
Distributed

 Computing

Prof. R. Wattenhofer

Algorithm Learning from Data

Algorithm learning is a thrilling field of research that gained significant
traction over the past decade due to the advances in machine learning.
Simply put, the goal is to have systems that take in some sort of speci-
fication of program behaviour and produce a concrete program that fits
this input. It is hard to underestimate how desirable it is to have at least
one such system that is reliable.

The topic of algorithm learning can be approached in both top-down and bottom-up fashion. Those
championing the latter would likely want to learn from input-output examples, while those in favour
of the former would prefer to process high-level specifications of what the program should do. Our
approach begins somewhere in-between those two. At DISCO we have recently developed software for
the production of partially semantized abstract syntax tree representations of code and have begun
to mine these graphs to produce a dataset of “code idioms” – phrases, or code excerpts, of code
elements not at all necessarily following one after another in the original source but related because
of their function.

There are many things that we would like to do. Here are a few, some of which we’ve already started
on.

1. Behavorial Representation for C, Java, or others. Working only with Python code up
until now, we feel it is high time we expanded on this in terms of languages we analyze.

2. Code Idiom Discovery. So far we have been using graph methods some would call naive.
We are sure this could be easily improved on.

3. Code Completion. Given the database of idioms available, find the right candidate to com-
plete a piece of code.

4. Code Search. Given the database of idioms and a textual query such as “print all files in
directory”, find a piece of code that does precisely that.

5. Program Design. Given the database of idioms and a high-level specification of elements that
the target program should consist of, produce an incomplete, high-level sketch of the program.

Candidate Profile. Varies from project to project. Bachelor’s students will work on a smaller
project, mostly coding. Master’s students will work on an extensive project, both coding and ad-
vancing our work on the conceptual level. Generally speaking, a good candidate is a competent
programmer in the language of his/her choice and is interested in one or more of the following fields:
parsing, compiler design, programming language theory, statistical machine learning, deep neural
networks, natural language processing.

Interested? Please contact us to learn more!

Contact (please send an email with the following as recipients)

• Peter Belcak: belcak@ethz.ch, ETZ G63

• Ard Kastrati: kard@ethz.ch, ETZ G61.3

mailto:Peter Belcak <belcak@ethz.ch>
mailto:Ard Kastrati <kard@ethz.ch>

