
Brief Announcement: Self-Monitoring in Dynamic Wireless
Networks

Stephan Holzer1 Yvonne Anne Pignolet2 Jasmin Smula1 Roger Wattenhofer1

1ETH Zurich, Switzerland, 2IBM Research, Switzerland
{stholzer, smulaj, wattenhofer}@tik.ee.ethz.ch, yvo@zurich.ibm.com

ABSTRACT
Wireless networks often experience a significant amount of
churn, the arrival and departure of nodes. We propose a
distributed algorithm that detects churn and is resilient to a
worst-case adversary. The nodes of the network are notified
about changes quickly, in asymptotically optimal time up to
an additive logarithmic overhead.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Reliability, Theory

1. INTRODUCTION
In traditional (wired) distributed systems the group mem-

bership problem has been studied thoroughly (we refer to [2]
for a survey). The basic premise of group membership is to
know which other nodes are there, for instance to share the
load of some task. Imagine for example a bunch of wireless
sensors, distributed in an area, to observe that area. From
time to time some of the nodes will fail, maybe because they
run out of energy, maybe because they are maliciously de-
stroyed. On the other hand, sometimes more sensors are
added. Despite this churn, all nodes should be aware of all
present nodes, with small delay only. To account for the self-
organizing flavor and the wireless context we use the name
self-monitoring instead of group membership.

We present an algorithm for the self-monitoring problem
that is efficient in several ways, in an adversarial setting.
Since energy as well as channels are scarce resources for
wireless devices, we evaluate a trade-off between energy and
delay / runtime for single- and multi-channel networks in
the full paper.

2. MODEL AND DEFINITIONS
The network consists of a set of wireless nodes, each with

a built-in unique ID. All nodes are within communication
range of each other, every node can communicate with every
other node directly (single-hop) without collision detection
as in the radio network model [3]. New nodes may join the

Copyright is held by the author/owner(s).
PODC’10, July 25–28, 2010, Zurich, Switzerland.
ACM 978-1-60558-888-9/10/07.

network at any time, and nodes can leave or crash without
notice. We exclude Byzantine behavior and assume that as
soon as a node crashes, it does not send any messages any-
more. Thus the number of nodes in the network varies over
time. We assume time to be divided into synchronized time
slots. Messages are of bounded size, each message can only
contain the equivalent of a constant number of IDs. Further,
we assume that the number of properly divided communica-
tion channels is sufficiently large. The nodes have sufficient
memory and computational power to store an ID table con-
taining all IDs of currently participating nodes. nt denotes
the number of entries in the ID table at time t.

At any time, an adversary may select arbitrary nodes to
crash, or it may let new nodes join the network. However,
the adversary may not modify or destroy messages. Since
messages have bounded size, nodes can learn at most a con-
stant number of identifiers per message. As each node can
only receive at most one message per time slot, any algo-
rithm needs at least cmin time units on average (for some
constant cmin) to learn about one crash or join. In other
words, if on average more than rate rmax := c−1

min nodes crash
(or join) per time unit, no algorithm can handle the infor-
mation (cf. [1] for the maximum tolerable average message
rate in a dynamic broadcast setting). Therefore we define
an adversary and monitoring algorithm as follows: denote
by α the number of crashes/joins that happen in a maximal
burst and by α̃ the maximal burst-size that an algorithm
tolerates. Both α and α̃ can vary over the time.

Definition 1 (c-Adversary, (c, α̃)-Adversary). We
call an adversary a c-adversary if it lets nodes join and crash
arbitrarily as long as it does not crash the whole network at
any time and on average the adversary joins/crashes at most
one node in c time slots. The adversary has full knowledge of
the algorithm and can coordinate crash and join events with
the aim of letting the algorithm fail. A (c, α̃)-adversary is a
c-adversary whose churn is bounded by a constant α̃ during
every period of c · α̃ time slots.

3. MONITORING ALGORITHM
The algorithm we propose is asymptotically optimal in

the sense that it can survive in a setting where on average
one crash or join occurs in c time units, for a constant c >
cmin. We can tolerate bursty churn (a large number of nodes
joining or leaving during a small time interval). Similarly to
an optimal algorithm, we need time to recover from bursts
since message size to learn newly joining (or crashed) nodes
is bounded. The algorithm can also tolerate churn while
trying to recover from previous bursts; again the only limit

129



is the learning rate of rmax IDs per time unit. Indeed, the
adversary may crash all but one node at the same instant
(killing all nodes is a special case, leading to an initialization
problem, which we do not address here).

Clearly, learning churn takes time, depending on the bursts.
If there is a burst of b joins or crashes, an optimal algorithm
needs at least b · cmin time until the corresponding infor-
mation at all nodes is up-to-date. Similarly, our algorithm
needs time b · c. If bursts happen while recovering from
previous bursts, delays will take longer due to the constant
learning rate. Up to a logarithmic additive term, the learn-
ing delay of the algorithm is asymptotically optimal: the
algorithm handles the maximum average rate of churn any
algorithm can tolerate in this communication model.

