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Abstract. Byzantine agreement is a fundamental primitive in cryptog-
raphy and distributed computing, and minimizing its round complexity is
of paramount importance. It is long known that any randomized r-round
protocol must fail with probability at least (c · r)−r, for some constant
c, when the number of corruptions is linear in the number of parties,
t = θ(n). On the other hand, current protocols fail with probability at
least 2−r. Whether we can match the lower bound agreement probability
remains unknown.
In this work, we resolve this long-standing open question. We present
a protocol that matches the lower bound up to constant factors. Our
results hold under a (strongly rushing) adaptive adversary that can cor-
rupt up to t = (1 − ϵ)n/2 parties, and our protocols use a public-key
infrastructure and a trusted setup for unique threshold signatures. This
is the first protocol that decreases the failure probability (overall) by a
super-constant factor per round.

1 Introduction

Byzantine agreement (BA) is an essential building block and an extensively
studied problem in distributed protocols: it allows a set of n parties to achieve
agreement on a common value even when up to t of the parties may arbitrarily
deviate from the protocol. BA was first formalized in the seminal work of Lam-
port et al. [LSP82], and since then, it has been the subject of a huge line of work
(e.g. [DS83, PW96, FM97, CL99, KK06]).

A crucial efficiency metric for distributed protocols is their round complex-
ity. That is, the number of synchronous communication rounds that are needed
for a protocol to terminate. As shown by Dolev and Strong [DS83], any deter-
ministic protocol for BA requires at least t + 1 rounds. Fortunately, the seminal
results of Ben-Or [Ben83] and Rabin [Rab83] show that such limitation can be
circumvented by the use of randomization. In this regime, there are protocols
that achieve expected constant number of rounds [FM97, KK06].

It is also known that any r-round randomized protocol must fail with prob-
ability at least (c · r)−r, for some constant c, when the number of corruptions,
t = θ(n), is linear in the number of parties [KY84, CMS89, CPS19].
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The seminal work of Feldman and Micali (FM) [FM97] introduced an un-
conditional protocol, secure up to t < n/3 corruptions, that achieves agreement
in O(r) rounds except with probability 2−r. Assuming an initial trusted setup
and for the case of binary input domain, the protocol requires 2r rounds to
achieve the same agreement probability. Despite the extensive line of works
[FG03, KK06, CM19, MV17, ADD+19] improving different parameters of the
original FM protocol, the agreement probability was not improved until the very
recent work of Fitzi, Liu-Zhang and Loss [FLL21], which showed a binary BA
protocol that uses a trusted setup and requires r+1 rounds to achieve agreement
except with probability 2−r.

To the best of our knowledge, up to date, there is no r-round protocol that
fails with probability less than 2−r after r rounds.

It is therefore natural to ask whether one can achieve a protocol that in-
creases the agreement probability by more than a constant per round, hopefully
matching the known lower bounds. Concretely, we ask whether one can achieve
a round-optimal Byzantine agreement given a target probability of error; alter-
natively achieving the optimal probability within a fixed number of rounds r:

Is there an r-round BA protocol that achieves agreement except with prob-
ability (c·r)−r, for some constant c, and secure up to some t = θ(n) corruptions?

We answer this question in the affirmative. We show an optimal protocol up
to constants. Concretely, our protocol achieves the optimal agreement probability
and simultaneous termination4 within 3r rounds and is secure against a strongly
rushing adaptive adversary that can corrupt any t = (1− ϵ)n/2 parties, for any
constant ϵ > 0, assuming a public-key infrastructure (PKI) setup and a trusted
setup for unique threshold signatures.

Note that, to the best of our knowledge, this is the first protocol that de-
creases the failure probability (overall) by a super-constant factor per round.
No previous r-round protocol achieved less than 2−r failure probability, even for
any setup assumptions, and even against a static adversary corrupting up to any
fraction t = θ(n) of parties.

1.1 Technical Overview

We give an overview of the main techniques used in our protocol.

Expand-and-Extract. Our starting point is the recent work by Fitzi, Liu-
Zhang and Loss [FLL21], where the authors provide a new elegant way to design
round-efficient BA protocols, called Expand-and-Extract.

The Expand-and-Extract iteration paradigm consists of three steps. The first
step is an expansion step, where an input bit is expanded into a value with range
ℓ, via a so-called Proxcensus protocol. This protocol guarantees that the outputs
of honest parties lie within two consecutive values (see Definition 2).
4 All parties simultaneously terminate in the same round.
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The second step is a multi-valued coin-flip, and the last step is an extraction
technique, where the output bit is computed from the coin and the output of
Proxcensus. The steps are designed such that parties are guaranteed to reach
agreement except with probability 1/ℓ, assuming that the coin returns a com-
mon uniform ℓ-range value. See Section 3 for a recap.

Our main technical contribution is a new Proxcensus protocol that expands the
input bit into ℓ = (c · r)r values in 3r rounds, for any t = (1− ϵ)n/2 corruptions,
for some constant c that depends on ϵ. Combining this with a 1-round coin-flip
protocol [CKS05, LJY14], which can be instantiated using a trusted setup for
unique threshold signatures, the desired result follows.

Round-Optimal Proxcensus. The protocol starts by positioning the honest
parties into one of the extremes of a large interval [0, M ] of natural values (for
some large value M specified below). If the input of party Pi is xi = 0, then Pi

positions himself in value 0, and if the input is xi = 1, then Pi positions himself
in the value v = M .

The protocol then proceeds in iterations of 3 rounds each. At each iteration,
each party Pi distributes its current value within the interval, and updates its
value according to some deterministic function f . Importantly, each iteration
guarantees that the values between any two honest parties get closer (overall)
by a super-constant factor. Concretely, we achieve a protocol in which, after any
sufficiently large number L of iterations, the distance between any two honest
values is roughly at most L. By setting the initial range to M ≈ LL+1 values, we
can group every L consecutive values into batches, to obtain a total of roughly
LL batches, which will constitute the output values for the Proxcensus protocol.

To handle this high number of values, we will need to devise two ingredients:
a mechanism that limits the adversary’s cheating capabilities, and a function f
that allows the iteration-outputs of the honest parties to get closer, even when
the function is evaluated on sets of values that are different (in a limited way).

Cheating-Limitation Mechanism. We specify a mechanism that, for each party P̃ ,
allows honest parties to decide at a specific iteration whether to take into account
the value received from P̃ or not. This mechanism provides two guarantees. First,
if there is an honest party Pi that takes into account the value received from
P̃ , and another honest party Pj that does not, then P̃ is necessarily corrupted
and all honest parties will ignore P̃ ’s values in all future iterations. Second, if
all honest parties consider the value received by P̃ , then P̃ actually distributed
the same consistent value to all honest parties.

