similarly with the number of replicas. As latency expresses the
time between a request being issued and committed, both protocols exhibit very
fast finality for requests on average, even with many replicas. In combination,
Figure 10 and Figure 11 demonstrate the high performance and competitiveness
of FnF-BFT with HotStuff, especially when scaling to many replicas.

Fig. 9: Throughput of FnF-BFT with n = 4 replicas over 5 epochs.

4 7 10 16 31 61
number of replicas

50

100

150

200

th
ro

ug
hp

ut
 [r

eq
/s

]

Single-Threaded FnF-BFT throughput
Multi-Threaded HotStuff throughput
Single-Threaded HotStuff throughput

Fig. 10: Average Throughput Comparison

4 7 10 16 31 61
number of replicas

0

20

40

60

80

la
te

nc
y

[m
s]

Single-Threaded FnF-BFT latency
Multi-Threaded HotStuff latency
Single-Threaded HotStuff latency

Fig. 11: Average Latency Comparison

7 Note that a rate of 200 batches per second with a typical batch size of 500 commands
per batch translates to a throughput of 100,000 requests per second.

	FnF-BFT: A BFT protocol with provable performance under attack