Our algorithm is randomized. However, randomness is
only required for detecting new nodes since this part cannot
be done in a deterministic fashion. All other parts of the
algorithm are deterministic, which might be of interest in a
setting where only updates on crashed nodes is needed and
no nodes join the network. Furthermore, beside an additive
logarithmic term, our algorithm exchanges only a constant
factor more messages than the number of messages required
by an optimal algorithm.

Theorem 1. We construct a Monitoring Algorithm that
can handle c-adversaries (for a constant c) with logarithmic
additive overhead: O(α+ logn) time slots after an event all
nodes have updated their ID tables.

Proof Idea: We construct a family of “fixed burst” monitor-
ing algorithms {Aα̃}α̃∈N that tolerate churn bursts of size α̃
and might fail if the churn is larger. That is: Aα̃ can handle
a (c, α̃)-adversary. From this family we build a monitoring
algorithm for handling arbitrary churn without knowing its
size α beforehand by estimating the burst size α to be α̃,
starting with α̃ = log nt, and doubling the estimated size α̃
each time Aα̃ fails. When the correct order of burst size is
reached, Aα̃ works fine. This algorithm can adjust to bursts
of arbitrary size and never fails for a c-adversary.

In the remainder of this article we describe the “fixed
burst”-monitoring algorithms (fbma) Aα̃ in the family men-
tioned in the proof idea above. Each Aα̃ requires the follow-
ing invariant 1 at all times.

Invariant 1. All nodes that have been in the network for
Θ(nt) time slots have the same view of the network, i.e.,
their ID table always contains the same entries. Nodes that
joined more recently know their position in the ID table.

To ensure that this invariant holds when starting the al-
gorithm, we may assume that at time 0 there is only a single
designated node active, and all other nodes still need to join.
This leads to the same sorted ID table at all nodes.

Newly arrived nodes do not know the ID table yet and
have to learn the IDs of all present nodes in asymptotically
optimal time. However, even with incomplete ID tables they
can participate in the algorithm.

Theorem 2. If invariant 1 holds at the start, then for
all α̃ ∈ N fbma Aα̃ tolerates (c, α̃)-adversaries for a constant
c. Furthermore each node detects if the algorithm failed c ·
(α̃ + log nt) time slots after a stronger adversary caused a
burst larger than α̃. The energy consumption and the time
for detection is asymptotically optimal.

In brief, fbma repeats the following six steps to maintain
up-to-date information in the ID tables of the nodes. The
algorithm is fully distributed and does not need a central
entity to control its execution. The six steps ensure that
invariant 1 holds at the beginning of each loop.

Step 1 – partition nodes into sets: Nodes are divided
into N ∈ O(1 +nt/α̃) sets V := {S1, . . . , SN}. Based on the
information in their ID table, the nodes can determine to
which set SI ∈ V they belong by following a deterministic
procedure. Each set appoints nodes as representatives of the
set and their replacements in case they crash. Every node
has the necessary information in its ID table. Time O(1).

Step 2 – detect crashed nodes in each set on sep-
arate channels in parallel: Each set SI ∈ V executes an
algorithm to detect its crashed nodes. No communication
between sets takes place. To avoid collisions each set carries
out its intra-set communication on a separate channel. To
find out if any of the set members in SI have crashed, each
node sends a “hello” message in a designated time slot. All
other nodes of the set detect who did not send a message
and generate a list of so-called update items UI (information
to disseminate). Time O(min(α̃, nt)).

Step 3 – detect joined nodes: New nodes listen to
learn the tolerated burst size α̃ and when to try joining.
They send requests to join to S1 with probability 1/α̃. In
expectation at least one node can join in constant time if
the estimate α̃ is in O(α). Detected joiners are added to U1

together with a note that they joined. After O(α̃ + lognt)
time slots S1 decides whether the estimate α̃ needs to be
doubled due to too many joiners. Its decision is correct whp
(with high probability: with probability greater than 1−n−γt
for each constant γ). Time O(α̃+ lognt).

Step 4 – disseminate information on crashed and
joined nodes to all nodes: Now every set SI has a list
UI of update items containing the IDs of crashed and joined
nodes in the set. To distribute this information, each set
becomes a vertex of a balanced binary tree and the rep-
resentative nodes communicate with the representatives of
neighboring vertices in the tree according to a pre-computed
schedule. If a representative crashes, there are α̃ replace-
ments to take over its job. No collisions occur due to the
schedule. Time O(α̃+ log nt).

Step 5 – stop if burst too large: If the adversary is
too strong, information on some of the sets is missing, or
more than α̃ nodes crashed or tried to join a single set. In
this case, all nodes are notified and the execution of the
algorithm stops. Time O(α̃+ log nt).

Step 6 – all nodes update their ID table: If the
algorithm did not stop, every node now has the same list
U =

⋃N
I=1 UI and can update its ID table. Invariant 1

holds. Time O(1).

4. REFERENCES
[1] B. Chlebus, D. Kowalski, and M. Rokicki. Maximum

throughput of multiple access channels in adversarial
environments. Distributed Computing, 22(2):93–116,
2009.

[2] G. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: a comprehensive study.
ACM Computing Surveys (CSUR), 33(4):427–469, 2001.

[3] T. Jurdzinski, M. Kutylowski, and J. Zatopianski.
Energy-efficient size approximation of radio networks
with no collision detection. In COCOON 2002.

130