These two guarantees have the effect that any corrupted party can cause
differences between the values taken into consideration by honest parties at
most once. That is, the amount of discrepancy between any two honest parties
depends on the actual number of corrupted parties that actively cheated in that
iteration.

In order to implement such a mechanism, we introduce a modification of
the well-known graded broadcast [FM97] primitive, which we denote conditional
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graded broadcast. In this primitive, the sender has an input to be distributed,
and every recipient holds an input bit bi. The primitive then achieves the same
properties as graded broadcast, but with a few differences. When all honest
parties have as input bi = 0, then the output of all honest parties has grade 0
(we call this property “no honest participation”). Moreover, even when a subset
of honest parties have bi = 0, graded consistency is achieved. See Definition 3
for more details and Section 4 for a construction.

The mechanism can then be implemented as follows. Each party Pi keeps
track of a set of corrupted parties C that it identified as corrupted. At each
iteration, Pi distributes its current value xi via a conditional graded broadcast;
Pi only considers those values that have grade 1 or 2 to update its value via the
function f , and ignores the values with grade 0. On top of that, Pi updates its
local set C with those parties that sent grade 0 or 1 (these parties are guaranteed
to be corrupted by the graded broadcast primitive). Moreover, Pi sets bi = 0 in
any future conditional graded broadcast from any sender in C.

Observe that if a dishonest sender P̃ distributes values such that an honest
party Pi takes into account the value from P̃ (Pi receives grade at least 1), and
another honest party Pj does not consider P̃ ’s value (Pj gets grade 0), then nec-
essarily P̃ is corrupted, and all honest parties add P̃ to their corrupted sets (this
is because Pj got grade 0, so graded broadcast guarantees that no honest party
gets grade 2). It follows by “no honest participation” that all values from P̃ will
be ignored in future iterations. Moreover, if all honest parties take into account
the value from P̃ , it means no honest party received grade 0, and therefore all
parties obtain the same value (with grade 1 or 2). Note that in this case, P̃ can
still distribute values that are considered in further iterations; however it did
not cause discrepancies in the current iteration.

Deterministic Function f . With the above mechanism, we reach a situation
where at each iteration it, the set of values considered by different honest parties
Pi and Pj differ in at most lit values, where lit is the number of corrupted parties
that distributed grade 1 to a party and grade 0 to the other party.

In order to compute the updated value, Pi discards the lowest and the highest
t−c values from the set of considered values (those with grade at least 1), where
c represents the number of values received with grade 0. Then, the new value is
computed as the average of the remaining values.

Observe that because those c parties (that sent grade 0) are corrupted, then
among the n−c parties at most t−c are corrupted. This implies that the updated
value is always within the range of values from honest parties. Moreover, if the
adversary doesn’t distribute different values at an iteration, the honest parties’
updated values will be the same, and will never diverge again.

With technical combinatorial lemmas (see Lemmas 6 and 7), we will show
that with this deterministic update function, the distance between any two hon-
est parties’ updated values decreases by a factor proportional to the number of
corrupted parties lit. After L iterations, and bounding the sum of lit terms by
the corruption threshold t, we will show that the distance between honest values
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is bounded by M · ( n−2t
t · L)−L + L. Hence, by grouping every 2L consecutive

values, we will be able to handle approximately ( n−2t
t ·L)L = ( 2ϵ

1−ϵ ·L)L values in
Proxcensus within 3L rounds when t = (1− ϵ)n/2. See more details in Section 5.

1.2 Related Work

The literature on round complexity of Byzantine agreement is huge, and differ-
ent protocols achieve different levels of efficiency depending on many aspects,
including the setup assumptions, the corruption threshold, input domain, etc.

In the following, we focus on the round-complexity of binary BA protocols,
noting that these can be extended to multivalued BA using standard techniques
[TC84], at the cost of an additional 2 rounds in the t < n/3 case, and 3 rounds
in the t < n/2 case. Some of the constructions also use an ideal 1-round coin-flip
protocol with no error nor bias, which can be instantiated using a trusted setup
for unique threshold signatures [CKS05, LJY14].

Feldman and Micali [FM97] gave an unconditional protocol for t < n/3 with
expected constant number of rounds. This protocol achieves agreement in O(r)
rounds except with probability 2−r. Assuming an ideal coin, the protocol achieves
the same agreement probability within (the smaller number of) 2r rounds for
binary inputs.

Fitzi and Garay [FG03] gave the first expected constant-round protocol for
t < n/2 assuming a PKI, under specific number-theoretic assumptions. This
result was later improved by Katz and Koo [KK06], where they gave a pro-
tocol relying solely on a PKI. Assuming threshold signatures, Abraham et al.
[ADD+19] extended the above results to achieve the first expected constant-
round BA with expected O(n2) communication complexity, improving the com-
munication complexity by a linear factor. These protocols can be adapted to
achieve in O(r) rounds agreement except with probability 2−r. The concrete ef-
ficiency was improved by Micali and Vaikuntanathan [MV17], where the authors
achieve agreement in 2r rounds except with probability 2−r, assuming an ideal
coin for binary inputs.

Recently, Fitzi, Liu-Zhang and Loss [FLL21] generalized the Feldman and
Micali iteration paradigm, and gave improvements in the concrete efficiency of
fixed-round protocols, assuming an ideal coin. For binary inputs, the protocols
incur a total of r+1 rounds for t < n/3, and 3

2 r for t < n/2, to achieve agreement
except with probability 2−r.

A line of work focused on achieving round-efficient solutions for broadcast,
the single-sender version of BA, in the dishonest majority setting [GKKO07,
FN09, CPS20, WXSD20, WXDS20].

Karlin and Yao [KY84], and also Chor, Merritt and Shmoys [CMS89] showed
that any r-round randomized protocol must fail with probability at least (c·r)−r,
for some constant c, when the number of corruptions, t = θ(n), is linear in the
number of parties. This bound was extended to the asynchronous model by
Attiya and Censor-Hillel [AC10].

Protocols with expected constant round complexity have probabilistic termi-
nation, where parties (possibly) terminate at different rounds. It is known that
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composing such protocols in a round-preserving fashion is non-trivial. Several
works analyzed protocols with respect to parallel composition [Ben83, FG03],
sequential composition [LLR06], and universal composition [CCGZ16, CCGZ17].

Cohen et al. [CHM+19] showed lower bounds for Byzantine agreement with
probabilistic termination. The authors give bounds on the probability to termi-
nate after one and two rounds. In particular, for a large class of protocols and a
combinatorial conjecture, the halting probability after the second round is o(1)
(resp. 1/2 + o(1)) for the case where there are up to t < n/3 (resp. t < n/4)
corruptions.

2 Model and Definitions

We consider a setting with n parties P = {P1, P2, . . . , Pn}.

2.1 Communication and Adversary Model

Parties have access to a complete network of point-to-point authenticated chan-
nels. The network is synchronous, meaning that any message sent by an honest
party is delivered within a known amount of time. In this setting, protocols are
typically described in rounds.

We consider an adaptive adversary that can corrupt up to t parties at any
point in the protocol’s execution, causing them to deviate arbitrarily from the
protocol. Moreover, the adversary is strongly rushing: it can observe the messages
sent by honest parties in a round before choosing its own messages for that
round, and, when an honest party sends a message during some round, it can
immediately corrupt that party and replace the message with another of its
choice.

2.2 Cryptographic Primitives

Public-Key Infrastructure. We assume that all the parties have access to a
public key infrastructure (PKI). That is, parties hold the same vector of pub-
lic keys (pk1, pk2, . . . , pkn), and each honest party Pi holds the secret key ski

associated with pki.5
A signature on a value v using secret key sk is computed as σ ← Signsk(v); a

signature is verified relative to public key pk by calling Verpk(v, σ). For simplicity,
we assume in our proofs that the signatures are perfectly unforgeable. When
replacing the signatures with real-world instantiations, the results hold except
with a negligible failure probability.

Coin-Flip. Parties have access to an ideal coin-flip protocol CoinFlip that gives
the parties a common uniform random value (in some range depending on the
5 This is a bulletin-board PKI, where the keys from corrupted parties can be chosen

adversarially. See [BCG21] for a nice discussion.
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protocol of choice). This value remains uniform from the adversary’s view until
the first honest party has queried CoinFlip. Such a primitive can be achieved
from a trusted setup of unique threshold signatures [CKS05, LJY14].

2.3 Agreement Primitives

Byzantine Agreement. We first recall the definition of Byzantine agreement.

Definition 1 (Byzantine Agreement). A protocol Π where initially each
party Pi holds an input value xi ∈ {0, 1} and terminates upon generating an
output yi is a Byzantine agreement protocol, resilient against t corruptions, if
the following properties are satisfied whenever up to t parties are corrupted:

– Validity: If all honest parties have as input x, then every honest party out-
puts yi = x.

– Consistency: Any two honest parties Pi and Pj output the same value yi = yj.

Proxcensus. Relaxations of Byzantine agreement have been proposed in the
past, where the output value is typically augmented with a grade, indicating
the level of agreement achieved in the protocol (see e.g. [FM97]). Proxcensus
[CFF+05, FLL21] can be seen as a generalization of these primitives, where the
grade is an arbitrary but finite domain. We consider a simplified version of the
definition of Proxcensus [FLL21], to the case where the input is binary.

Definition 2 (Binary Proxcensus). Let ℓ ≥ 2 be a natural number. A protocol
Π where initially each party Pi holds an input bit xi ∈ {0, 1} and terminates
upon generating an output yi ∈ {0, 1, . . . , ℓ− 1} is a binary Proxcensus protocol
with ℓ slots, resilient against t corruptions, if the following properties are satisfied
whenever up to t parties are corrupted:

– Validity: If all honest parties input xi = 0 (resp. xi = 1), then every honest
party outputs yi = 0 (resp. yi = ℓ− 1).

– Consistency: The outputs of any two honest parties Pi and Pj lie within two
consecutive slots. That is, there exists a value v ∈ {0, 1, . . . , ℓ− 2} such that
each honest party Pi outputs yi ∈ {v, v + 1}.

Conditional Graded Broadcast. Graded broadcast [FM97, KK06, Fit03] is a
relaxed version of broadcast. The primitive allows a sender to distribute a value
to n recipients, each with a grade of confidence.

In our protocols, it will be convenient to have a slightly modified version of
graded broadcast, where each party Pi has an additional bit bi, which intuitively
indicates whether Pi will send any message during the protocol. There are two
main differences with respect to the usual graded broadcast definition. First, if
all honest parties have bi = 0 as input, then all honest parties output some value
with grade 0. Second, we require the usual graded consistency property in the
dishonest sender case even when any subset of honest parties have bi = 0.
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Definition 3. A protocol Π where initially a designated party Ps (called the
sender) holds a value x, each party Pi holds a bit bi, and each party Pi terminates
upon generating an output pair (yi, gi) with gi ∈ {0, 1, 2}, is a conditional graded
broadcast protocol resilient against t corruptions if the following properties hold
whenever up to t parties are corrupted:

1. Conditional Validity: If Ps is honest and each honest party has bi = 1, then
every honest party outputs (x, 2).

2. Conditional Graded Consistency: For any two honest parties Pi and Pj:
–
∣∣gi − gj

∣∣ ≤ 1.
– If gi > 0 and gj > 0, then yi = yj.

3. No Honest Participation: If all honest parties input bi = 0, then every honest
party outputs (⊥, 0).

Assuming a public-key infrastructure, conditional gradecast can be achieved
up to t < n/2 corruptions in 3 rounds (see Section 4).

3 Expand-and-Extract Paradigm

In this section we briefly recap the Expand-and-Extract paradigm, introduced
by Fitzi, Liu-Zhang and Loss [FLL21].

The Expand-and-Extract paradigm consists of three steps. The first step is
an expansion step, where parties jointly execute an ℓ-slot binary Proxcensus
protocol Proxℓ. That is, each party Pi has as input bit xi, and obtains an output
zi = Proxℓ(xi) ∈ {0, 1, . . . , ℓ − 1}. At this point, the outputs of honest parties
satisfy validity and consistency of Proxcensus.

The second step is a multi-valued coin-flip. Let ci ∈ {0, 1, . . . , ℓ − 2} denote
the coin value that the parties obtain.

The last step is a cut, where the output bit is computed from the coin ci and
the output zi of Proxcensus, simply as yi = 0 if zi ≤ ci, and yi = 1 otherwise.

0 1 2 3 4 5 6 . . . l − 2 l − 1
ci

yi = 0 yi = 1

Fig. 1: Party Pi outputs a slot-value in {0, . . . , ℓ−1}, and the coin can “cut” the
array of slots in any of the ℓ − 2 intermediate positions (indicated with dotted
lines). If the obtained value lies on the left of the cut made by ci (indicated with
a red line), the output is yi = 0. Otherwise, the output is yi = 1.

Assuming that the coin is ideal (no error and no bias), i.e. returns a common
uniform value in the range {0, 1, . . . , ℓ − 2}, it is easy to see that parties reach
agreement except with probability 1/(ℓ− 1):
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– If all honest parties have input xi = 0, then after the first step the output of
Proxcensus is zi = 0, and the final output is yi = 0 no matter what the coin
value is. Similarly, if the input is xi = 1, then zi = ℓ − 1 and the output is
yi = 1 because the largest coin value is ℓ− 2.

– Moreover, since honest parties lie in two adjacent slots after the invocation
of Proxℓ, there is only one possible coin value (out of ℓ − 1) that lead to
parties having different inputs.

We formally describe the protocol below.

Protocol Πℓ
EE(Pi)

Let ℓ ≥ 2 be a natural number. The protocol is described from the point of view
of party Pi, with input bit xi ∈ {0, 1}.
1: zi = Proxℓ(xi)
2: ci = CoinFlip
3: if zi ≤ ci then
4: Output 0
5: else
6: Output 1
7: end if

Theorem 1 ([FLL21]). Let t < n. Let Proxℓ be an ℓ-slot Proxcensus protocol,
and CoinFlip be an (ℓ − 1)-valued ideal Coin-Flip protocol, secure up to t cor-
ruptions. Then, protocol Πℓ

EE achieves binary Byzantine Agreement against an
adaptive, strongly rushing adversary with probability 1− 1

ℓ−1 .

4 Conditional Graded Broadcast

We describe our conditional graded broadcast protocol below, which is based on
previous graded broadcast protocols [MV17, FLL21].

The protocol takes three rounds. The rounds are executed only if the input
bit is bi = 1. In the first round, the sender distributes its input signed. Then,
when each party receives a value from the sender, it adds its own signature and
echoes the pair of signatures along with the value to all parties. The third round
consists of simply echoing all received pairs to every other party.

At the end of the third round, every party executes the output determination
phase (this is executed irrespective of the value of bi). A party outputs with grade
2 if it received from each of a total of n− t parties a set of n− t signatures on a
value v, and no signature on any other value v′ ̸= v. Note that if an honest party
outputs v with grade 2, then it is guaranteed that every honest party received
at least one set of n− t signatures on v, and no echo signature on any v′ ̸= v in
the second round. This constitutes exactly the condition to output grade 1. In
any other case, the output is (⊥, 0).

9



Protocol cGBC(Ps)

Code for sender Ps with input x

1: if bs = 1 then
2: Round 1: Compute σ = Signsks

(x), and send (x, σ) to all the parties.
3: end if

Code for party Pi

1: if bi = 1 then
2: Round 2: Upon receiving (x′, σs) with valid signature from Ps, compute

σi = Signski
(x) and send (x, σs, σi) to all the parties.

3: Round 3: Forward all valid tuples received in the previous round to all
parties. Let Σj be the set of valid signature tuples received from party Pj .

4: end if
Code for party Pi: Output Determination We say that a set of valid signa-
tures Σ on v is consistent if it contains valid signatures on v from at least n − t
distinct parties.
1: if at least n − t consistent signature sets Σj on v have been received from

distinct parties, and no valid tuple (v′, σs, σj) on any v′ ̸= v was received at
any previous round then

2: Output (v, 2).
3: else if at least one consistent set Σ for v have been received, and no valid

tuple (v′, σs, σ) on v′ ̸= v was received at round 2 then
4: Output (v, 1).
5: else
6: Output (⊥, 0).
7: end if

We show that cGBC(Ps) is a conditional gradecast protocol in a sequence of
lemmas.

Theorem 2. Assuming a PKI infrastructure, cGBC(Ps) is a 3-round conditional
graded broadcast protocol resilient against t < n/2 corruptions.

Lemma 1. cGBC(Ps) satisfies conditional validity.

Proof. Let x be the input of the sender. If the sender is honest and all honest
parties have as input bi = 1, then the sender sends its input to all parties, who
then forward a signature on this value to everyone. Therefore, all parties collect
a signature set on x of size at least n − t and forward all these. At the end of
round 3, they all collect at least n − t consistent signature sets. Further note
that since the sender is honest, no honest party can collect a tuple (x′, σs, σ)
containing a valid signature from the sender for any other value x′ ̸= x.

Lemma 2. cGBC(Ps) satisfies conditional graded consistency.

Proof. We first show that if an honest party Pi outputs (yi, gi) = (v, 2), then
every honest party Pj outputs (yj , gj) with yj = yi and gj ≥ 1.

10



Since gi = 2, Pi received n− t > t consistent signature sets Σk for the same
value yi. As at least one of these sets is sent by an honest party, Pj received at
least one consistent Σk on yi. Moreover, Pj does not receive any tuple (y′, σs, σ)
with valid signatures for any value y′ ̸= yi at round 2. This is because Pi did
not receive any such tuple (y′, σs, σ) on y′ ̸= yi at round 3.

It remains to show that there cannot be two honest parties Pi and Pj that
output yi and yj ̸= yi, both with grade 1. In this case, Pi received a set of n− t
signatures on yi. This implies that there was at least one honest party that sent a
tuple (yi, σs, σ) with valid signatures at round 2. Therefore, at the end of round
2, Pj received this tuple and could not have output yj with grade 1.

Lemma 3. cGBC(Ps) satisfies no honest participation.

Proof. Assume that bi = 0 for every honest party Pi. Since the honest parties
do not send any messages at Round 1, and a consistent signature set Σ requires
at least n − t > t signatures, no party receives any consistent signature set.
Therefore, every honest party outputs (⊥, 0).

5 Round-Optimal Proxcensus

In this section, we introduce a round-optimal Proxcensus protocol, for any t <
(1−ϵ)n/2, for constant ϵ > 0. The protocol achieves a super-exponential number
of slots with respect to the number of rounds.

5.1 Protocol Description

The protocol is deterministic and runs for L iterations of 3 rounds each.
At the start of the protocol, parties position themselves into a large set

[0, M ] of integer values, which we denote as mini-slots. (M =
(

n−2t
t

)L ·LL+1 to
be exact.)

If the input of party Pi is xi = 0, then Pi positions himself in the mini-slot
v = 0, and if the input is xi = 1, then Pi positions himself in the mini-slot
v = M .

At each iteration, each party Pi invokes an instance of conditional graded
broadcast (see Definition 3 and Section 4 for a construction) to distribute the
current mini-slot value. Given the outputs of these graded broadcasts, each party
deterministically updates its mini-slot value (within [0, M ]). Each iteration guar-
antees that the mini-slot values between any two honest parties get closer. Our
process guarantees that after any number L ≥ 1−ϵ

ϵ of iterations, the honest mini-
slot values differ in at most 2L positions. To achieve that the honest parties lie
within two consecutive final slots, each final slot will group every 2L consecutive
mini-slots. The final number of slots will then be ℓ = M

2L = 1
2
(

n−2t
t

)L · LL.

Cheating Limitation Mechanism. At the core of our efficient Proxcensus
protocol lies a mechanism to limit the adversary’s cheating capabilities.
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Each party Pi (locally) keeps track of a set of parties C that it identified
as corrupted. The mechanism allows Pi to select parties from whom Pi should
take into account their value, with two guarantees: For any corrupted party P̃ , it
holds that 1) if there are honest parties Pi and Pj such that Pi takes into account
the value received from P̃ but Pj does not, then all honest parties identify P̃

as corrupted and no honest party will further consider the values from P̃ in the
rest of the protocol. And 2) if all honest parties consider their respective received
values from P̃ , then it is guaranteed that the received values are the same. These
two properties heavily limit the adversary’s capabilities in influencing the output
value.

We show how to implement this mechanism. At each iteration it, parties
distribute a value via conditional graded broadcast, and Pi takes into account
values with grade 1 or 2, but does not take into account values with grade 0.
On top of that, Pi updates its set C adding all parties from whom it received a
value with grade 0 or 1 (these are clearly corrupted, since Conditional Graded
Validity ensures that honest parties distribute grade 2). Moreover, Pi does not
participate in any conditional graded broadcast invocation where the sender is
a party in C.

The effect of this is as follows. Consider the case where a corrupted sender
P̃ distributes (possibly different values) to some honest parties Pi and Pj , such
that Pi takes into account the value received from P̃ , but Pj does not. In this
case, Pi received grade 1 and Pj received grade 0, and both parties add P̃ to
their respective corrupted sets. This implies that no honest party will participate
in any following conditional graded broadcast from P̃ (this is because by Condi-
tional Graded Consistency no honest party received grade 2), and therefore all
parties obtain grade 0 by the No Honest Participation property of conditional
graded broadcast in the following iterations. Moreover, if P̃ ’s value is taken into
account by all honest parties, this implies that all honest parties receive grade at
least 1, and therefore Graded Consistency ensures that all honest parties receive
the same value.

It follows that any corrupted party can cause differences between the values
taken into consideration by honest parties at most once.

Mini-Slot Update Function. In order to compute the updated mini-slot value,
Pi discards the lowest and the highest t− c values from the values received with
grade at least 1, where c represents the number of values received with grade 0.
Then, the new value is computed as the average of the remaining values. Note
that all those c parties with grade 0 are actually corrupted, and among the
n − c parties there are at most t − c corrupted. This implies that the updated
value is always within the range of values from honest parties. In particular, if
the adversary doesn’t send different values at an iteration, the honest parties’
updated values are exactly the same, and will never diverge again.

Let lit be the number of corrupted parties that are identified for the first
time by every honest party at iteration it. We will show that the distance
between any two honest parties’ updated values decreases essentially by a factor

12



of lit

n−2t+
∑it

i=1
li

. After L iterations, the values from honest parties will have

distance at most M · tL

LL · 1
(n−2t)L + L = 2L. See Lemmas 6 and 7.

We formally describe the protocol below.

Protocol OptimalProxL

Initialization

1: ℓ = ⌊ 1
2 ·
(

n−2t
t

)L · LL⌋ // Protocol achieves ℓ + 1 slots in Proxcensus
2: M = ⌈

(
n−2t

t

)L · LL+1⌉ // Auxiliar number of minislots
Code for party Pi with input xi ∈ {0, 1}
v0 = xi · M
C0 = ∅ (the set of parties P has identified as corrupted)
1: for it = 1 . . . L do
2: Participate in cGBC(Pi) as the sender with input vit−1 and bi = 1. More-

over, participate in all instances of cGBC(Pj) as a receiver as well, with
input bi = 0 if Pj ∈ Cit−1, and otherwise with input bi = 1.

3: Let (vj , gj) be the output obtained in the instance of graded broadcast
cGBC(Pj) where Pj is the sender.

4: C0
it = {Pj | gj = 0}; C1

it = {Pj | gj = 1}
5: Let Vit be the multiset containing the values vj with grade gj ≥ 1.
6: Let Tit be the multiset obtained by discarding the lowest and highest

t −
∣∣C0

it

∣∣ values of Vit.

7: vit =
⌊∑

v∈Tit
v∣∣Tit

∣∣ ⌋
8: Cit = Cit−1 ∪ C0

it ∪ C1
it

9: end for
10: Output ⌊ vL·ℓ

M
⌋

We now prove that OptimalProx is an optimal Proxcensus for any t = (1−ϵ) n
2

in a sequence of lemmas. The claim on the round complexity follows from the fact
that the protocol runs for L iterations, and each iteration involves an instance
of parallel graded conditional broadcast, which takes 3 rounds.

Theorem 3. Let ϵ > 0 be a constant, and let L ≥ 1−ϵ
ϵ and ℓ = ⌊ 1

2

(
2ϵ

1−ϵ

)L

LL⌋
be natural numbers. Assuming a PKI infrastructure, OptimalProxL is a 3L-round
Proxcensus protocol with ℓ + 1 slots, resilient against t = (1− ϵ) n

2 corruptions.

Let us denote by Cit,P the (local) set of parties that P identified as corrupted
at iteration it. We denote C∩

it =
⋂

P honest Cit,P to be the set of corrupted parties
discovered by all honest parties up to iteration it. Then, lit =

∣∣C∩
it \ C∩

it−1
∣∣

represents the number of corrupted parties that are newly discovered by every
honest party exactly at iteration it. These contain the parties that can cause
differences in the updated mini-slot values obtained by honest parties.

Let us denote by Uit the set of updated mini-slot values vit computed by
honest parties at iteration it ≥ 1. Additionally, let U0 = {0, M}.

13



Lemma 4. At every iteration it, Tit ⊆ [min Uit−1, max Uit−1] for every honest
party.

Proof. Let Pi be an honest party. Note that its local set C0
it only contains parties

from whom Pi obtained grade 0. Conditional Graded Validity implies that these
parties are corrupted (all instances with honest senders output grade 2 at all
iterations, and no honest party stops participating in any of these instances).

Therefore, c =
∣∣C0

it

∣∣ ≤ t. The values in Vit are sent by the parties in P \ C0
it,

and hence
∣∣Vit

∣∣ = n− c. These values contain all values in Uit−1 sent by the (at
least) n− t honest parties, and the values from at most t− c corrupted parties.

Therefore, the multiset Tit, obtained by discarding the highest and the lowest
t− c values within Vit, contains only values within [min Uit−1, max Uit−1].

Lemma 5. OptimalProxL achieves Validity.

Proof. We assume that every honest party starts with input b. Then, U0 =
{b·M}, and from Lemma 4 we obtain that UL ⊆ U0 and hence the set containing
the value vL computed by every honest party is UL = {b ·M}. Therefore, each
honest party outputs vL·ℓ

M = b·M ·ℓ
M = b · ℓ.

Lemma 6. Let P and P ′ denote two honest parties, and let vit and v′
it be

their respective updated mini-slot values (computed in line 7 of the protocol) at
iteration it. Then,

∣∣vit − v′
it

∣∣ ≤ lit

n− 2t +
∑it

i=1 li
· (max Uit−1 −min Uit−1) + 1.

Proof. Since vit = ⌊avg Tit⌋ , where avg Tit =
∑

v∈Titv∣∣Tit

∣∣ , it is enough to show:

∣∣avg Tit − avg T ′
it

∣∣ ≤ lit

n− 2t +
∑it

i=1 li
· (max Uit−1 −min Uit−1).

(The last additive term “+1” in the theorem statement accounts for the floor
operation.)

Fix iteration it. Consider the values that are received with grade at least 1
by P or P ′. It will be convenient to arrange these values in an increasing order
in an array A. The array contains exactly k = n− c values, where c =

∣∣C0
it ∩C′0

it

∣∣
is the number of values that both P and P ′ discard (they both receive grade 0).

Within this array of values, we denote by I1 (resp. I2) the set of indices
containing the values that were received with grade 0 by P (resp. P ′) and grade
1 by P ′ (resp. P ).

We then denote the resulting array T 1 (resp. T 2) created by 1) substituting
the values at indices in I1 (resp. I2) in A by the special symbol ⊥ and afterwards
2) further substituting the lowest and highest (t− c) +

∣∣I1
∣∣ (resp. (t− c) +

∣∣I2
∣∣)

values also by ⊥.

14



It is easy to see that T 1 (resp. T 2) was created using the exact same process
as in the protocol and contains exactly the same values as the multiset Tit (resp.
T ′

it), but conveniently arranged in an array.
Let s = t− c. Assuming that

∣∣I1
∣∣ ≥ ∣∣I2

∣∣ (the argument holds symmetrically
when

∣∣I2
∣∣ ≥ ∣∣I1

∣∣), the technical combinatorial Lemma 8 and Lemma 4 imply
that: ∣∣avg T 1 − avg T 2∣∣ =

∣∣avg Tit − avg T ′
it

∣∣
≤

∣∣I1
∣∣

k − 2s +
∣∣I1
∣∣ · (max Uit−1 −min Uit−1)

≤ lit

k − 2s + lit
· (max Uit−1 −min Uit−1)

≤ lit

n− 2t +
∑it

i=1 li
· (max Uit−1 −min Uit−1),

where in the second inequality we used that |I1| ≤ lit
6, and in the last

inequality we used that k − 2s + lit = n − 2t + c + lit, and the fact that c ≥∣∣C∩
it−1

∣∣ =
∑it−1

i=1 li (any corrupted party in C∩
it−1 that is identified as corrupted

by all honest parties distributes a grade 0 to all honest parties by the No Honest
Participation property of conditional graded broadcast).

Lemma 7. OptimalProxL achieves Consistency.

Proof. Lemma 4 implies that the honest parties’ outputs are within ⌊ ℓ
M min UL⌋

and ⌊ ℓ
M max UL⌋. Then, to prove that the honest parties’ outputs lie within two

consecutive slots, it is enough to show that ℓ
M (max UL −min UL) ≤ 1.

By iteratively applying Lemma 6, and using the fact that U0 = {0, M} and
lit

n−2t+
∑it

i=1
li

< 1 for any it ≤ L, we obtain:

max UL −min UL ≤M ·
L∏

it=1

lit

n− 2t +
∑it

i=1 li
+ L

≤M ·
L∏

it=1
lit ·

1
(n− 2t)L

+ L

≤M · tL

LL
· 1

(n− 2t)L
+ L,

where the last step follows from inequality of arithmetic and geometric means,
and the fact that the sum of identified corrupted parties is at most t:(

L∏
it=1

lit

) 1
L

≤ l1 + l2 + · · ·+ lL
L

≤ t

L
=⇒

L∏
it=1

lit ≤
tL

LL

6 Note that x
x+a

≤ x+b
x+a+b

for any positive real numbers x, a and b.
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Then, we bound ℓ
M (max UL −min UL) as follows:

ℓ

M
(max UL −min UL) ≤ ℓ · 1

LL

(
t

n− 2t

)L

+ ℓ

M
· L

≤ ℓ · 1
LL

(
t

n− 2t

)L

+ ℓ(
n−2t

t

)L · LL+1
· L

≤ ℓ · 1
LL

(
t

n− 2t

)L

+ ℓ · 1
LL
·
(

t

n− 2t

)L

= 2ℓ · 1
LL

(
t

n− 2t

)L

≤ ℓ · ℓ−1 = 1,

where in the last inequality we used that ℓ ≥ 1, which follows from the fact that
t = (1− ϵ) · n

2 and L ≥ 1−ϵ
ϵ .

6 Technical Combinatorial Lemma

In this section we prove the technical combinatorial lemma that allows to prove
that the updated mini-slot values from honest parties get closer by the required
amount, as stated in Lemma 6.

Consider an array A of k values sorted by increasing order and a number
s < k/2. Further consider the array T 1 created as follows: T 1 has some of the
values missing in indices from a fixed set I1 and then the lowest and highest
s− |I1| values are removed. Similarly, consider the array T 2 created in the same
way, but with indices in I2. See Figure 2 for an example.

Let b be the maximum value among those remaining in array T 1 or T 2, and
let a be the minimum value. Then, the following combinatorial lemma states that
the averages of the remaining values in T 1 and T 2 differ in at most a fraction

max
(∣∣I1

∣∣,∣∣I2

∣∣)
k−2s+max

(∣∣I1

∣∣,∣∣I2

∣∣) of b− a.

A1 A2 A3 A4 A5 A6 A7 A8 A9A0A :
T 1 : ⊥ ⊥A8⊥A6⊥A4A3⊥A1

T 2 : ⊥ ⊥⊥⊥⊥A5A4A3⊥⊥

Fig. 2: An example of A, T 1, and T 2, for k = 10, s = 4, I1 = {2, 5, 7}, and
I2 = {6}.

Lemma 8. Let A = [A0, A1, . . . , Ak−1] denote an array where A0 ≤ A1 ≤
· · · ≤ Ak−1. Let s < k/2 and let I1, I2 ⊆ {0, 1, . . . , k − 1} denote two sets of
indices such that

∣∣I1 ∪ I2
∣∣ ≤ s. Consider the arrays T 1 = [T 1

0 , T 1
1 , . . . , T 1

k−1] and
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T 2 = [T 2
0 , T 2

1 , . . . , T 2
k−1] constructed as follows: for j ∈ {1, 2}, we first set T j

i to
Ai if i /∈ Ij and otherwise to ⊥, and afterwards we replace the lowest and the
highest non-⊥ (s− |Ij |) values in T j by ⊥. Then,∣∣avg {T 1

i ̸= ⊥}i∈[0,k−1] − avg {T 2
i ̸= ⊥}i∈[0,k−1]

∣∣
≤

max
(∣∣I1

∣∣, ∣∣I2
∣∣)

k − 2s + max
(∣∣I1

∣∣, ∣∣I2
∣∣) (b− a),

where b = max{T j
i ̸= ⊥}j∈{1,2},i∈[0,k−1] and a = min{T j

i ̸= ⊥}j∈{1,2},i∈[0,k−1].

Proof. Let m1 :=
∣∣I1
∣∣ and m2 :=

∣∣I2
∣∣. Without loss of generality, we assume

that m1 ≥ m2, meaning that T 1 contains at least as many non-⊥ values as T 2.
Let

v1 := avg {T 1
i ̸= ⊥}i∈[0,k−1] = 1∣∣{T 1

i ̸= ⊥}
∣∣ ∑

{i:T 1
i

̸=⊥}

T 1
i ,

v2 := avg {T 2
i ̸= ⊥}i∈[0,k−1] = 1∣∣{T 2

i ̸= ⊥}
∣∣ ∑

{i:T 2
i

̸=⊥}

T 2
i .

We first note that the number of non-⊥ values in T 1 is:∣∣{T 1
i ̸= ⊥}

∣∣ = k − 2(s−m1)−m1 = k − 2s + m1.

Similarly,
∣∣{T 2

i ̸= ⊥}
∣∣ = k − 2s + m2.

We then obtain the following:

v1 − v2 =
∑

{i:T 1
i

̸=⊥} T 1
i

k − 2s + m1
− v2 =

∑
{i:T 1

i
̸=⊥} T 1

i − (k − 2s + m1) · v2

k − 2s + m1

=
∑

{i:T 1
i

̸=⊥} T 1
i − (k − 2s + m2) · v2 − (m1 −m2) · v2

k − 2s + m1

=
∑

{i:T 1
i

̸=⊥} T 1
i −

∑
{i:T 2

i
̸=⊥} T 2

i − (m1 −m2) · v2

k − 2s + m1
. (1)

Analyzing the Term
∑

{i:T 1
i

̸=⊥} T 1
i . In order to analyze this sum, it will be

convenient to look at the values in T 1
i within three regions, separated by the

indices start = s−m2 and end = k− (s−m2)− 1. Note that by construction,
at least the lowest and the highest s−m2 indices in T 2 contain ⊥ as its value.

– Indices i < start. In this region, T 2
i = ⊥. Moreover, since the values are

ordered increasingly and {T 2
i ̸= ⊥} ̸= ∅, we can bound any non-⊥ value

T 1
i = Ai ≤ Astart ≤ min{T 2

j ̸= ⊥}.
– Indices i > end. Similarly as above, T 2

i = ⊥. Moreover, any non-⊥ value
T 1

i = Ai ≥ Aend ≥ max{T 2
j ̸= ⊥}.
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– Indices start ≤ i ≤ end. Here non-⊥ values in T 1 and T 2 are within the
values Astart and Aend. In this region, we define the sets of subindices where
exactly either T 1 or T 2 contain non-⊥ values. That is, M1 := {start ≤
i ≤ end : T 1

i = ⊥ and T 2
i ̸= ⊥} and M2 := {start ≤ i ≤ end : T 1

i ̸=
⊥ and T 2

i = ⊥}.

We can then express the sum of values in T 1 as:∑
{i:T 1

i
̸=⊥}

T 1
i =

∑
{i<start:T 1

i
̸=⊥}

T 1
i +

∑
{start≤i≤end:T 1

i
̸=⊥}

T 1
i +

∑
{end<i:T 1

i
̸=⊥}

T 1
i

=
∑

{i<start:T 1
i

̸=⊥}

T 1
i +

∑
{end<i:T 1

i
̸=⊥}

T 1
i +

∑
{i:T 2

i
̸=⊥}

T 2
i −

∑
i∈M1

T 2
i +

∑
i∈M2

T 1
i ,

since
∑

{start≤i≤end:T 1
i

̸=⊥} T 1
i =

∑
{i:T 2

i
̸=⊥} T 2

i −
∑

i∈M1 T 2
i +

∑
i∈M2 T 1

i .

T 2 : ⊥ ⊥⊥⊥⊥A5A4A3⊥⊥

T 1 : ⊥ ⊥A8⊥A6⊥A4A3⊥A1

A : A0 A9A8A7A6A5A4A3A2A1

[ ]
start end

[ ]] ][[

Fig. 3: In the example from Figure 2, start = 3 and end = 6. The brackets show
how we split the indices of T 1 and T 2.

Using Equation (1), we have:

∣∣v1 − v2
∣∣ = 1

k − 2s + m1
·
∣∣d∣∣,

where

d =
∑

{i<start:T 1
i

̸=⊥}

T 1
i −

∑
i∈M1

T 2
i +

∑
{end<i:T 1

i
̸=⊥}

T 1
i +

∑
i∈M2

T 1
i −(m1−m2) ·v2. (2)

In order to upper bound
∣∣d∣∣, we find bounds for each of the summands.

Bounds for
∑

{i<start:T 1
i

̸=⊥} T 1
i . In this region, any summand T 1

i satisfies: a =
min{T j

i ̸= ⊥}j∈{1,2} ≤ T 1
i ≤ Astart.

Within this region of indices, the first s−m1 indices have ⊥ as their value (by
construction of T 1). Therefore, the number of summands is∣∣{i < start : T 1

i ̸= ⊥}
∣∣ = start− (s−m1)− l = (m1 −m2 − l),

where l =
∣∣{s−m1 ≤ i < start : T 1

i = ⊥}
∣∣.
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Therefore, we have:

(m1 −m2 − l) · a ≤
∑

{i<start:T 1
i

̸=⊥}

T 1
i ≤ (m1 −m2 − l) ·Astart. (3)

Bounds for
∑

{end<i:T 1
i

̸=⊥} T 1
i . Similarly, in this region, any summand T 1

i sat-
isfies Aend ≤ T 1

i ≤ max{T j
i ̸= ⊥}j∈{1,2} = b.

Since the last s−m1 indices have ⊥ as their value:∣∣{end < i : T 1
i ̸= ⊥}

∣∣ = k − (s−m1)− 1− end− h = m1 −m2 − h,

where h =
∣∣{end < i ≤ k − (s−m1)− 1 : T 1

i = ⊥}
∣∣.

Therefore, we have:

(m1 −m2 − h) ·Aend ≤
∑

{end<i:T 1
i

̸=⊥}

T 1
i ≤ (m1 −m2 − h) · b. (4)

Bounds for
∑

i∈M1 T 2
i . From the definition of M1, any index i ∈ M1 satisfies

start ≤ i ≤ end. Moreover, any summand T 2
i , i ∈ M1, satisfies that Astart ≤

T 2
i ≤ Aend.

By construction of T 1
i , we have that

∣∣{T 1
i = ⊥ : s − m1 ≤ i ≤ k − (s −

m1)− 1}
∣∣ = m1. This is because T 1 has 2(s−m1) + m1 indices with ⊥ in total,

including the lowest and highest s−m1 indices.
It follows that

∣∣{start ≤ i ≤ end : T 1
i = ⊥}

∣∣ = m1 − l − h.
Then,

∣∣M1
∣∣ =

∣∣{start ≤ i ≤ end : T 1
i = ⊥}

∣∣ − c = m1 − l − h − c, where c is
the number of indices start ≤ i ≤ end such that T 1

i = T 2
i = ⊥. We obtain that

(m1 − l − h− c) ·Astart ≤
∑

i∈M1

T 2
i ≤ (m1 − l − h− c) ·Aend. (5)

Bounds for
∑

i∈M2 T 1
i . The bounds are derived similarly as in the previous

case. Any index i ∈ M2 satisfies start ≤ i ≤ end, and any summand T 1
i ,

i ∈M2, satisfies that Astart ≤ T 1
i ≤ Aend.

By construction of T 2
i , we have that

∣∣{T 2
i = ⊥ : start ≤ i ≤ end}

∣∣ = m2.
Then,

∣∣M2
∣∣ =

∣∣{start ≤ i ≤ end : T 2
i = ⊥}

∣∣ − c = m2 − c, where c is the
number of indices start ≤ i ≤ end such that T 1

i = T 2
i = ⊥. We obtain that

(m2 − c) ·Astart ≤
∑

i∈M2

T 1
i ≤ (m2 − c) ·Aend. (6)

Bounds for (m1 −m2) · v2. Since v2 is the average of the non-⊥ values in T 2,
Astart ≤ min{T 2

i ̸= ⊥} ≤ v2 ≤ max{T 2
i ̸= ⊥} ≤ Aend. Then, we have

(m1 −m2) ·Astart ≤ (m1 −m2) · v2 ≤ (m1 −m2) ·Aend. (7)

Upper Bounding |d|. In order to upper bound
∣∣d∣∣, we distinguish two cases.
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– v1 ≥ v2. Here,
∣∣d∣∣ = d. By using the inequalities (3) to (7) in Equation (2)

and simplifying the terms, we obtain that:∣∣d∣∣ ≤ c · (Astart −Aend) + m2 · (Aend − b)
+ h · (Astart − b) + m1 · (b−Astart) ≤ m1 · (b− a),

where in the last inequality we used that c, h, m1, m2 ≥ 0 and a ≤ Astart ≤
Aend ≤ b.

– v1 ≤ v2. In this case,
∣∣d∣∣ = −d. By using the inequalities (3) to (7) in

Equation (2) and simplifying the terms, we obtain that:∣∣d∣∣ ≤ c · (Astart −Aend) + l · (a−Aend)+
m2 · (a−Astart) + m1 · (Aend − a) ≤ m1 · (b− a),

where in the last inequality we used that c, l, m1, m2 ≥ 0 and a ≤ Astart ≤
Aend ≤ b.

It follows that
∣∣d∣∣ ≤ m1 · (b − a), and therefore

∣∣v1 − v2
∣∣ ≤ m1

k−2s+m1
· (b − a),

which concludes the proof.

7 Putting It All Together

By instantiating the Proxcensus protocol from Theorem 3 in the Expand-and-
Extract iteration paradigm from Theorem 1, we achieve the desired result.

Theorem 4. Let ϵ > 0 be a constant. Assuming a PKI infrastructure and an
ideal 1-round Coin-Flip protocol, there is a (3r + 1)-round Byzantine agreement
protocol that achieves agreement except with probability at most

[
⌊ 1

2

(
2ϵ

1−ϵ r
)r

⌋
]−1

and is resilient against t = (1− ϵ)n/2 corruptions, for any r ≥ 1−ϵ
ϵ .

Note that one can instantiate the 1-round ideal coin-flip from a trusted setup
of unique threshold signatures (see [CKS05, LJY14]).

7.1 Comparison to Previous Protocols
We add a comparison to previous protocols in Figure 4 for our setting with
an ideal 1-round Coin-Flip. Our protocol achieves a lower failure probability
when the number of honest parties is high. We therefore depict how the failure
probability decreases with the number of rounds in three regimes: t < n/10,
t < n/3 and t = 0.49n. In each of the regimes, we compare our protocol with
the two more efficient known protocols.

Our figures show that in the regimes t < n/10 and t < n/3, our proto-
col achieves a lower failure probability than the previous protocols [FM97] and
[FLL21] after a few tens of rounds. Concretely, after 6 (resp. 27) rounds com-
pared to [FLL21], and 4 (resp. 13) rounds compared to [FM97]. On the other
hand, when t = 0.49n, our protocol achieves a lower failure probability only after
more than 200 rounds, compared to previous solutions [MV17, FLL21].
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our protocol becomes lower than that of
[FM97] after 4 rounds, and lower than

that of [FLL21] after 6 rounds.
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(b) t < n/3: The failure probability of our
protocol becomes lower than that of

[FM97] after 13 rounds, and lower than
that of [FLL21] after 27 rounds.
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(c) t = 0.49n: The failure probability of
our protocol becomes lower than that of
[MV17] after 212 rounds, and lower than

that of [FLL21] after 299 rounds.

Fig. 4: Comparison to Previous Protocols.
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7.2 Open Problems
Our results leave a number of very exciting open problems.
Improving Constants. We leave open whether one can get similar results for
the optimal threshold t < n/2. In a similar direction, our protocol is optimal up
to constants, i.e. it achieves the optimal agreement probability for an r-round
protocol within c · r rounds for some constant c. It would be interesting to see
whether one can match the exact constants obtained from the known lower
bounds.
Setup Assumptions. Another exciting direction would be to see whether sim-
ilar results can be achieved from weaker setup assumptions. In particular, it
would be interesting to see whether one can instantiate an ideal common-coin
from plain PKI, or even with specific number-theoretic assumptions, within a
constant (or even linear in r) number of rounds.
Early Termination. Finally, another interesting open question is to investigate
whether one can leverage our protocols to achieve early termination. That is, a
protocol that in expectation terminates in a constant number of rounds, but in
the worst case it still achieves the optimal agreement probability.
Communication Complexity. Our protocol incurs a communication com-
plexity of O(n4(κ + r log(r))) bits, where κ is the size of a signature and r is
the number of rounds. Using threshold signatures for the (conditional) graded
broadcast primitive, we can save a linear factor n. It remains open to explore
solutions with improved communication.
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